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Introduction to mathematical morphology

Lattices and information processing

Lattices: core mathematical structure in many information processing
problems.
Examples:

soft computing (fuzzy sets, bipolar information),

knowledge representation,

logics,

formal concept analysis,

automated reasoning,

decision making,

image processing and understanding,

information retrieval,

etc.

Mathematical morphology on complete lattices.
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Introduction to mathematical morphology

Mathematical Morphology for Spatial Information

Matheron (mid-1960’s), Serra (1982)

A theory of space.

Widely used in image processing and interpretation.

At different levels (local, regional, structural...).

For different tasks (filtering, enhancement, segmentation,
interpretation, spatial knowledge modeling...).

Filtering
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Introduction to mathematical morphology

Segmentation
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Introduction to mathematical morphology

Interpretation
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Introduction to mathematical morphology

Knowledge modeling What is the region to the right of R? Is B to the
right of R (and to which degree)?

Spatial reasoning
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Introduction to mathematical morphology

Formal framework: complete lattices

Lattice: (T ,≤) (≤ partial ordering) such that
∀(x , y) ∈ T ,∃x ∨ y and ∃x ∧ y .
Complete lattice: every family of elements (finite or not) has a
smallest upper bound and a largest lower bound.
⇒ contains a smallest element 0 and a largest element I :

0 =
∧
T =

∨
∅ and I =

∨
T =

∧
∅

Examples of complete lattices:
(P(E ),⊆): complete lattice, Boolean (complemented and distributive)
functions of Rn in R for the partial ordering ≤:
f ≤ g ⇔ ∀x ∈ Rn, f (x) ≤ g(x)
partitions
logics (propositional logics, modal logics...)
fuzzy sets, bipolar fuzzy sets
rough sets and fuzzy rough sets
formal concepts
...
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Introduction to mathematical morphology

Algebraic dilations and erosions

Heijmans, Ronse (1990)

Complete lattices (T ,≤), (T ′,≤′)

Algebraic dilation: δ : T → T ′ such that

∀(xi ) ∈ T , δ(∨ixi ) = ∨′iδ(xi )

Algebraic erosion: ε : T ′ → T such that

∀(xi ) ∈ T ′, ε(∧′ixi ) = ∧iε(xi )

Properties:

δ(0) = 0′ (in P(E ), 0 = ∅)
ε(I ′) = I (in P(E ), I = E )

δ increasing, ε increasing

in P(Rn), δ(X ) = ∪x∈X δ({x})
I. Bloch (Télécom ParisTech & CNRS) Mathematical Morphology 2014 8 / 55



Introduction to mathematical morphology

Adjunctions

δ : T → T ′, ε : T ′ → T , (ε, δ) adjunction if:

∀x ∈ T , ∀y ∈ T ′, δ(x) ≤′ y ⇔ x ≤ ε(y)

Properties:

δ(0) = 0′ and ε(I ′) = I

(ε, δ) adjunction ⇒ ε = algebraic erosion and δ = algebraic dilation

δ increasing = algebraic dilation iff ∃ε such that (ε, δ) is an adjunction
⇒ ε = algebraic erosion and ε(x) =

∨
{y ∈ T , δ(y) ≤′ x}

ε increasing = algebraic erosion iff ∃δ such that (ε, δ) is an adjunction
⇒ δ = algebraic dilation and δ(x) =

∧
{y ∈ T ′, ε(y) ≥ x}

εδ ≥ Id and δε ≤ Id ′

εδε = ε and δεδ = δ

εδεδ = εδ and δεδε = δε

δ and ε increasing such that δε ≤ Id ′ and εδ ≥ Id ⇒ (ε, δ) adjunction
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Introduction to mathematical morphology

Morphological dilations and erosions

On the lattice of the subsets of Rn or Zn, with inclusion:

δ(X ) = ∪x∈X δ({x})

+ invariance under translation
⇒ ∃B, δ(X ) = D(X ,B) = {x , B̌x ∩ X 6= ∅} (with Bx = x + B).

B = structuring element (neighborhood, binary relation).

