
Fast Algorithm for Change of Ordering of Zero-dimensional
Gröbner Bases with Sparse Multiplication Matrices∗

Jean-Charles Faugère
INRIA Paris-Rocquencourt, SALSA Project

UPMC Univ Paris 06, UMR 7606, LIP6
CNRS, UMR 7606, LIP6

4 place Jussieu, 75005 Paris, France
Jean-Charles.Faugere@inria.fr

Chenqi Mou
LMIB, SMSS, Beihang University

Beijing 100191, PR China
and

INRIA Paris-Rocquencourt, SALSA Project
UPMC Univ Paris 06, UMR 7606, LIP6

CNRS, UMR 7606, LIP6
4 place Jussieu, 75005 Paris, France

Chenqi.Mou@lip6.fr

ABSTRACT
Let I ⊂ K[x1, . . . ,xn] be a 0-dimensional ideal of degree D where
K is a field. It is well-known that obtaining efficient algorithms for
change of ordering of Gröbner bases of I is crucial in polynomial
system solving. Through the algorithm FGLM, this task is classi-
cally tackled by linear algebra operations in K[x1, . . . ,xn]/I. With
recent progress on Gröbner bases computations, this step turns out
to be the bottleneck of the whole solving process.

Our contribution is an algorithm that takes advantage of the spar-
sity structure of multiplication matrices appearing during the change
of ordering. This sparsity structure arises even when the input poly-
nomial system defining I is dense. As a by-product, we obtain an
implementation which is able to manipulate 0-dimensional ideals
over a prime field of degree greater than 30000. It outperforms the
Magma/Singular/FGb implementations of FGLM.

First, we investigate the particular but important shape position
case. The obtained algorithm performs the change of ordering
within a complexity O(D(N1 +n log(D))), where N1 is the number
of nonzero entries of a multiplication matrix. This almost matches
the complexity of computing the minimal polynomial of one multi-
plication matrix. Then, we address the general case and give corre-
sponding complexity results. Our algorithm is dynamic in the sense
that it selects automatically which strategy to use depending on the
input. Its key ingredients are the Wiedemann algorithm to handle
1-dimensional linear recurrence (for the shape position case), and
the Berlekamp–Massey–Sakata algorithm from Coding Theory to
handle multi-dimensional linearly recurring sequences in the gen-
eral case.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Algebraic Ma-
nipulation—Algorithms; F.2.2 [Theory of Computation]: Analy-

∗This work is supported by the EXACTA grant of the French Na-
tional Research Agency (ANR-09-BLAN-0371-01) and the Na-
tional Science Foundation of China (NSFC 60911130369)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’11, June 8–11, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0675-1/11/06 ...$10.00.

sis of Algorithms and Problem Complexity—Nonnumerical algo-
rithms and problems

General Terms
Algorithms

Keywords
Gröbner bases, Change of ordering, Zero-dimensional ideals, Sparse
matrix, FGLM algorithm, Wiedemann algorithm, BMS algorithm

1. INTRODUCTION
Gröbner basis is a major tool in computational ideal theory [5,

8, 3], in particular for polynomial system solving. It is well-known
that the Gröbner basis of an ideal with respect to (w.r.t.) the lex-
icographical ordering (LEX) holds good algebraic structures, and
hence is convenient to use for polynomial system solving. From the
computational point of view, the common strategy to obtain such a
Gröbner basis is to first compute a Gröbner basis w.r.t. the degree
reverse lexicographical ordering (DRL), which is usually easier to
compute, and then convert its ordering to LEX.

With recent progress on Gröbner basis computations [10, 11], the
first step above has been greatly enhanced, leaving the second step,
namely changing orderings of Gröbner bases, as the bottleneck of
the whole solving process. Hence, currently, efficient algorithms to
perform the change of ordering are of crucial significance in poly-
nomial system solving. Furthermore, some practical problems can
be modeled directly as a change of ordering [6, 15]. The purpose
of this paper is precisely to provide a faster algorithm to perform
the change of ordering of Gröbner bases of 0-dimensional ideals.

