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ABSTRACT
Let S ⊂ Rn be a compact basic semi-algebraic set defined as the
real solution set of multivariate polynomial inequalities with ra-
tional coefficients. We design an algorithm which takes as input a
polynomial system defining S and an integer p ⩾ 0 and returns the
n-dimensional volume of S at absolute precision 2−p .

Our algorithm relies on the relationship between volumes of
semi-algebraic sets and periods of rational integrals. It makes use
of algorithms computing the Picard-Fuchs differential equation of
appropriate periods, properties of critical points, and high-precision
numerical integration of differential equations.

The algorithm runs in essentially linear time with respect to p.
This improves upon the previous exponential bounds obtained by
Monte-Carlo or moment-based methods. Assuming a conjecture of
Dimca, the arithmetic cost of the algebraic subroutines for comput-
ing Picard-Fuchs equations and critical points is singly exponential
in n and polynomial in the maximum degree of the input.
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1 INTRODUCTION
Semi-algebraic sets are the subsets of Rn which are finite unions of
real solution sets to polynomial systems of equations and inequa-
lities with coefficients in R. Starting from Tarski’s algorithm for
quantifier elimination [39] improved by Collins through the Cylin-
drical Algebraic Decomposition algorithm [11], effective real al-
gebraic geometry yields numerous algorithmic innovations and
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asymptotically faster routines for problems like deciding the empti-
ness of semi-algebraic sets, answering connectivity queries or com-
puting Betti numbers [e.g., 3, 6, 7, 36, 37]. The output of all these
algorithms is algebraic in nature. In this paper, we study the prob-
lem of computing the volume of a (basic) compact semi-algebraic
set S ⊂ Rn defined over Q. The output may be transcendental: for
instance, the area of the unit circle in R2 is π .

Volumes of semi-algebraic sets actually lie in a special class of real
numbers, for they are closely related to Kontsevich-Zagier periods

introduced in [23]. A (real) period is the value of an absolutely
convergent integral of a rational function with rational coefficients
over a semi-algebraic set defined by polynomials with rational
coefficients. For example, algebraic numbers are periods, as are
π , log 2, ζ (3). Since vol S =

∫
S 1dx , volumes of semi-algebraic sets

defined over Q are periods. Conversely, interpreting an integral
as a “volume under a graph” shows that periods are differences of
volumes of semi-algebraic sets defined over Q. In [41], it is further
shown that periods are differences of volumes of compact semi-
algebraic sets defined over Q.

The problem we consider in this paper is thus a basic instance of
the more general problem of integrating an algebraic function over
a semi-algebraic set; it finds applications in numerous areas of engi-
neering sciences. Performing these computations at high precision
(hundreds to thousands of digits) is also relevant in experimental
mathematics, especially for discovering formulas, as explained, for
example, in [1]. Most of the examples featured in this reference are
periods, sometimes in disguise.

Prior work. The simplest semi-algebraic sets one can consider are
polytopes. The computation of their volume has been extensively
studied, with a focus on the complexity with respect to the dimen-
sion. It is known that even approximating the volume of a polytope
deterministically is #P-hard [13, 19]. The celebrated probabilistic
approximation algorithm in [14], which applies to more general
convex sets, computes an ε-approximation in time polynomial in
the dimension of the set and 1/ε . A key ingredient for this algo-
rithm is a Monte Carlo method for efficiently sampling points from
a convex set. Since then, Monte Carlo schemes have been adopted
as the framework of several volume estimation algorithms.

In contrast, we deal here with compact semi-algebraic sets which
can be non-convex and even non-connected. Additionally, while
volumes of polytopes are rational, the arithmetic nature of volumes
of semi-algebraic sets is much less clear, as unclear as the nature of
periods. This raises the question of the computational complexity
of a volume, even taken as a single real number.

A simple Monte Carlo technique applies in our setting as well:
one samples points uniformly in a box containing S and estimates
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the probability that they lie in S . This method is of practical interest
at low precision but requires 2Ω(p) samples to achieve an error
bounded by 2−p with high probability. We refer to [22] which deals
with definable sets, a class which encompasses semi-algebraic sets.

In a different direction, numerical approximation schemes based
on the moment problem and semi-definite programming have been
designed in [16]. They are also of practical interest at low precision,
and can provide rigorous error bounds, but the convergence is
worse than exponential with respect to p [24].

Another line of research, going back to the nineteenth century,
is concerned with the computation of periods of algebraic varieties.
In particular, we build on work [9] on the high-precision numerical
solution of ODEs with polynomial coefficients which was moti-
vated, among other things, by applications to periods of Abelian
integrals [see 9, p. 133].

Main result. We describe a new strategy for computing volumes
of semi-algebraic sets, at the crossroads of effective algebraic and
real algebraic geometry, symbolic integration, and rigorous nu-
merical computing. Our approach effectively reduces the volume
computation to the setting of [9]. It yields an algorithm that ap-
proximates the volume of a fixed, bounded basic semi-algebraic set
in almost linear time with respect to the precision. More precisely,
we prove the following bit complexity estimate.

Theorem 1. Let f1, . . . , fr be polynomials in Q[x1, . . . ,xn ], and
let S ⊂ Rn

be the semi-algebraic set defined by f1 ⩾ 0, . . . , fr ⩾ 0.
Assume that S is compact. There exists an algorithm which computes,

on input p ⩾ 0 and (f1, . . . , fr ), an approximation Ṽ of the volumeV
of S with |Ṽ −V | ⩽ 2−p . When f1, . . . , fr are fixed, the algorithm

runs in time O(p log(p)3+ε ) (for any ε > 0) as p →∞.

