
Algebraic Cryptanalysis of the PKC’2009 Algebraic Surface
Cryptosystem

Jean-Charles Faugère and Pierre-Jean Spaenlehauer

UPMC, Université Paris 06, LIP6
INRIA Centre Paris-Rocquencourt, SALSA Project

CNRS, UMR 7606, LIP6
Boı̂te courrier 169 – 4, place Jussieu, 75252 Paris Cedex 05, France

Jean-Charles.Faugere@inria.fr, Pierre-Jean.Spaenlehauer@lip6.fr

Abstract. In this paper, we fully break the Algebraic Surface Cryptosystem (ASC for short)
proposed at PKC’2009 [3]. This system is based on an unusual problem in multivari-
ate cryptography: the Section Finding Problem. Given an algebraic surface X(x,y, t) ∈
Fp[x,y, t] such that degxyX(x,y, t) = w, the question is to find a pair of polynomials of
degree d, ux(t) and uy(t), such that X(ux(t),uy(t), t) = 0. In ASC, the public key is the
surface, and the secret key is the section. This asymmetric encryption scheme enjoys rea-
sonable sizes of the keys: for recommended parameters, the size of the secret key is only
102bits and the size of the public key is 500bits. In this paper, we propose a message
recovery attack whose complexity is quasi-linear in the size of the secret key. The main
idea of this algebraic attack is to decompose ideals deduced from the ciphertext in order
to avoid to solve the section finding problem. Experimental results show that we can break
the cipher for recommended parameters (the security level is 2102) in 0.05seconds. Fur-
thermore, the attack still applies even when the secret key is very large (more than 10000
bits). The complexity of the attack is Õ(w7d log(p)) which is polynomial with respect to
all security parameters. In particular, it is quasi-linear in the size of the secret key which is
(2d+ 2) log(p). This result is rather surprising since the algebraic attack is often more
efficient than the legal decryption algorithm.

Keywords: Multivariate Cryptography, Algebraic Cryptanalysis, Section Finding Problem
(SFP), Gröbner bases, Decomposition of ideals.

1 Introduction

In 1994, Shor designed a quantum algorithm to compute efficiently discrete logarithm and fac-
torization [16]. Hence, if one could construct a quantum computer, a huge number of well es-
tablished public key cryptosystems – for instance, RSA or Elliptic Curve based systems – would
be seriously threatened. Therefore, cryptographers are continuously searching for post-quantum
alternatives. The first step to design new cryptosystems is to identify hard problems to use as
trapdoors. So far, most of the problems used in post-quantum cryptology can be classified into
three main categories: Multivariate cryptography, Code-based cryptography and Lattice-based
cryptography.

In this context, Akiyama, Goto, and Miyake propose a new multivariate public-key algorithm at
PKC’2009: the Algebraic Surface Cryptosystem (ASC for short) [3]. Interestingly, its security is

based on a difficult problem which is not common:
Section Finding Problem (SFP). Given an algebraic surface defined by the polynomial X(x,y, t)∈
Fp[x,y, t] (where Fp denotes the finite field of cardinality p), the question is to find two polyno-
mials ux(t),uy(t) ∈ Fp[t] of degree d, such that X(ux(t),uy(t), t) = 0.

As stated in [3], this problem is computationally hard: the only algorithm known so far induces to
find roots of a huge multivariate polynomial system. Hence the idea of ASC is to use the surface
as public key and the knowledge of a section of this surface as the trapdoor. In comparison to
HFE [15] or other multivariate systems, ASC has some interesting and unusual properties. In
particular, the keys are unexpectedly short. The security of multivariate systems is usually related
to the difficulty of finding a zero of a system of low degree polynomials (often quadratic) in a huge
number of variables. For instance, in the case of HFE, the size of the public key is precisely the
size of the multivariate system: 265680bits for a security of 280. In contrast with HFE, ASC
enjoys a small public key of 500bits for a security of 2102. More generally, for a security level
of 2d, the size of the public key of HFE is O(d3). In comparison, the public key of ASC is a
unique high degree polynomial in only three variables: its size is O(d) bits for a security of 2d.
Actually, the authors explains that the keys of ASC are among the shortest of known post-quantum
cryptosystems. More precisely, let w denote the degree of the public surface X in x and y. For a
security level of p2d, the size of the secret key is 2d log(p) bits and the size of the public key is
about wdlog(p). The main observation is that the sizes of the keys are linear in d log(p), which
is the logarithm of the security level.

Although a completely different version of ASC [2] has been attacked by Ivanov and Voloch [11], by
Uchiyama and Tokunaga [17] and by Iwami [12], the new version of ASC, presented at PKC’2009,
is resistant to all known attacks. We would like to mention that the decryption algorithm raises
some questions. Indeed, one step of this algorithm is to recover some factors of given degree D
of a univariate polynomial. In order to find those factors, the designers propose to recombine the
irreducible factors of the polynomial by solving a knapsack. However, this problem is known to
be NP-hard [10]. Therefore, it is not clear if the cryptosystem remains practical for high security
parameters.

Main results. In this paper, we describe a message recovery attack which can break ASC in
polynomial time. One important step of the legal decryption algorithm is the factorization of a
univariate polynomial. The key idea of the algebraic attack is to perform this factorization step
implicitly by decomposing ideals deduced from the ciphertext. Indeed, decomposition of ideals
can be seen as a generalisation of the standard factorization of polynomials. Hence, this technique
allows us to bypass the Section Finding Problem, which is hard.

We present three versions of this attack. The Level 1 Attack is high-level, deterministic, offers a
good view of the mechanisms involved and can be implemented straightforwardly into a Computer
Algebra System such as MAGMA (code given in Appendix B). However, this version is not very
efficient and cannot break ASC for the recommended parameters. The Level 2 Attack is based on
the following observation: the polynomials occurring in ASC have a high degree in t and a rather
low degree in x and y. Thus, it is natural to see expressions in t as coefficients instead of polyno-
mials in t; in other words, in order to speed up the attack, we have to perform the computations
in the ring Fp(t)[x,y] (where Fp(t) is the field of fractions) instead of Fp[x,y, t]. In the Level 3
Attack, we replace the ground field Fp(t) by a finite field FpD ≈ Fp[t]/(P(t)) for a large enough

D to avoid the swelling of the intermediate coefficients and to recover the initial message modulo
P(t). Even more efficiently, we can split P(t) into several irreducible factors Pi(t) of small de-
gree; the Chinese Remainder Theorem is then used to recombine the congruences and retrieve
the original message. In this third version of the attack, the size of the plaintext determines the
number of congruences required as well as the size of the finite fields considered. Therefore, the
complexity of the Level 3 Attack is expected to be quasi-linear in the size of the secret key. This
behaviour is confirmed by experimental results together with a complexity analysis. The binary
complexity1 of the Level 3 Attack is (Theorem 1):

Õ(w6size(m))

where size(m) denotes the binary size of the plaintext, w is the degree of X in the variables xand
y and Õ() is the “soft Oh” notation (see e.g. [18, Definition 25.8]). Since the size of the secret key
is smaller than size(m), the attack is also quasi-linear in the size of the secret key. In practice,
size(m) ≈ dwlog(p) (where d is the degree of the secret section). Thus the complexity of the
attack is

Õ(w7d log(p)).

This can be compared with a lower bound on the binary complexity (see page 13) of the decryption
algorithm:

Õ(log(p)(w3d3 +dwlog(p))).

It can be noted that the decryption algorithm is cubic in the size of the secret key. Therefore,
increasing the size of the secret key does not secure the system, since the cost of the decryption
algorithm increases faster than the cost of the attack.