There already exist a few algorithms for the change of order-
ing of Gröbner bases, for example the FGLM algorithm [12] for
0-dimensional ideals and the Gröbner walk for generic cases [7].
The number of field operations needed by the FGLM algorithm is
O(nD3), where n is the number of variables and D is degree of the
given ideal I ⊂ K[x1, . . . ,xn]. We would like to mention that other
algorithms have been proposed to change the orderings of triangu-
lar sets [16, 9] or using the LLL algorithm [1] in the bivariate case.
The connection between the change of ordering and linear algebra
is done through the multiplication matrices Ti which represents the
multiplication by xi in the quotient ring K[x1, . . . ,xn]/I viewed as a
vector space. According to our experiments (see table 2), these ma-
trices are sparse, even when the input polynomial system is dense.
The proposed algorithm takes advantage of this sparsity structure
to obtain good complexity and performances.

First the particular but important case when the 0-dimensional
ideal I is in shape position is studied. We consider the sequence

115

[〈r,T i
1e〉 : i = 0, . . . ,2D−1], where r is a randomly chosen vector

and e= (1,0, . . .)t is the canonical vector representing the term 1 in
K[x1, . . . ,xn]/I . It is easy to see that the minimal polynomial f1 in
K[x1] of this linearly recurring sequence is indeed a polynomial in
the Gröbner basis of I w.r.t LEX (x1 < · · ·< xn) when deg(f1) =D;
moreover, it can be computed by applying the Berlekamp–Massey
algorithm [20]. Furthermore, we show in section 3.1 how to recover
efficiently the other polynomials in the Gröbner basis by solving
structured (Hankel) linear systems. Hence, we are able to propose
a complete method for the change of ordering to LEX for ideals in
shape position. Its complexity is O(D(N1 + n log(D))), where N1
is the number of nonzero entries in T1. When n � D this almost
matches the complexity of computing the minimal polynomial.

Next, for general ideals to which the method above may be no
longer applicable, we generalize the linearly recurring sequence
to a n-dimensional array E : (s1, . . . ,sn) �−→ 〈r,T s1

1 · · ·T sn
n e〉. The

minimal set of generating polynomials for the linearly recurring
relation determined by E is essentially the Gröbner basis of the
ideal defined by E, and this polynomial set can be obtained via the
Berlekamp–Massey–Sakata (BMS for short hereafter) algorithm
from Coding Theory [18, 19]. With some modifications of the
BMS algorithm, we design a method to change the ordering in the
general case. The algorithm is deterministic and the complexity
with LEX as the target ordering is O(nD3) in the worst case and
O(nD(N + N̂N̄D)) otherwise, where N is the maximal number of
nonzero entries in matrices T1, . . . ,Tn, while N̂ and N̄ are respec-
tively the number of polynomials and the maximal term number of
all polynomials in the resulting Gröbner basis.

Combining the two methods above, we propose a fast determin-
istic algorithm for the change of ordering for 0-dimensional ideals.
This algorithm works for any term ordering, but we restrict the de-
scription to the case where LEX is the target ordering. It selects au-
tomatically which method to use depending on the input. The effi-
ciency of the proposed algorithm has been verified by experiments.
The current implementation outperforms the FGLM implementa-
tions in Magma/Singular/FGb. Take for example the Katsura12
instance over F65521, an ideal in shape position of degree 212, the
change of ordering to LEX can be achieved in 26.3 seconds: this is
53.7 (resp 99.8) faster than the corresponding Magma (resp. Sin-
gular) function. As shown in table 2, 0-dimensional ideals over a
prime field of degree greater than 30000 are now tractable.