The algorithm recursively computes integrals of volumes of
sections of S . Let v(t) denote the (n − 1)-dimensional volume of S ∩
pr−1(t), for some nonzero linear projection pr : Rn → R. In our
setting, v is a piecewise analytic function and, except at finitely
many t , is solution of a linear differential equation with polynomial
coefficients known as a Picard-Fuchs equation.

The problem points belong to the critical locus of the restric-
tion of the projection pr to a certain hypersurface containing the
boundary of S and are found by solving appropriate polynomial
systems. (Compare [20] in the case of polytopes.) The Picard-Fuchs
equation forv is produced by algorithms from symbolic integration,
in particular [5, 26]. To obtain the volume of S , it then suffices to
compute

∫
R
v with a rigorous numerical ODE solving algorithm,

starting from values v(ρi ) at suitable points ρi obtained through
recursive calls.

The complexity with respect to the dimension n of the ambient
space and the number r , maximum degree D, and coefficient size of
the polynomials fi is harder to analyze. We will see, though, that
under reasonable assumptions, the “algebraic” steps (computing
the critical loci and of the Picard-Fuchs equations) take at most
(rD)O (n

2) arithmetic operations in Q.

Example. The idea of the method is well illustrated by the exam-
ple of a torus S , here of major radius 2 and minor radius 1. Let

S =
{
(x ,y, z) ∈ R3 �� (x2 + y2 + z2 + 3)2 ⩽ 16(x2 + y2)

}
.

Figure 1: Volume of the sections of the torus S as a function
of the parameter t . In red, a singular section.

The area (2-dimensional volume) of a section S ∩ {x = t} defines
a function v : R → R (see Figure 1). It is analytic, except maybe
at the critical values t = ±3 and t = ±1 where the real locus of the
curve (t2 +y2 + z2 + 3)2 = 16(t2 +y2) is singular. On each interval
on which v is analytic, it satisfies the Picard-Fuchs equation

(t −3)(t +3)(t −1)2(t +1)2t2v ′′′(t)+ (t2+9)(t −1)2(t +1)2tv ′′(t)

− (2t4 + 11t2 − 9)(t − 1)(t + 1)v ′(t) + 2(t2 + 3)t3v(t) = 0, (1)

which we compute in 2 seconds on a laptop using the algorithm
of [26] and Theorem 9.

We know some special values of v , namely v(0) = 2π , v(±1) = 8
and v(±3) = 0. Additionally, we have v(3 ± t) = O(t2) as t →
∓0. These properties characterize the analytic function v |(−1,1) in
the 2-dimensional space of analytic solutions of the differential
equation (1) on (−1, 1), and similarly for v |(1,3). (Our algorithm
actually uses recursive calls at generic points instead of these ad
hoc conditions.) The rigorous ODE solver part of the Sage package
ore_algebra [30] determines in less than a second that∫ 3

−3
v(t)dt = 39.4784176043[...]25056533975 ± 10−60.

And indeed, it is not hard to see in this case that vol S = 4π 2. We
can obtain 1000 digits in less than a minute.

Outline. The remainder of this article is organized as follows. In
Section 2, we give a high-level description of the main algorithm. As
sketched above, the algorithm relies on the computation of critical
points, Picard-Fuchs equations, and numerical solutions of these
equations. In Section 3, we discuss the computation of Picard-Fuchs
equations and critical points, relating these objects with analyticity
properties of the “section volume” function. Then, in Section 4, we
describe the numerical solution process and study its complexity
with respect to the precision. Finally, in Section 5, we conclude the
proof of Theorem 1 and state partial results on the complexity of
the algorithm with respect to n, r , and D.

Acknowledgements. We would like to thank the anonymous re-
viewers for their careful reading and valuable comments.
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2 VOLUMES OF SEMI-ALGEBRAIC SETS
We start by designing an algorithm which deals with the case of a
union of connected components of a semi-algebraic set defined by
a single inequality. Next, we will use a deformation technique to
handle semi-algebraic sets defined by several inequalities.

2.1 Sets defined by a single inequality
Let f ∈ Q[t ,x1, . . . ,xn ] and A be the semi-algebraic set

A ≜
{
(ρ,x) ∈ R ×Rn �� f (ρ,x) ⩾ 0

}
.

Let pr : Rn+1 → R be the projection on the t-coordinate. We want
to compute the volume of a unionU of connected components of A
starting from the volumes of suitable fibersU ∩ pr−1(ρ). For tech-
nical reasons, we first consider the slightly more general situation
where U is a union of connected components of A ∩ pr−1(I ) for
some open interval I ⊆ R. From a computational point of view, we
assume thatU is described by a semi-algebraic formula ΘU , that is,

U = {(ρ,x) ∈ A | ΘU (ρ,x)} ,

where ΘU is a finite disjunction of conjunctions of polynomial
inequalities with (in our setting) rational coefficients.

For ρ ∈ I , letUρ ≜ U ∩pr−1(ρ) andv(ρ) ≜ voln Uρ . Let Σf ⊆ R

(we will often omit the subscript f ) be the set of exceptional values

Σf ≜
{
ρ ∈ R | ∃x ∈ Rn , f (ρ,x) = 0 ∧ ∀i, ∂

∂xi
f (ρ,x) = 0

}
. (2)

Thus, when f is square-free, exceptional values are either critical
values of the restriction to the hypersurface { f = 0} of the pro-
jection pr, or images of singular points of { f = 0}. By definition
of Σ, for any ρ ∈ R \ Σ, the zero set of fρ = f (ρ,−) is a smooth
submanifold of Rn .

Further, we say that assumption (R) holds for f if{
z ∈ Rn+1

��� f (z) = 0 ∧ ∂
∂t f (z) = 0 ∧ ∀i, ∂

∂xi
f (z) = 0

}
= ∅. (R)

Observe that by Sard’s theorem [e.g. 3, Theorem 5.56], when (R)
holds, the exceptional set Σ is finite.

