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Abstract. We study the problem of integer factoring givenimplicit information
of a special kind. The problem is as follows: letN1 = p1q1 andN2 = p2q2 be
two RSA moduli of same bit-size, whereq1,q2 areα-bit primes. We are given
the implicit information thatp1 and p2 sharet most significant bits. We present
a novel and rigorous lattice-based method that leads to the factorization ofN1
andN2 in polynomial time as soon ast ≥ 2α +3. Subsequently, we heuristically
generalize the method tok RSA moduliNi = piqi where thepi ’s all sharet most
significant bits (MSBs) and obtain an improved bound ont that converges tot ≥
α +3.55. . . ask tends to infinity. We study also the case where the k factorspi ’s
sharet contiguous bits in the middle and find a bound that converges to 2α + 3
whenk tends to infinity. This paper extends the work of May and Ritzenhofen in
[9], where similar results were obtained when thepi ’s share least significant bits
(LSBs). In [15], Sarkar and Maitra describe an alternative but heuristic method
for only two RSA moduli, when thepi ’s share LSBs and/or MSBs, or bits in the
middle. In the case of shared MSBs or bits in the middle and two RSA moduli,
they get better experimental results in some cases, but we use much lower (at least
23 times lower) lattice dimensions and so we obtain a great speedup (at least 103

faster). Our results rely on the following surprisingly simple algebraic relation
in which the shared MSBs ofp1 and p2 cancel out:q1N2−q2N1 = q1q2(p2−
p1). This relation allows us to build a lattice whose shortest vector yields the
factorization of theNi ’s.
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1 Introduction

Efficient factorization of large integers is one of the most fundamental problem of Al-
gorithmic Number Theory, and has fascinated mathematicians for centuries. It has been
particularly intensively studied over the past 35 years, all the more that efficient fac-
torization leads immediately to an attack of the RSA Cryptosystem. In the 1970’s, the
first general-purpose sub-exponential algorithm for factoring was developed by Morri-
son and Brillhart in [11] (improving a method described for the first time in [7]), using



continued fraction techniques. Several faster general-purpose algorithms have been pro-
posed over the past years, the most recent and efficient being the general number field
sieve (GNFS) [8], proposed in 1993. It is not known whether factoring integers can be
done in polynomial time on a classical Turing machine. On quantum machines, Shor’s
algorithm [16] allows polynomial-time factoring of integers. However, it is still an open
question whether a capable-enough quantum computer can be built.

At the same time, the problem of factoring integers given additional information
about their factors has been studied since 1985. In [14], Rivest and Shamir showed
that N = pq of bit-sizen and with balanced factors (log2(p) ≈ log2(q) ≈ n

2) can be
factored in polynomial time as soon as we have access to anoracle that returns the
n
3 most significant bits (MSBs) ofp. Beyond its theoretical interest, the motivation
behind this is mostly of cryptographic nature. In fact, during an attack of an RSA-
encrypted exchange, the cryptanalyst may have access to additional information beyond
the RSA public parameters(e,N), that may be gained for instance through side-channel
attacks revealing some of the bits of the secret factors. Besides, some variations of the
RSA Cryptosystem purposely leak some of the secret bits (for instance, [17]). In 1996,
Rivest and Shamir’s results were improved in [2] by Coppersmith applying lattice-based
methods to the problem of finding small integer roots of bivariate integer polynomials
(the now so-calledCoppersmith’s method). It requires only half of the most significant
bits of p to be known to the cryptanalyst (that isn

4).

In PKC 2009, May and Ritzenhofen [9] significantly reduced the power of the or-
acle. Given an RSA modulusN1 = p1q1, they allow the oracle to output a new and
different RSA modulusN2 = p2q2 such thatp1 andp2 share at leastt least significant
bits (LSBs). Note that the additional information here is onlyimplicit: the attacker does
not know the actual value of thet least significant bits of thepi ’s, he only knows thatp1

andp2 share them. In the rest of the paper, we will refer to this problem as the problem
of implicit factoring. Whenq1 andq2 areα-bit primes, May and Ritzenhofen’s lattice-
based method rigorously finds in quadratic time the factorization ofN1 andN2 when
t ≥ 2α + 3. Besides, their technique heuristically generalizes tok− 1 oracle queries
that give access tok different RSA moduliNi = piqi with all the pi ’s sharingt least sig-
nificant bits. Withk−1 queries the bound ont improves to:t ≥ k

k−1α. Note that these
results are of interest for unbalanced RSA moduli: for instance, ifN1 = p1q1, N2 = p2q2

are 1000-bit RSA moduli and theqi ’s are 200-bit primes, knowing thatp1 andp2 share
at least 403 least significant bits out of 800 is enough to factorizeN1 andN2 in poly-
nomial time. Note also that the method absolutely requires that the shared bits be the
least significant ones. They finally apply their method to factorizek n-bit balanced RSA
moduliNi = piqi under some conditions and with an additional exhaustive search of 2

n
4 .

Very recently, in [15], Sarkar and Maitra applied Coppersmith and Gröbner-basis
techniques on the problem of implicit factoring, and improved heuristically the bounds
in some of the cases. Contrary to [9], their method applies when either (or both) LSBs or
MSBs ofp1, p2 are shared (or when bits in the middle are shared). Namely, in the case of
shared LSBs they obtain better theoretical bounds ont than [9] as soon asα ≥ 0.266n.
Besides, their experiments often perform better than their theoretical bounds, and they
improve in practice the bound ont of [9] whenα ≥ 0.21n. Note finally that their bounds



are very similar in the two cases of shared MSBs and shared LSBs. Readers interested
in getting their precise bounds may refer to their paper [15].

