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Abstract. We study the problem of integer factoring givienplicit information

of a special kind. The problem is as follows: Mf = p1q; andN, = po0» be

two RSA moduli of same bit-size, wherg, gy are a-bit primes. We are given
theimplicit information thatp; and p, sharet most significant bits. We present

a novel and rigorous lattice-based method that leads to the factorizatidn of
andN, in polynomial time as soon as> 2a + 3. Subsequently, we heuristically
generalize the method toRSA moduliN; = pig; where thep;’s all sharet most
significant bits (MSBs) and obtain an improved bound ¢imat converges tb>

a +3.55... ask tends to infinity. We study also the case where the k faqigss
sharet contiguous bits in the middle and find a bound that convergesrte 2
whenk tends to infinity. This paper extends the work of May and Ritzenhofen in
[9], where similar results were obtained when this share least significant bits
(LSBs). In [15], Sarkar and Maitra describe an alternative but heuristic method
for only two RSA moduli, when theg;'s share LSBs and/or MSBs, or bits in the
middle. In the case of shared MSBs or bits in the middle and two RSA moduli,
they get better experimental results in some cases, but we use much lower (at least
23 times lower) lattice dimensions and so we obtain a great speedup (at [2ast 10
faster). Our results rely on the following surprisingly simple algebraic relation
in which the shared MSBs gf; and p, cancel outgqiNy — gpN1 = 102(p2 —

p1). This relation allows us to build a lattice whose shortest vector yields the
factorization of theN;’s.
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1 Introduction

Efficient factorization of large integers is one of the most fundamental problem of Al-
gorithmic Number Theory, and has fascinated mathematicians for centuries. It has been
particularly intensively studied over the past 35 years, all the more that efficient fac-
torization leads immediately to an attack of the RSA Cryptosystem. In the 1970’s, the
first general-purpose sub-exponential algorithm for factoring was developed by Morri-

son and Brillhart in 11] (improving a method described for the first time ifj)| using



continued fraction techniques. Several faster general-purpose algorithms have been pro-
posed over the past years, the most recent and efficient being the general number field
sieve (GNFS) §], proposed in 1993. It is not known whether factoring integers can be
done in polynomial time on a classical Turing machine. On quantum machines, Shor’s
algorithm [L6] allows polynomial-time factoring of integers. However, it is still an open
question whether a capable-enough quantum computer can be built.

At the same time, the problem of factoring integers given additional information
about their factors has been studied since 198514 [Rivest and Shamir showed
that N = pq of bit-sizen and with balanced factors (lggp) ~ log,(q) ~ 3) can be
factored in polynomial time as soon as we have access twraxle that returns the
2 most significant bits (MSBs) op. Beyond its theoretical interest, the motivation
behind this is mostly of cryptographic nature. In fact, during an attack of an RSA-
encrypted exchange, the cryptanalyst may have access to additional information beyond
the RSA public paramete(s, N), that may be gained for instance through side-channel
attacks revealing some of the bits of the secret factors. Besides, some variations of the
RSA Cryptosystem purposely leak some of the secret bits (for instatid, |h 1996,

Rivest and Shamir’s results were improved2hljy Coppersmith applying lattice-based
methods to the problem of finding small integer roots of bivariate integer polynomials
(the now so-calle@oppersmith’s methgdIt requires only half of the most significant
bits of p to be known to the cryptanalyst (that}$.

In PKC 2009, May and RitzenhofeB][significantly reduced the power of the or-
acle. Given an RSA modulud; = p101, they allow the oracle to output a new and
different RSA moduludN, = pqz such thatp; and p, share at leadtleast significant
bits (LSBs). Note that the additional information here is dnylicit: the attacker does
not know the actual value of thdeast significant bits of thg;’s, he only knows thap,
andp, share them. In the rest of the paper, we will refer to this problem as the problem
of implicit factoring Wheng; andg, area-bit primes, May and Ritzenhofen’s lattice-
based method rigorously finds in quadratic time the factorizatioN;cdind N, when
t > 2a + 3. Besides, their technique heuristically generalizek tol oracle queries
that give access todifferent RSA modullN; = p;g; with all the p;’s sharingt least sig-
nificant bits. Withk — 1 queries the bound dnimproves tot > kfkla. Note that these
results are of interest for unbalanced RSA moduli: for instandd, # p1q:, N2 = p202
are 1000-bit RSA moduli and theg’s are 200-bit primes, knowing th@y andp, share
at least 403 least significant bits out of 800 is enough to factdtizandN, in poly-
nomial time. Note also that the method absolutely requires that the shared bits be the
least significant ones. They finally apply their method to factdtimébit balanced RSA
moduliN; = pig; under some conditions and with an additional exhaustive search of 2

Very recently, in 5], Sarkar and Maitra applied Coppersmith and Grébner-basis
techniques on the problem of implicit factoring, and improved heuristically the bounds
in some of the cases. Contrary 8),[their method applies when either (or both) LSBs or
MSBs ofps, p2 are shared (or when bits in the middle are shared). Namely, in the case of
shared LSBs they obtain better theoretical boundstban P] as soon asr > 0.26.
Besides, their experiments often perform better than their theoretical bounds, and they
improve in practice the bound amf [9] whena > 0.21n. Note finally that their bounds



are very similar in the two cases of shared MSBs and shared LSBs. Readers interested
in getting their precise bounds may refer to their papé}.[