The mainstay of the method is the next result, to be proved in §3.
Let D ⊂ Q[t][ d

dt ] denote the set of Fuchsian linear differential op-
erators with coefficients in Q[t] whose local exponents at singular
points are rational (see §4 for reminders on Fuchsian operators and
their exponents).

Theorem 2. IfU is bounded and I ∩ Σ = ∅, then the function v |I
is solution of a computable differential equation of the form P(v) = 0,
where P ∈ D depends only on f .

We will also use the following proposition, which summarizes
the results of Proposition 14 and Lemma 15 in §4. The complete
definition of “good initial conditions” is given there as well. Up to
technical details, this simply means a system I of linear equations
of the form y(k )(u) = s that suffices to characterize a particular
solution y among the solutions of P(y) = 0. An ε-approximation

of I is made of the same equations with each right-hand side s
replaced by an enclosure s̃ ∋ s of diameter ⩽ ε .

Proposition 3. Let P ∈ D have orderm, and let J = (α , β) be a
real interval with algebraic endpoints. Let y : J → R be a solution of

P(y) = 0 with a finite limit at α and I be a system of good initial

conditions for P on J defining y.

Algorithm 1 Volume ofU at precision O(2−p )
1: procedure Volume1(f ,ΘU , (t ,x1, . . . ,xn ),p)
2: if n = 0 then return UnivariateVolume(f ,ΘU ,p).
3: (α1, . . . ,αℓ) ← CriticalValues(f , t)
4: P ← PicardFuchs(f , t)
5: for 1 ⩽ i ⩽ ℓ − 1 do ▷ s̃j , S̃i are intervals
6: (ρ1, . . . , ρm ) ← PickGoodPoints(P ,αi ,αi+1)
7: for 1 ⩽ j ⩽m do
8: s̃j ← Volume1(f |t=ρ j ,ΘU |t=ρ j , (x1, . . . ,xn ),p)

9: ˜I ← [y′(ρ1) = s̃1, . . . ,y′(ρm ) = s̃m ,y(αi+1) = 0]
10: S̃i ← −DSolve(P d

dt ,
˜I ,αi ,p)

11: return S̃1 + · · · + S̃ℓ

(1) Given P ,α , a precision p ∈ N and a 2−p -approximation
˜I

ofI , one can compute an interval of widthO(2−p ) (as p →∞
for fixed P , α , and I ) containing limt→α y(t).

(2) Given P ,α , β , one can compute ρ1, . . . , ρm ∈ J ∩Q such that

the y(ρ j ) form a system of good initial conditions for P on J .

Assume now thatU is a bounded union of connected components
of A (i.e., that we can take I = R above), and that (R) holds for f .
The algorithm is recursive. Starting with input f ,ΘU , and p, it first
computes the set Σ = {α1 ⩽ · · · ⩽ αℓ} of exceptional values so
as to decompose R − Σ into intervals over which the function v
satisfies the differential equation P(y) = 0 given by Theorem 2.
SinceU is bounded, one has

voln+1U =
ℓ−1∑
i=1

voln+1
(
U ∩ pr−1(αi ,αi+1)

)
=

ℓ−1∑
i=1

∫ αi+1

αi
v(t) dt .

Fix i and consider the interval J = (αi ,αi+1). Since v | J is anni-
hilated by P , its anti-derivative w : J → R vanishing at αi+1 is
annihilated by the operator P d

dt , which belongs to D since P does.
Additionally, if [v(ρ j ) = sj ]j is a system of good initial conditions
for P that definesv | J , then [w ′(ρ j ) = sj ]j∪[w(αi+1) = 0] is a system
of good initial conditions for P d

dt definingw (see Lemma 13 in §4).
Thus, by Proposition 3, to computew(αi ) to absolute precision p, it
suffices to compute v(ρ j ), 1 ⩽ j ⩽m, to precision p +O(1).

By definition of Σ, since ρ j < Σ, there is no solution to the system

f (ρ j ,−) =
∂
∂x1

f (ρ j ,−) = · · · =
∂

∂xn
f (ρ j ,−) = 0

which means that (R) holds for f (ρ j ,−). Additionally,U ∩ pr−1(ρ j )
is a bounded union of connected components ofA∩pr−1(ρ j ). Hence,
the values v(ρ j ) can be obtained by recursive calls to the algorithm
with t instantiated to ρ j .

The process terminates since each recursive call handles one less
variable. In the base case, we are left with the problem of computing
the length of a union of real intervals encoded by a semi-algebraic
formula. This is classically done using basic univariate polynomial
arithmetic and real root isolation [3, Chap. 10].

The complete procedure is formalized in Algorithm 1. The quan-
tities denoted with a tilde in the pseudo-code are understood to be
represented by intervals, and the operations involving them follow
the semantics of interval arithmetic. Additionally, we assume that
we have at our disposal the following subroutines:
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• PicardFuchs(f , t), DSolve(P , ˜I ,α ,p), and PickGoodPoi
nts(P ,α , β), which implement the algorithms implied, re-
spectively, by Theorem 2 and Proposition 3 (1) and (2);
• CriticalValues(f , t), which returns an encoding for a finite
set of real algebraic numbers containing the exceptional
values associated to f , sorted in increasing order;
• UnivariateVolume(д,ΘU ,p) where д ∈ Q[t] and ΘU is a
semi-algebraic formula describing a unionU of connected
components of {д ⩾ 0}, which returns an interval of width
⩽ 2−p containing vol1U .

The following result summarizes the above discussion.

Theorem 4. Assume that U is a bounded union of connected

components of A and that (R) holds. Then, on input f ,ΘU ,p and

(t ,x1, . . . ,xn ), Algorithm 1 (Volume1) returns a real interval of width

O(2−p ) (for fixed f ) containing voln+1U .