The organization of this paper is as follows. Related algorithms
used in this paper, together with some notations, are first reviewed
in Section 2. Then Section 3 is devoted to our main algorithm.
The complexity analysis of this algorithm is stated in Section 4
and experimental results are given in Section 5 respectively. The
proof of one main theorem in the complexity analysis depends on
properties of objects arising in the BMS algorithm applied in our
context. The proof being technical, it is postponed in Section 6.
This paper concludes with some remarks in Section 7.

2. FGLM AND BMS ALGORITHMS
2.1 FGLM

The FGLM algorithm is an efficient approach to convert the Gröb-
ner basis of a 0-dimensional ideal w.r.t. a term ordering to another
term ordering [12].

Let K be a field and K[x1, . . . ,xn] be the polynomial ring over
K. Suppose now the Gröbner basis G1 of a 0-dimensional ideal
I w.r.t. <1 is known and one wants to compute its Gröbner basis
G2 w.r.t. <2 with the FGLM algorithm. Let D be the degree of
I and B = [ε1, . . . ,εD] be the canonical basis of K[x1, . . . ,xn]/〈G1〉
ordered according to <1.

The algorithm first computes (D × D)-matrices Ti, called the

multiplication matrix by xi, to record the mapping φi on B:

φi(b j) = NormalForm(xib j), j = 1, . . . ,D

for i = 1, . . . ,n, where NormalForm() is the normal form w.r.t. G1.
The jth column of Ti is the coordinate vector of NormalForm(xib j)
w.r.t. B. Thus from the basis B, one can construct all the matrices
T1, . . . ,Tn accordingly. As can be seen here, all Ti and Tj commute.

Then terms in K[x1, . . . ,xn] are handled one by one, following
the term ordering <2. For a term xs with s= (s1, . . . ,sn), its coor-
dinate vector vs w.r.t. B can be computed by

vs = T s1
1 · · ·T sn

n e, (1)

where e= (1,0, . . . ,0)t is the coordinate vector of the term 1. Then
a linear dependency like

∑
s

csvs = 0 (2)

will furnish an element in G2:

f = xl+ ∑
s 	=l

cs
cl

xs, (3)

where xl is the leading term of f w.r.t. <2 (denoted by lt(f)) [12].
The test of linear dependency can be realized by maintaining an
echelon form of the matrix whose columns are coordinate vectors
of previously computed terms w.r.t. B.

As for its complexity, the FGLM algorithm needs O(nD3) field
operations to finish the change of ordering.

2.2 BMS
The BMS algorithm is one that can be used to find the minimal

set w.r.t. a term ordering < of a linearly recurring relation gener-
ated by a given multi-dimensional array [18, 19, 17]. It is a gen-
eralization of Berlekamp–Massey algorithm, which determines the
minimal polynomial of a linearly recurring sequence.

As a vector u= (u1, . . . ,un) ∈Z
n
≥0 and a term xu = xu1

1 · · ·xun
n ∈

K[x1, . . . ,xn] are 1–1 corresponding, usually we do not distinguish
them. Besides the term ordering, we define the following partial
ordering: for two terms u = (u1, . . . ,un) and v = (v1, . . . ,vn), we
say that u≺ v if ui ≤ vi for i = 1, . . . ,n.

A mapping E : Zn
≥0 −→K is called a n-dimensional array. For

a polynomial f = ∑s fsxs ∈K[x1, . . . ,xn], a n-dimensional array E
is said to satisfy the n-dimensional linearly recurring relation with
characteristic polynomial f if

∑
s

fsEs+r = 0, ∀r � 0. (4)

The set of all characteristic polynomials of n-dimensional linearly
recurring relations for the array E forms an ideal, denoted by I(E).
And the minimal set of generating polynomials for I(E), which the
BMS algorithm computes, is actually the Gröbner basis of I(E)
w.r.t. < [19, Lemma 5]. The canonical basis of K[x1, . . . ,xn]/I(E)
is also called the delta set of E.

Instead of studying the infinite array E as a whole, the BMS
algorithm deals with a truncated subarray of E up to some term u
according to a given term ordering. A polynomial f with lt(f) = s
is said to be valid for E up to u if either u 	� s or ∑t ftEt+r =
0,∀r(0 ≺ r ≤ u−s). E may be omitted if no ambiguity occurs.