Unfortunately, Sarkar and Maitra’s method is heuristic even in the case of two RSA
moduli, and does not generalize ko> 3 RSA moduli. In fact, when they’s share
MSBs and/or LSBs, their method consists in building a polynorfiah three vari-
ables, whose roots afey + 1,0, plzj,p?), wherey is the number of shared LSBs be-
tweenp; andp,. That is, 2322 represents the part @i — p, where the shared bits do
not cancel out. To find the integer roots faf they use the Coppersmith-like technique
of [5] which consists in computing two (or more) new polynomiédsfs, ... sharing
the same roots af. If the variety defined byfq, 2, f3,... is O-dimensional, then the
roots can be easily recovered computing resultants or Grébner basis. However, with
an input polynomial with more than two variables, the method is heuristic: there is no
guarantee for the polynomiafs, f,, fs, ... to define a 0-dimensional variety. We repro-
duced the results of Sarkar and Maitra and we observedthft fs, ... almost never
defined a O-dimensional variety. They observed however that it was possible to recover
the roots of the polynomials directly by looking at the coefficients of the polynomi-
als in the Grdbner basis of the ideal generated byftseeven when the ideal was of
positive dimension. The assumption on which their work relies is that it will always be
possible. For instance, in the case of shared MSBs betweand py, they found in
their experiments that the Grébner basis contained a polynomial multigle efy — 1
whose coefficients lead immediately to the factorizatioiNgfand N,. They support
their assumption by experimental data: in most cases their experiments perform better
than their theoretical bounds. It seems nevertheless that their assumption is not fully
understood.

Our contribution consists of a novel and rigorous lattice-based method that address
the implicit factoring problem whep; and p, sharemostsignificant bits. That is, we
obtained an analog of May and Ritzenhofen’s results for shared MSBs, and our method
is rigorous contrary to the work of Sarkar and Maitra i5]f Namely, letN; = p101
andN; = poz be two RSA moduli of same bit-size If g1, are a-bit primes and
p1, p2 sharet most significant bits, our method provably factoriddsandN, as soon
ast > 2a + 3 (which is the same as the boundtdior least significant bits ind]). This
is the first rigorous bound onwhen p; and p, share most significant bits. From this
method, we deduce a new heuristic lattice-based for the case pshamd p, sharet
bits in the middle. Moreover, contrary td@g], these methods heuristically generalize to
an arbitrary numbek of RSA moduli and do not depend on the position of the shared

bits in the middle, allowing us to factoriZzeRSA moduli as soon &s> kfkla +6 (resp.

t> k%"la + 7) most significant bits (resp. bits in the middle) are shared betwegw’the

(more precise bounds are stated later in this paper). A summary of the comparison of
our method with the methods i8][and [L5] can be found in tablé&.

Let’s give the main idea of our method with 2 RSA moduli in the case of shared
MSB'’s. Consider the lattice spanned by the row vectovg andv, of the following
matrix:

KO Nz | on—t+1
(O K —N1> whereK = |2"772 |



Table 1: Comparison of our results against the resultS]afrid [15] with k RSA moduli

May, Ritzenhofen’s

Results 9]

Sarkar, Maitra’s Resultdlp]

Our results

When py, p2 share

t LSBs: rigor-
ous bound o
t > 2a + 3 using
2-dimensional
lattices ofZ2.

When pi,p2 share eithert
LSBs or MSBs: heuristi
bound better thah > 2a + 3

perimentally  better whe
a > 0.2In. In the case o

better bound than > 4a +7

when a > 0.2661, and ex

t shared bits in the middlemiddle: heuristic bound of >

Whenpy, po sharet MSBs: rig-
orous bound of > 2a + 3 using
n2-dimensional lattices ¢3. In
fthe case of bits shared in th

4a +7 using 3-dimensional laj

but depending on the positigtices ofZ2.
of the shared bits. Using
46-dimensional lattices G£46

When the pi's all sharet
MSBs (resp. bits in the mid
dle): heuristic bound oft >
ga + o (resp.t > Za+
&), with & <6 (resp.< 7) and
using k-dimensional @

. . . k(k+1)
dimensional) lattices d. "2 .

When the p's
all sharet LSBs:
heuristic bound of
t > Xa using
k-dimensional
lattices ofZX.

Cannot be directhapplied.

Consider also the following vector in

Vo = 01V + G2V = (1K, 02K, q1G2(p2 — p1))

The key observation is that theshared significant bits gb; and p, cancel out in the
algebraic relatiom; Nz — g2N1 = g102(p2 — p1). Furthermore, we chood€in order to
force the coefficients of a shortest vectorlobn the basigvs,v,) to be of the order
of 29 ~ q1 =~ gu. We prove in the next section thag is indeed a shortest vector bf
(thusN; andN, can be factored in polynomial time) as soontas 2a + 3. Besides,
we generalized this construction to an arbitrary numbek BSA moduli such that a
small vector of the lattice harnesses the same algebraic relation, and to shared middle
bits. However, the generalized constructions in both cases become heuristic: we use the
Gaussian heuristic to find a condition bfor this vector to be a shortest of the lattice.
Applications of implicit factoring have not yet been extensively studied, and we
believe that they will develop. The introduction & gives some ideas for possible ap-
plications. They include destructive applications with malicious manipulation of public
key generators, as well as possibly constructive ones. Indeed, our work shows that when
t > 2a + 3, itis as hard to factorizR; = p101, as generatindl, = p20 with p2 sharing
t most significant bits wittp;. This problem could form the basis of a cryptographic
primitive.
Throughout this paper, we heavily use common results on euclidean lattice. A sum-
mary of these results can be found in apperlix he paper is organized as follows. In



section2, we present our rigorous method in the case of shared MSB’s and two RSA
moduli, we generalize it t&t RSA moduli in sectiorB. In Section4, we present our
method in the case of shared bits in the middle. Finally, in se@iare present our
experiments that strongly support the assumption we made in the da&séf moduli

and of shared middle bits.

