Ridges and umbilics of polynomial parametric surfaces

Frédéric Cazals1 \hspace{1cm} Jean-Charles Faugère2 \hspace{1cm} Marc Pouget1 \hspace{1cm} Fabrice Rouillier2

1INRIA Sophia, Project GEOMETRICA
2INRIA Rocquencourt, Project SALSA

Computational Methods for Algebraic Spline Surfaces II
September 14th-16th 2005 Centre of Mathematics for Applications at the University of Oslo, Norway
Outline

1. Geometry of Surfaces: Umbilics and Ridges
 - Curvatures and beyond

2. Implicit equation of ridges of a parametric surface
 - The ridge curve and its singularities

3. Topology of ridges of a polynomial parametric surface
 - Introduction
 - Algorithm
Outline

1. Geometry of Surfaces: Umbilics and Ridges
 - Curvatures and beyond

2. Implicit equation of ridges of a parametric surface
 - The ridge curve and its singularities

3. Topology of ridges of a polynomial parametric surface
 - Introduction
 - Algorithm
Principal curvatures and directions

- k_1 and d_1 maximal principal curvature and direction (Blue).
- k_2 and d_2 minimal principal curvature and direction (Red).
- k_i and d_i are eigenvalues and eigenvectors of the Weingarten map $W = I^{-1} II$.
- d_1 and d_2 are orthogonal.
A curvature line is an integral curve of the principal direction field.

Umbilics are singularities of these fields, $k_1 = k_2$.
Ridges

- A blue (red) ridge point is a point where k_1 (k_2) has an extremum along its curvature line.

$$< \nabla k_1, d_1 > = 0 \quad (< \nabla k_2, d_2 > = 0) \quad (1)$$

- Ridge points form lines going through umbilics.

Umbilics, ridges, and principal blue foliation on the ellipsoid.
Orientation of principal directions

- Principal directions d_1 (d_2) are not globally orientable.
- The sign of $\langle \nabla k_1, d_1 \rangle$ is not well defined.
- $\langle \nabla k_1, d_1 \rangle \geq 0$ cannot be a global equation of blue ridges.

The principal field is not orientable around an umbilic.
Singularities of the ridge curve

3-ridge umbilic
1-ridge umbilic
Purple point
Difficulties of ridge extraction

- Need third order derivatives of the surface.
- Singularities: Umbilics and Purple points
- Orientation problem.
Illustrations: ridges and crest lines
Outline

1. Geometry of Surfaces: Umbilics and Ridges
 - Curvatures and beyond

2. Implicit equation of ridges of a parametric surface
 - The ridge curve and its singularities

3. Topology of ridges of a polynomial parametric surface
 - Introduction
 - Algorithm
Problem statement

- The surface is parametrized:
 \[\Phi : (u, v) \in \mathbb{R}^2 \rightarrow \Phi(u, v) \in \mathbb{R}^3 \]

- Find a well defined function
 \[P : (u, v) \in \mathbb{R}^2 \rightarrow P(u, v) \in \mathbb{R} \]

such that \(P = 0 \) is the ridge curve in the parametric domain.
Solving the orientation problem

- Consider blue and red ridges together
 \[\langle \nabla k_1, d_1 \rangle \times \langle \nabla k_2, d_2 \rangle \] is orientation independent.

- Find two vector fields \(v_1 \) and \(w_1 \) orienting \(d_1 \) such that:
 \[v_1 = w_1 = 0 \] characterizes umbilics.
 Note: each vector field must vanish on some curve joining umbilics

- \(v_1 \) and \(w_1 \) are computed from the two dependant equations of the eigenvector system for \(d_1 \).
Some technicalities

- \(p_2 = (k_1 - k_2)^2 = 0 \) characterize umbilics.
 It is a smooth function of the second derivatives of \(\Phi \).
- Define \(a, a', b, b' \) such that:
 \[\langle \text{Numer}(\nabla k_1), v_1 \rangle = a \sqrt{p_2} + b \]
 and
 \[\langle \text{Numer}(\nabla k_1), w_1 \rangle = a' \sqrt{p_2} + b'. \]
 These are smooth function of the derivatives of \(\Phi \) up to the third order.
Main result

The ridge curve has equation \(P = ab' - a'b = 0 \).
For a point of this set one has:

- If \(p_2 = 0 \), the point is an umbilic.
- If \(p_2 \neq 0 \) then
 - If \(ab \neq 0 \) or \(a'b' \neq 0 \) then the sign of one these non-vanishing products gives the color of the ridge point.
 - Otherwise, \(a = b = a' = b' = 0 \) and the point is a purple point.
Singularities of the ridge curve

- **1-ridge umbilics**
 \[S_{1R} = \{ P_2 = P = P_u = P_v = 0, \delta(P_3) < 0 \} \]