We implemented in MAGMA 2.15-7 the three variants. The Level 3 Attack can break ASC with
parameters recommended in [3] (d = 50, p = 2, w = 5) in only 0.05 seconds. Experiments
confirm that increasing the size of the secret key with the parameters p and d does not really
increase the security of the system. We are still able to break it in few seconds, even when the
size of the secret key is more than 10000bits! We also try to increase the parameter w (the degree
in x and y of the public surface). For a reasonable size of the public key (less than 4000bits),
the message can be recovered in few hours. Finally, we try to figure out whether it is possible to
secure the system by increasing the size of the support of the surface (the parameter k). However,
as predicted by the complexity analysis, this parameter has very few effect on the complexity of
the attack. Thereby, we can consider the system as fully broken.

Structure of the paper.
After this introduction, the paper is organized as follows. In Section 2, we give a short description of
the ASC cryptosystem as it is presented in [3]. Then, we explain the theoretical foundations of the
attack. In Section 3, we describe the three variants of the attack and we show a concrete example
by applying it to the toy example given in [3]. We also perform a precise complexity analysis in
Section 5. Finally, we give some experimental results showing that the attack is scalable.

1 The binary complexity is the number of arithmetic operations on bits, whereas the arithmetic complexity
is the number of arithmetic operations in the base ring.

2 Description of the cryptosystem

We give here a short description of ASC. For a more detailed presentation of this cryptosystem,
we refer the reader to [3]. We consider the ring of polynomials Fp[x,y, t] where p is a prime
number. For any polynomial P∈ Fp[x,y, t], ΛP denotes its support in Fp(t)[x,y] (that is to say
the set of couples (i, j) ∈ N2 such that t`xiyj is a monomial of P).

2.1 Parameters

The cryptosystem ASC has four parameters: p is the cardinality of the ground field, and d is the
degree of the secret section. These two parameters are especially important for the security. They
have a direct impact on the binary size of the secret key, which is 2d logp. Another parameter
is w the degree in x and y of the public surface X. The last parameter is k, the cardinality of ΛX

(which is the support of X in Fp(t)[x,y]). The parameters w, d and p have an impact on the size
of the public key which is approximatively dwlog(p) bits.

2.2 Keys

The secret key is a pair of polynomials (ux(t),uy(t)) of degree d.
The public key is given by:

– A surface described by an irreducible polynomial X(x,y, t)∈Fp[x,y, t] such that X(ux(t),uy(t), t)=
0 and card(ΛX) = k.

– Λm the support of the plaintext polynomial and {d(m)
i j ∈ N}(i, j)∈Λm the degrees of the co-

efficients.
– Λ f the support of the divisor polynomial and {d(f)

i j ∈ N}(i, j)∈Λ f
the degrees of the coeffi-

cients.

For encryption/decryption it is required that:

Λm ⊂ Λ f ΛX = {(i1 + i2, j1 + j2) : (i1, j1) ∈ Λ f ,(i2, j2) ∈ ΛX}.
max{i : (i, j) ∈ ΛX} < max{i : (i, j) ∈ Λm} < max{i : (i, j) ∈ Λ f }.
max{ j : (i, j) ∈ ΛX} < max{ j : (i, j) ∈ Λm} < max{ j : (i, j) ∈ Λ f }.

degt(X(x,y, t)) < max{d(m)
i j }(i, j)∈Λm < max{d(f)

i j }(i, j)∈Λ f
.

2.3 Encryption/Decryption

Encryption. Consider a plaintext embedded into a polynomial

m(x,y, t) = ∑
(i, j)∈Λm

mi j (t)x
iyj

where deg(mi j (t)) = d(m)
i j . Choose a random divisor polynomial

f (x,y, t) = ∑
(i, j)∈Λ f

fi j (t)x
iyj

where deg(fi j (t)) = d(f)
i j . Then select four random polynomials r0, r1,s0,s1 such that, for ` ∈

{0,1},

r`(x,y, t) = ∑
(i, j)∈Λ f

r(`)
i j (t)xiyj , s̀ (x,y, t) = ∑

(i, j)∈ΛX

s(`)
i j (t)xiyj

and∀i, j,deg(r(`)
i j (t)) = deg(fi j (t)),deg(s(`)

i j (t)) = deg(Xi j (t)). Finally, construct the cipher-
text (F0(x,y, t),F1(x,y, t)) where

F0(x,y, t) = m(x,y, t)+ f (x,y, t)s0(x,y, t)+X(x,y, t)r0(x,y, t),
F1(x,y, t) = m(x,y, t)+ f (x,y, t)s1(x,y, t)+X(x,y, t)r1(x,y, t).

Decryption. Consider h`(t)= F̀ (ux(t),uy(t), t), `∈{0,1} and compute the difference h0(t)−
h1(t)= f (ux(t),uy(t), t)(s0(ux(t),uy(t), t)−s1(ux(t),uy(t), t)). Next, find a factor of h0(t)−
h1(t) whose degree matches deg(f (ux(t),uy(t), t)). Let f̃ (t) denote this factor. Then compute
m̃(ux(t),uy(t), t) = h0(t) mod f̃ (t). Finally, retrieve m̃(x,y, t) by solving the linear system:

m̃(ux(t),uy(t), t) = ∑m̃i jkux(t)
iuy(t)

j tk.

There are potentially several factors of h0(t)−h1(t) whose degree is equal to deg(f (ux(t),uy(t), t)).
So, we have to verify that we picked the good one. To do so, the designers of ASC propose to use
a MAC to verify that m̃(x,y, t) = m(x,y, t). If the verification fails, we start again by considering
another factor of h0(t)−h1(t).
To find factors of h0(t)−h1(t) whose degree matches deg(f (ux(t),uy(t), t)), the designers
propose to factor h0(t)− h1(t), then recombine its irreducible factors by solving a knapsack
problem. However, the knapsack problem is NP-hard [10]. Therefore, as pointed out in [3], it is
not clear if the decryption algorithm remains practicable when the security parameters are high.

2.4 Security of the system

The designers of the cryptosystem propose the following parameters:

– p = 2.
– d should be greater than 50.
– w = degxy(X) = max{i + j : (i, j) ∈ ΛX} should be greater than 5.
– The lower bound on k is 3.

The size of the secret key is around 100bits and the size of the public key is close to 500bits.
According to the designers of ASC, there is so far no known attack faster than exhaustive search
for these parameters. Therefore, the security level of ASC is expected to be the cost of exhaustive
search of the secret key, namely p2d+2.

3 Description of the attack

Overview of the attack.
In this section, we propose a message recovery attack on the cryptosystem described above.

The main point of the attack is to decompose ideals, instead of factoring the univariate polynomial
obtained by evaluating F0−F1 in the section (ux,uy). This way, we can implicitly manipulate the
so-called divisor polynomial f occurring in the decryption process. Consequently, we can avoid
to solve the underlying Section Finding Problem, and we obtain a polynomial attack on ASC.
First, we present a high-level and deterministic version of the attack (Algorithm 1) based on two
fundamental lemmas. Then, we speed-up the algorithm by considering the field of fractions Fp(t)
(Algorithm 2). Indeed, polynomials occurring in ASC have a high degree in t. Since the complexity
of Gröbner bases algorithms is linear in the complexity of the arithmetic in the ground field, it
seems natural to compute in the field of fractions Fp(t). Finally, we use a modular approach
to implement efficiently the attack: we perform computations in some well-chosen finite fields
Fp[t]/(P) and recombine the results by using the Chinese Remainder Theorem (Algorithm 3).
Doing this, the size of the coefficients of intermediate values are bounded (these coefficients can
be huge when computations are performed in the field of fractions). This allows us to break bigger
instances of ASC. In particular, we are able to break the system with recommended parameters
in 0.05 seconds. Furthermore, this will allow us to perform a precise complexity analysis and to
show that this attack is quasi-linear in the size of the secret key. Experimentally, we are able to
break with this technique some instances where the size of the secret key is greater than 10000
bits.