2 Implicit Factoring of Two RSA Moduli with Shared MSBs

In this section, we study the problem of factoring twdit RSA moduli:N; = p1th
andN, = p20p, whereq; andqp are a-bit primes, given only the implicit hint that;
and p, sharet most significant bits (MSBs) that atsknownto us. We will show that
N1 andN, can be factored in quadratic time as soort as2a + 3. By saying that
the primesps, p2 of maximal bit-sizen — o + 1 sharet MSBs, we really mean that
|p1 _ p2| < 2nfcrft+l_

Let’s consider the lattick spanned by the row vectors (denotedihyandv,) of
the following matrix:

- KO N | on—t+i
M= (0 K —Nl) whereK = | 27772 |

We have the following immediate lemma that makes our method work:

Lemma 1. Let vy be the vector of L defined by = qi1v1 + g2v2. Thenvg can be
rewritten asvg = (1K, 2K, q102(p2 — p1))-

Note that the shared MSBs pf andp, cancel each other out in the differenge— p;.
Each of the coefficients af are thus integers of rough{y+ o —t) bits. Provided thatt
is sufficiently large;-vp may be a shortest vector btthat can be found using Lagrange
reduction orlL. Moreover, note that as soon as we retrigyérom L, factoringN; and
N, is easily done by dividing the first two coordinates/gtby K (which can be done in
quadratic time im). Proving thatvg is a shortest vector df under some conditions on
t is therefore sufficient to factoriZd; andNo.

We first give an intuition on the bound drthat we can expect, and we give after
that a proof thattvg is indeed the shortest vector lolunder a similar condition.

The volume ofL is the square root of the determinant of the Gramian matrix of

. K2 4+N2 —NiNp . .
t_ 2 — K./N2+LN2+K2
given byMM' = ( NiNp K24+N2)- That is,vol(L) = K/Nj + N5 + K2 which can

be approximated by?2t becausek? ~ 22"Y) is small compared to thil? ~ 22",
The norm ofvg is approximately 27—, because each of its coefficients have roughly
n+ o —t bits. If vg is a shortest vector df, it must be smaller than the Minkowski bound
applied toL: 29~ ~ ||lvg| < v/2Vol(L)Y/2 ~ 2"-Y/2, which happens when> 2a.
The following lemma affirms thatg is indeed a shortest vector bfunder a similar
condition ont.

Lemma 2. Let L be the lattice generated by the row vecteysand v, of M and let
Vo = gav1 + Ve = (1K, 2K, aq102(p2 — p1)) as defined in Lemma& The vectortvg
is the shortest vector of the lattice L as soon as2a + 3.



Proof. Let (by,by) be the resulting basis from the Lagrange reductioroffihis re-
duced basis verifiebb; || = A1(L), ||b2|| = A2(L), and, by Hadamard’s inequality one
have: ||by]|||b2]| > VoI(L). As vg is in the lattice,||bs|| = A1(L) < ||vo||. Hence we
get ||ba|| > % Moreover, ifvg is strictly shorter thab,, vg is a multiple ofbg;
for otherwiseb, would not be the second minimum of the lattice. In this cages
ab; = a(bvi + cva),a,b,c € Z, and looking at the first two coefficients of, we get
thatab = g1 andac = qp. Since theg;'s are prime, we conclude that= +1, that is,
Vo = £b;. Using the previous inequality, a condition fag to be strictly shorter than
b, is:

[Ivol|? < Vol (L) (1)

Let's upper-bound the norm @f and lower-bound V@L). We first provide simple
bounds that proves the lemma when 2a + 4 and derive secondly tighter bounds that
require onlyt > 2a + 3.

The pi's have at mosh — a + 1 bits, and they share thdirmost significant bits
SO [p2 — pa| < 29+t We thus have the inequalityvo||? < 22"Y+1(g2 + g3) +
o203(p1 — p2)? which implies

||V0||2 < 22(n+a—t)+2+22(a+n+1—t) < 22(n+a—t)+3 @)

We can lower-bound the volume bf using thaiNy, N, > 2"1 andk?2 > 2200-V):
VoI (L)? = K2(Nf 4 N3 +22001) > 24021 ©)

Using inequalitiesZ) and @), the inequality {) is true provided that: 2a-U+3 <
220-t=3 which is equivalent to (asanda are an integers):

t>20+4 4)

We have thus proved the lemma under conditin\(Ve now refine the bounds djw||
and VolL) in order to prove the tight case.

The integersy; andg, area-bit primes, thereforg; <29 —1, (i = 1,2). Defineg;
by 29 — 1= 29— We getq? < 220-21_(j = 1,2). Moreover, sinc& = | 2"+2 |, we
havek? < 22"-+1 From these inequalities, we can upper-bokid?