Unfortunately, Sarkar and Maitra’s method is heuristic even in the case of two RSA
moduli, and does not generalize tok ≥ 3 RSA moduli. In fact, when thepi ’s share
MSBs and/or LSBs, their method consists in building a polynomialf1 in three vari-
ables, whose roots are(q2 + 1,q1,

p1−p2
2γ ), whereγ is the number of shared LSBs be-

tweenp1 andp2. That is, p1−p2
2γ represents the part ofp1− p2 where the shared bits do

not cancel out. To find the integer roots off1, they use the Coppersmith-like technique
of [5] which consists in computing two (or more) new polynomialsf2, f3, . . . sharing
the same roots asf1. If the variety defined byf1, f2, f3, . . . is 0-dimensional, then the
roots can be easily recovered computing resultants or Gröbner basis. However, with
an input polynomial with more than two variables, the method is heuristic: there is no
guarantee for the polynomialsf1, f2, f3, . . . to define a 0-dimensional variety. We repro-
duced the results of Sarkar and Maitra and we observed thatf1, f2, f3, . . . almost never
defined a 0-dimensional variety. They observed however that it was possible to recover
the roots of the polynomials directly by looking at the coefficients of the polynomi-
als in the Gröbner basis of the ideal generated by thefi ’s, even when the ideal was of
positive dimension. The assumption on which their work relies is that it will always be
possible. For instance, in the case of shared MSBs betweenp1 and p2, they found in
their experiments that the Gröbner basis contained a polynomial multiple ofx− q2

q1
y−1

whose coefficients lead immediately to the factorization ofN1 andN2. They support
their assumption by experimental data: in most cases their experiments perform better
than their theoretical bounds. It seems nevertheless that their assumption is not fully
understood.

Our contribution consists of a novel and rigorous lattice-based method that address
the implicit factoring problem whenp1 and p2 sharemostsignificant bits. That is, we
obtained an analog of May and Ritzenhofen’s results for shared MSBs, and our method
is rigorous contrary to the work of Sarkar and Maitra in [15]. Namely, letN1 = p1q1

andN2 = p2q2 be two RSA moduli of same bit-sizen. If q1,q2 areα-bit primes and
p1, p2 sharet most significant bits, our method provably factorizesN1 andN2 as soon
ast ≥ 2α +3 (which is the same as the bound ont for least significant bits in [9]). This
is the first rigorous bound ont when p1 and p2 share most significant bits. From this
method, we deduce a new heuristic lattice-based for the case whenp1 and p2 sharet
bits in the middle. Moreover, contrary to [15], these methods heuristically generalize to
an arbitrary numberk of RSA moduli and do not depend on the position of the shared
bits in the middle, allowing us to factorizek RSA moduli as soon ast ≥ k

k−1α +6 (resp.

t ≥ 2k
k−1α +7) most significant bits (resp. bits in the middle) are shared between thepi ’s

(more precise bounds are stated later in this paper). A summary of the comparison of
our method with the methods in [9] and [15] can be found in table1.

Let’s give the main idea of our method with 2 RSA moduli in the case of shared
MSB’s. Consider the latticeL spanned by the row vectorsv1 andv2 of the following
matrix:

(
K 0 N2

0 K −N1

)

whereK = b2n−t+ 1
2 c



Table 1: Comparison of our results against the results of [9] and [15] with k RSA moduli

May, Ritzenhofen’s
Results [9]

Sarkar, Maitra’s Results [15] Our results

k = 2

When p1, p2 share
t LSBs: rigor-
ous bound of
t ≥ 2α + 3 using
2-dimensional
lattices ofZ2.

When p1, p2 share eithert
LSBs or MSBs: heuristic
bound better thant ≥ 2α + 3
when α ≥ 0.266n, and ex-
perimentally better when
α ≥ 0.21n. In the case of
t shared bits in the middle,
better bound thant ≥ 4α + 7
but depending on the position
of the shared bits. Using
46-dimensional lattices ofZ46

Whenp1, p2 sharet MSBs: rig-
orous bound oft ≥ 2α +3 using
2-dimensional lattices ofZ3. In
the case oft bits shared in the
middle: heuristic bound oft ≥
4α +7 using 3-dimensional lat-
tices ofZ3.

k≥ 3

When the pi ’s
all share t LSBs:
heuristic bound of
t ≥ k

k−1α using
k-dimensional
lattices ofZk.

Cannot be directlyapplied.

When the pi ’s all share t
MSBs (resp. bits in the mid-
dle): heuristic bound oft ≥

k
k−1α + δk (resp. t ≥ 2k

k−1α +
δk), with δk ≤ 6 (resp.≤ 7) and

using k-dimensional (k(k+1)
2 -

dimensional) lattices ofZ
k(k+1)

2 .

Consider also the following vector inL:

v0 = q1v1 +q2v2 = (q1K,q2K,q1q2(p2− p1))

The key observation is that thet shared significant bits ofp1 and p2 cancel out in the
algebraic relationq1N2−q2N1 = q1q2(p2− p1). Furthermore, we chooseK in order to
force the coefficients of a shortest vector ofL on the basis(v1,v2) to be of the order
of 2α ≈ q1 ≈ q2. We prove in the next section thatv0 is indeed a shortest vector ofL
(thusN1 andN2 can be factored in polynomial time) as soon ast ≥ 2α + 3. Besides,
we generalized this construction to an arbitrary number ofk RSA moduli such that a
small vector of the lattice harnesses the same algebraic relation, and to shared middle
bits. However, the generalized constructions in both cases become heuristic: we use the
Gaussian heuristic to find a condition ont for this vector to be a shortest of the lattice.

Applications of implicit factoring have not yet been extensively studied, and we
believe that they will develop. The introduction of [9] gives some ideas for possible ap-
plications. They include destructive applications with malicious manipulation of public
key generators, as well as possibly constructive ones. Indeed, our work shows that when
t ≥ 2α +3, it is as hard to factorizeN1 = p1q1, as generatingN2 = p2q2 with p2 sharing
t most significant bits withp1. This problem could form the basis of a cryptographic
primitive.

Throughout this paper, we heavily use common results on euclidean lattice. A sum-
mary of these results can be found in appendixA. The paper is organized as follows. In



section2, we present our rigorous method in the case of shared MSB’s and two RSA
moduli, we generalize it tok RSA moduli in section3. In Section4, we present our
method in the case of shared bits in the middle. Finally, in section5 we present our
experiments that strongly support the assumption we made in the case ofk RSA moduli
and of shared middle bits.