Now we compare the efficiency of the three versions of the attack on a small example. For in-
stance, we consider the following parameters p = 11, d = 8, w = 5 and k = 3 and we use
our MAGMA implementation. The Level 1 Attack (code given in Appendix) recover the plaintext in
136seconds. As predicted, the Level 2 Attack is faster and can break the system in 74seconds.
Using the modular approach in the Level 3 Attack really speeds up the computations: it retrieves
the plaintext in 0.06seconds.

3.1 Level 1 Attack: decomposition of ideals.

The two following lemmas are the key elements of the attack.

Lemma 1. Let I be the ideal I = 〈F0−F1,X〉 ⊂ Fp[x,y, t]. Then I = I1∩ I2 where I1 = 〈 f ,X〉
and I2 = 〈s0−s1,X〉. Generically, the ideals I1 and I2 are prime ideals of Fp[x,y, t].

Proof. I = 〈F0−F1,X〉 = 〈 f (s0−s1),X〉 = I1∩ I2.

Lemma 1 shows that, once we managed to decompose the ideal 〈F0−F1,X〉= 〈 f (s0−s1),X〉,
we can manipulate implicitly the polynomial f through I1.

Remark 1. In order to decompose I , a strategy is to eliminate x from I by computing a Gröbner
basis of I ∩Fp[y, t]. Generically, this Gröbner basis contains only one polynomial Q. If p is big
enough, Q has in general two factors which depend on y and t (we do not consider the factors
which are inFp[t]). This fact is confirmed experimentally. The two factors correspond to I1 and I2.
Then, we can construct I1 (resp. I2) by adding to I an appropriate factor of Q. Since degy(f) >
degy(s1− s0), the factor of Q with the highest degree in y is the one corresponding to I1. To
factor efficiently the bivariate polynomial Q, we can use for instance the algorithm in [14].

Lemma 2. Let J be the ideal of Fp[x,y, t] generated by J = 〈F0,F1,X〉+ I1. Then m(x,y, t) ∈
J. Moreover, J is a zero-dimensional ideal.

Proof. J = 〈F0,F1,X〉+ I1 = 〈F0,F1,X, f 〉 = 〈m, f ,X〉.

Remark 2. Lemma 2 shows that we can compute explicitly a multivariate ideal which contains
m. Since we know Λm, we can recover mby solving the following linear system:

NFJ(m) = ∑
(i, j)∈Λm

d(m)
i j

∑
k=0

mi jkNFJ(x
iyjtk) = 0

where NFJ denotes the normal form with respect to the ideal J for a chosen monomial ordering
(the definition of the normal form is given in Appendix). Since λm∈ J for all λ ∈ Fp, we retrieve
mup to multiplication by a scalar.

Algorithm 1 Level 1 Attack.
1: Compute a Gröbner basis of the ideal 〈F0−F1,X〉∩Fp[y, t]. Generically this Gröbner basis contains

only one polynomial Q(y, t).
2: Factor Q = ∏Qi(y, t). Let Q0(y, t) ∈ Fp[y, t] denote an irreducible factor with highest degree with

respect to y.
3: Compute a Gröbner basis of the ideal J = 〈F0,F1,X,Q0〉.
4: To retrieve the plaintext (up to multiplication by a scalar in Fp), solve the linear system over Fp

∑
(i, j)∈Λm

d(m)
i j

∑
k=0

mi jkNFJ(x
iyj tk) = 0.

If the system has no solution, go back to Step 2 and pick another factor of Q.

Remark 3. For efficiency purpose, we compute the Gröbner bases with respect to the graded
reverse lexicographical ordering (Definition 1 in appendix). Instead of computing the Gröbner
basis of 〈F0−F1,X〉∩Fp[y, t], it is also possible to compute a resultant to eliminate the variable
x.

Remark 4. The normal form NFJ is a linear application from Fp[x,y, t] onto Fp[x,y, t]/J. In
the last step of the attack, we are searching for the intersection of its kernel with the Fp-linear
subspace generated by Γm (where Γm denotes the support of m in Fp[x,y, t]). Therefore, the lin-
ear system has card(Γm) unknowns and deg(J) equations (deg(J) = dim(Fp[x,y, t]/J) when
Fp[x,y, t]/J is seen as aFp-vector space). From the Bézout bound [13], deg(J)≈ deg(m)deg(X)deg(f).
The decryption algorithm requires that deg(m(ux,uy, t)) ≥ card(Γm) (in order to solve the final
linear system) and one can remark that deg(X)deg(f) > deg(m(ux,uy, t)) ≈ ddegxy(m)+
degt(m) (since degxy(f) > degxy(m),degt(f) > degt(m) and deg(X) > d). Therefore, the
linear system has more equations than unknowns: card(Γm)≤ deg(m(ux,uy, t))≤ deg(X)deg(f)≤
deg(J).

3.2 Level 2 Attack: computing in the field of fractions Fp(t)

Polynomials appearing in ASC have a high total degree, but their degree in the variables x and
y is low. Hence, it is natural to consider these polynomials as bivariate polynomials in x and y
over the field of fractions Fp(t). Indeed, the degree in x and y are completely independent of the
security parameter d. In this section, we explain how to adapt the attack in this context. Doing
that, we expect to have a lower complexity. Indeed, many operations on ideals – for instance
Gröbner basis computations – are linear in the complexity of the arithmetic in the ground field.
From now on,K denotes the field of fractions Fp(t).

First, we need to transpose the key lemmas in this new context. This can be done for Lemma 1
without any major modification:

Lemma 3. Let I be the ideal I = 〈F0−F1,X〉 (seen as an ideal of K[x,y]). Then there exists
I1 and I2 two strict ideals ofK[x,y] such that I = I1∩ I2 and 〈 f ,X〉 ⊂ I1.

Unfortunately, Lemma 2 cannot be directly transposed in the context of the field of fractions.
Indeed, the variety of the ideal J = 〈F0,F1,X〉+ I1 = 〈m, f ,X〉 (seen as an ideal of K[x,y])
is generically empty since it is generated by three independent equations. Therefore we have to
introduce a new variable z if we want to keep the ideal zero-dimensional and strictly included in
K[x,y,z]. Roughly speaking, the role of z is to deform the ideal 〈m, f ,X〉 in order to introduce
new elements in the variety:

Lemma 4. Let J⊂K[x,y,z] be the ideal J = 〈F0 +z,F1 +z,X〉+ I1. Then m(x,y, t)+z∈ J.
Moreover, J is a zero-dimensional ideal.

Proof. 〈F0 +z,F1 +z,X〉+ I1 = 〈F0 +z,F1 +z,X, f 〉 = 〈m+z, f ,X〉 .

Algorithm 2 Level 2 Attack: computing in the field of fractions K= Fp(t).

1: Compute the resultant Resx(F0−F1,X) ∈K[y].
2: Factor the resultant Resx(F0−F1,X) = ∏Qi(y). Let Q0(y) ∈ K[y] denote an irreducible factor of

highest degree in y.
3: Compute a grevlex-Gröbner basis of the ideal J = 〈F0 +z,F1 +z,X,Q0〉 ⊂K[x,y,z].
4: Consider the following linear system over K:

NFJ(z)+ ∑
(i, j)∈Λm

mi j (t)NFJ(x
iyj) = 0.