2.2 Sets defined by several inequalities
Now, we show how to compute the volume of a basic semi-algebraic
set S ⊂ Rn defined by

f1 ⩾ 0, . . . , fr ⩾ 0, fi ∈ Q[x1, . . . ,xn ],

assuming that S is compact.
We set f = f1 · · · fr − t ∈ Q[t ,x1, . . . ,xn ], and consider the

semi-algebraic set A ⊂ Rn+1 defined by f ⩾ 0. Observe that the
polynomial f satisfies (R) because ∂f

∂t = −1. We can hence choose
an interval I = (0,α) with α ∈ Q that contains no element of Σf .
Let U ≜ A ∩ (I × S) and pr be the projection on the t-coordinate.
For fixed ρ ∈ I , the set U ∩ pr−1(ρ) can be viewed as a bounded
subset of S , whose volumev(ρ) = voln (U ∩pr−1(ρ)) tends to voln S
as ρ → 0.

The setU itself is bounded and the formula
ΘU = f1 ⩾ 0 ∧ · · · ∧ fr ⩾ 0 ∧ 0 < t < α

definesU in A. In addition,U is a union of connected components
of A ∩ pr−1(I ). Indeed, for any point (ρ,x) ∈ A with ρ ∈ I , it holds
that f1(x) · · · fr (x) > 0. This implies thatU = A∩ (I × S̊) where S̊ is
the interior of S . Therefore,U is both relatively closed (as the trace
of R × S) and open (as that of R × S̊) in A ∩ pr−1(I ).

We are hence in the setting of the previous subsection. Since
I ∩ Σf = ∅ by definition of I , Theorem 2 applies, and the func-
tion v : I → R is annihilated by an operator P ∈ D which is
computed using the routine PicardFuchs introduced earlier. By
Proposition 3, one can choose rational points ρ j ∈ I such that the
values of v at these points characterize it among the solutions of P ,
and, given sufficiently precise approximations of v(ρ j ), one can
compute voln S = limt→0v(t) to any desired accuracy.

The “initial conditions” v(ρ j ) are computed by calls to Algo-
rithm 1 with f and ΘU specialized to t = ρ j . In the notation of
§2.1, this corresponds to taking A = A(ρ j ) = { f1 · · · fr ⩾ ρ j } and
U = U (ρ j ) = A(ρ j ) ∩ S . Thus, U (ρ j ) is compact, and, since no fi
can change sign on a connected component of A(ρ) for ρ > 0,
it is the union of those connected components of A(ρ j ) where
f1, . . . , fr ⩾ 0. Additionally, (R) holds for f (ρ j ,−) since ρ j < Σf .
Therefore, the assumptions of Theorem 4 are satisfied.

We obtain Algorithm 2 (which uses the same subroutines and
conventions as Algorithm 1) and the following correctness theorem.

Algorithm 2 Volume of S
1: procedure Volume((f1, . . . , fr ),p)
2: f ← f1 · · · fr − t
3: (α1, . . . ,αℓ) ← CriticalValues(f , t)
4: α ← a rational s.t. 0 < α < min({αi | αi > 0} ∪ {1})
5: ΘU ← f1 ⩾ 0 ∧ · · · ∧ fr ⩾ 0 ∧ 0 < t < α
6: P ← PicardFuchs(f , t)
7: (ρ1, . . . , ρm ) ← PickGoodPoints(P , 0,α)
8: for 1 ⩽ j ⩽m do ▷ s̃j are intervals
9: s̃j ← Volume1(f |t=ρ j , (ΘU ) |t=ρ j , (x1, . . . ,xn ),p)

10: return DSolve(P , [y(ρ j ) = s̃j ]mj=1,p)

Theorem 5. Let f1, . . . , fr ∈ Q[x1, . . . ,xn ]. Let S be the semi-

algebraic set defined by f1 ⩾ 0, . . . , fr ⩾ 0. Assume that S is bounded.
Then, given (f1, . . . , fr ) and a working precision p ∈ N, Algorithm 2

(Volume) computes an interval containing voln (S) of width O(2−p )
as p →∞ for fixed f1, . . . , fr

Remark 6. In case S has empty interior, Algorithm 2 returns zero.
When S is contained in a linear subspace of dimension k < n, one
could in principle obtain the k-volume of S by computing linear
equations defining the subspace (using quantifier elimination as
in [21, 38]) and eliminating n − k variables. The new system would
in general have algebraic instead of rational coefficients, though.

Lastly, we note that a more direct symbolic computation of inte-
grals on general semi-algebraic sets depending on a parameter is
possible with Oaku’s algorithm [32], based on the effective theory
of D-modules.

3 PERIODS DEPENDING ON A PARAMETER
Let us now discuss in more detail the main black boxes used by the
volume computation algorithm. In this section, we study how the
volume of a sectionU ∩ pr−1(ρ) varies with the parameter t = ρ.

3.1 Picard-Fuchs equations
Let R(t ,x1, . . . ,xn ) be a rational function. A period of the parameter-

dependent rational integral

∮
R(t ,x1, . . . ,xn ) dx1 · · · dxn is an ana-

lytic function ϕ : Ω → C, for some open subset Ω of R or C such
that for any s ∈ Ω there is an n-cycle γ ⊂ Cn and a neighbor-
hood Ω′ ⊂ Ω of s such that for any t ∈ Ω′, γ is disjoint from the
poles of R(t ,−) and

ϕ(t) =

∫
γ
R(t ,x1, . . . ,xn ) dx1 · · · dxn . (3)

Recall that an n-cycle is a compact n-dimensional real submanifold
of Cn and that such an integral is invariant under a continuous
deformation of the integration domain γ as long as it stays away
from the poles of R(t ,−), as a consequence of Stokes’ theorem. It is
also well known that such a function ϕ depends analytically on t ,
by Morera’s theorem for example.