Similar to FGLM, the BMS algorithm also handles terms in
K[x1, . . . ,xn] one by one according to <, so that the polynomial set
it maintains is valid for E up to the new term. Let F ⊂K[x1, . . . ,xn]
be a set of polynomials whose elements are all valid up to some
term u. When the next term of u w.r.t. the term ordering, denoted
by Next(u), is considered, the BMS algorithm will update F so

116

that all the new polynomials in it are valid up to Next(u). Mean-
while, another term determined by Next(u) is also tested to see
whether it is a member of the delta set of E. Therefore, more and
more terms will be verified as members of the delta set of E while
terms are handled by the BMS algorithm. The set of verified terms
in the delta set of E after the term u is called the delta set up to u.
After a certain number of terms are considered, this polynomial set
F grows to a minimal set of polynomials generating the linearly re-
curring relation, namely a Gröbner basis of I(E), and all members
in the delta set of E are verified.

Due to limited space, only outlines of the above update proce-
dure (which is also the main part) in the BMS algorithm are sum-
marized here so that this paper is self-contained. One may refer to
[17] for details. The polynomial set G below, called the witness set,
is auxiliary and will not be returned with F in the end.

Algorithm 1: (F+,G+) := BMSUpdate(F,G,Next(u),E)

Input:
F , a minimal polynomial set valid up to u;
G, a witness set up to u;
Next(u), a term;
E, a n-dimensional array up to Next(u).

Output:
F+, a minimal polynomial set valid up to Next(u);
G+, a witness set up to Next(u).

1. Test whether every polynomial in F is valid up to Next(u)
2. Update G+ and compute the new delta set up to Next(u)

accordingly
3. Construct new polynomials in F+ such that they are valid up

to Next(u)

Let k be the number of terms the BMS algorithm has handled
before it stops at some term when F is the Gröbner basis and l be
the number of polynomials it returns. Then the claimed complexity
of the BMS algorithm is O(lk2) for graded term orderings [19].

3. MAIN ALGORITHM
3.1 Shape position

An ideal I ⊂ K[x1, . . . ,xn] is said to be in shape position if its
Gröbner basis w.r.t. LEX (x1 < · · ·< xn) is of the form

[f1(x1),x2 − f2(x1), . . . ,xn − fn(x1)] . (5)

For exact characterization of such ideals, one may refer to [2]. Ide-
als in shape position take a large proportion in all the consistent
ideals. Thanks to their structures, we are able to design a specific
and efficient method for the change of ordering with LEX as the
target ordering .

Suppose the Gröbner basis of the deal I w.r.t. LEX is of form
(5), deg(f1) = D and fi = ∑D−1

k=0 ci,kxk
1 (i = 2, . . . ,n), where ci,k are

unknown coefficients in K. We consider now the linearly recurring
sequence

[〈r,T i
1e〉 : i = 0, . . . ,2D−1], (6)

where r ∈ K
(D×1) is a randomly chosen vector, T1 is the matrix

constructed in the FGLM algorithm, and e is the vector represent-
ing 1 w.r.t. the canonical basis of K[x1, . . . ,xn]/I. We first recall
some basic facts about linearly recurring sequences:

DEFINITION 3.1. Let T = [t0, t1, t2, · · ·] be a sequence of ele-
ments of K and d an integer. We define the following d ×d Hankel
matrix:

Hd(T) =

⎡
⎢⎣

t0 t1 t2 · · · td−1
t1 t2 t3 · · · td
.
.
.

.

.

.
.
.
.

. . .
.
.
.

td−1 td td+1 · · · t2d−2

⎤
⎥⎦ .

THEOREM 3.1. ([14]) Let T = [t0, t1, t2, · · ·] be a linearly recur-
ring sequence. Then, the minimal polynomial M(T)(x)=∑d

i=0 mixiof
the sequence T is such that:

(i) d = rank(Hd(T)) = rank(Hi(T)) for all i > d.