If the system has no solution, then go back to Step 2 and choose another factor of the resultant.
5: Return m= ∑(i, j)∈Λm

mi j (t)xiyj where (mi j (t)) is the unique solution of the linear system.

To be able to recover the plaintext, we need to solve a linear system with card(Λm) unknowns
and deg(J) equations. In practice, there are more equations than unknowns. Thus, if we choose
a wrong factor of the resultant (a factor which is not a divisor of f), then the linear system has
generically no solution, and we just have to restart from Step 2 until we find an appropriate factor.
In practice, the irreducible factor of the resultant with the highest degree in y is almost always a
good choice.

Remark 5. It is also possible to combine the two versions of the attack by computing a Gröbner
basis of the elimination ideal and factoring it in Fp[x,y, t], as in Level 1 attack (Steps 1 and 2
in Algorithm 1). Then, once we found Q0 ∈ Fp[x,y, t], we retrieve the message by computing a
Gröbner Basis of J = 〈F0 +z,F1 +z,X,Q0〉 ⊂ K[x,y,z] in the field of fractions (Steps 3,4,5
in Algorithm 2).

3.3 Level 3 Attack: computing in finite fields Fpm

In this section, we study how to implement efficiently the attack in practice. In order to speed
up the attack and to compute efficiently in the field of fractions, we perform all computations
modulo polynomials of Fp[t]. Indeed, a bound on the degree of m with respect to t is known

since degt(m) ≤ max{d(m)
i, j }.

We choose a constant C and n = degt(m) log(p)/C irreducible polynomials P1, . . . ,Pn of de-
gree close to C/ log(p) such that ∑deg(Pi) > degt(m). Then for each Pi , we consider

Fp[t]/(Pi) = Fpdeg(Pi) .

Considering all computations inK= Fp[t]/(Pi) instead of Fp(t), the attack yields m modPi .
Finally we use the Chinese Remainder Theorem (CRT) to recover m mod ∏Pi . Since deg(∏Pi) >
degt(m), we retrieve the plaintext.

Algorithm 3 Level 3 Attack: computing in the finite fieldsK= Fp[t]/(P).

1: Choose n ≈ degt(m) log(p)/C irreducible polynomials of degree ≈ C/ log(p) such that
∑deg(Pi) > degt(m).

2: for i from 1 to n do
3: ConsiderK= Fp[t]/(Pi).
4: Compute the resultant Resx(F0−F1,X) ∈K[y].
5: Factor the resultant Resx(F0−F1,X) = ∏Qi(y). Let Q0(y) ∈K[y] denote an irreducible factor

of highest degree in y.
6: Compute a grevlex-Gröbner basis of the ideal J = 〈F0 +z,F1 +z,X,Q0〉 ⊂K[x,y,z].
7: Consider the following linear system over K:

NFJ(z)+ ∑
(i, j)∈Λm

mi j (t)NFJ(x
iyj) = 0.

If the system has no solution, then go back to Step 2 and choose another factor of the resultant.
8: Retrieve a congruence m modPi = ∑(i, j)∈Λm

mi j (t)xiyj where (mi j (t)) is the solution of the
linear system.

9: end for
10: Use the CRT to retrieve m= m mod ∏Pi .

Remark 6. The linear system at step 7 in Algorithm 3 has only card(Λm) unknowns and deg(J)≈
degxy(m)degxy(f)degxy(X) equations. For practical parameters, card(Λm) ≈ k is smaller
than deg(J), thus the linear system is overdetermined and has in general only one solution.
This fact is confirmed by experiments.

The value ∑deg(Pi) ≈ degt(m) is only dependent of the size of the plaintext. Therefore, the
number of times we have to run the main loop of Algorithm 3 is linear in the size of the plaintext.
Since the cost of arithmetic operations in Fp[t]/(P) only depends on C (which is a constant
chosen by the attacker), we expect this Level 3 Attack to be linear or quasi-linear in the size of
the plaintext. This expectation will be confirmed by a complexity analysis and by experimental
results. Besides, we would also like to mention that the main loop of Algorithm 3 can be easily
parallelized.

4 A concrete example

We consider here the toy example given in [3]. We have

– p = 17.
– The secret key is (ux,uy) = (14t3 +12t2 +5t +1,11t3 +3t2 +5t +4).
– The public surface is

X = (t +10)x3y2+(16t2+7t +4)xy2+(3t16+8t15+13t14+8t13+3t12+12t11+
4t10+8t9 +7t8 +4t7 +13t6 +2t5 +5t4 +4t3 +14t2 +9t +14).

– The support of mand f are

Λm = {(4,4),(0,0)},dm
00 = 17,dm

44 = 17,
Λ f = {(5,5),(1,2),(0,0)},df

00 = 13,df
12 = 11,df

55 = 18.

Here we show how to recover the message m from the ciphertext (F0,F1) (given in [3]) with the
Level 3 Attack:

1. Since degt(m) = 17, we choose (for instance) P1,P2,P3,P4 ∈ Fp[t] irreducible such that
∑deg(Pi) = 18. In particular,

P1 = t5 + t +14,
P2 = t5 +14t4 +4t3 +4t +4,

P3 = t5 +9t4 +15t3 +8t2 +4t +8,
P4 = t5 +11t4 +11t3 +8t2 +7t +8.

First, we consider the finite field K= Fp[t]/(P1).
2. Compute the resultant inK[y]:

Resx(F0−F1,X) = (9t4+14t3+4t2+6t +13)y30+(5t4+t3+14t2+15t +8)y27+
(6t4 +9t3 +10t2 +7t +14)y26+(7t4 +4t3 +8t2 +5t +8)y25+(8t4 +4t3 +7t2 +
7t + 6)y24 + (12t4 + 9t3 + 8t2 + 13t)y23 + (9t4 + 4t3 + 9t2 + 15t + 6)y22 + (3t4 +
6t3 +10t2 +6t +6)y21+(9t4 +9t3 +13t2 +15t +6)y20+(4t4 +4t3 +15t2)y19+
(2t4 +11t3 +2t2 +5t +2)y16.

3. Then factor it inK[y]:
Resx(F0−F1,X) = y16(y+8t4 +3t3 +16t2 +8t +2)(y2 +2t4 +14t3 +14t2 +6t +
10)(y2 + 15t4 + 3t3 + 3t2 + 11t + 7)(y2 +(14t4 + 7t3 + 4t)y+ 13t4 + 10t3 + 7t2 +
8t + 1)(y7 +(12t4 + 7t3 + t2 + 5t + 15)y6 +(t4 + 5t3 + 7t2 + 12t + 11)y5 +(9t4 +
14t3 +5t2 +10t +10)y4 +(4t4 +7t3 + t2 +7t +14)y3 +(11t4 +13t3 +12t2 +8t +
4)y2 +(15t4 +9t3 +16t2 +14t +14)y+14t4 +3t3 +9t2 +15t +8).

4. Consider Q0 an irreducible factor with highest degree:
Q0 = y7 + (12t4 + 7t3 + t2 + 5t + 15)y6 + (t4 + 5t3 + 7t2 + 12t + 11)y5 + (9t4 +
14t3 +5t2 +10t +10)y4 +(4t4 +7t3 + t2 +7t +14)y3 +(11t4 +13t3 +12t2 +8t +
4)y2 +(15t4 +9t3 +16t2 +14t +14)y+(14t4 +3t3 +9t2 +15t +8).

