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Abstract
The associated talk surveys how computer algebra tech-
niques have been used to break several cryptosystems.

1. Computer Algebra – Cryptology
Recently, the interaction between Gröbner basis computa-
tion and several areas of Cryptography has been put for-
ward highlighting the importance of Computer Algebra tech-
niques to evaluate the security of several cryptosystems.
This is precisely the goal of this tutorial to describe possible
interactions between Cryptography and Computer Algebra.
The most famous example of such an interaction is probably
the LLL algorithm [26] : it was a key ingredient to solve a
Computer Algebra problem (factoring polynomials over Q);
since then, it was used in numerous attacks in Cryptology.

To some reduced extent, one other example of interac-
tion between the two scientific domains are the F5/F4

1 al-
gorithms [17, 18]: proposed as general algorithms to speedup
Gröbner basis computations they were used to break several
cryptosystems (see for instance [19, 20, 21, 25, 22, 8, 9, 10]).
Another interesting example of ping pong interactions be-
tween Computer Algebra and Cryptology is the multivariate
functional decomposition problem (FDP): while the univari-
ate case is a well known Computer Algebra problem (efficient
implementations exist in most CA systems) the multivari-
ate case was “unsolved”. For this reason it was considered
as a hard problem and used by Patarin [1] to design a new
cryptosystem. Then, this cryptosystem was broken by the
Crypto community [2, 3, 21]. Recently, by extending the
last result [21] it was possible to derive a general algorithm
[24] to solve FDP in the multivariate case. Lastly, an even
more efficient version of this algorithm is presented in this
Issac 2009 conference.
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2. Two fundamental problems in Cryp-
tography
Since almost all important data is stored and transmitted in
electronic form, the modern world is completely reliant on
digital technologies. This potentially exposes this data to se-
rious threats (for instance disclosure of data to unauthorized
parties). The science of cryptography, a collection of mathe-
matical techniques used to secure the transmission and stor-
age of information, is one of the main tools to counter these
threats.
Evaluate the security of existing cryptosystems.
Investigating the security of extensively used cryptographic
standards – such as aes[16], sha, rsa[27] – against the most
powerful attacks is a permanent concern. Any progress in
the cryptanalysis of such standards could have a huge im-
pact, from a scientific and also economical point of view.
Thus, a fundamental problem in cryptography is to evalu-
ate the security of cryptosystems against the most powerful
techniques. To this end, several general methods have been
proposed: linear cryptanalysis, differential cryptanalysis, . . .
Extensively used cryptographic standards – such as aes [16]
– are all resistant against linear and differential attacks. In
this tutorial, we will describe another general method – Al-
gebraic Cryptanalysis – to study the security of the main
public-key and secret-key cryptosystems.
Algebraic Cryptanalysis.
Algebraic cryptanalysis can be described as a general frame-
work that permits to asses the security of a wide range of
cryptographic schemes [5, 13, 15, 14, 19, 20, 21, 22]. In fact
the recent proposal and development of algebraic cryptanal-
ysis is now widely considered as an important breakthrough
in the analysis of cryptographic primitives. The basic princi-
ple of such cryptanalysis is to model a cryptographic primi-
tive by a set of algebraic equations. The system of equations
is constructed in such a way as to have a correspondence
between the solutions of this system, and a secret informa-
tion of the cryptographic primitive (for instance, the secret
key of an encryption scheme). Then, evaluate the security
of this cryptosystem is equivalent to estimate the theoreti-
cal/practical complexity of solving the corresponding system
of equations. Since one of the most efficient tool for solving
algebraic system over finite field is Gröbner bases [11], it is
necessary to evaluate theoretically and practically the com-
plexity of computing Gröbner bases over Fq (e.g. [6]).
Design of new cryptosystems.
Public key cryptography relies on the notion of (trapdoor)



one-way function. Such a function is a function that is easy
to compute (polynomial-time) on every input, but hard (at
best sub-exponential) to invert given the image of a ran-
dom input. One way functions themselves are constructed
from hard problems (problems for which no polynomial-time
algorithm is known). Although quite a few problems have
been proposed to construct primitives, those effectively used
are essentially factorization (RSA) and discrete logarithm.
It is well-known that, although polynomial-time algorithms
for those problems have not yet been found, they are not
safe from a theoretic breakthrough, that would endanger the
security of the corresponding schemes. Moreover, in quan-
tum computers, polynomial-time algorithms [29] exist for
factoring integers or solving the discrete logarithm problem
over elliptic curves so that all widely used cryptosystems
are threatened by quantum computing. Thus, one of the
main issues in public key cryptography is to identify hard
problems, and propose new schemes that are not based on
number theory. In the context of this tutorial and among
other problems, the hard problem of solving multivariate
equations over a finite field is a very attracting problem: in
one way it is very easy to evaluate polynomials but in the
other way it is a NP-hard problem and it seems to be resis-
tant against quantum computers. Another problem which is
used to design cryptosystems is the ideal membership prob-
lem [30].

Open Problems presented in this talk
On the one hand algebraic techniques have been successfully
applied against a number of multivariate schemes and in
stream cipher cryptanalysis [5, 13, 15, 14, 19, 20, 21, 22].
On the other hand, the feasibility of algebraic cryptanalysis
remains the source of speculation [13] for block ciphers ,
and an almost unexplored approach for hash functions [28,
9]. The main problem is that the size of the corresponding
algebraic systems [4] are so huge (thousands of variables
and equations) that nobody is able to predict correctly the
complexity of solving such polynomial systems. In this talk
we will present several open problems of such cryptosystems.
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Gröbner Basis: F4. Journal of Pure and Applied Algebra, vol.
139, pp. 61–68, 1999.

[18] J.-C. Faugère. A New Efficient Algorithm for Computing
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public key cryptography ISSAC ’08, ACM pp 315–324
(Linz/Hagenberg, Austria) 2008.


