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Abstract

We investigate the hardness of solving non-linear equations modulo a prime ¢ = poly(n) with noise
(typically a Gaussian), i.e., some equations of the algebraic system are erroneous. This problem,
that we have called Polynomial With Errors (PWE), is a non-linear (and rather natural) generaliza-
tion of the Learning With Errors (LWE) problem [Regl0]. Cryptographic schemes based on LWE
[Reg10] enjoy usually of very strong security guarantee thanks to properties such as decision/search
equivalence, average/worst case equivalence and a reduction to the worst-case of some classical lattice
problems. On the other hand, such strong guarantees lead so far to rather impractical schemes as
pointed in [RS10]. The hardness of PWE is supported by the hardness of solving algebraic equations
without errors; the PoSSo problem. Solving non-linear system being significantly harder than solving
a linear system, it is reasonable to expect that solving PWE will be harder than LWE. However, it can
be shown that if the number of equations is poly(n) (n being the number of variables) then PWE is
essentially equivalent to a LWE instance with bigger parameters. Therefore, the most interesting case
to consider is PWE for a fixed and small number (i.e. < poly(n)) of equations. We denote by bPWE
this problem, i.e. PWE with a bounded (< poly(n)) number of samples. We prove that bPWE has
also a decision/search equivalence and average-case/worst-case reduction. As a by-product, we show
that such results also hold for bPWE without noise, i.e. PoSSo. Finally, It is possible to design a
public-key encryption scheme based on bPWE we similar to the one using LWE [Regl10]. However,
it has been shown that there s an equivalence between solving and sampling in the noise free setting.
The result mentionned before is an obstacle to adapt the proof of security.

Polynomial System Solving (PoSSo) problem

Let K be a finite field.

e Input: non-linear polynomials fi(zy,...,zn),..., fm(x1,...,2n) € Klzy,...,xy] of degree
d>1.
e Secret: a vector z = (z1,...,2n) € K" chosen uniformly such that:
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Question: find a common zero of fi,..., fm.

Polynomial With Errors (PWE) problem

Let ¢ = char(K) be a prime, and x4 4 be the (discretized) Gaussian distribution of standard
deviation « - q.

e Input: non-linear polynomials fi(zy,...,xn),..., fm(x1,...,2n) € Klzy,..., 2y of degree
d>1.
e Secret: a vector z = (z1,...,2zn) € K" chosen uniformly such that:

Gaussian in 2D.

PoLyNOMIALS WITH ERROR (PWE)

M. R. Albrecht*, J.-C. Faugere*, D. Lin', and L. Perret*

INRIA*, Paris-Rocquencourt Center, SALSA Project
UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France
CNRS, UMR 7606, LIP6, F-75005, Paris, France

Question: find the secret.

Remark. PWE is at least as hard as PoSSo.

0 Let d be the degree of the equations. If m = @(n?), then PWE ~ LWE and PoSSo is easy (i.e.
can be solved in poly-time).

[0 We consider PWE with m ~ Cn (with C' > 1 being a constant), i.e. fixed and bounded
number of samples (unlike LWE).

[1 For random instances with such parameters, PoSSo is algorithmically hard (i.e. the best algo-
rithm is exponential).

[1 The secret is unique w.h.p.

Property [Work in Progress]
Let ¢ = char(K) = poly(n) be a prime. We denote by dPoSSo (resp. dPWE) the
decisional variant of PoSSo (resp. PWE). It holds that:

[1 (search-to-decision) PoSSo (resp. PWE) and dPoSSo (resp. dAPWE) are equiv-
alent.

e Proof adapted from [BGP09, MM11].

[0 (amplification) An algorithm allowing to solve PoSSo (resp. PWE) for a small
fraction (poly-size) of the secrets allows to solve PoSSo (resp. PWE) for all secrets.

e Proof adapted from [Reg09).

Cryptosystem based on PWE

Motivation.

[1 Design a cryptosystem using the hardness of random instances of PoSSo (and not based on
lattices problems)

e Can lead to smaller public-key than “basic” PKC based on LWE.

Description of the Scheme.

e Private key. The private key is a vector s chosen uniformly at ransom in ZZ.

e Public key. The public key is (p = (p1, ... ,pm),b) € Zglwy, ..., xp)™ X Zy" such that
b =p(s) +e, with e € (xa,q9)"™

e Encryption. For each bit of the message, we generate (rq,...,7rm) € Z5". To encrypt m € Zs,
we send ( DTy Y it b M L%j)

e Decryption. The decryption of a pair (p,b) € Zg|x1,...,zn] X Zg is 01f b — p(s) mod ¢ is
closer to 0 than to |4], and 1 otherwise.

Remark. As described, the security proof from |[Reg09] can not be directly adapted. Indeed,
1 pi - 1y is not uniform in Zg[x1, ..., ).

[1 More generally, let Z =< pq,...,pm > be an ideal of K|z, ..., z,]. Then, sampling uniformly
clements of Z is as difficult as computing a Grobner basis of Z [MRAP11].

Underlying Tool: Grobner Bases

Definition [Buchberger 1965/1976 [Buc65]]

We fixr an admissible ordering on the monomials (i.e. a power product :13(1)‘1---33%” of
Klxy,...,xp]. Let T =< fi,..., fm > be an ideal of K|xy,...,xpn]. A subset G C T is a
Grobner basis if:

Vf €1, dg € G such that LeadingMononomial(g) divides LeadingMononomial( f).

[0 Computing a Grobner basis allows to solve PoSSo (and much more . . .)

t” W. Grobner.
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Algorithms & Complexity

e Buchberger’s algorithm [Buc65] (1965)
o ['4/I'5 (J.-C. Faugere [Fau99, Fau02], 1999/2002)

= For a zero-dimensional (i.e. finite number of solutions) system of n variables with m
equations, the complexity of F5 is :

O (nS-dmg(m,n)) |

dreg(m, n) being the maximum degree reached during the computation (a.k.a. degree of regu-
larity).
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Matrices occuring during the computation of
a Grobner basis with matriz-Fy. The last matrixz considered is of size O(ndreg(mm).

Theorem [Bar04, BFSYO05]

For a semi-reqular system (i.e. algebraic formalization of a random system of equa-
tions) of quadratic equations, the complexity of computing a Grobner basis is:

[0 exponential when m =C-n orm=n+ (C —1) (C > 1 being a constant),

[0 sub-exponential when m = C - n -log(n),

0 polynomial when m = C' - n?.
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