5. Compute a Gröbner basis Gwith respect to the grevlex ordering of the ideal J = 〈F0 +z,F1 +z,X,Q0〉⊂
K[x,y,z].

6. Since Λm = {(0,0),(4,4)} compute NFJ(x4y4):
NFJ(x4y4) = N1z+N2 = (15t4 +3t3 + t2 +13t +16)z+(5t4 +11t2 + t +7).

7. Solve the linear system z+m44NFJ(x4y4)+m00 = 0 overK:

{
m00 = N2/N1 modP1

m44 = −1/N1 modP1.

8. Recover a congruence: m= m00+m44x4y4 modP1.

9. Repeat the process with P2, P3 and P4.
10. Use the CRT to retrieve m= m mod ∏Pi :

m = (5t17 + 15t16 + 4t15 + 9t14 + 7t13 + 2t12 + 3t11 + 8t10 + 11t9 + 6t17 + 6t8 +
3t16+10t7+11t15+7t6+ t5+ t13+14t4+10t12+3t3+3t11+12t2+8t10+11t +
6t9 +2)x4y4 +(13t8 +2t7 +2t6 +10t5 +5t4 +2t3 +15t2 +3t +11).

5 Complexity analysis

In this part, we investigate the complexity of the Level 3 Attack. To simplify the notations, we sup-
pose here that the complexity of multiplying two n×n matrices is O(n3). We note that C is a
parameter chosen by the attacker. This parameter fixes the size of the finite fields considered. In-
deed, we choose finite fieldsK= Fp/(Pi) with deg(Pi)≈C/ log(p). Hence, log(card(K))≈
C.

1. First, we estimate the complexity of the computation of the resultant with respect to x in
K[x,y] (where K = Fp[t]/(Pi)). According to [18] (Corollary 11.18), this can be done in
Õ(w3) operations inK, and the degree of the resultant is O(w2).

2. The probabilistic Cantor-Zassenhaus algorithm [18] factors a polynomial of degree n over
a finite field Fq in Õ(n2 + nlog(q)) arithmetic operations in Fq. Therefore the arithmetic
complexity inK of the factorization of the resultant is

Õ(w4 +w2 log(card(K))) = Õ(w4 +w2C).

3. The degree of regularity of an ideal is an important indicator of the complexity of computing its
Gröbner basis with respect to the grevlex ordering: it is the highest degree of the polynomials
occuring in the F5 Algorithm. According to [13, 5, 4], if an ideal is spanned by m generic
equations in n variables, then the complexity of computing a Gröbner basis is:

O

(

m3
(

dreg +n−1
n−1

)3
)

.

Since the ideal J = 〈m+z, f ,X〉 is generated by three independent equations, its degree
of regularity can be estimated from the Macaulay bound (see [13]) as

dreg(J) = (degxy(m+z)−1)+(degxy(f)−1)+(deg(X)xy−1)+1.

For practical parameters, degxy(m+z) ≈ degxy(f) ≈ deg(X)xy ≈ w. Therefore, dreg ≈
3w. The arithmetic complexity inK of the Gröbner basis computation is then:

O

(

33
(

dreg(J)+2
2

)3
)

= O(w6).

4. Finally we have a linear system to solve. The number of variables is card(Λm). For practical
parameters, card(Λm)≈ k, which is less than 1000(the recommended parameter is k= 3).
Hence, this step is negligible in practice compared to the Gröbner basis computation, since
an overdetermined linear system with less than 1000variables in a finite field can be easily
solved. Furthermore, this step is analog to the linear system which is solved in the legal
decryption algorithm. Therefore this step of the attack is faster than the decryption algorithm
which has to be efficient for practical parameters.

The cost of an arithmetic operation in K is quasi-linear in log(card(K)) ≈ C. The number of
times we have to run the main loop of the attack is size(m)/C. The complexity of the CRT is
Õ(size(m) log(size(m))) [18]. Putting all the steps together, we find the total complexity of the
attack:

Theorem 1. The total binary complexity of the Level 3 Attack is

Õ(size(m)w3) + Õ(size(m)(w4 +w2C)) + Õ(size(m)w6) + Õ(size(m)).
resultant factorization Gröbner CRT

Hence, the total binary asymptotic complexity of the attack is upper bounded by

Õ(w6size(m)).

Corollary 1. If we assume that size(m) ≈ wdlog(p) (which is the case in practice), then the
binary complexity of the attack is: Õ(dw7 log(p)).

Consequently, the attack is polynomial in all the security parameters and it is quasi-linear in the
size of the secret key which is 2d log(p). It can be noted that the parameter k has few effect on
the complexity of the attack.

A lower bound on the complexity of the decryption algorithm.
The complexity of this attack has to be compared with a lower bound on the cost of the decryption
process. During the decryption algorithm, one has to factor (F0−F1)(ux(t),uy(t), t) over Fp[t].
The degree of this polynomial is at least dw. To the best of our knowledge, the best probabilistic
factorization algorithms have an arithmetic complexity of Õ(d2w2+dwlog(p)) [18]. Moreover,
there is also a knapsack to solve after the factorization. The complexity of this step is difficult to
estimate so we do not consider it here (remember that we try to establish a lower bound). The

last step of the decryption process is the resolution of a linear system with O(dw) variables: the
arithmetic complexity of this step is O(w3d3). Finally, the total binary complexity of the decryption
algorithm is unsharply lower bounded by Õ(log(p)(w3d3 +dwlog(p))) which is cubic in the
parameters d and w, and quadratic in log(p). In comparison, the attack is quasi-linear in d and
log(p), and polynomial of degree 7 in w.

6 Experimental results

Workstation. The experimental results have been obtained with a Xeon bi-processor 3.2 GHz,
with 64 GB of RAM. The instances of ASC have been generated with MAGMA2.15-7. To compute
the Gröbner basis, we use the F4 [7] implementation in MAGMA.

To generate our instances, we pick `,d ∈ N and we consider the following parameters:

– w = 2`+5.
– Λm = {(4+ `,4+ `),(0,0)}.
– ΛX = {(3+ `,2+ `),(1+ `,2+ `),(0,0)}.
– Λ f = {(5+ `,5+ `),(1+ `,2+ `),(1,2),(0,0)}.

– ∀(i, j) ∈ Λm,d(m)
i j = (2`+5)d+21.

– ∀(i, j) ∈ Λm,d(f)
i j = (2`+5)d+22.

Construction of X, ux and uy.
ux,uy ∈ Fp[t] are random polynomials of degree d.
To construct X(x,y, t), we pick two random polynomials R1,R2 ∈ Fp[t] of degree 20 and we
consider

X = R1(t)(x
3+`y2+` −ux(t)

3+`uy(t)
2+`)+R2(t)(x

1+`y2+` −ux(t)
1+`uy(t)

2+`).

Then we verify that X(x,y, t) is irreducible. If not, we restart by picking another R1 and another
R2.

Table 1 shows the complexity of the Level 3 Attack for different values of p and d. Each en-
try in the table is obtained by considering the average results over 20 random instances of the
cryptosystem.