K2q|2 S 22(n7t+u)+172817 (| _ 1’ 2) (5)

The pi’s have at mosh — a + 1 bits and they shartebits, so(p, — py)? < 22(n-a+1-1),
Thus, using the upper-bound on ttfe we have

q%q%(pz o pl)z < 22(n—t+a+1—2£1) (6)

We can finally bound|vo||? = K2(cf + 3) + 6505(p2 — p1) using &) and 6):

HVOHZ < 22(n+a—t)+2-2¢ + 22(n—t+a+1-28) ~ H2(n+a—t)+3—¢; )



Let's now defines, by the equality 2 1+1/2 — 1 = 2n-t+1/2-& \\e have thaK =
|27-t+2 | > 2n—t+1/2-€2 andN2 > 222, we can therefore lower-bound Val)2:

Vol (L)? = K2(NZ 4+ N2 4220 > K2(NZ + N2) > 241-2-2% (8)

Using the inequalities7) and @), the condition {) is true under the new condition
22(nta—1)+3-& < 22n—1-& \which is equivalent to > 2a + 3+ & — &1.
Sinceg; = logy( ), &= Iogz(l%) anda < n-—t, we haves, < g and
T ot 1

n—t+5

1
150

the result follows.
From the preceding Lemmdsand2, one can deduce the following result.

Theorem 1. Let Ny = p1q1, N2 = p202 be two n-bit RSA moduli, where thgscare a-
bit primes and the s are primes that share t most significant bits. ¥ t2a + 3, then
N1 and N> can be factored in quadratic time in n.

Proof. Let L be the lattice generated by andv, as above. Since the normswfand
v, are bounded by"?!, computing the reduced bagis; , b,) takes a quadratic time in
n. By Lemma2 we know thaty = +vg as soon as> 2a + 3. The factorization oNy
of N, follows from the description ofg given by the lemma.

Remark 1.For our analysis, the valu€ = LZ”*H%J is indeed the best possible value. If
we useK = [ 2"V, we obtain the bount> 2a + f(y) with f(y) = 3 — y+log,(2+
22Y). The minimum off is 3 and is attained iy = %

3 Implicit Factoring of k RSA Moduli with Shared MSBs

The construction of the lattice for 2 RSA moduli naturally generalizes to an arbitrary
numberk of moduli. Similarly, we show that a short vectes of the lattice allows
us to recover the factorization of tig’s. This vector takes advantage of the relations
aiN; —agjNi = gqgj(p; — pi) for alli, j € {1,...,k}. However, we were unable to prove
thatvg is a shortest vector of the lattice. Therefore, our method relies on the Gaussian
heuristic to estimate the conditions under whighshould be a shortest vector of the
lattice. Experimental data in secti@confirms that this heuristic is valid in nearly all
the cases.

In this section, we are giveiRSA moduli ofn bitsN; = p1Qs, ..., Nk = pkOx where
theq’s area-bit primes and they;’s are primes that all shateanost significant bits.

Let us construct a matrikl whose row vectors will form a basis of a latticethis
matrix will havek rows anck+ (';) = &;D columns. Denote by, ..., sy withm= (';)
all the subsets of cardinality 2 dfL,2,... k}. To each of thes’s, associate a column
vectorg; of sizek the following way. Leta,b be the two elements «f, with a < b. We
set thea-th element of; to Ny, theb-th element ot to —Nj,, and all other elements to
zero. Finally, one form® by concatenating column-wise the matiki¥, k, wherely,k
is the identity matrix of sizé, along with the matri>Cn, composed by then column

. 1 .
vectorscy, ..., Cm. K is chosen to be2"~t*3 |. We will call vy, ..., vk the row vectors
of M.



To make things more concrete, consider the exampe-ofl. Up to a reordering of
the columns (that changes nothing to the upcoming analysis),

KOOON, N3 Ny O 0 0
OKOO-N; O O N3 Ng O
OOKO O —N7z 0 —Np 0 Ng
000K O 0O —Nz 0 —Nz —Ngs

whereK = [2"tF2]  (9)

Notice that the columnk+ 1 tok+ mcorrespond to all the 2-subsets{df 2, 3,4}.
Similarly to the case of 2 RSA moduli (lemnid, L contains a short vector that
allows us to factorize all thb’s:

Lemma 3. Letvg be the vector of L defined lvy = Zik:1 givi- Thenvg can be rewritten
as follows:
VO = (qlKv' .. 7QKKa--~7QaQb(pb— pa)7' . )

v{ab}c{1,.. k}

Proof. For 1<i <m, leta,b be such thas; = {a,b} anda < b. By the construction of
thec’s, we get that thék -+ i)-th coordinate of/g is equal tagaNp — gpNa = gadb(pp —
Pa)- O

Remark thawg is short because it last coordinates harness the cancellation oftthe
most significant bits between the's. Retrieving+vg from L leads immediately to the
factorization of all theN;’s, dividing its firstk coordinates by.

Assumption 1. If +vq is shorter than the Gaussian heurisfig(L) ~ \/%VONL)%'
applied to the d-dimensional lattice L then it is a shortest vector of L.

This assumption is supported by experimental data in the seatiddfe found it to
be almost always true in practice. This condition can be seen as an analog of condition
1 of section2 in the case of two RSA moduli.

Let's derive a bound ohso thatvg is smaller than the Gaussian heuristic applied to
L. The norm ofvy can be computed and upper-bounded eagily||2 = K2 (3£, ¢?)