For instance, algebraic functions are periods: if ϕ : Ω → C

satisfies a nontrivial relation P(t ,ϕ(t)) = 0, with square-free P ∈
C[t ,x], then ϕ(t) is a period by the residue theorem applied to

ϕ(t) =
1

2πi

∮
γ

x

P(t ,x)

∂P

∂x
(t ,x) dx
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where γ ⊂ C encloses ϕ(t) and no other root of P . Indeed, the inte-
grand decomposes as

∑degx P
i=1 x/(x −ψi (t)), where the functionsψi

parametrize the roots of P(t ,−), and, w.l.o.g., ϕ = ψ1.
Periods of rational functions are solutions of Fuchsian linear dif-

ferential equations with polynomial coefficients known as Picard-
Fuchs equations. This was proved in [34] in the case of three vari-
ables at most and a parameter and generalized later, using either the
finiteness of the algebraic De Rham cohomology [e.g. 8, 15, 31] or
the theory of D-finite functions [28]. The regularity of Picard-Fuchs
equations is due to Griffiths [see 18].

Theorem 7. If ϕ : Ω → C is the period of a rational integral

then ϕ is solution of a nontrivial linear differential equation with

polynomial coefficients P(ϕ) = 0, where the operator P belongs to the

class D introduced in §2.1.

Several algorithms are known and implemented to compute such
Picard-Fuchs equations [10, 25, 26].

Theorem 8 ([5]). A period of the form (3) is solution of a differen-

tial equation of order at most Dn
where D is the degree of R; and one

can compute such an equation in DO (n)
operations in Q.

Note however that the algorithm underlying this result might not
return the equation of minimal order, but rather a left multiple of the
Picard-Fuchs equation. So there is no guarantee that the computed
operator belongs to D . On the other hand, Lairez’s algorithm [26]
can compute a sequence of operators with non-increasing order
which eventually stabilizes to the minimal order operator. In partic-
ular, as long as the computed operator is not in D , we can compute
the next one, with the guarantee that this procedure terminates. A
conjecture of Dimca [12] ensures that it terminates after at most n
steps, leading to a DO (n) complexity bound as in Theorem 8.

3.2 Volume of a section and proof of Theorem 2
We prove Theorem 2 as a consequence of Theorem 7 and the fol-
lowing result. It is probably well known to experts but it is still
worth an explicit proof. We use the notation of §2.

Theorem 9. If I∩Σ = ∅ and if U is bounded then the function ρ ∈
I 7→ voln Uρ is a period of the rational integral

1
2iπ

∮
x1
fρ

∂ fρ

∂x1
dx1 · · · dxn .

Proof. Let ρ ∈ I . By Stokes’ formula,

voln Uρ =
∫
Uρ

dx1 · · · dxn =
∮
∂Uρ

x1dx2 · · · dxn ,

where ∂Uρ is the boundary ofUρ . Due to the regularity assumption
ρ < Σ, the gradient∇p fρ does not vanish on the real zero locus of fρ ,
denoted V (fρ ). Because Uρ is a union of connected components
ofA∩ pr−1(ρ), it follows that ∂Uρ is a compact (n − 1)-dimensional
submanifold of Rn+1 contained in V (fρ ).

For ε > 0, let τ (ρ) be the Leray tube defined by

τ (ρ) ≜
{
p + u∇p fρ

�� p ∈ ∂Uρ ,u ∈ C and |u | = ε
}
.

This is an n-dimensional submanifold of Cn . We choose ε small
enough that τ (ρ) ∩V (fρ ) = ∅: this is possible because ∇p f does
not vanish on ∂Uρ which is compact.

Let R(ρ,x1, . . . ,xn ) = x1 f −1
ρ ∂ fρ/∂x1; observe that τ (ρ) does

not cancel the denominator of R(ρ,x1, . . . ,xn ). Leray’s residue the-
orem [27] shows that

2πi
∮
∂Ut

x1dx2 · · · dxn =
∮
τ (ρ)

dfρ
fρ
∧ (x1dx2 · · · dxn )

=
∮
τ (ρ) R(ρ,x1, . . . ,xn ) dx1 · · · dxn .

(In Pham’s [33, Thm. III.2.4] notation, we have γ = ∂Uρ , δγ = τ (ρ),
φ = f −1

ρ dfρ ∧ (x1dx2 · · · dxn ), and res[φ] = x1dx2 · · · dxn .)
To match the definition of a period and conclude the proof, it is

enough to prove that, locally, the integration domain τ (ρ) can be
made independent of ρ. And indeed, sinceU is a union of connected
components of A ∩ pr−1(I ), we have ∂U ⊆ f = 0. Therefore, since
I is connected and I ∩ Σ = ∅, the restriction of the projection pr
defines a submersive map from ∂U ∩ pr−1(I ) onto I . Additionally,
∂U is compact, hence this map is proper. Ehresmann’s theorem then
implies that there exists a continuous map h : I × ∂Uρ → Rn such
that h(σ ,−) induces a homeomorphism ∂Uρ ≃ ∂Uσ for any σ ∈ I .
In particular, we have

τ (σ ) =
{
h(σ ,p) + u∇h(σ ,p) fσ

��� p ∈ ∂Uσ ,u ∈ C and |u | = ε
}
.

This formulation makes it clear that τ (σ ) deforms continuously
into τ (ρ) as σ varies. Since τ (σ ) does not intersect the polar locus
V (fσ ) of R(σ ,−), neither does τ (ρ) when σ and ρ are close enough,
by compactness of τ (σ ) and continuity of the deformation. There-
fore, given any ρ ∈ I , we have

∮
τ (σ ) R(s,−) =

∮
τ (ρ) R(σ ,−) for σ

close enough to ρ. □

The choice of x1dx2 . . . dxn as a primitive of dx1 . . . dxn in The-
orem 9 is arbitrary, but of little consequence, since the Picard-Fuchs
equation only depends on the cohomology class of the integrand.