Same result on the lattice of functions.

Similar results for erosion: ∃B, ε(X ) = E (X ,B) = {x ,Bx ⊆ X}.

Derived operators: opening, closing, conditional (geodesic) operations,
gradient...
Relaxing the assumption on invariance under translation: structuring
elements varying in space (ex: projective geometry, omnidirectional
images...).
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Introduction to mathematical morphology

Algebraic opening and closing

Algebraic opening: γ increasing, idempotent and anti-extensive.

Algebraic closing: ϕ increasing, idempotent and extensive.

Examples: γ = δε and ϕ = εδ with (ε, δ) adjunction.

Invariance domain: Inv(ϕ) = {x ∈ T , ϕ(x) = x}.
γ opening ⇒ γ(x) =

∨
{y ∈ Inv(γ), y ≤ x}.

ϕ closing ⇒ ϕ(x) =
∧
{y ∈ Inv(ϕ), x ≤ y}.

(γi ) openings ⇒
∨

i γi opening.

(ϕi ) closings ⇒
∧

i ϕi closing.

γ1 and γ2 openings ⇒ equivalence between:

1 γ1 ≤ γ2

2 γ1γ2 = γ2γ1 = γ1

3 Inv(γ1) ⊆ Inv(γ2)

Similar result on closings.
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Introduction to mathematical morphology

A simple example

(Illustration: C. Ronse)
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Fuzzy sets

Lattice of fuzzy sets and fuzzy morphology

Space S (e.g. Zn or Rn)

F : set of fuzzy sets on S – µ ∈ F , µ : S → [0, 1].

Partial ordering:

∀(µ1, µ2) ∈ F2, µ1 ≤ µ2 ⇔ ∀x ∈ S, µ1(x) ≤ µ2(x)

(F ,≤) = complete lattice

∧ = min

∨ = max

Algebraic dilation and erosion: as in any complete lattice

I. Bloch (Télécom ParisTech & CNRS) Mathematical Morphology 2014 13 / 55



Fuzzy sets

Morphological operations in the fuzzy case

Operators: t-norm t, t-conorm T , complementation c , implication I
derived from T and c , residual implication IR derived from t.
Fuzzy dilation of µ by ν:

δν(µ)(x) = sup
y∈S

t[ν(x − y), µ(y)]

Fuzzy erosion of µ by ν:

by duality:

εν(µ)(x) = inf
y∈S

T [c(ν(y − x)), µ(y)] = inf
y∈S

I [ν(y − x), µ(y)]

by adjunction:

εν(µ)(x) = inf
y∈S

IR [ν(y − x), µ(y)]

Equivalence for Lukasiewicz operators (up to a bijective permutation on
[0, 1]).
Properties: as in classical morphology.
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Fuzzy sets

Structural information: spatial relations

Expression of several spatial relations in terms of morphological operators:

adjacency

distance (nearest point distance, Hausdorff distance)

relative direction

more complex relations (between, along...)

Two classes of relations:

well defined in the crisp case

vague even if objects are well defined
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Fuzzy sets

Example of directional relation
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Fuzzy sets

Minimum distance density

Binary discrete case:

dN(X ,Y ) = n⇔ δn(X ) ∩ Y 6= ∅ and δn−1(X ) ∩ Y = ∅

dN(X ,Y ) = 0⇔ X ∩ Y 6= ∅

Degree to which the distance between µ and µ′ is equal to n:

dN(µ, µ′)(n) = t[sup
x∈S

t[µ′(x), δnν(µ)(x)], c[sup
x∈S

t[µ′(x), δn−1
ν (µ)(x)]]]

dN(µ, µ′)(0) = sup
x∈S

t[µ(x), µ′(x)]

Hausdorff distance: similar equations.
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Fuzzy sets

Fuzzy distance: example
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Fuzzy sets
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Fuzzy sets

The heart is between the lungs
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Mathematical Morphology and Logics

Morpho-Logics

Propositional logics and modal logics, associated complete lattice

Dilations and erosions:

JδB(ϕ)K = {ω ∈ Ω | B̌ω∧ϕ consistent} JεB(ϕ)K = {ω ∈ Ω | Bω |= ϕ}

Applications: revision, fusion, abduction, mediation, spatial reasoning
(joint work with J. Lang, R. Pino-Perez, C. Uzcategui)

Morphological expression of the max-fusion operator:

X∆Y = δn(X ) ∩ δn(Y ) with n = min{k : δk(X ) ∩ δk(Y ) 6= ∅}

Dilation Fusion
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Mathematical Morphology and Logics
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Mathematical Morphology and Logics

Extension to the fuzzy case

JϕK as a fuzzy set.
Example: Median set (µi = JϕiK):

M(µ1, µ2) = sup
λ

t[δλν(µ1 ∩ µ2), ελν(µ1 ∪ µ2)]

Models abc ¬abc a¬bc ab¬c ¬a¬bc ¬ab¬c a¬b¬c ¬a¬b¬c
ϕ1 0 0 0 0 0 0.2 0 0
ϕ2 0 0.5 0.5 0.5 0.5 0.8 0.5 0.7

δ1(ϕ1) 0 0.2 0 0.2 0 0.2 0 0.2
ε1(ϕ2) 0 0 0 0 0.5 0.5 0.5 0.5
δ2(ϕ1) 0.2 0.2 0 0.2 0.2 0.2 0.2 0.2
ε2(ϕ2) 0 0 0 0 0 0 0 0.5

M(ϕ1, ϕ2) 0 0 0 0 0 0.2 0 0.2
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Mathematical Morphology and Logics

Other logics

Modal logics

Accessibility relation Structuring element
2 ε
3 δ

Description logics
δ and ε as binary predicates.
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Bipolar fuzzy sets

Information and bipolarity

Positive information vs. negative information.

Consistency: no overlap.

No duality.

(Links with interval-valued fuzzy sets and intuitionistic fuzzy sets.)

Recent work (Dubois, Prade, et al.): fuzzy and possibilistic formalism.

Important in the spatial domain:

image thresholding and edge detection (Chaira et al., Couto et al.,
Vlachos et al.)
spatial representations for classification (Charlier et al., Malek)
mathematical morphology (Bloch, Melange et al.)
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Bipolar fuzzy sets

Frameworks and examples

Sets P and N with P ∩ N = ∅.
Fuzzy sets µ and ν in S, with ∀x ∈ S, µ(x) + ν(x) ≤ 1 (e.g. degrees
of preferences or constraints).

Logical formulas ϕ and ψ with ϕ ∧ ψ |= ⊥, and the models JϕK and
JψK are sets or fuzzy sets.

Utility functions, capacities, possibility distributions...
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Bipolar fuzzy sets

Agent 1:

prefers to travel in Spain: ϕ1 = Spain,

has to stay in Europe: ψ1 = ¬(Belgium ∨ France ∨ Spain ∨Portugal ∨
Italy ∨ Germany ∨ TheNetherlands ∨ ...}.

Agent 2:

prefers to travel in Morocco: ϕ2 = Morocco,

has to stay in a Mediterranean country:
ψ2 = ¬(Morocco ∨ Spain ∨ Italy ∨ Portugal ∨ ...).

⇒ conflict!
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Bipolar fuzzy sets

Extending preferences using dilation:

δ(ϕ1) = Spain ∨ France ∨ Portugal ∨Morocco

δ(ϕ2) = Morocco ∨ Algeria ∨ Portugal ∨ Spain

Introducing the constraints in order to satisfy the consistency
requirements:

ϕ′1 = δ(ϕ1) ∧ ¬ψ1 = Spain ∨ France ∨ Portugal

ϕ′2 = δ(ϕ2) ∧ ¬ψ2 = δ(ϕ2)

Fusion of preferences and constraints: conjunction of the preferences
and disjunction of the constraints

(ϕ,ψ) = (ϕ′1∧ϕ′2, ψ1∨ψ2) = (Spain∨Portugal ,¬(
∨

Medit. and Eur . countries))