(ii) ker(Hd+1(T)) is a vector space of dimension 1 generated by
(m0,m1, . . . ,md)

t .

Moreover, since a bound on the size of the linearly recurring se-
quence is known (D is always a bound), the Berlekamp–Massey
algorithm can compute the minimal polynomial f̃1 of the sequence
(6) (it is also possible to use the deterministic variant of the Wiede-
menann algorithm [20] to compute directly f1). Next we check
whether deg(f̃1) = D, which implies that f̃1 = f1. If it holds, then
computing the full Gröbner basis of I w.r.t. LEX reduces to deter-
mining all the unknown coefficients ci,k.

For each i = 2, . . . ,n, from NormalForm(xi −∑D−1
k=0 ci,kxk

1) = 0

one can get vi := Tie= ∑D−1
k=0 ci,k ·T k

1 e. Then one can further con-
struct D linear equations,

〈r,T j
1 vi〉=

D−1

∑
k=0

ci,k · 〈r,T k+ j
1 e〉, j = 0, . . . ,D−1. (7)

With ci,k considered as unknowns, the coefficient matrix H with en-

tries 〈r,T k+ j
1 e〉 is a Hankel one. From theorem 3.1 we know that H

is invertible. Furthermore, the linear equation set (7) with the Han-
kel matrix H can be efficiently solved with complexity O(D log(D))
if fast polynomial multiplication is used [4]. In the end, the solution
of (7) will lead to the Gröbner basis we want to compute.

We explain now how the linear systems (7) can be generated for
free. Note that for any a,b ∈ K

(D×1) and T ∈ K
(D×D), we have

〈a,Tb〉= 〈T ta,b〉, where T t denotes the transpose of T . Thus

〈r,T i
1e〉= 〈(T t

1)
ir,e〉, 〈r,T j

1 vi〉= 〈(T t
1)

jr,vi〉
in (6) and (7). Therefore, when computing the sequence (6), we
can record (T t

1)
ir (i = 0, . . . ,2D−1) and use them for construction

of the linear equation set (7).

3.2 General case
Now we demonstrate the method for the change of ordering of a

0-dimensional Gröbner basis in the general case. In what follows,
we always assume that K is field of characteristic 0 or a finite field
of large cardinality. This is because otherwise "bad" random vec-
tors would be frequently chosen so that BMS algorithm may not
work.

Define a mapping E : Zn
≥0 −→K as

(s1, . . . ,sn) �−→ 〈r,T s1
1 · · ·T sn

n e〉,
where r ∈ K

(D×1) is a random vector. Combining (1) and (2),
one can easily verify that the polynomial f in (3) is a character-
istic polynomial for the n-dimensional linearly recurring relation
defined by the array E. That is, f in (3) satisfies (4). This observa-
tion links FGLM and BMS algorithms: one can first construct the
n-dimensional array E via matrices T1, . . . ,Tn, and then compute
the Gröbner basis of I(E) with the BMS algorithm w.r.t. <2.

This idea can actually be regarded as a generalization of the
Wiedemann algorithm to the multivariate case, with the BMS algo-
rithm to compute the minimal set of generating polynomials just as
the role of Berlekamp–Massey algorithm. Unfortunately, similar to
the Wiedemann algorithm, the strategy used here may also fail re-
turning all the linear dependencies needed by the FGLM algorithm
to form the Gröbner basis w.r.t. <2. That is to say, the polynomial
set returned by the BMS algorithm may only be a Gröbner basis of

117

I(E) instead of I, where I ⊂ I(E). However, one can easily check
whether the set returned by the BMS algorithm is a Gröbner basis
of I or not by testing the linear dependency in (2).