3.3 Critical values
Theorem 2 does not guarantee that v satisfies the Picard-Fuchs
equation on the whole domain where the equation is nonsingular.
It could happen that the solutions extend analytically across an
exceptional point, or that some of them have singularities between
two consecutive exceptional points. As a consequence, we need to
explicitly compute Σ.

Lemma 10. There exists an algorithm which, given on input a

polynomial f ∈ Q[t ,x1, . . . ,xn ] of degree D satisfying (R), computes

a polynomial д ∈ Q[t] − {0} of degree DO (n)
whose set of real roots

contains Σ, using DO (n)
operations in Q.

Proof. Recall that, when (R) holds, the set Σ is finite. Our goal
is to write Σ as the root set of a univariate polynomial д. Consider
the polynomial h = f 2 + (∂ f /∂x1)2 + · · ·+ (∂ f /∂xn )2.We start by
computing at least one point in each connected component of the
real algebraic set defined by h = 0 using [3, Algorithm 13.3]. By [3,
Theorem 13.22], this algorithm uses DO (n) operations. It returns a
rational parametrization: polynomials P , F , G1, . . . ,Gn in Q[y] of
degree ⩽ DO (n) such that P is square-free and the set of points{

P ′(ξ )−1 (F (ξ ),G1(ξ ), . . . ,Gn (ξ )
)
∈ Rn+1 �� ξ ∈ R, P(ξ ) = 0

}
meets every connected component of the zero set of h. In particular,
Σ = {F (ξ )/P ′(ξ ) | ξ ∈ R, P(ξ ) = 0}. As a polynomial д, we take the
resultant with respect to y of P(y) and F (y) − tP ′(y): its set of roots
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contains Σ. Since P and F have degree DO (n), this last step also uses
DO (n) operations in Q [42]. □

4 NUMERICS
Let us turn to the numerical part of the main algorithm. It is
known [9, 40] that Fuchsian differential equations with coefficients
in Q[t] can be solved numerically in quasi-linear time w.r.t. the pre-
cision. Yet, some minor technical points must be addressed to apply
the results of the literature to our setting. We start with reminders
on the theory of linear ODEs in the complex domain [e.g. 17, 35].
Consider a linear differential operator

P = pm (t)
dm
dtm + · · · + p1(t)

d
dt + p0(t) (4)

of orderm with coefficients in Q[t].
Recall that u ∈ C is a singular point of P when the leading

coefficient pm of P vanishes at u. A point that is not a singular
point is called ordinary. Singular points are traditionally classified
in two categories: a singular point u ∈ C is a regular singular point
of P if, for 0 ⩽ i < m, its multiplicity as a pole of pi/pm is at
mostm − i , and an irregular singular point otherwise. The point at
infinity in P1(C) is said to be ordinary, singular, etc., depending on
the nature of 0 after the change of variable t 7→ t−1. An operator
with no irregular singular point in P1(C) is called Fuchsian.

Fix a simply connected domain Ω ⊆ C containing only ordinary
points of P , and letW be the space of analytic solutions y : Ω → C

of the differential equation P(y) = 0. According to the Cauchy
existence theorem for linear analytic ODEs,W is a complex vector
space of dimensionm. A particular solution y ∈W is determined
by the initial values y(u),y′(u), . . . ,y(m−1)(u) at any point u ∈ Ω.

At a singular point, there may not be any nonzero analytic solu-
tion. Yet, if u is a regular singular point, the differential equation
still admitsm linearly independent solutions defined in the slit disk
{u + ζ | |ζ | < η, ζ < R−} for small enough η and each of the form

y(u + ζ ) = ζ γ
ℓ∑

k=0
yk (ζ ) log(ζ )k =

ℓ∑
k=0

∞∑
ν ∈γ+N

yk,ν ζ
ν log(ζ )k (5)

where γ ∈ Q̄, ℓ ∈ N, and yk,γ = yk (0) , 0 for exactly one k [35,
§16]. The functions yk are analytic for |ζ | < η (including at 0). The
algebraic numbers γ are called the exponents of P at u.

Suppose now that u is either an ordinary point of P lying in
the topological closure Ω̄ of Ω, or a regular singular point of P
situated on the boundary of Ω. As a result of the previous discus-
sion, we can choose a distinguished basis Bu = (ϕu,1, . . . ,ϕu,m )
ofW in which each ϕu,i is characterized by the leading monomial1
(t − u)γ log(t − u)k of its local expansion (5) at u. At an ordinary
point u for instance, the coefficients of the decomposition of a
solution y on Bu are y(i)(u)/i!, that is, essentially the classical ini-
tial values. Observe that when no two exponents γ have the same
imaginary part, the elements of Bα all have distinct asymptotic
behaviours as t → u. In particular, at most one of them tends to a
nonzero finite limit. As Picard-Fuchs operators have real exponents
according to Theorem 7, this observation applies to them.
1 More precisely, denoting λk,ν (y) = yk,ν in (5), there are m computable pairs
(γi , ki ) such that, for all i , we have λki ,γi (ϕu,i ) = 1, λkj ,γj (ϕu,i ) = 0 for j , i ,
and λk,ν (ϕu,i ) = 0 whenever ν − γi < N.

Letu ′ ∈ Ω̄ be a second point subject to the same restrictions asu.
Let ∆(u,u ′) ∈ Cm×m be the transformation matrix from Bu to Bu′ .
The key to the quasi-linear complexity of our algorithm is that
the entries of this matrix can be computed efficiently, by solving
the ODE with a Taylor method in which sums of Taylor series are
computed by binary splitting [4, item 178], [9]. The exact result
we require is due to van der Hoeven [40, Theorems 2.4 and 4.1];
see also [29] for a detailed algorithm and some further refinements.
Denote by M(n) the complexity of n-bit integer multiplication.