2 Implicit Factoring of Two RSA Moduli with Shared MSBs

In this section, we study the problem of factoring twon-bit RSA moduli:N1 = p1q1

andN2 = p2q2, whereq1 andq2 areα-bit primes, given only the implicit hint thatp1

andp2 sharet most significant bits (MSBs) that areunknownto us. We will show that
N1 and N2 can be factored in quadratic time as soon ast ≥ 2α + 3. By saying that
the primesp1, p2 of maximal bit-sizen−α + 1 sharet MSBs, we really mean that
|p1− p2| ≤ 2n−α−t+1.

Let’s consider the latticeL spanned by the row vectors (denoted byv1 andv2) of
the following matrix:

M =

(
K 0 N2

0 K −N1

)

whereK = b2n−t+ 1
2 c

We have the following immediate lemma that makes our method work:

Lemma 1. Let v0 be the vector of L defined byv0 = q1v1 + q2v2. Thenv0 can be
rewritten asv0 = (q1K,q2K,q1q2(p2− p1)).

Note that the shared MSBs ofp1 andp2 cancel each other out in the differencep2− p1.
Each of the coefficients ofv0 are thus integers of roughly(n+α−t) bits. Provided thatt
is sufficiently large,±v0 may be a shortest vector ofL that can be found using Lagrange
reduction onL. Moreover, note that as soon as we retrievev0 from L, factoringN1 and
N2 is easily done by dividing the first two coordinates ofv0 by K (which can be done in
quadratic time inn). Proving thatv0 is a shortest vector ofL under some conditions on
t is therefore sufficient to factorizeN1 andN2.

We first give an intuition on the bound ont that we can expect, and we give after
that a proof that±v0 is indeed the shortest vector ofL under a similar condition.

The volume ofL is the square root of the determinant of the Gramian matrix ofL

given byMMt =

(
K2 +N2

2 −N1N2

−N1N2 K2 +N2
1

)

. That is,vol(L) = K
√

N2
1 +N2

2 +K2 which can

be approximated by 22n−t becauseK2 ≈ 22(n−t) is small compared to theN2
i ≈ 22n.

The norm ofv0 is approximately 2n+α−t , because each of its coefficients have roughly
n+α−t bits. If v0 is a shortest vector ofL, it must be smaller than the Minkowski bound
applied toL: 2n+α−t ≈ ‖v0‖ ≤

√
2Vol(L)1/2 ≈ 2n−t/2, which happens whent ≥ 2α.

The following lemma affirms thatv0 is indeed a shortest vector ofL under a similar
condition ont.

Lemma 2. Let L be the lattice generated by the row vectorsv1 and v2 of M and let
v0 = q1v1 +q2v2 = (q1K,q2K,q1q2(p2− p1)) as defined in Lemma1. The vector±v0
is the shortest vector of the lattice L as soon as t≥ 2α +3.



Proof. Let (b1,b2) be the resulting basis from the Lagrange reduction onL. This re-
duced basis verifies‖b1‖ = λ1(L),‖b2‖ = λ2(L), and, by Hadamard’s inequality one
have:‖b1‖‖b2‖ ≥ Vol(L). As v0 is in the lattice,‖b1‖ = λ1(L) ≤ ‖v0‖. Hence we

get ‖b2‖ ≥ Vol(L)
‖v0‖

. Moreover, if v0 is strictly shorter thatb2, v0 is a multiple ofb1;
for otherwiseb2 would not be the second minimum of the lattice. In this case,v0 =
ab1 = a(bv1 + cv2),a,b,c ∈ Z, and looking at the first two coefficients ofv0, we get
that ab= q1 andac= q2. Since theqi ’s are prime, we conclude thata = ±1, that is,
v0 = ±b1. Using the previous inequality, a condition forv0 to be strictly shorter than
b2 is:

‖v0‖
2 < Vol(L) (1)

Let’s upper-bound the norm ofv0 and lower-bound Vol(L). We first provide simple
bounds that proves the lemma whent ≥ 2α +4 and derive secondly tighter bounds that
require onlyt ≥ 2α +3.

The pi ’s have at mostn−α + 1 bits, and they share theirt most significant bits
so |p2 − p1| ≤ 2n−α+1−t . We thus have the inequality‖v0‖2 ≤ 22(n−t)+1(q2

1 + q2
2) +

q2
1q2

2(p1− p2)2 which implies

‖v0‖
2 ≤ 22(n+α−t)+2 +22(α+n+1−t) ≤ 22(n+α−t)+3 (2)

We can lower-bound the volume ofL, using thatN1,N2 ≥ 2n−1 andK2 ≥ 22(n−t):

Vol(L)2 = K2(N2
1 +N2

2 +22(n−t)) > 24n−2t−1 (3)

Using inequalities (2) and (3), the inequality (1) is true provided that: 22(n+α−t)+3 ≤
22n−t− 1

2 which is equivalent to (ast andα are an integers):

t ≥ 2α +4 (4)

We have thus proved the lemma under condition (4). We now refine the bounds on‖v0‖
and Vol(L) in order to prove the tight case.

The integersq1 andq2 areα-bit primes, thereforeqi ≤ 2α −1, (i = 1,2). Defineε1

by 2α −1 = 2α−ε1. We getq2
i ≤ 22α−2ε1,(i = 1,2). Moreover, sinceK = b2n−t+ 1

2 c, we
haveK2 ≤ 22(n−t)+1. From these inequalities, we can upper-boundK2q2

i

K2q2
i ≤ 22(n−t+α)+1−2ε1, (i = 1,2) (5)

The pi ’s have at mostn−α +1 bits and they sharet bits, so(p2− p1)2 ≤ 22(n−α+1−t).
Thus, using the upper-bound on theq2

i , we have

q2
1q2

2(p2− p1)
2 ≤ 22(n−t+α+1−2ε1) (6)

We can finally bound‖v0‖2 = K2(q2
1 +q2

2)+q2
1q2

2(p2− p1)2 using (5) and (6):

‖v0‖
2 ≤ 22(n+α−t)+2−2ε1 +22(n−t+α+1−2ε1) ≤ 22(n+α−t)+3−ε1 (7)



Let’s now defineε2 by the equality 2n−t+1/2−1 = 2n−t+1/2−ε2. We have thatK =
b2n−t+ 1

2 c ≥ 2n−t+1/2−ε2 andN2
i ≥ 22n−2, we can therefore lower-bound Vol(L)2:

Vol(L)2 = K2(N2
1 +N2

2 +22(n−t)) > K2(N2
1 +N2

2) ≥ 24n−2t−2ε2 (8)

Using the inequalities (7) and (8), the condition (1) is true under the new condition
22(n+α−t)+3−ε1 ≤ 22n−t−ε2 which is equivalent tot ≥ 2α +3+ ε2− ε1.