We remark that when the target ordering is LEX, computation of
the first characteristic polynomial in the method above is essentially
the same as that based on the Wiedemann algorithm described in
section 3.1. This is true because for the LEX ordering (x1 < · · · <
xn), the terms are ordered as [1,x1,x2

1, . . . ,x2,x1x2,x2
1x2, . . .], hence

the first part of E is E((p1,0, . . . ,0)) = 〈r,T p1
1 e〉, and the BMS

algorithm degenerates to the Berlekamp–Massey one now.

3.3 Algorithm description
Here the description of the main algorithm with the target or-

dering as LEX is given, together with some explanations and com-
ments.

In algorithm 2 below, BerlekampMassey() is the Berlekamp–
Massey algorithm, which takes a sequence over K as input and
returns the minimal polynomial of this sequence [20]; Reduce(F)
performs reduction on F so that every polynomial f ∈ F is reduced
w.r.t. F \ { f}; IsGB(F) returns true if F is the Gröbner basis of
I w.r.t. LEX, and returns false otherwise; FGLM() is the FGLM
algorithm.

Algorithm 2: Main algorithm

Input: G1, the Gröbner basis of a 0-dimensional ideal
I ⊂K[x1, . . . ,xn] w.r.t. <1

Output: the Gröbner basis of I w.r.t. LEX
Compute the canonical basis [ε1 = 1 <1 · · ·<1 εD] of1

K[x1, . . . ,xn]/〈G1〉
e := (1,0, . . . ,0)t ∈K

(D×1)2

Compute T1, . . . ,Tn the multiplication matrices3

Choose r0 = r ∈K
(D×1) randomly4

for i := 1, . . . ,2D−1 do ri := (T t
1)ri−15

Generate the sequence s := [〈ri,e〉 : i = 0, . . . ,2D−1]6

f1 := BerlekampMassey(s)7

if deg(f1) = D then8

H := HD(s) // Construct the Hankel matrix9

for i := 2, . . . ,n do10

b :=
(〈r j,Tie〉 : j = 0, . . . ,D−1

)t
11

Compute c= (c1, . . . ,cD)
t := H−1b12

fi := ∑D−1
k=0 ck+1xk

113

end14

return [f1,x2 − f2, . . . ,xn − fn]15

else16

u := 0; F := [1]; G := []; E := [] // General case17

repeat18

e := 〈r,Tu1
1 · · ·Tun

n e〉19

E := E ∪ [e]20

F,G := BMSUpdate(F,G,u,E)21

u := Next(u) w.r.t. LEX22

F := Reduce(F)23

until Termination Criteria ;24

if not IsGB(F) then25

F := FGLM(G1,<1)26

end27

return F28

end29

With earlier computed values Tu1
1 · · ·Tun

n e recorded, the compu-
tation of e at line 19 can be simplified. Suppose for v=(v1, . . . ,vn),
the vector ẽ = Tv1

1 · · ·Tvi−1
i · · ·Tvn

n e has been recorded. Then
〈r,Tv1

1 · · ·Tvn
n e〉= 〈r,Tiẽ〉, for all Ti and Tj commute.

Though the BMS algorithm from Coding Theory is mainly de-
signed for graded term orderings, it works for all term orderings.
However, for orderings that depend on lexicographical orderings
(for instance LEX or block orderings which break ties with LEX),
some other techniques not mentioned in the original presentation of
BMS algorithm should be used. For example, the reduction step is
introduced to control the size of intermediate polynomials. This is
actually not a problem for orderings like DRL, for in that case the
leading term of a polynomial itself will give a bound on the size of
terms in that polynomial.

Unfortunately the termination criteria of the BMS algorithm are
not well studied in the literature. There exist some general (nec-
essary or sufficient) conditions on when the polynomial set F the
BMS algorithm maintains will eventually become the Gröbner ba-
sis [19], but basically they are not very suitable to use as termina-
tion criteria. Hence here we mainly use the criterion that the main
loop (lines 18–24) ends when F keeps unchanged for a certain num-
ber of passes.