Table notations.
tres denotes the time used for the computation of the resultant. t f act is the time used by the
factorization of the resultant, whereas tGB denotes the cost of the Gröbner basis computation. The
time for solving the linear system and for the recombination by the CRT is negligible and hence
are not given in the table. According to [3], there were no known attack better than exhaustive
search when d ≥ 50 and w ≥ 5. Therefore the security bound is the cost of the exhaustive
search of the secret section, namely p2d+2.

p d w k
size of

public key
size of

secret key
tres t f act tGB ttotal

security
bound

2 50 5 3 310bits 102bits 0.02s 0.02s 0.01s 0.05s 2102

2 100 5 3 560bits 202bits 0.03s 0.02s 0.02s 0.07s 2202

2 200 5 3 1060bits 402bits 0.05s 0.05s 0.05s 0.15s 2402

2 400 5 3 2060bits 802bits 0.1s 0.1s 0.1s 0.30s 2802

2 800 5 3 4060bits 1602bits 0.2s 0.2s 0.2s 0.65s 21602

2 1600 5 3 8060bits 3202bits 0.3s 0.3s 0.4s 1.0s 23202

2 2000 5 3 10060bits 4002bits 0.45s 0.4s 0.4s 1.3s 24002

2 5000 5 3 25060bits 10002bits 0.8s 1.3s 0.8s 3.0s 210002

17 50 5 3 1267bits 409bits 0.2s 2.4s 0.4s 3.0s 2409

17 100 5 3 2289bits 818bits 0.3s 5.1s 0.6s 3.0s 2818

17 400 5 3 8420bits 3270bits 1.45s 27.7s 3.9s 33.1s 23270

17 800 5 3 16595bits 6500bits 3.1s 70s 9.5s 83s 26500

10007 500 5 3 34019bits 13289bits 29s 217s 64s 310s 213289

Table 1. Level 3 Attack – Experimental results with w = 5

Interpretation of the results.
It is worth remarking that the first line of Table 1 corresponds to the parameters recommended by
the designers [3] and are broken in 0.05 seconds. The major observation is that the complexity
of the attack behaves as predicted by the complexity analysis: it is quasi-linear in the parameter
d. We also ran some experiments to study the impact of the parameter k (the cardinality of the
support of the surface X) on the complexity: as expected, increasing k has very few effect on the
cost of the attack. To summarize, we see in Table 1 that trying to secure the system by increasing
the size of the secret key (that is to say by increasing the parameters p and d) is pointless:
even when the size of the secret key is bigger than 10000bits, the system can be broken in few
seconds.

The parameter w.
In order to secure the system, one can think of increasing the parameter w since the attack
is in O(w7). However, we showed that the complexity decryption algorithm is lower bounded
by O(w3). Consequently, the parameter w should not be too high if the owner of the secret key
wants to be able to decrypt. Table 2 gives the experimental results of the attack when w increases.

Interpretation of the results.
The main observation is that the complexity of the attack still behaves as predicted: when w is
increased, the Gröbner basis computation is the most expensive step. Increasing w seems to be
the best counter-measure against the attack. However, it should be noted that the attack is still
feasible in practice, even when the public key is big.

p d w k
size of

public key
size of

secret key
tres t f act tGB tLinSys ttotal

security
bound

2 50 5 3 310bits 102bits 0.02s 0.02s 0.01s 0.001s 0.05s 2102

2 50 15 3 810bits 102bits 0.7s 0.3s 4.4s 0.03s 5.4s 2102

2 50 25 3 1310bits 102bits 3s 1s 32s 0.2s 37s 2102

2 50 35 3 1810bits 102bits 10s 3s 260s 1s 274s 2102

2 50 45 3 2310bits 102bits 30s 7s 1352s 4s 1393s 2102

2 50 55 3 2810bits 102bits 70s 12s 4619s 13s 4714s 2102

2 50 65 3 3310bits 102bits 147s 22s 12408s 27s 12604s 2102

2 50 75 3 3810bits 102bits 288s 38s 37900s 56s 38280s 2102

Table 2. Level 3 Attack – Experimental results: increasing w

7 Conclusion

In this paper, we analyze the security of the PKC’2009 Algebraic Surface Cryptosystem. We pro-
vide three variants of a message recovery attack. We also estimate very precisely the complexity
of the Level 3 Attack and we show that it is polynomial in all the parameters of the system. Further-
more, it is quasi-linear in the size of the secret key, whereas the decryption algorithm proposed
in [3] is cubic.

Experimental results confirm the theoretical analysis. We show that the attack can easily break
ASC with recommended parameters. The best choice to try to secure ASC against the attack
is to take p and d as small as possible (p = 2 and d = 50) and increase w. However our
implementation is polynomial in w and can break the system in few hours, even when w = 75
(this value should be compared to the initial recommended w = 5).

Thereby, we consider that the system is fully broken, but we believe that the section finding prob-
lem is still an interesting problem; in this paper, we have simply shown how to avoid to solve it in
the context of ASC.

Acknowledgements. We wish to thank the anonymous referees for their helpful comments and
suggestions. We are also thankful to Maki Iwami for useful discussions.

References

1. W.W. Adams and P. Loustaunau. An introduction to Gröbner bases. American Mathematical Society,
1994.

2. K. Akiyama and Y. Goto. An Algebraic Surface Public-key Cryptosystem. IEIC Technical Report (Insti-
tute of Electronics, Information and Communication Engineers), 104(421):13–20, 2004.

3. K. Akiyama, Y. Goto, and H. Miyake. An Algebraic Surface Cryptosystem. In Proceedings of the
12th International Conference on Practice and Theory in Public Key Cryptography: PKC’09, page 442.
Springer, 2009.

4. M. Bardet, J.-C. Faugere, and B. Salvy. On the complexity of Gröbner basis computation of semi-regular
overdetermined algebraic equations. In Proceedings of the International Conference on Polynomial
System Solving, pages 71–74, 2004.

5. M. Bardet, J.-C. Faugere, B. Salvy, and B.-Y. Yang. Asymptotic behaviour of the degree of regularity
of semi-regular polynomial systems. In Proceedings of the Eight International Symposium on Effective
Methods in Algebraic Geometry (MEGA), 2005.

6. D.A. Cox, J.B. Little, and D. O’Shea. Ideals, varieties, and algorithms: an introduction to computational
algebraic geometry and commutative algebra. Springer Verlag, 1997.

7. J.-C. Faugère. A new efficient algorithm for computing Gröbner basis (F4). Journal of Pure Applied
Algebra, 139:61–88, 1999.

8. J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without reduction to zero (F5).
In Proceedings of the 2002 international symposium on symbolic and algebraic computation, pages
75–83. ACM New York, USA, 2002.

9. J.-C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of zero-dimensional Gröbner
bases by change of ordering. Journal of Symbolic Computation, 16(4):329–344, 1993.

10. M.R. Garey, D.S. Johnson, et al. Computers and Intractability: A Guide to the Theory of NP-
completeness. wh freeman San Francisco, 1979.

11. P. Ivanov and J.F. Voloch. Breaking the Akiyama-Goto cryptosystem. Arithmetic, Geometry, Cryptog-
raphy and Coding Theory, 487, 2009.

12. M. Iwami. A Reduction Attack on Algebraic Surface Public-Key Cryptosystems. In Workshop of Re-
search Institute for Mathematical Sciences (RIMS) Kyoto University, New development of research on
Computer Algebra, RIMS Kokyuroku, volume 1572. Springer, 2007.

13. D. Lazard. Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations. In
EUROCAL, volume 162, pages 146–156. Springer, 1983.

14. G. Lecerf. New recombination algorithms for bivariate polynomial factorization based on Hensel lifting.
To appear in AAECC, 2007.

15. J. Patarin. Hidden fields equations (HFE) and isomorphisms of polynomials (IP): Two new families of
asymmetric algorithms. Lecture Notes in Computer Science, 1070:33–48, 1996.

16. P. W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In SFCS ’94:
Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pages 124–134,
Washington, DC, USA, 1994. IEEE Computer Society.