Sinceε1 = log2(
1

1− 1
2α

), ε2 = log2(
1

1− 1

2
n−t+ 1

2

) andα ≤ n− t, we haveε2 ≤ ε1 and

the result follows.

From the preceding Lemmas1 and2, one can deduce the following result.

Theorem 1. Let N1 = p1q1,N2 = p2q2 be two n-bit RSA moduli, where the qi ’s are α-
bit primes and the pi ’s are primes that share t most significant bits. If t≥ 2α +3, then
N1 and N2 can be factored in quadratic time in n.

Proof. Let L be the lattice generated byv1 andv2 as above. Since the norms ofv1 and
v2 are bounded by 2n+1, computing the reduced basis(b1,b2) takes a quadratic time in
n. By Lemma2 we know thatb0 = ±v0 as soon ast ≥ 2α +3. The factorization ofN1

of N2 follows from the description ofv0 given by the lemma1.

Remark 1.For our analysis, the valueK = b2n−t+ 1
2 c is indeed the best possible value. If

we useK = b2n−t+γc, we obtain the boundt ≥ 2α + f (γ) with f (γ) = 3
2 −γ + log2(2+

22γ). The minimum off is 3 and is attained inγ = 1
2.

3 Implicit Factoring of k RSA Moduli with Shared MSBs

The construction of the lattice for 2 RSA moduli naturally generalizes to an arbitrary
numberk of moduli. Similarly, we show that a short vectorv0 of the lattice allows
us to recover the factorization of theNi ’s. This vector takes advantage of the relations
qiNj −qjNi = qiqj(pj − pi) for all i, j ∈ {1, . . . ,k}. However, we were unable to prove
thatv0 is a shortest vector of the lattice. Therefore, our method relies on the Gaussian
heuristic to estimate the conditions under whichv0 should be a shortest vector of the
lattice. Experimental data in section5 confirms that this heuristic is valid in nearly all
the cases.

In this section, we are givenk RSA moduli ofn bitsN1 = p1q1, . . . ,Nk = pkqk where
theqi ’s areα-bit primes and thepi ’s are primes that all sharet most significant bits.

Let us construct a matrixM whose row vectors will form a basis of a latticeL; this
matrix will havek rows andk+

(k
2

)
= k(k+1)

2 columns. Denote bys1, . . . ,sm with m=
(k

2

)

all the subsets of cardinality 2 of{1,2, . . . ,k}. To each of thesi ’s, associate a column
vectorci of sizek the following way. Leta,b be the two elements ofsi , with a < b. We
set thea-th element ofci to Nb, theb-th element ofci to−Na, and all other elements to
zero. Finally, one formsM by concatenating column-wise the matrixKIk×k, whereIk×k

is the identity matrix of sizek, along with the matrixCm composed by them column
vectorsc1, . . . ,cm. K is chosen to beb2n−t+ 1

2 c. We will call v1, . . . ,vk the row vectors
of M.



To make things more concrete, consider the example ofk = 4. Up to a reordering of
the columns (that changes nothing to the upcoming analysis),

M =







K 0 0 0 N2 N3 N4 0 0 0
0 K 0 0 −N1 0 0 N3 N4 0
0 0 K 0 0 −N1 0 −N2 0 N4

0 0 0 K 0 0 −N1 0 −N2 −N3





 whereK = b2n−t+ 1

2 c (9)

Notice that the columnsk+1 tok+m correspond to all the 2-subsets of{1,2,3,4}.
Similarly to the case of 2 RSA moduli (lemma1), L contains a short vector that

allows us to factorize all theNi ’s:

Lemma 3. Letv0 be the vector of L defined byv0 = ∑k
i=1qivi . Thenv0 can be rewritten

as follows:
v0 = (q1K, . . . ,qkK, . . . ,qaqb(pb− pa), . . .︸ ︷︷ ︸

∀{a,b}⊂{1,...,k}

)

Proof. For 1≤ i ≤ m, let a,b be such thatsi = {a,b} anda < b. By the construction of
theci ’s, we get that the(k+ i)-th coordinate ofv0 is equal toqaNb−qbNa = qaqb(pb−
pa). ut

Remark thatv0 is short because itsm last coordinates harness the cancellation of thet
most significant bits between thepi ’s. Retrieving±v0 from L leads immediately to the
factorization of all theNi ’s, dividing its firstk coordinates byK.

Assumption 1. If ±v0 is shorter than the Gaussian heuristicλ1(L) ≈
√

d
2πe Vol(L)

1
d

applied to the d-dimensional lattice L then it is a shortest vector of L.

This assumption is supported by experimental data in the section5. We found it to
be almost always true in practice. This condition can be seen as an analog of condition
1 of section2 in the case of two RSA moduli.