Theorem 11 ([40]). For a fixed operator P and fixed algebraic

numbers u,u ′ as above, one can compute the matrix ∆(u,u ′) with an

entry-wise error bounded by 2−p in O(M(p(logp)2)) operations.

Since P is linear, this result suffices to implement the procedure
DSolve required by the main algorithm. More precisely, suppose
that TransitionMatrix(P ,u,u ′,p) returns a matrix of complex
intervals of width O(2−p ) that encloses ∆(u,u ′) entry-wise.

Definition 12. A system of good initial conditions for P on Ω,
denoted [λj (y) = sj ]

m′
i=0, is a finite family of pairs (λj , sj ) where

sj ∈ C and λj is a linear form that belongs to the dual basis of Bu
for some algebraic point u ∈ Ω̄ (which may depend on j), with the
property that λ1, . . . , λm′ span the dual space ofW .

A system of good initial conditions on (α , β) ⊂ R is a system of
good initial conditions on (α , β) + i (0, ε) for some ε > 0.

In other words, a system of good initial conditions is a choice of
coefficients of local decompositions of a solution of P whose values
determine at most one solution, and of prescribed values for these
coefficients. When the system is compatible, we say that it defines
the unique solution of P that satisfies all the constraints. Let us note
in passing the following fact, which was used in §2.2.

Lemma 13. Let u1, . . . ,um′ be ordinary points of P such that I =
[y(ui ) = si ]i is a system of good initial conditions for P on Ω, and let
u0 ∈ Ω̄. Then I ′ = [y(u0) = s0,y′(u1) = s1, . . . ,y′(um′) = sm′] is

a system of good initial conditions for P d
dt on Ω.

Proof. The derivative y 7→ y′ maps the solution space of P d
dt

to that of P , and its kernel consists exactly of the constant functions.
By assumption, a solution of P is completely defined by its values at
u1, . . . ,um , hence a solution of P d

dt is characterized by the values of
its derivative at the same points, along with its limit at u0. Because
P d

dt has order at least 2 (otherwise,I would not be a system of good
initial conditions), the conditions y′(ui ) are of the form λ(y) = s
with λ belonging to the dual basis of some Bu , as required. So is the
condition y(u0) = s0 since P d

dt has solutions with a nonzero finite
limit at u0. □

Algorithm 3 evaluates the solution of an operator P given by a
system of good initial conditions. Note that the algorithm is allowed
to fail. It fails if the intervals Λ̃i are not accurate enough for the
linear algebra step on line 10 to succeed, or if the linear system,
which is in general over-determined, has no solution. The following
proposition assumes a large enough working precision p to ensure
that this does not happen. Additionally, we only require that the
output be accurate to within O(2−p ), so as to absorb any loss of
precision resulting from numerical stability issues or from the use
of interval arithmetic.
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Algorithm 3 Solution of P(y) = 0
1: procedure DSolve(P , [ϕ∗ui , ji (y) = s̃i ]

m
i=1,α ,p)

2: ▷ ϕ∗u, j is the linear form dual to the element ϕu, j of Bu
3: if Bα has an element of leading monomial 1 then
4: j0 ← its index
5: else return 0
6: u0 ← α ; ∆̃0 ← id
7: for 1 ⩽ i ⩽m do ▷ using interval arithmetic
8: ∆̃i ← TransitionMatrix(P ,ui−1,ui ,p) · ∆̃i−1
9: Λ̃i ← ji th row of ∆i
10: solve the linear system Λ̃i · c̃ = s̃i , 1 ⩽ i ⩽m (or fail)
11: return the real part of c̃ j0

Proposition 14. Suppose that the operator P is Fuchsian with

real exponents. Let α < β be real algebraic numbers, and let y be a

real analytic solution of P(y) = 0 on the interval (α , β) such that y(t)
tends to a finite limit as t → α . Let I = [λi (y) = si ] be a system of

good initial conditions for P on (α , β) that defines y.
Given the operator P , the point α , a large enough working preci-

sion p ∈ N, and an approximation
˜I = [λi (y) = s̃i ] of I where s̃i

is an interval of width at most 2−p containing si , DSolve(P , ˜I ,α ,p)
(Algorithm 3) computes a real interval of width O(2−p ) containing
limt→α y(t) in time O(M(p(logp)2)).

Proof. At the end of the loop, we have ∆(α ,ui ) ∈ ∆̃i , 1 ⩽ i ⩽m,
and the entries of ∆̃i are intervals of widthO(2−p ). The coefficients
c = (ci )i of the decomposition of y in the basis Bα satisfy Λi ·c = si
for all i , where Λi is the ji th row of ∆(α ,ui ). As I is a system of
good initial conditions, the linear system (Λi · x = si )i has no other
solution. Step 10 hence succeeds in solving the interval version as
soon as the s̃i and the entries of the ∆̃i are thin enough intervals.
It then returns intervals of width O(2−p ).

We assumed that y tends to a finite limit at α . It follows that the
decomposition of y on Bα only involves the basis elements with a
finite limit at α . Either Bα contains an element ϕα, j0 that tends to 1,
in which case limα y = c j0 , or every solution that converges tends
to zero, and then the limit is zero. Since, by assumption, limα y is
real, we can ignore the imaginary part of the computed value. In
both cases, the algorithm, when it succeeds, returns a real interval
of width O(2−p ) containing limα y.

As for the complexity analysis, all ui including α are algebraic,
hence Theorem 11 applies and shows that each call to Transition
Matrix runs in time O(M(p(logp)2)). The matrix multiplications
at step 8 take O(M(p)) operations. The cost of solving the linear
system (which is of bounded size) is O(M(p)) as well. The cost of
the remaining steps is independent of p. □

It remains to show how to implement PickGoodPoints. Choos-
ing the points at randomworks with probability one. The procedure
described below has the advantage of being deterministic and im-
plying (at least in principle) bounds on the bit size of the ui .