17. S. Uchiyama and H. Tokunaga. On the Security of the Algebraic Surface Public-key Cryptosystems. In
Proceedings of SCIS, 2007.

18. J. Von Zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University Press, 2003.

A Toy example [3]

We describe here the toy example given in [3]:

– K= F17.
– w = 5.
– d = 3.
– k = 5.

The public surface is
X(x,y, t) = (t +10)x3y2+(16t2+7t +4)xy2+3t16+8t15+13t14+8t13+3t12+12t11+
4t10+8t9 +7t8 +4t7 +13t6 +2t5 +5t4 +4t3 +14t2 +9t +14.
and the secret keys are

ux(t) = 14t3 +12t2 +5t +1,

uy(t) = 11t3 +3t2 +5t +4.

The support of mand f are

Λm = {(4,4),(0,0)},dm
00 = 17,dm

44 = 17,

Λ f = {(5,5),(1,2),(0,0)},df
00 = 13,df

12 = 11,df
55 = 18.

Encryption
We consider the following plaintext: m(x,y, t) = (5t17+15t16+4t15+9t14+7t13+2t12+
3t11 + 8t10 + 11t9 + 6t8 + 10t7 + 7t6 + t5 + 14t4 + 3t3 + 12t2 + 11t + 2)x4y4 + 6t17 +
3t16 + 11t15 + t13 + 10t12 + 3t11 + 8t10 + 6t9 + 13t8 + 2t7 + 2t6 + 10t5 + 5t4 + 2t3 +
15t2 +3t +11.
In order to encrypt, randomly pick f ,s1,s2, r1, r2 with support fixed by Λ f and ΛX :
f (x,y, t) = (t18+8t17+8t16+6t15+3t14+11t13+12t12+9t11+14t10+8t9 +11t8 +
10t7+7t6+8t5+16t4+10t3+12t2+7t +16)x5y5+(7t11+2t10+16t9+16t8+2t7+
4t6+4t5+9t4+9t3+t2+7t +14)xy2+8t13+12t12+15t11+5t9+12t8+13t7+6t6+
6t5 +2t4 +13t3 +14t2 +14t +11.
s0(x,y, t) = (4t +2)x3y2+(16t2+9t +4)xy2+8t16+4t15+11t14+7t13+ t12+11t10+
8t9 +13t8 +12t7 +14t6 +16t5 +8t4 +13t3 +16t2 +14t +4.
s1(x,y, t) = (7t +11)x3y2+(11t2+3t +3)xy2+ t16+3t15+13t14+ t13+3t12+16t11+
9t10+4t9 +12t7 + t6 +7t5 + t4 +4t3 +2t +1.
r0(x,y, t) = (10t18+3t17+7t16+t15+10t14+10t13+5t12+7t11+15t10+10t9+8t8+
2t7+16t6+4t4+t3+3t2+16t +2)x5y5+(t11+10t10+14t9+10t8+2t7+4t6+13t5+
6t4+10t3+10t2+4t +15)xy2+5t13+16t12+ t11+8t10+8t9+3t8+3t7+5t6+3t5+
3t4 +9t3 +7t2 + t +15.
r1(x,y, t) = (12t18+2t17+7t16+6t15+8t14+9t13+16t12+4t11+8t8 +8t7 +10t6 +
13t5+12t4+11t3+8t2+4t +16)x5y5+(t11+8t10+2t9+ t8+4t7+2t6+8t5+4t4+
13t3 + 15t2 + 2t + 8)xy2 + 16t13+ 6t12+ t11+ 11t10+ 16t9 + 4t8 + 2t7 + 14t6 + 3t5 +
7t4 +13t3 +13t2 +8t +16.
Then compute Fi = m+si f + riX:
F0(x,y, t) = (14t19 + t18 + 9t16 + 10t15 + 7t14 + 5t13 + 15t12 + 6t11 + 16t10 + 15t9 +
8t8 +16t7 +2t6+16t5 +11t4+13t3+13t2 +2t +1)x8y7+(6t20+3t18+5t17+6t16+
2t15 + 7t13 + 16t12 + 5t11 + t10 + 11t9 + 4t8 + 11t7 + 8t6 + 6t5 + 9t4 + 14t3 + 13t2 +
12t +4)x6y7+(4t34+4t33+10t32+13t31+2t30+11t29+3t28+15t27+7t25+13t24+
4t23+6t21+4t20+t18+15t17+6t16+16t15+15t14+7t13+14t11+12t10+8t9+9t8+
6t7 + 6t6 + 10t5 + 14t4 + 2t3 + 4t2 + t + 7)x5y5 + (5t17 + 15t16 + 4t15 + 9t14 + 7t13 +
14t12 + 11t11 + 3t10 + 2t9 + 12t8 + 3t7 + 16t6 + 11t5 + 2t4 + 16t3 + 10t2 + 10)x4y4 +
(3t14 + 11t13 + 7t12 + 14t11 + 6t10 + 5t9 + 7t8 + 4t6 + 2t5 + 10t4 + 9t3 + 2t2 + 12t +
2)x3y2 + (9t13 + 7t12 + 5t11 + 9t10 + 7t9 + 9t8 + 12t7 + 8t6 + 2t5 + 13t4 + 8t3 + 4t2 +
3t +14)x2y4+(8t27+14t26+8t25+16t24+16t23+13t22+6t21+13t20+10t19+4t18+
10t17+10t16+13t15+11t14+14t13+14t12+15t11+4t10+11t9 +13t8 +5t7 +4t6 +
10t5 + 13t4 + 3t3 + 2t2 + 16t + 13)xy2 + 11t29+ 12t28+ 10t27+ t26+ 14t25+ 16t24+
12t23+14t22+14t21+11t20+7t19+15t18+6t17+16t16+15t15+10t14+4t13+7t12+
16t11+11t10+8t9 +2t8 +16t7 + t6 +12t5 +3t4 +13t3 +12t2 +5t +10.
F1(x,y, t) = (2t19+2t18+ t17+2t16+2t15+12t14+5t13+2t12+16t11+6t10+3t9 +
7t8 +11t7 +8t6 +2t5 +3t4 +6t3 +10t2 +7t +13)x8y7 +(16t20+3t19+12t17+ t16+
15t15+15t14+6t13+3t12+3t11+9t10+11t9+14t8+7t7+ t5+4t4+ t3+5t2+10t +

10)x6y7 +(3t34+11t33+8t31+11t30+11t29+4t28+5t27+ t26+4t25+3t24+9t23+
5t22+ 7t21+ 16t20+ 4t19+ 10t18+ 7t17+ 9t16+ 15t15+ 13t14+ 8t13+ 9t12+ 10t11+
10t10+3t9 +14t7 +15t6 +4t5 +11t4 +2t3 +7t2 + t +2)x5y5 +(5t17+15t16+4t15+
9t14+7t13+t12+10t11+3t10+14t9+6t8+5t6+5t5+8t4+16t3+3t2+10t+15)x4y4+
(4t14 + 15t13 + 9t12 + 16t11 + 8t10 + 14t9 + 10t8 + 15t7 + 13t6 + 15t5 + 9t4 + 10t3 +
16t2 +4t +9)x3y2 +(8t13+8t12+6t11+3t10+10t9 +9t8 +16t7+13t6+15t5+4t4 +
7t3 + 6t2 + 8t + 6)x2y4 + (10t27 + 4t26 + 9t25 + 7t24 + 3t23 + 13t22 + 16t21 + 14t20 +
t19+ t17+6t16+11t15+9t14+2t13+16t12+9t11+16t10+13t9 +2t7 +2t6 +14t5 +
6t4+15t3+6t2+14t +2)xy2+5t29+12t28+6t27+14t26+5t25+10t24+12t23+t22+
8t21+2t20+15t19+3t18+5t17+14t15+7t14+5t13+2t12+9t11+7t10+11t9+3t8+
10t7 +7t6 +14t4 + t3 +8t2 +6t +8.