Let’s derive a bound ont so thatv0 is smaller than the Gaussian heuristic applied to
L. The norm ofv0 can be computed and upper-bounded easily:‖v0‖2 = K2

(
∑k

i=1q2
i

)

+∑{i, j}⊂{1,...,k}q2
i q2

j (pi − pj)2 ≤ k222(n+α−t)+1. Computing the volume ofL is a bit

more involved, we refer to Lemma5 of appendixB: Vol(L) = K
(
K2 +∑k

i=1N2
i

) k−1
2

and thus Vol(L) ≥ 2n−t
(√

k2n−1
)k−1

We now seek the condition ont for the norm ofv0 to be smaller than the Gaussian
heuristic. Using the two previous inequalities on‖v0‖ and Vol(L), we get the stricter
condition:

k222(n+α−t)+1 ≤
k

2πe

(

2n−t
(√

k2n−1
)k−1

) 2
k

Expanding everything and extractingt, we get the following condition:

t ≥
k

k−1
α +1+

k
2(k−1)

(

2+
log2(k)

k
+ log2(πe)

)

(10)



Whenk≥ 3, we can derive a simpler and stricter bound ont: t ≥ k
k−1α +6

Finally, as±v0 is now the shortest vector ofL under Assumption1, it can be found
in time C (k, k(k+1)

2 ,n) whereC (k,s,B) is the time to find a shortest vector of ak-
dimensional lattice ofZs given byB-bit basis vectors. We just proved the following
theorem:

Theorem 2. Let N1 = p1q1, . . . ,Nk = pkqk be k n-bit RSA moduli, with the qi ’s being
α-bit primes, and the pi ’s being primes that all share t most significant bits. Under
Assumption1, the Ni’s can be factored in timeC (k, k(k+1)

2 ,n), as soon as t verifies
equation(10).

Remark 2.Note that we can find a shortest vector of the lattice of Theorem2 using

Kannan’s algorithm (Theorem6 in appendixA) in time O(P(n,k)k
k
2e+o(k)) whereP

is a polynomial. It implies that we can factorize allN1, . . . ,Nk in time polynomial in
n as soon ask is constant orkk is a polynomial inn. Unfortunately, to the best of our
knowledge, this algorithm is not implemented in the computer algebra system Magma
[1] on which we implemented the methods. In our experiments, to compute a short-
est vector of the lattice, we used instead the Schnorr-Euchner’s enumeration algorithm
which is well known (see [4,3]) to perform well beyond small dimension (≤ 50) and
this step in Magma took less than 1 minute fork≤ 40. One may also reduce the lattice
using LLL algorithm instead of Schnorr-Euchner’s enumeraion. Ift is not too close to
the bound of Theorem2, the Gaussian heuristic suggests that the gap (see Definition
1 in the appendix) of the lattice is large, and thus LLL may be able to find a shortest
vector ofL even in medium dimension (50–200).

Similarly to the case of 2 RSA moduli,K = b2n−t+ 1
2 c is optimal for our analysis.

Indeed, if we redo the analysis withK = b2n−t+γc, we find that the optimal value for
γ is the one that minimizes the functionfk = γ 7→ 1

2k log2(k−1+22γ−1)− γ, which is
γ = 1

2 regardless ofk.
Finally, note that a slightly tighter bound (differing to equation10 by a small addi-

tive constant) may be attained by bounding‖v0‖ and Vol(L) more precisely.

4 Implicit Factoring with Shared Bits in the Middle

In this section, we are givenk RSA moduli ofn bits N1 = p1q1, . . . ,Nk = pkqk where
theqi ’s areα-bit primes and thepi ’s are primes that all sharet bits from positiont1 to
t2 = t1 + t. More precisely, these RSA moduli all verify:

Ni = piqi = (pi22t2 + p2t1 + pi0)qi

wherep is the integer part shared by all the moduli. Contrary to the LSB case presented
in [9] and the MSB one developed in the previous sections, the method we present
here is heuristic even whenk = 2. We sketch now our method whenk = 2 and present
the details on the general result later. Whenk = 2, we have a system of two equations
in four variablesp1,q1, p2,q2: N1 = p1q1 = (p122t2 + p2t1 + p10)q1 andN2 = p2q2 =



(p222t2 + p2t1 + p20)q2. Similarly to the LSB’s case (see [9]), this system can be reduced
modulo 2t2. One obtains a system of two equations with 5 variablesp, p10, p20, q1, q2:

{
(p2t1 + p10)q1 = N1 mod 2t2

(p2t1 + p20)q2 = N2 mod 2t2
(11)

The problem can now be seen as a modular implicit factorization ofN1 andN2 with
shared MSBs. Thus, we adapt the method we proposed in section2 to the modular case.
More precisely, we consider the latticeL defined by the rows of the matrix

M =




K 0 N2

0 K −N1

0 0 2t2



 (12)

Let v0 be the vector(q1K,q2K, r) with r being the unique remainder ofq1N2− q2N1

modulo 2t2 in ]−2t2−1,2t2−1]. Clearly,v0 is in L. As in the section3, we search for a
condition on the integert under which±v0 is the shortest vector inL under Assumption
1 (here, the dimension of the latticeL is 3). The integerK will be set at the end of the
analysis.

We have‖v0‖2 = K2(q2
1 +q2

2)+ r2 and]−2t2−1,2t2−1] 3 r = q1N2−q2N1 mod 2t2

= q1q2(p20 − p10) mod 2t1+t with |p20 − p10| ≤ 2t1 andqi ≤ 2α . Thanks to the upper-
triangular shape ofM, the volume ofL is easily computed: VolL = K22t2. Thus, we
can respectively upper-bound and lower-bound‖v0‖2 and VolL by 22α+1K2 + 22t1+4α

andK22t2; a condition ont so thatv0 is smaller than the Gaussian heuristic follows:
22α+1K2 +22t1+4α ≤ 3

2πe(K
22t2)

2
3 . This condition is equivalent to

t ≥
3
2

[

log2(2
2α+1− 2

3 t1K
2
3 +2

4
3 t1+4αK− 4

3 )+ log2(
2πe
3

)

]

and the integer value ofK which minimizes the right-hand of this inequality isK =
2α+t1. Hence, under Assumption1, one can factorizeN1,N2 in polynomial-time as soon
as

t ≥ 4α +
3
2

(1+ log2(πe)) (13)

A stricter and simpler condition ont is: t ≥ 4α +7.
We now inspect when Assumption1 is not verified, that is we study the possible

existence of exceptional short vectors inL that are smaller thanv0. These vectors may
appear when there exists small coefficientsc1, c2 (< 2α ) such thatc1N1−c2N2 mod 2t2

is small (say≈ 2t2−γ ). In particular, to make easier the analysis, we examine the case
when the simple vectorv1 defined withc1 = c2 = 1 is smaller thanv0. The inequality
‖v1‖2 < ‖v0‖2 is equivalent tot − γ < 2α. So this inequality is possible only for small
t and largeγ which can be considered as an exception. In our experiments, these excep-
tional shorts vectors (and, in particular, simple vectorsv1) almost never appear in the
k = 2 case witht verifying the bound13..