⇒ Solution for travelling in the set of models of these formulas.
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Bipolar fuzzy sets

Bipolar fuzzy sets

Modeling bipolarity and imprecision
Definition:

L = {(a, b) ∈ [0, 1]2 | a + b ≤ 1}

(µ, ν) : S → [0, 1]× [0, 1]

∀x ∈ S, µ(x) + ν(x) ≤ 1

µ: membership function (positive information)

ν: non-membership function (negative information)

do not necessarily come from the same source of information

(not the same semantics as interval-valued fuzzy sets)
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Bipolar fuzzy sets

Complete lattice structure

Symmetrical role of positive and negative information:

Pareto partial ordering: (a1, b1) �P (a2, b2) iff a1 ≤ a2 and b1 ≥ b2

(L,�P) and (B,�P) = complete lattices

Standard negation: (ν, µ)

Giving priority to the negative information:

Lexicographic ordering �lex (total ordering)

(L,�lex) and (B,�lex) = complete lattices

negation: reversing the order

Supremum (
∨

P ,
∨

lex), infimum (
∧

P ,
∧

lex)

Smallest element: (0, 1), largest element: (1, 0)
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Bipolar fuzzy sets

Bipolar fuzzy mathematical morphology

Algebraic definitions: dilation = commutes with the supremum, erosion =
commutes with the infinum.
Using structuring elements:

I : bipolar implication, C bipolar t-norm.

Erosion as a bipolar degree of inclusion:

ε(µB ,νB)((µ, ν))(x) =
∧
y∈S

I ((µB(y − x), νB(y − x)), (µ(y), ν(y)))

Dilation as a bipolar degree of intersection:

δ(µB ,νB)((µ, ν))(x) =
∨
y∈S

C ((µB(x − y), νB(x − y)), (µ(y), ν(y)))
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Bipolar fuzzy sets

Illustrative example

Positive information – Negative information

Bipolar fuzzy structuring element
Bipolar fuzzy set

Dilation using lexicographic min

Dilation using Pareto min
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Mathematical morphology and FCA

FCA: Adjunction and Galois connection

Equivalent concepts by reversing the order on one space.

δ : A→ B, ε : B → A α : B → A, β : A→ B
δ(a) ≤B b ⇔ a ≤A ε(b) a ≤A α(b)⇔ b ≤B β(a)

(⇔ β(a) ≤′B b with ≤′B≡≥B)
increasing operators decreasing operators
εδε = ε, δεδ = δ αβα = α, βαβ = β

εδ = closing, δε = opening αβ and βα = closings
Inv(εδ) = ε(B), Inv(δε) = δ(A) Inv(αβ) = α(B), Inv(βα) = β(A)

ε(B) = Moore family α(B) and β(A) = Moore families
δ(A) = dual Moore family

δ = dilation: δ(∨Aai ) = ∨B(δ(ai )) α(∨Bbi ) = ∧Aα(bi )
ε = erosion: ε(∧Bbi ) = ∧A(ε(bi )) β(∨Aai ) = ∧Bβ(ai ) (anti-dilation)
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Mathematical morphology and FCA

Fuzzy extension

Belohlavek (1999): fuzzy Galois connection

A↑(y) =
∧
x

(A(x)→ I (x , y)), B↓(x) =
∧
y

(B(y)→ I (x , y))

⇒ equivalent to a fuzzy anti-dilation

Dubois et al. (2007): possibilistic view

XΠ = {y | ∃x ∈ X , I (x , y)}, XN = {y | ∀x , I (x , y)⇒ x ∈ X}
X∆ = {y | ∀x ∈ X , I (x , y)}, X∇ = {y | ∃x ∈ X̄ ,¬I (x , y)}
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Spatial reasoning

Fuzzy spatial relations and spatial reasoning

Example: brain imaging

Linguistic descriptions
direction: the thalamus is below the lateral ventricle
distance: the lateral ventricles are far from the brain surface
adjacency: the thalamus is adjacent to the third ventricle
symmetry: homologous structures in both hemispheres