REMARK 3.1. To change algorithm 2 to one suitable for all tar-
get orderings, one only needs to skip lines 5–15, that is, the method
designed for ideals in shape position for LEX.

3.4 Correctness and termination
Now we are in a position of proving the correctness and termi-

nation of algorithm 2 proposed above.
Correctness. Lines 5–15 are for ideals in shape position, the

correctness of this method is obvious from its description in sec-
tion 3.1. After the termination criteria are reached, the main loop
ends and whether the returned polynomial set F is the Gröbner
basis of I w.r.t. LEX is tested. If IsGB(F) = true, F is already
the Gröbner basis we want to compute and the algorithm naturally
finishes. While IsGB(F) = false means that the BMS algorithm
returns a polynomial set F which is only Gröbner basis of I(E),
but I(E) 	= I (on the assumption that the termination criteria work).
Then we have to return to the original FGLM algorithm to complete
the change of ordering.

Termination. Once the main loop ends, the algorithm almost
finishes. Hence we shall prove the termination of this main loop.
Clearly when the polynomial set F the BMS algorithm maintains
turns to a Gröbner basis of I(E), the current termination criterion,
namely F keeps unchanged for a certain number of passes, will be
satisfied. And a sufficient condition for F being a Gröbner basis is
given in [19, Theorem 6].

3.5 Illustrative examples
Shape position
A toy example Katsura2 is given here to illustrate how the method

based on the Wiedemann algorithm works for ideals in shape posi-
tion. Consider the ideal

I = 〈−x3+2x2
2+2x2

1+x2
3,−x2+2x3x2+2x2x1,x3+2x2+2x1−1〉

in F23[x1,x2,x3]. Its Gröbner basis w.r.t. DRL is

{x3
1 +12x2

1 +10x2 +x1, x2
2 +4x2

1 +9x2 +14x1,

x2x1 +15x2
1 +16x2 +18 x1,x3 +2x2 +2x1 +22},

from which we can compute the degree of I (D = 4) and the ba-
sis of F23[x1,x2,x3]/I (B = [1,x1,x2,x2

1]), and further construct the
matrices T1,T2 and T3.

Now we aim at computing the Gröbner basis G w.r.t. LEX. A

random vector r= (16,2,18,22)t ∈F
(4×1)
23 is chosen first. With the

118

sequence [〈r,T i
1e〉 : i = 0, . . . ,2D−1], one can obtain the first poly-

nomial in G with the Berlekamp–Massey algorithm: x4
1 + 5x3

1 +

20x2
1 + 20x1. It verifies that this ideal is in shape position, hence

the method is applicable. Next one can directly write the matrix H
down as ⎡

⎣ 16 2 22 14
2 22 14 2
22 14 2 6
14 2 6 18

⎤
⎦,

for actually all its entries have been computed in the earlier se-
quence. Take the polynomial x2 − f2(x1) ∈ G as in form (5) for
example, the vector b can be computed as (18,13,14,0)t . Solving
the linear equation set Hc = b, one can obtain the coefficient vec-
tor of f2 as (0,16,8,16)t , thus the corresponding polynomial in G
is x2 +7x1 +15x2

1 +7x3
1. The other polynomial x3 − f3(x1) can be

obtained similarly. To summarize,

G = {x4
1 +5x3

1 +20x2
1 +20x1, x2 +7x3

1 +15x2
1 +7x1,

x3 +9x3
1 +16x2

1 +11x1 +22}.
General case
Consider the following Gröbner basis in F65521[x1,x2] w.r.t. DRL

(x1 < x2)

G1 ={x4
2 +2x3

1x2 +21x3
2 +11x1x2

2 +4x2
1x2 +22x3

1 +9x2
2

+17x1x2 +19x2
1 +2x2 +19x1 +5, x2

1x2
2 +10x3

2

+12x2
1x2 +20x3

1 +21, x4
1 +15x2

1 +19x1 +3}.
Here F65521[x1,x2]/〈G1〉 is of dimension 12. Its basis, and further
the multiplication matrices T1 and T2, can be computed accord-
ingly.