The method fork≥ 3 is a straightforward generalization of thek = 2 case by using
the results of Section3. Let’s consider the latticeL defined by the rows of the matrixM
given by



M =
K Ik×k Cm

0 2t2 Im×m











whereCm is the matrix defined in Section3 and formed by the concatenation ofm=
(k

2

)

column vectors ofk rows andIk×k (resp.Im×m) is the identity matrix of sizek×k (resp.
m×m). Thus,M is a square upper triangular matrix of size(m+ k)× (m+ k) and the
volume of them+k-dimensional latticeL is easily computed: VolL = Kk2mt2.

The vector
v0 = (q1K, . . . ,qkK, . . . , r(a,b), . . .

︸ ︷︷ ︸
∀{a,b}⊂{1,...,k}

)

with r(a,b) defined as the unique remainder ofqaqb(pb− pa) = qaNa−qbNb modulo 2t2

in ]−2t2−1,2t2−1], is clearly a vector ofL. As we do above, we search for a condition
on the integert under which±v0 is the shortest vector inL under Assumption1. The
integerK will be set at the end of the analysis to be optimal.

We have‖v0‖2 = K2(q2
1 + ∙ ∙ ∙+ q2

k) + ∑{a,b}⊂{1,...,k} r2
(a,b), that we can bound by

‖v0‖2 ≤ k22αK2 +m22t1+4α . A condition ont, under Assumption1, follows:

k22αK2 +m24α+2t1 ≤
m+k
2πe

(Kk2mt2)
2

m+k .

This condition is equivalent to

t ≥
m+k
2m

[

log2

(
k22α− 2m

m+k t1K
2m

m+k +m24α+ 2k
m+k t1K− 2k

m+k

)
+ log2

(
2πe

m+k

)]

(14)

The value ofK which minimizes the right-hand of this inequality is given by the zero

of the derivative of the functionK 7→ k22α− 2m
m+k t1K

2m
m+k + m24α+ 2k

m+k t1K− 2k
m+k . Actually,

K is given by the solution of the equation

2mk
m+k

22α− 2m
m+k t1K

m−k
m+k =

2km
m+k

24α+ 2k
m+k t1K−m+3k

m+k

and thus, after simplification,K = 2α+t1 which is an integer value. A general condition
on t becomes

t ≥
m+k
2m

[

log2

(
(m+k)22α 2m+k

m+k

)
+ log2

(
2πe

m+k

)]

and the general result immediately follows.

Theorem 3. Let N1 = p1q1, . . . ,Nk = pkqk be k n-bit RSA moduli, where the qi ’s areα-
bit primes and the pi ’s are primes that all share t bits from the position t1 to t2 = t1 + t.
Under Assumption1, the Ni’s can be factored in timeC ( k(k+1)

2 , k(k+1)
2 ,n), as soon as

t ≥ 2α +
2

k−1
α +

k+1
2(k−1)

log2(2πe)



As in the case ofk = 2, we inspect the general casek ≥ 3 for the existence of ex-
ceptional vectorsv1 = (c1K, . . . ,ckK, . . . ,ciNi −cjNj mod 2t2, . . .) which will disprove
Assumption1, that is, withci ’s (< 2α ) andciNi − c jNj mod 2t2 small (say≈ 2t2−γ ).
The condition under which the simple vectorv1 with c1 = c2 = ∙ ∙ ∙ = ck = 1 verify
‖v1‖2 < ‖v0‖2 is given by

t − γ < α +
1
2

+
1
2

log(
(k+1)22α−1−1

(k−1)
) ≈ 2α

Thus, as in the case ofk = 2, for t andα small andγ large enough, this type of simple
vectors may appear. Moreover, the degree of liberty for choosing theci increases with
k, thus, exceptional vectors may appear more frequently whenk grows. This fact was
observed during our experiments.

Remark 3.During our first experiments, in few cases, our method fails to factor the
Ni ’s. After analysis of the random generation functions used in our code, it turns out
that theqi where randomly generated in the interval

]
2α−1,2α]. Thus, the probability

that a lot ofqi ’s have exactly sizeα is high. If, moreover,α is small enough compared
to t2 (α < t2 = t +t1), the correspondingNi −Nj mod 2t2 may be very small. This could
be explained by the following fact: some of the most significant bits (and at least the
highest bit) ofNi mod 2t2 andNj mod 2t2 will be a part of the shared bits between
the pi ’s and thus they cancel themselves in(Ni −Nj) mod 2t2. Hence, in this case, we
have an exceptional short vector inL and our method fails; on the other hand, if one use
these moduli then an attacker may use this extra information to easily factor them with
another method.

5 Experimental results

Table 2: Results fork = 2 and 1024-bit RSA moduli with shared MSBs

α (bit-size of theqi ’s) Bound of Theorem1 t ≥ 2α +3 Best experimentalt
150 303 302
200 403 402
250 503 502
300 603 602

In order to check the validity of Assumption1 and the quality of our bounds ont,
we implemented the methods on Magma 2.15 [1].

5.1 Shared MSBs

We generated many random 1024-bit RSA moduli, for various values ofα andt. We
observed that the results were similar for other values ofn. In the case wherek = 2,



Table 3: Results fork = 3,10,40 and 1024-bit RSA moduli with shared MSBs

α (bit-size
of theqi ’s)

Theoretical
boundt

Best experimentalt
using LLL algo.

Best experimentalt using
Schnorr-Euchner’salgo.

Failure rate of
Assumption1

Results fork = 3 (Theoretical bound of Theorem2: t ≥ 3
2α +5.2. . .)