..... o
more involved, we refer to Lemm& of appendixB: Vol (L) = K (K2 + 5K, NZ) 2
k-1
and thus Vo[L) > 2"t (\/Rzn—l
We now seek the condition drfor the norm ofvg to be smaller than the Gaussian
heuristic. Using the two previous inequalities [wp|| and VolL), we get the stricter
condition:

2
k222(n+a—t)+1 < %e (znt <\/R2n71> k—l) I3

Expanding everything and extractibgve get the following condition:

=

t>

k log, (k)
a+1+ 2k T) <2+ Ii +Iogz(ne)> (10)

=~

-1



Whenk > 3, we can derive a simpler and stricter bound :an> kfkla +6

Finally, astvg is how the shortest vector &funder Assumption, it can be found
in time € (k, k('<2“),n) where % (k,s,B) is the time to find a shortest vector ofka
dimensional lattice ofZ® given by B-bit basis vectors. We just proved the following
theorem:

Theorem 2. Let Ni = p10s, - .., Nk = pxOk be k n-bit RSA moduli, with thg’s being
o-bit primes, and the ifs being primes that all share t most significant bits. Under
Assumptionl, the N's can be factored in tim&(k, k(k2+1>,n), as soon as t verifies

equation(10).

Remark 2.Note that we can find a shortest vector of the lattice of Thed?aming
Kannan’s algorithm (Theorein appendixA) in time &2 (n, k) k% +°K)) where 2
is a polynomial. It implies that we can factorize &lf,...,Nx in time polynomial in
n as soon ag is constant okX is a polynomial inn. Unfortunately, to the best of our
knowledge, this algorithm is not implemented in the computer algebra system Magma
[1] on which we implemented the methods. In our experiments, to compute a short-
est vector of the lattice, we used instead the Schnorr-Euchner’s enumeration algorithm
which is well known (see4,3]) to perform well beyond small dimensior(50) and
this step in Magma took less than 1 minute kot 40. One may also reduce the lattice
using LLL algorithm instead of Schnorr-Euchner’s enumeraiohigfnot too close to
the bound of Theorerg, the Gaussian heuristic suggests that the gap (see Definition
1 in the appendix) of the lattice is large, and thus LLL may be able to find a shortest
vector ofL even in medium dimension (50-200).

Similarly to the case of 2 RSA moduk = LZ”*”%j is optimal for our analysis.
Indeed, if we redo the analysis with = |2"'Y|, we find that the optimal value for
y is the one that minimizes the functidp = y +— 1klog,(k— 14 22/~1) —y, which is
y = 1 regardless ok.

Finally, note that a slightly tighter bound (differing to equatiihby a small addi-
tive constant) may be attained by boundjhvg|| and VolL) more precisely.

4 Implicit Factoring with Shared Bits in the Middle

In this section, we are givekRSA moduli ofn bits Ny = p1Qs, ..., Nk = pxQk Where
theq;’s area-bit primes and they’s are primes that all shatebits from positiort; to
t, =t1 +t. More precisely, these RSA moduli all verify:

Ni = pigi = (pi, 22 + p2 + piy )G

wherep is the integer part shared by all the moduli. Contrary to the LSB case presented
in [9] and the MSB one developed in the previous sections, the method we present
here is heuristic even whdn= 2. We sketch now our method wh&nr= 2 and present

the details on the general result later. Whea 2, we have a system of two equations

in four variablespy, gy, P2, d2: N1 = p1d1 = (P1,22 + p2 + py,)a andNp = pagp =



(p2,22 + p2't + pg, ) 0. Similarly to the LSB's case (sef]], this system can be reduced
modulo 22. One obtains a system of two equations with 5 variaplesi,, p,, t1, 02

(p2 + p1y)gs = Nu - mod 22 (11)
(P2 + pgy )2 = N2 mod 22

The problem can now be seen as a modular implicit factorizatidd; aind N, with
shared MSBs. Thus, we adapt the method we proposed in s@dtidhe modular case.
More precisely, we consider the latticedefined by the rows of the matrix

KO Ny
M=[0K-N; (12)
00 2

Let vp be the vecto(q:K, 2K, r) with r being the unique remainder gfN, — Ny
modulo 22 in | — 2271 22=1] Clearly,vp is in L. As in the sectior8, we search for a
condition on the integarunder whichtvg is the shortest vector inunder Assumption
1 (here, the dimension of the lattiteis 3). The integeK will be set at the end of the
analysis.

We havel|vg||? = K2(g3 +g3) +r2 and] — 2271 2271 51 = yN, — gN; mod 22
= 0102(p2, — P1,) Mod 21 with |p, — p1,| < 2 andg; < 29. Thanks to the upper-
triangular shape o, the volume ofL is easily computed: Vdl = K?22. Thus, we
can respectively upper-bound and lower-boljmgl|? and VoIL by 220+1K2 4 p21+4a
andK22%2; a condition ont so thatvg is smaller than the Gaussian heuristic follows:
22a+1K2 4 p2i+4a < 3 (K2pk)3, This condition is equivalent to

3 20+1-2t1 0 2 | odti+da -4 2re

tzE log,(2 LK 3 4+ 2317HK 3)+I092(T)
and the integer value df which minimizes the right-hand of this inequality ks=
29+4_ Hence, under Assumptidn one can factorizal;, N, in polynomial-time as soon
as

tz4a+g(1+logz(ne)) (13)

A stricter and simpler condition dnis:t > 4a + 7.

We now inspect when Assumptidnis not verified, that is we study the possible
existence of exceptional short vectord.ithat are smaller thamy. These vectors may
appear when there exists small coefficiemts, (< 29) such that;N; —coN; mod 22
is small (say=~ 2'27Y). In particular, to make easier the analysis, we examine the case
when the simple vector; defined withc; = ¢, = 1 is smaller tharvg. The inequality
[v1]|2 < ||vol|? is equivalent td — y < 2a. So this inequality is possible only for small
t and largey which can be considered as an exception. In our experiments, these excep-
tional shorts vectors (and, in particular, simple vectafsalmost never appear in the
k = 2 case witlt verifying the boundL3..