Decryption
To decrypt, first substitute the section into Fi :
h0(t) = F0(ux(t),uy(t), t) = 13t64+8t63+8t62+13t61+7t60+16t58+10t57+13t56+
6t55+3t54+15t53+3t52+t51+4t50+2t49+5t48+12t47+3t46+8t44+14t43+9t42+
13t41+14t40+10t39+8t38+11t37+12t36+9t35+7t33+14t32+12t31+8t30+4t28+
9t27+15t26+t25+4t24+8t23+5t22+14t21+3t20+7t19+6t18+7t17+16t16+9t15+
6t13+3t12+8t11+11t10+11t9+14t8+11t7+15t6+14t5+2t4+10t3+10t2+t +10.
h1(t) = F1(ux(t),uy(t), t) = 14t64+6t63+6t62+8t61+7t60+ t59+4t58+ t57+7t56+
11t55+10t54+2t53+13t52+16t51+14t50+15t49+3t48+3t46+ t45+11t44+10t43+
13t42 + 8t41 + 6t40 + 9t39 + 4t38 + 13t37 + 16t36 + 13t35 + 12t34 + t33 + t32 + 6t31 +
15t30+15t29+16t28+14t27+2t26+13t25+16t24+16t23+3t22+13t21+4t20+5t19+
15t18+5t17+4t16+ t15+10t14+15t13+ t11+8t10+6t9 +13t8 +15t6 +10t5 +4t4 +
8t3 +11t2 +12t +2.

Then factor h1(t)−h0(t):
h1(t)− h0(t) = 16(t3 + 3t2 + 13t + 3)(t4 + 11t3 + 15t2 + 14t + 13)(t9 + 8t8 + 11t7 +
3t5+4t4+6t3+14t2+12t +13)(t17+2t16+14t15+5t14+5t13+8t12+9t11+11t10+
3t9 +13t8 +10t7 +8t6 +15t5 +7t4 +12t3 +10t2 +3t +2)(t5 +13t4 +4t3 +2t2 +4t +
13)(t16+4t15+11t14+ t13+4t12+13t11+ t10+2t9+ t8+2t7+ t6+2t4+15t3+5t2+
11t +6)(t6 +4t5 +3t4 +10t3 +14t2 +2t +5)(t4 +4t3 +5t2 +16t +10).
We know that deg(f (ux(t),uy(t), t)) = 48, and that the irreducible divisors of h1(t)−h0(t)
have degrees (3,4,4,5,6,9,16,17). The associate knapsack has four solutions, but only one
corresponds to the real f (ux(t),uy(t), t):
f (ux(t),uy(t), t) = (t3 + 3t2 + 13t + 3)(t4 + 11t3 + 15t2 + 14t + 13)(t5 + 13t4 + 4t3 +
2t2 +4t +13)(t6 +4t5 +3t4 +10t3 +14t2 +2t +5)(t9 +8t8 +11t7 +3t5 +4t4 +6t3 +
14t2 + 12t + 13)(t17 + 2t16 + 14t15 + 5t14 + 5t13 + 8t12 + 9t11 + 11t10 + 3t9 + 13t8 +
10t7 +8t6 +15t5 +7t4 +12t3 +10t2 +3t +2)(t4 +4t3 +5t2 +16t +10).
From f (ux(t),uy(t), t), we can deduce m(ux(t),uy(t), t):
m(ux(t),uy(t), t) = 5t41+10t40+9t38+9t36+5t35+12t34+14t33+9t31+6t30+ t29+
t27 + 7t26 + 10t25 + 3t24 + 10t23 + 13t22 + 4t21 + 10t20 + 11t19 + 6t18 + 4t17 + 5t16 +
7t15+14t14+ t13+7t12+11t11+5t10+2t9 +8t8 +14t7 +13t6 +12t5 +16t4 +13t3 +
9t2 +13t +13.
Finally, solve the linear system m(ux(t),uy(t), t) = ∑mi jkxiyj tk and recover the plaintext.

B Gröbner bases and Normal form

In this section, we shortly describe some fundamental tools from commutative algebra, which are
useful for the attack presented in this paper. For a more complete presentation of those tools, the
reader can refer to [6, 1].

From now on,K is a field and Rdenotes the ringK[x1, . . . ,xn]. We suppose given an admissible
monomial ordering <: for the attack we consider the grevlex (graded reverse lexicographical)
ordering.

Definition 1 (Grevlex ordering). The grevlex ordering is defined as follows. Let m1 = xα1
1 . . .xαn

n ,m2 =

xβ1
1 . . .xβn

n be two monomials. Then m1 > m2 if

– ∑n
i=1 αi > ∑n

i=1 βi or

– ∑n
i=1 αi = ∑n

i=1 βi and the rightmost nonzero entry of (α1−β1, . . . ,αn−βn) is negative.

For any polynomial P∈ R, LM(P) denotes its leading monomial with respect to <. For any ideal
I ⊂ R, LM(I) denotes the ideal generated by 〈{LM(P) : P∈ I}〉.

Definition 2 (Normal form). Let I be an ideal of R, and f ∈ Rbe a polynomial. Then there exist
unique polynomials h,g∈ R such that h is monic, g∈ I , f = h+g and no monomial of h is in
LM(I). Then h is called the normal form of f with respect to I and <, and is noted NFI (f).

The normal form is aK-linear application and its main property is:

Proposition 1. Let I be an ideal of R, and f ∈ R be a polynomial. Then f ∈ I if and only if
NFI (f) = 0.

To be able to compute the normal form, we need another fundamental tool: Gröbner bases.

Definition 3 (Gröbner basis). Let I be an ideal of R. A finite subset of polynomials G ⊂ I is
called a Gröbner basis of I (with respect to the monomial ordering <) if 〈LM(G)〉 = LM(I).

C MAGMA code for the Level 1 Attack

In the following piece of code, p and d are the parameters of the system. deg t is the degree of
m with respect to t and Lambda m denotes the support of m (these values are public). F0 and
F1 are the ciphertext, and X is the public surface.

R<x,y,t>:=PolynomialRing(GF(p),3,"grevlex");
Res:=Resultant(R!(F0-F1),R!X,x); // Eliminate x
F:=Factorization(Res); // Factor the resultant
// Pick the irreducible factor of highest degree in y
maxdeg:=Max([Degree(R!f[1],R!y) : f in F]);
exists(Q0){f[1]:f in F| Degree(R!f[1],R!y) eq maxdeg};
J:=Ideal([R!Q0,R!X,R!F0,R!F1]);
Groebner(J); // Compute the Gröbner basis of J
Coeffm:=PolynomialRing(GF(p),#Lambda_m*(deg_t+1));
R2<x,y,t>:=PolynomialRing(Coeffm,3);
// Construct the linear system
plaintext:=&+[Coeffm.((i-1)*(deg_t+1)+j)*

R2!NormalForm(R!x^Lambda_m[i][1]*
R!y^Lambda_m[i][2]*R!t^(j-1),J) :
i in [1..#Lambda_m], j in [1..deg_t+1]];

// Solve the linear system:
V:=Variety(Ideal(Coefficients(plaintext)));