150 231 228 228 0% (t = 227)
200 306 303 303 0% (t = 302)
250 381 378 378 0% (t = 377)
300 456 453 453 0% (t = 452)
350 531 528 528 0% (t = 527)
400 606 603 603 0% (t = 602)

Results fork = 10 (Theoretical bound of Theorem2: t ≥ 10
9 α +4.01. . .)

150 171 169 169 0% (t = 168)
200 227 225 225 3% (t = 224)
250 282 280 280 3% (t = 279)
300 338 336 336 1% (t = 335)
350 393 391 391 2% (t = 390)
400 449 447 447 0% (t = 446)

Results fork = 40 (Theoretical bound of Theorem2: t ≥ 40
39α +3.68. . .)

150 158 156 155 2% (t = 154)
200 209 208 207 3% (t = 206)
250 261 259 258 1% (t = 257)
300 312 310 309 1% (t = 308)
350 363 362 361 0% (t = 360)
400 414 413 412 2% (t = 411)

we used the Lagrange reduction to find with certainty a shortest vector of the lattice,
and for 3≤ k ≤ 40 we compared Schnorr-Euchner’s algorithm (that provably outputs
a shortest vector of the lattice) with LLL (that gives an exponential approximation of a
shortest vector). We used only LLL fork = 80.

We conducted experiments fork = 2,3,10,40 and 80, and for several values forα.
For specific values ofk, α andt, we said that a test was successful when the first vector
of the reduced basis of the lattice was of the form±v0 (that is, it satisfies Assumption1
in the heuristic casek≥ 3). For eachk and eachα, we generated 100 tests and found ex-
perimentally the best (lowest) value oft that had 100% success rate. We compared this
experimental value to the bounds we obtained in Theorems2 and1. For the first value
of t that does not have 100% success rate and fork≥ 3, we analyzed the rate of failures
due to Assumption1 not being valid. Note that failures can be of two different kinds:
the first possibility is that‖v0‖ is greater than the Gaussian heuristic, and the second
one is that‖v0‖ is smaller than the Gaussian heuristic yetv0 is not a shortest vector of
the lattice (that is, Assumption1 does not hold). We wrote down the percentage of the
cases where Assumption1 was not valid among all the cases where‖v0‖ was smaller
than the Gaussian heuristic. These results are shown in tables2 and3. Let’s take an ex-



Table 4:Results fork = 5 and 1024-bit RSA moduli with shared bits in the middle
(α ∈ {99,100}, t1 = 20, theoretical boundt ≥ 254)

Experimental
t

Failure rate of‖v0‖ <
Gaussianheuristic

Failure rate with Schnorr-
Euchner’salgo.

Failure rate with
LLL’s algo.

261 0% 0% 0%
260 0% 1% 1%
259 0% 1% 1%
258 0% 1% 0%
257 0% 3% 2%
256 0% 6% 5%
255 0% 17% 10%
254 0% 33% 19%
253 0% 58% 28%
252 2% 90% 58%
251 96% 100% 89%

ample. Fork = 10 andα = 200 (second line of the part corresponding tok = 10 in table
3), Theorem2 predicts thatv0 is a shortest vector of the lattice as soon ast ≥ 227. It
turned out that it was always the case as soon ast ≥ 225, which is better than expected.
For t = 224, Assumption1 was not valid in 3% of the cases.

Let’s analyze the results now. In the rigorous casek = 2, we observe that the attack
consistently goes one bit further with 100% success rate than our bound in Theorem1.

In all our experiments concerning the heuristic casesk≥ 3, we observed that we had
100% success rate (thus, Assumption1 was always true) whent was within the bound
(10) of Theorem2. That means that Theorem2 was always true in our experiments.
Moreover, we were often able to go a few bits (up to 3) beyond the theoretical bound
on t. When the success rate was not 100% (that is, beyond our experimental bounds on
t), we found that Assumption1 was not true in a very limited number of the cases (less
than 3%). Finally, up to dimension 80, LLL was always sufficient to findv0 whent was
within the bound of Theorem2, and Schnorr-Euchner’s algorithm allowed us to go one
bit further than LLL in dimension 40.

5.2 Shared bits in the middle

Contrary to the case of shared MSBs, Assumption1 may fail when we apply our method
with shared bits in the middle (see Section4). Whenk = 2 the phenomenon of excep-
tional short vectors rarely appeared whent was within the bound of Theorem3 (less
than 1% of failure and did not depend on the positiont1, moreover, we were generally
allowed to go 2 or 3 bits further with 90% of success). Whenk ≥ 3 it was not still
the case. When Schnorr-Euchner’s algorithm did not returnv0, we tried to find it in
a reduced basis computed by LLL. If neither of these algorithms was able to findv0
then our method failed. The table4 shows the result of our experiments fork = 5 RSA
moduli of sizen = 1024 andqi ’s of sizeα ∈ {100,99} (see Remark3). As one can



see, our method can be successfully applied in this case. During these experiments, the
failure rate of our method was equal to the failure rate of findingv0 in a reduced basis
computed by LLL. More generally, our experiments showed that for the same size of
problems the rate of success is approximately 80% whent was within the bound of
Theorem3 and allowed us to go one or two bits further with success rate≈50%.

5.3 Efficiency comparisons

Additionally, we show in table5 the lowest value oft with 100% success rate and the
running-time of LLL and Schnorr-Euchner’s algorithm for several values ofk (k RSA
moduli with pi ’s factors sharingt MSBs). For eachk, we show the worst running-time
we encountered when running 10 tests on an Intel Xeon E5420 at 2.5Ghz. We see that
all individual tests completed in less than 1 second for 2≤ k ≤ 20. We used Schnorr-
Euchner’s algorithm up tok = 60 where it took at most 6200 seconds. LLL completes
under one minute for 20≤ k≤ 40 and in less than 30 minutes for 40≤ k≤ 80.