The method fok > 3 is a straightforward generalization of the- 2 case by using
the results of SectioB. Let’s consider the lattice defined by the rows of the matrio
given by



" Kk Cm
B 0 | 22lpmum
whereCy, is the matrix defined in Sectidhand formed by the concatenationrof= (';)
column vectors ok rows andy, (resp.Imxm) is the identity matrix of sizé x k (resp.
mx m). Thus,M is a square upper triangular matrix of siga+ k) x (m+k) and the

volume of them-+ k-dimensional latticé: is easily computed: Vdl = Kk2Me,
The vector

Vo= (K, ..., kK, ..., T(ap),---)
%,_/
v{ab}c{1,..k}

with r, ) defined as the unique remaindercgly, (pp — Pa) = gaNa — dbNp modulo y.2
n]— 221 22-1] is clearly a vector of.. As we do above, we search for a condition
on the integet under which+vy is the shortest vector ibh under Assumptiori. The
integerK will be set at the end of the analysis to be optimal

We have||vg||? = K2(@ + -+ q2) + Y {abyc{L,..k (ab> that we can bound by

[[Vo||? < k220K? + m22a+4@ A condition ont, under Assumptiod, follows:

k220{K2+rnz40+2tl < m+k( k2mt2)m%
21me
This condition is equivalent to
m-+k _om 2m 2% % 27e
t> - {Iogg (kzz" ALK Ak 4 2t iRk M) +log, <m+k>] (14)

The value ofK which minimizes the right-hand of this inequality is given by the zero

. . . k k
of the derivative of the functioi — k22~ mkiLK mk 4 m24d+mirtik ~mek . Actually,
K is given by the solution of the equation

2mk 2MK g 2myy  mok 2km mi3K

24(1+*Rt1 K~ mrk
m+k m+k

and thus, after simplifications = 2%+ which is an integer value. A general condition
ont becomes

m+k 2a 2mtk 2me
t> o [Iog2 ((m+ k)2 ) +log, (m—i—kﬂ

and the general result immediately follows.

Theorem 3. Let Ny = p1Qa, - - -, Nk = pk0k be k n-bit RSA moduli, where théjare a-
bit primes and the js are primes that all share t bits from the positiarntd t, =t; +t.

Under Assumptiod, the N’s can be factored in tim&”(k(kzﬂ) , k(kzﬂ) ,h), as soon as
2 k+1
t>20+ a-+ * log, (21Te)

k=1~ " 2(k—1)



As in the case ok = 2, we inspect the general case> 3 for the existence of ex-
ceptional vectors; = (1K, ..., cK,...,GN —¢jN; mod 22,...) which will disprove
Assumptiond, that is, withci’s (< 2%) andciN; — cjNj mod 22 small (say~ 2%27Y).
The condition under which the simple vector with ¢; = ¢, = --- = ¢ = 1 verify
Ivi[|? < [Ivol[* is given by

. 1.1 (k+1)220-1 1
y<a+2+zog( k=1
Thus, as in the case &f= 2, fort anda small andy large enough, this type of simple
vectors may appear. Moreover, the degree of liberty for choosing thereases with
k, thus, exceptional vectors may appear more frequently idgmows. This fact was
observed during our experiments.

)= 2a

Remark 3.During our first experiments, in few cases, our method fails to factor the
Ni's. After analysis of the random generation functions used in our code, it turns out
that theq; where randomly generated in the interyaf’*l,Z"]. Thus, the probability

that a lot ofg;’s have exactly sizer is high. If, moreoverg is small enough compared
toty (o <ty =t+1), the correspondinly; —N; mod 22 may be very small. This could

be explained by the following fact: some of the most significant bits (and at least the
highest bit) ofN; mod 22 andN; mod 22 will be a part of the shared bits between
the pi's and thus they cancel themselveg M — N;) mod 22. Hence, in this case, we
have an exceptional short vectorirand our method fails; on the other hand, if one use
these moduli then an attacker may use this extra information to easily factor them with
another method.

5 Experimental results

Table 2: Results fok = 2 and 1024-bit RSA moduli with shared MSBs

o (bit-size of thegi’s) | Bound of Theorerit > 2a + 3 | Best experimental
150 303 302
200 403 402
250 503 502
300 603 602

In order to check the validity of Assumptidhand the quality of our bounds dp
we implemented the methods on Magma 2.1)5 |

5.1 Shared MSBs

We generated many random 1024-bit RSA moduli, for various values afidt. We
observed that the results were similar for other values. df the case wherk = 2,



Table 3: Results fok = 3,10,40 and 1024-bit RSA moduli with shared MSBs

o (bit-size| Theoretical| Best experimentat | Best experimental using| Failure rate of
of theq;’s) | boundt using LLL algo. Schnorr-Euchner'algo. | Assumptionl
Results forkk = 3 (Theoretical bound of Theoretht > %a +52..)