- **3-ridge umbilics**
 \[S_{3R} = \{ P_2 = P = P_u = P_v = 0, \delta(P_3) > 0 \} \]

- **Purple points**
 \[S_p = \{ a = b = a' = b' = 0, \delta(P_2) > 0, P_2 \neq 0 \} \]
Example

For the degree 4 Bezier surface \(\Phi(u, v) = (u, v, h(u, v)) \) with

\[
h(u, v) = 116u^4v^4 - 200u^4v^3 + 108u^4v^2 - 24u^4v - 312u^3v^4 + 592u^3v^3 + 324u^2v^2 - 72u^2v - 56uv^4 + 112uv^3 - 72uv^2 + 16uv.
\]

\(P \) is a bivariate polynomial

- total degree 84,
- degree 43 in \(u \) and \(v \),
- 1907 terms,
- coefficients with up to 53 digits.
1. Geometry of Surfaces: Umbilics and Ridges
 - Curvatures and beyond

2. Implicit equation of ridges of a parametric surface
 - The ridge curve and its singularities

3. Topology of ridges of a polynomial parametric surface
 - Introduction
 - Algorithm
Problem statement

Find a topological graph of the ridge curve $P = 0$.

Classical method (Cylindrical Algebraic Decomposition)

1. Compute ν-coordinates of singular and critical points: α_i
 Assume generic position

2. Compute intersection points between the curve and the line $\nu = \alpha_i$
 Compute with polynomial with algebraic coefficients

3. Connect points from fibers.
Our solution

1. Locate singular and critical points in 2D
 no generic position assumption

2. Compute regular intersection points between the curve
 and the fiber of singular and critical points
 Compute with polynomial with rational coefficients

3. Use the specific geometry of the ridge curve.
 We need to know how many branches of the curve pass
 through each singular point.

4. Connect points from fibers.
1. Univariate root isolation for polynomial with rational coefficients.

2. Solve zero dimensional systems \(I \) with Rational Univariate Representation (RUR).
 - Recast the problem to an univariate one with rational functions.
 - Let \(t \) be a separating polynomial and \(f_t \) the characteristic polynomial of the multiplication by \(t \) in the algebra \(\mathbb{Q}[X_1, \ldots, X_n]/I \)
 \[
 V(I)(\cap \mathbb{R}^n) \approx V(f_t)(\cap \mathbb{R})
 \]
 \[
 \alpha = (\alpha_1, \ldots, \alpha_n) \quad \rightarrow \quad t(\alpha)
 \]
 \[
 (\frac{g_{t,x_1}(t(\alpha))}{g_{t,1}(t(\alpha))}, \ldots, \frac{g_{t,x_n}(t(\alpha))}{g_{t,1}(t(\alpha))}) \quad \leftarrow \quad t(\alpha)
 \]
Outline

1. Geometry of Surfaces: Umbilics and Ridges
 - Curvatures and beyond

2. Implicit equation of ridges of a parametric surface
 - The ridge curve and its singularities

3. Topology of ridges of a polynomial parametric surface
 - Introduction
 - Algorithm

F. Cazals, J-C. Faugère, M. Pouget, F. Rouillier
Ridges and umbilics of polynomial parametric surfaces
Step 1. Isolating study points

- Compute RUR of study points: 1-ridge umbilics, 3-ridge umbilics, purple points and critical points.
- Isolate study points in boxes \([u^1_i; u^2_i] \times [v^1_i; v^2_i]\), as small as desired.
- Identify study points with the same \(v\)-coordinate.
Step 2. Regularization of the study boxes

- Reduce a box until the right number of intersection points is reached wrt the study point type.

- Reduce to compute the number of branches connected from above and below.
Step 3. Compute regular points in fibers

Outside study boxes, intersection between the curve and fibers of study points are regular points.

Simple roots of the polynomial with rational coefficients $P(u, q)$ for any $q \in [v_i^1; v_i^2] \cap \mathbb{Q}$
Step 4. Perform connections

- Add intermediate fibers.
- One-to-one connection of points with multiplicity of branches.
Geometry of Surfaces: Umbilics and Ridges
Implicit equation of ridges of a parametric surface
Topology of ridges of a polynomial parametric surface

Example: degree 4 Bezier surface

- Computation with the softwares FG\textsubscript{B} and RS.
- Domain of study $\mathcal{D} = [0, 1] \times [0, 1]$.

<table>
<thead>
<tr>
<th>System</th>
<th>$#$ of roots $\in \mathbb{C}$</th>
<th>$#$ of roots $\in \mathbb{R}$</th>
<th>$#$ of real roots $\in \mathcal{D}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_u</td>
<td>160</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>S_p</td>
<td>1068</td>
<td>31</td>
<td>17</td>
</tr>
<tr>
<td>S_c</td>
<td>1432</td>
<td>44</td>
<td>19</td>
</tr>
</tbody>
</table>
Example: degree 4 Bezier surface