Lemma 15. Given P and two real numbers α < β , one can deter-

ministically selectm points u1, . . . ,um ∈ (α , β) ∩ Q such that the

evaluations y 7→ y(ui ) are good initial conditions for P on (α , β).

Proof. A sufficient condition for y 7→ y(ui ) to be good initial
conditions is that the matrix M = (ψj (ui ))i, j , for some basis (ψj )
ofW , be invertible. Let K ⊂ (α , β) be a closed interval with rational
endpoints containing only ordinary points. Letu1 = minK . Assume
without loss of generalityu1 = 0, and take (ψj ) = Bu1 . ThematrixM
is then of the form (u j−1

i +ηj (ui ))
m
i, j=1 where, for all j ,ηj (u) = O(u

m )

as u → 0. In fact, there exists a computable [e.g., 40] constant C
such that |ηj (u)| ⩽ C |u |m for allu ∈ K . Therefore, one can compute
a value ε > 0 such thatM is invertible for any distinct u2, . . . ,um
in (0, ε). The result follows. □

In practice, one can reduce the number of recursive calls in the
main algorithm by replacing, when possible, some of the conditions
y(ui ) = si by conditions that result from the continuity of v(t) at
exceptional points, or from its analyticity at singular points of the
Picard-Fuchs operator lying in R \ Σ. For instance, a solution that
is analytic at u must lie in the subspace spanned by the elements
of Bu of leading term (z − u)γ with γ ∈ N and no logarithmic part.

5 COMPLEXITY ANALYSIS
Let us finally study the complexity of Algorithm 2 to conclude the
proof of Theorem 1. For fixed (f1, . . . , fr ), all intermediate data
(Picard-Fuchs equations, critical values and specialization points
chosen for the recursive calls) are fixed thanks to the deterministic
behaviour of PickGoodPoints (Lemma 15). Thus, the number of
recursive calls does not depend on p.

Now, the main point is to observe that, by Proposition 3, perform-
ing recursive calls with precision p +O(1) is enough. One can make
the width of the output interval smaller than 2−p by doubling p and
re-running the algorithm (if necessary with a more accurate ap-
proximation of I ) a bounded number of times. By Proposition 14,
the total cost of the calls to DSolve is O(M(p log(p)2)). The only
other step whose complexity depends on p is the computation of
real roots of fixed univariate polynomials in the base case, which
takesO(M(p)) operations using Newton’s method. Using the bound
M(p) = O(p log(p)1+ε ), Theorem 1 follows.

This theorem ignores the dependency of the cost on the dimen-
sion n of the ambient space or the maximum degree D of the input
polynomials. Under some assumptions, one can bound the num-
ber of recursive calls arithmetic cost of computing Picard-Fuchs
equations and critical values as follows. First consider Algorithm 1,
and let δ be the degree of f . By Lemma 10, the number of critical
values and the cost of computing them are bounded by δO (n); in
the notation of the algorithm, this shows that ℓ ⩽ δO (n).

Under Dimca’s conjecture [12], the cost of computing the Picard-
Fuchs equation is δO (n) and it has orderm ⩽ δn according to the
discussion following Theorem 8. One can likely obtain the same
bounds without this conjecture by replacing the deformed equation
of Section 2.2 by f − t

∑
i x

δ+n
i , which permits using the “regular

case” of [5]. Solving the recurrenceC(n+1,δ ) = δO (n)C(n,δ ) shows
that the algebraic steps of Algorithm 1 take δO (n2) operations in Q.

Turning to Algorithm 2, Lemma 10 and Theorem 8 show that
the cost of the calls to CriticalValues and PicardFuchs are domi-
nated by that of the calls to Algorithm 1 (with an input polynomial
of degree δ ⩽ rD). Therefore, the algebraic steps use (rD)O (n2)

operations in Q in total, as announced in §1.
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We leave for future research the question of analyzing the boolean
cost of the full algorithm with respect to n, D, and the bit size of
the input coefficients. This requires significantly more work, as
one first needs to control the bit size of the points picked by Pick-
GoodPoints in the recursive calls. Additionally, to the best of our
knowledge, no analogue of Theorem 11 fully taking into account
the order, degree, and coefficient size of the operator P is available
in the literature.

6 CONCLUSION
Our algorithm generalizes to non-basic bounded semi-algebraic
sets since their volume can be written as a linear combination with
±1 coefficients of volumes of basic semi-algebraic sets.

An important question that we leave for future work is that of
the practicality of our approach. While the worst-case complexity
bound is exponential in n2, there are a number of opportunities
to exploit special features of the input that could help handling
nontrivial examples in practice. In particular: (1) the number of
recursive calls only depends on the number of real critical points;
(2) as already noted, it can be reduced by exploiting some knowledge
of the continuity of the slice volume function or its analyticity at
exceptional points; (3) it turns out that, in our case, the integral
appearing in Theorem 9 always is singular at infinity, and, as a
consequence, the Picard-Fuchs equations we encounter do not reach
the worst-case degree bounds. Ideally, one may hope to refine the
complexity analysis to reflect some of these observations.

Another natural question is to extend the algorithm to unbounded
semi-algebraic sets of finite volume, or even real periods in general,
using the ideas in [41]. Note also that, using quantifier elimination
[e.g., 2], boundedness can be verified in boolean time q(rD)O (n)
where q bounds the bit size of the input coefficients.

Finally, it is plausible that an algorithm of a similar structure but
using numerical quadrature recursively instead of solving Picard-
Fuchs equations would also have polynomial complexity in the
precision for fixed n and be faster at medium precision.
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