150 231 228 228 % (= 227)
200 306 303 303 0% ¢ = 302)
250 381 378 378 0% ¢ = 377)
300 456 453 453 0% ¢ = 452)
350 531 528 528 0% { = 527)
400 606 603 603 0% ¢ = 602)
Results forkk = 10 (Theoretical bound of Theore2nt > 1—9001 +4.01..)
150 171 169 169 0% ¢ = 168)
200 227 225 225 3% { = 224)
250 282 280 280 3% = 279)
300 338 336 336 1% ¢ = 335)
350 393 391 391 2% ¢ = 390)
400 449 447 447 0% { = 446)
Results fork = 40 (Theoretical bound of Theorent > %a +3.68...)
150 158 156 155 2% { = 154)
200 209 208 207 3% { = 206)
250 261 259 258 1% ¢ = 257)
300 312 310 309 1% ¢ = 308)
350 363 362 361 0% ¢ = 360)
400 414 413 412 2% ¢ =411)

we used the Lagrange reduction to find with certainty a shortest vector of the lattice,
and for 3< k < 40 we compared Schnorr-Euchner’s algorithm (that provably outputs

a shortest vector of the lattice) with LLL (that gives an exponential approximation of a

shortest vector). We used only LLL fé&r= 80.

We conducted experiments fke= 2, 3,10,40 and 80, and for several values for
For specific values df, a andt, we said that a test was successful when the first vector
of the reduced basis of the lattice was of the farwy (that is, it satisfies Assumptidh
in the heuristic cask> 3). For eactk and eaclor, we generated 100 tests and found ex-
perimentally the best (lowest) valuetathat had 100% success rate. We compared this
experimental value to the bounds we obtained in Theorzarsd 1. For the first value
of t that does not have 100% success rate antl foB, we analyzed the rate of failures
due to Assumptior not being valid. Note that failures can be of two different kinds:
the first possibility is that|vg|| is greater than the Gaussian heuristic, and the second
one is thaf|vg|| is smaller than the Gaussian heuristic ygts not a shortest vector of
the lattice (that is, Assumptiochdoes not hold). We wrote down the percentage of the
cases where Assumptidnwas not valid among all the cases whéwg|| was smaller
than the Gaussian heuristic. These results are shown in @hled3. Let's take an ex-



Table 4:Results forkk = 5 and 1024-bit RSA moduli with shared bits in the middle
(a € {99,100}, t; = 20, theoretical bountd> 254)

Experimental | Failure rate of|vp|| < | Failure rate with Schnort-Failure rate with
t Gaussiarheuristic Euchner'salgo. LLL's algo.
261 0% 0% 0%

260 0% 1% 1%

259 0% 1% 1%

258 0% 1% 0%

257 0% 3% 2%

256 0% 6% 5%

255 0% 17% 10%

254 0% 33% 19%

253 0% 58% 28%

252 2% 90% 58%

251 96% 100% 89%

ample. Fok = 10 anda = 200 (second line of the part correspondindste 10 in table
3), Theorem?2 predicts that/g is a shortest vector of the lattice as soort &s227. It
turned out that it was always the case as sodrra225, which is better than expected.
Fort = 224, Assumptiori was not valid in 3% of the cases.
Let's analyze the results now. In the rigorous ckse2, we observe that the attack
consistently goes one bit further with 100% success rate than our bound in Thkeorem
In all our experiments concerning the heuristic cdses3, we observed that we had
100% success rate (thus, Assumptiowas always true) whehwas within the bound
(10) of Theorem2. That means that Theorethwas always true in our experiments.
Moreover, we were often able to go a few bits (up to 3) beyond the theoretical bound
ont. When the success rate was not 100% (that is, beyond our experimental bounds on
t), we found that Assumptioh was not true in a very limited number of the cases (less
than 3%). Finally, up to dimension 80, LLL was always sufficient to figpevhent was
within the bound of Theorer, and Schnorr-Euchner’s algorithm allowed us to go one
bit further than LLL in dimension 40.

5.2 Shared bits in the middle

Contrary to the case of shared MSBs, Assumptiamay fail when we apply our method
with shared bits in the middle (see Sectijn Whenk = 2 the phenomenon of excep-
tional short vectors rarely appeared whenas within the bound of Theore® (less
than 1% of failure and did not depend on the positigrmoreover, we were generally
allowed to go 2 or 3 bits further with 90% of success). When 3 it was not still
the case. When Schnorr-Euchner’s algorithm did not retgrrwe tried to find it in
a reduced basis computed by LLL. If neither of these algorithms was able tedind
then our method failed. The tablleshows the result of our experiments fo= 5 RSA
moduli of sizen = 1024 andqg;’s of sizea € {100,99} (see Remarld). As one can



see, our method can be successfully applied in this case. During these experiments, the
failure rate of our method was equal to the failure rate of findifgn a reduced basis
computed by LLL. More generally, our experiments showed that for the same size of
problems the rate of success is approximately 80% wheas within the bound of
Theorem3 and allowed us to go one or two bits further with successa&@%.

5.3 Efficiency comparisons

Additionally, we show in tablé& the lowest value of with 100% success rate and the
running-time of LLL and Schnorr-Euchner’s algorithm for several valuds ((fRSA

moduli with p;’s factors sharing MSBs). For eaclk, we show the worst running-time

we encountered when running 10 tests on an Intel Xeon E5420 at 2.5Ghz. We see that
all individual tests completed in less than 1 second fer R< 20. We used Schnorr-
Euchner’s algorithm up t& = 60 where it took at most 6200 seconds. LLL completes
under one minute for 26 k < 40 and in less than 30 minutes for 40k < 80.