Fuzzy representations
Attributed hierarchical graph (Colliot et al.) and ontologies (Hudelot
et al.)
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Spatial reasoning

Spatial Relation

Topological Relation Metric Relation

Directional Relation Distance Relation

Binary Directional 
Relation 

Ternary Directional 
Relation

Right to Left to In Front of Between Close to Far from

hierarchy relation

Included Adjacent

On
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Spatial reasoning

Spatial relation
ontology 
concepts

Brain anatomy
concepts

Spatial relations
between 
anatomical
concepts
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Spatial reasoning

Ontology Fuzzy model

Spatial Object x

Fuzzy set

Spatial fuzzy 
set

Angle
histogram

Force
histogram

Right of y Fuzzy
landscape

x in Directional 
Relation

with y

x to the Right of y

Right

Center of
mass

Fuzzy interval

has for fuzzy representation 
in the concrete domain

Operator

Operator

=

=
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Spatial reasoning

Learning spatial relations
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Spatial reasoning
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Spatial reasoning

Khotanlou et al., Atif et al.

I. Bloch (Télécom ParisTech & CNRS) Mathematical Morphology 2014 41 / 55



Spatial reasoning

Optimizing the segmentation path

Reasoning in the graph and fusion with saliency information (Fouquier et
al.)
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Spatial reasoning

Global approach using a constraint network

Nempont et al.
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Spatial reasoning
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Spatial reasoning
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Spatial reasoning

Remote sensing image understanding

High resolution satellite image understanding.

Collaboration with the CNES (PhD of Carolina Vanegas).

Contributions:

modeling new spatial relations (surround, parallel, across, aligned...),
conceptual graphs integrating these relations,
new fuzzy CSP to deal with fuzzy complex relations and groups of
objects,
understanding guided by conceptual graphs using FCSP.
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Spatial reasoning
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Spatial reasoning
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Spatial reasoning
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Spatial reasoning
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Spatial reasoning

Using modal logics

Examples (with 2 ≡ ε and 3 ≡ δ):

tangential part: ϕ→ ψ and 3ϕ ∧ ¬ψ consistent, or
ϕ→ ψ and ϕ ∧ ¬2ψ consistent

non tangential part: 3ϕ→ ψ, or, ϕ→ 2ψ

external connection:
ϕ ∧ ψ inconsistent and 3ϕ ∧ ψ consistent (or ϕ ∧3ψ consistent)

tangential proper part: tangential part and ¬ϕ ∧ ψ consistent
(TPP(X ,Y ) = P(X ,Y ) ∧ ¬P(Y ,X ) ∧ ¬P(δ(X ),Y ))
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Spatial reasoning

Bipolarity and spatial reasoning

Directional information: the RPU is exterior (left on the image) of the
union of RLV and RTH (positive information) and cannot be interior
(negative information).
Distance information: the RPU is quite close to the union of RLV and
RTH (positive information) and cannot be very far (negative information).

Semantics of left (resp. right): fuzzy structuring element νL
(resp.νR).

(µdir , νdir ) = (δνL(RLV ∪ RTH), δνR (RLV ∪ RTH))

Semantics of close (resp. far): νC (resp. νF ).

(µdist , νdist) = (δνC (RLV ∪ RTH), 1− δ1−νF (RLV ∪ RTH))

Conjunctive fusion:

(µFusion, νFusion) = (min(µdir , µdist),max(νdir , νdist))
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Spatial reasoning
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Spatial reasoning

Pathological hemisphere: deformations induced by the tumor.

Semantics of the induced variability: (µvar , νvar )
Larger region, including the correct region:

(µ′dist , ν
′
dist) = δ(µvar ,νvar )(µdist , νdist)
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Conlusion

Conclusion

Algebraic framework of mathematical morphology.

Strong properties.

Local and structural knowledge representation and reasoning.

Applies in different frameworks (logics, fuzzy sets, bipolarity, FCA...).

Towards spatial reasoning.

Towards preference modeling and decision making.

Extension to spatio-temporal reasoning?
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