News!!
Open position
Master 2 internship with a possibility to continue as a Ph.D. candidate.2024/03/04 to 2024/03/08 at CIRM (Marseille)
JNCF - Francophone Computer Algebra Days (Journées Nationales de Calcul Formel).2023/09/21 at Sorbonne Université
I defended my habilitation thesis (HDR)2023/07/23 to 2023/07/27 at Universitetet i Tromsø - Norges arktiske universitet
ISSAC 2023: Dimitri Lesnoff (Sorbonne Université) presented our software demo Modular matrix multiplication on GPU for polynomial system solving.2023/07/13 to 2023/07/14 at Technische Universiteit Eindhoven
SIAM AG23: Christian Eder (Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau), Vincent Neiger (Sorbonne Université) and I organized the Multivariate Polynomials, Ideals, and Modules: Algorithms and Applications session, parts I, II and III.2023/07/05
msolve release v.0.5.0, an open-source library for solving polynomial systems, written in C,
with Christian Eder (Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau) and Mohab Safey El Din (Sorbonne Université).2022/10/24 at Sorbonne Université
Andrew Ferguson successfully defended his Ph.D. thesis! Congratulations!- Accepted and published papers
-
Faster change of order algorithm for Gröbner bases
under shape and stability assumptions
published at ISSAC '22.
With Vincent Neiger (Sorbonne Université) and Mohab Safey El Din (Sorbonne Université). -
Gröbner bases and critical values: The asymptotic combinatorics of
determinantal systems
published in Journal of Algebra.
With Alin Bostan (INRIA), Andrew Ferguson (Sorbonne Université) and Mohab Safey El Din (Sorbonne Université).
-
Faster change of order algorithm for Gröbner bases
under shape and stability assumptions
-
Recent submissions
-
New efficient algorithms for computing Gröbner bases of
saturation ideals (F4SAT) and colon ideals
(Sparse-FGLM-colon)
With Christian Eder (Technische Universität Kaiserslautern) and Mohab Safey El Din (Sorbonne Université).
-
New efficient algorithms for computing Gröbner bases of
saturation ideals (F4SAT) and colon ideals
(Sparse-FGLM-colon)