Table 5:Running time of LLL and Schnorr-Euchner’s algorithm, and bound ask grows.
(Shared MSBs witlr = 300 andn = 1024)

650 T 10*

[ —

zéchnorr-Euchner -----------
600 -

LLL oo

550 -

500 -

450 -

lattice reduction time (in seconds)

400

t (number of MSBs shared among the)

350 -

300 I LS 1 1 1 I 10°
0 10 20 30 40 50 60 70 80

k (number of RSA moduli)



6 Conclusion

In this article we have studied the problem of integers factorization with implicit hints.
We have presented new lattice based methods in order to fackoriZz2 RSA moduli
N; = pigi with polynomial complexity in logN;) when p;’s share unknown MSBs or
contiguous bits in the middle. In the cdse 2 and shared MSBs, our method is the first
one to be completely rigorous. These new results can be seen as an extension of the ones
presented ing] and [15] where, respectively, May and Ritzenhofen gave same type of
results in the case where tpes share LSBs and Sarkar and Maitra presented heuristic
methods based on the Coppersmith’s algorithm for finding small roots of polynomials
for k = 2 moduli with shared MSBs (and/or LSBSs) or bits in the middle . Our method
gives comparable theoretical results as the one of May and Ritzenhofen and it is more
efficient than the Sarkar and Maitra’s method.

Whether the method can be applied for 3 Ni’'s RSA moduli with p;’s sharing
MSBs and LSBs remains an open issue. In this case, the problem has much more vari-
ables and our method can not be directly applied. One possible way to follow for attack-
ing this problem is to use algebraic techniques, in particular elimination theory, jointly
with lattice based methods. This would be an interesting focus for future research.
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A Common results on lattice

An integer latticeL is an additive subgroup d&". Equivalently, it can be defined as
the set of all integer linear combinationsindependent vectots,, ..., by of Z". The
integerd is called thedimensiorof L, andB = (b4, ...,bq) is one of itsbasesAll the
bases ot are related by a unimodular transformation. Moéume(or determinany of
L is thed-dimensional volume of the parallelepiped spanned by the vectors of a basis
of L and is equal to the square root of the determinant of the Gramian mat&ixIbf
does not depend upon the choiceBoiWe denote it by VdlL).

We state (without proofs) common results on lattices that will be used throughout
this paper. Readers interested in getting more details and proofs can ref@y. to [

Definition 1. For 1 <r <d, letA,(L) be the least real number such that there exist at
least r linearly independent vectors of L of euclidean norm smaller than or equal to
Ar(L). We callA1(L),...,Aq(L) the dminimaof L, and we call gL) = ﬁigtg > 1thegap

of L.

Lemma 4 (Hadamard). Let B= (b,...,bq) be a basis of a d-dimensional integer
lattice of Z". Then the inequality]®_, ||b;|| > Vol(L) holds.

Theorem 4 (Minkowski). Let L be a d-dimensional lattice @". Then there exists a
non zero vectov in L which verifieg|v|| < \/aVOI(L)%. An immediate consequence is
thatAy(L) < vdVol(L)3



Theorem 5 (Lagrange reduction).Let L be a 2-dimensional lattice @, given by a
basis B= (b1,b). Then one can compute a Lagrange-reduced ba'sis &3, v,) of L

in time & (nlog?(max(||b1], ||b2[))). Besides, it verifiegv|| = A1(L) and |va| =
A2(L). More information about the running time of the Lagrange reduction may be
found in [10].

Theorem 6 (Kannan's algorithm, see $,13/4]). Let L be a d-dimensional lattice of
Z" given by a basigbs,...,bq). One can compute a shortest vector of L (with norm
equal toAy(L)) in time &(2(logB,n)d%+o@)) where 2 is a polynomial and B=
max (||bj||). This is done by computing a HKZ-reduced basis of L.

Theorem 7 (LLL). LetL be a d-dimensional lattice @f" given by a basigb;, .. .,bq).
Then LLL algorithm computes a reduced bdsis . . ., vq) that approximates a shortest

vector of L within an exponential factdjv|| < 2% VoI(L)%. The running time of
Nguyen and Stehlé’s versiond&d®(d + logB) logB) where B= max (||bi||), see [.2].

In practice, LLL algorithm is known to perform much better than expected. It has been

experimentally established i][that we can expect the boutjél; || < 1.0219! VoI(L)%
on||v1]| on random lattices and that finding a shortest vector of a lattice with gap greater
than 10219 should be easy using LLL.

B Exact computation of the Volume of latticeL of section3

In this section, we compute exactly the volume of the lattickefined at the beginning

of section3. As a visual example of the construction of this lattice, the reader may take
a look at the matrix defined in equatio®) {n the case ok = 4. We use the notations of
section3.

Lemma 5. Let L be the lattice whose construction is described at the beginning of
k=1
section3. Then its volume is equal ¥l (L) = K (K2 + 3K N?) 7.

Proof. Let G be the Gramian matrix (of sizex k) of L. Its diagonal terms arg;, v;) =

K2+ 3K ;N2 and its other terms arév;,v;) = —NN;. Observe that we can rewri@
Ui

as followsG = (K2 + 51 1 N?) lkxk +J wherely. is the identity matrix of sizé and J

is thek x k matrix with terms—N;N;. If we let x; be the characteristic polynomial of

andAg = K2+ 5K | N2, we observe that déB) = x3(—Ao).

All the columns ofJ are multiples of(Ny,Na,...,Nk)!. The rank ofJ is thus 1.
The matrixJ has therefore the eigenvalue 0 with multiplicky- 1. The last eigen-
value is computed using its trace:(Jy = — ¥ ; N2. Therefore, up to a siggy(X) =
XK1 (X + 3K 1 N?). We conclude that déB) = x5 (—K?— ¥, N?), hence ddiG) =

— k-1
K2 (K24 5K ;N2) " and VolL) = /det(G) = K (K2+ 5K | N?) 2
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