Table 5:Running time of LLL and Schnorr-Euchner’s algorithm, and bound ont ask grows.
(Shared MSBs withα = 300 andn = 1024)
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6 Conclusion

In this article we have studied the problem of integers factorization with implicit hints.
We have presented new lattice based methods in order to factorizek ≥ 2 RSA moduli
Ni = piqi with polynomial complexity in log(Ni) when pi ’s share unknown MSBs or
contiguous bits in the middle. In the casek= 2 and shared MSBs, our method is the first
one to be completely rigorous. These new results can be seen as an extension of the ones
presented in [9] and [15] where, respectively, May and Ritzenhofen gave same type of
results in the case where thepi ’s share LSBs and Sarkar and Maitra presented heuristic
methods based on the Coppersmith’s algorithm for finding small roots of polynomials
for k = 2 moduli with shared MSBs (and/or LSBs) or bits in the middle . Our method
gives comparable theoretical results as the one of May and Ritzenhofen and it is more
efficient than the Sarkar and Maitra’s method.

Whether the method can be applied fork ≥ 3 Ni ’s RSA moduli with pi ’s sharing
MSBs and LSBs remains an open issue. In this case, the problem has much more vari-
ables and our method can not be directly applied. One possible way to follow for attack-
ing this problem is to use algebraic techniques, in particular elimination theory, jointly
with lattice based methods. This would be an interesting focus for future research.
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A Common results on lattice

An integer latticeL is an additive subgroup ofZn. Equivalently, it can be defined as
the set of all integer linear combinations ofd independent vectorsb1, . . . ,bd of Zn. The
integerd is called thedimensionof L, andB = (b1, . . . ,bd) is one of itsbases. All the
bases ofL are related by a unimodular transformation. Thevolume(or determinant) of
L is thed-dimensional volume of the parallelepiped spanned by the vectors of a basis
of L and is equal to the square root of the determinant of the Gramian matrix ofB. It
does not depend upon the choice ofB. We denote it by Vol(L).

We state (without proofs) common results on lattices that will be used throughout
this paper. Readers interested in getting more details and proofs can refer to [10].

Definition 1. For 1≤ r ≤ d, letλr(L) be the least real number such that there exist at
least r linearly independent vectors of L of euclidean norm smaller than or equal to
λr(L). We callλ1(L), . . . ,λd(L) the dminimaof L, and we call g(L) = λ2(L)

λ1(L) ≥ 1 thegap
of L.

Lemma 4 (Hadamard). Let B= (b1, . . . ,bd) be a basis of a d-dimensional integer
lattice ofZn. Then the inequality∏d

i=1‖bi‖ ≥ Vol(L) holds.

Theorem 4 (Minkowski). Let L be a d-dimensional lattice ofZn. Then there exists a

non zero vectorv in L which verifies‖v‖ ≤
√

dVol(L)
1
d . An immediate consequence is

that λ1(L) ≤
√

dVol(L)
1
d



Theorem 5 (Lagrange reduction).Let L be a 2-dimensional lattice ofZn, given by a
basis B= (b1,b2). Then one can compute a Lagrange-reduced basis B′ = (v1,v2) of L
in timeO(nlog2(max(‖b1‖,‖b2‖))). Besides, it verifies‖v1‖ = λ1(L) and ‖v2‖ =
λ2(L). More information about the running time of the Lagrange reduction may be
found in [10].

Theorem 6 (Kannan’s algorithm, see [6,13,4]). Let L be a d-dimensional lattice of
Zn given by a basis(b1, . . . ,bd). One can compute a shortest vector of L (with norm

equal toλ1(L)) in time O(P(logB,n)d
d
2e+o(d)) whereP is a polynomial and B=

maxi(‖bi‖). This is done by computing a HKZ-reduced basis of L.

Theorem 7 (LLL). Let L be a d-dimensional lattice ofZn given by a basis(b1, . . . ,bd).
Then LLL algorithm computes a reduced basis(v1, . . . ,vd) that approximates a shortest

vector of L within an exponential factor‖v1‖ ≤ 2
d−1

4 Vol(L)
1
d . The running time of

Nguyen and Stehlé’s version isO(d5(d+ logB) logB) where B= maxi(‖bi‖), see [12].

In practice, LLL algorithm is known to perform much better than expected. It has been

experimentally established in [3] that we can expect the bound‖v1‖ ≤ 1.0219d Vol(L)
1
d

on‖v1‖ on random lattices and that finding a shortest vector of a lattice with gap greater
than 1.0219d should be easy using LLL.

B Exact computation of the Volume of latticeL of section3

In this section, we compute exactly the volume of the latticeL defined at the beginning
of section3. As a visual example of the construction of this lattice, the reader may take
a look at the matrix defined in equation (9) in the case ofk = 4. We use the notations of
section3.

Lemma 5. Let L be the lattice whose construction is described at the beginning of

section3. Then its volume is equal toVol(L) = K
(
K2 +∑k

i=1N2
i

) k−1
2 .

Proof. Let G be the Gramian matrix (of sizek×k) of L. Its diagonal terms are〈vi ,vi〉=
K2 + ∑k

u=1
u6=i

N2
u and its other terms are:〈vi ,vj 〉 = −NiNj . Observe that we can rewriteG

as followsG =
(
K2 +∑k

i=1N2
i

)
Ik×k +J whereIk×k is the identity matrix of sizek and J

is thek×k matrix with terms−NiNj . If we let χJ be the characteristic polynomial ofJ
andλ0 = K2 +∑k

i=1N2
i , we observe that det(G) = χJ(−λ0).

All the columns ofJ are multiples of(N1,N2, . . . ,Nk)t . The rank ofJ is thus 1.
The matrixJ has therefore the eigenvalue 0 with multiplicityk− 1. The last eigen-
value is computed using its trace: Tr(J) = −∑k

i=1N2
i . Therefore, up to a signχJ(X) =

Xk−1
(
X +∑k

i=1N2
i

)
. We conclude that det(G) = χJ

(
−K2−∑k

i=1N2
i

)
, hence det(G) =

K2
(
K2 +∑k

i=1N2
i

)k−1
and Vol(L) =

√
det(G) = K

(
K2 +∑k

i=1N2
i

) k−1
2 ut
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