Now we want to get the Gröbner basis G2 of 〈G1〉 w.r.t. LEX.
With a vector

r = (6757,43420,39830,45356,52762,17712,

27676,17194,138,48036,12649,11037)t ∈ F
(12×1)
65521

chosen randomly, the 2-dimensional array E can be constructed.
Then BMSUpdate() is applied term by term according to the LEX
ordering, with the resulting Δ and F after each term shown in table
1. For example, at the term (4,0), the polynomial x2

1 +62681x1 +
41493 ∈ F is not valid up to (4,0). Then the delta set is updated
as {(0,0),(1,0),(2,0)}, and F is reconstructed such that the new
polynomial x3

1 +62681x2
1 +35812x1 +18557 is valid up to (4,0).

The first polynomial in G2

g1 = x4
1 +15x2

1 +19x1 +3

is obtained at the term (7,0). Clearly the method for ideals in shape
position is not applicable to this example. Next BMSUpdate() is
executed to compute other members of I(E) according to the re-
maining term sequence [x2,x1x2, . . . , x2

2,x
2
1x2

2, . . . ,], until the other
polynomial in G2 : g2 = x3

2 +7x2
1x2

2 +15x2
1x2 +2x3

1 +9 is obtained
at (3,5). Now the main loop of algorithm 2 ends. Then one can
easily verify that {g1,g2}⊂G2 and dim(F23[x2,x1]/〈g1,g2〉)= 12,
thus G2 = {g1,g2}.

Here is an example where this method fails. Let G = {x3
1,x

2
1x2,

x1x2
2,x

3
2}⊂F65521[x1,x2]. Then the ideal 〈G〉 is 0-dimensional with

degree D = 6. It is easy to see that G is Gröbner basis w.r.t. both
DRL and LEX. Starting from G as a Gröbner basis w.r.t. DRL, the
method based on the BMS algorithm to compute the Gröbner basis
w.r.t. LEX will not be able to return the correct Gröbner basis, even
the base field itself is quite large and different random vectors r are
tried.

4. COMPLEXITY ANALYSIS
As the main usage of algorithms for the change of ordering is

to change Gröbner basis w.r.t. DRL to that w.r.t. LEX, here we
also restrict the complexity analysis to cases where the target term
ordering is LEX. In this paper, we assume that the multiplication
matrices Ti are already computed.

4.1 Shape position
We first deal with ideals in shape position. Suppose the number

of nonzero entries in T1 is N1. In total the Wiedemann algorithm
(lines 5–7) will take O(D(N1 + log(D))) operations to obtain the
first polynomial f1 [20]. As all the entries in the matrix H are ac-
tually already computed during the Wiedemann algorithm, its con-
struction is free of field operations. Then, for each i = 2, . . . ,n,
as H is a Hankel matrix, solving the linear equation set Hc = bi
only needs O(D log(D)) operations [4]. As explained in section 3.1,
computing bi is equivalent to computing 〈(T t

1)
jr,vi〉, where (T t

1)
j

has already been computed and vi = Tie= NormalForm(xi). With-
out loss of generality, we can assume that NormalForm(xi) = xi
(this is not true only if there is a linear equation xi + · · · in the
Gröbner basis G1, and in that case we can eliminate the variable xi).
Consequently vi is a vector with all its components equal to 0 ex-
cept for one component equal to 1. Hence computing 〈(T t

1)
jr,vi〉

is equivalent to extracting some component from the vector (T t
1)

jr
and there is not additional cost. To summarize:

THEOREM 4.1. Assume that T1 is constructed (note that
T2, . . . ,Tn are not needed). When deg(f1) = D in algorithm 2 (line
8), the complexity of algorithm 2 is bounded by

O(D(N1 + log(D))+(n−1)D log(D)) = O(D(N1 +n log(D))).

4.2 General case
Next we analyze the complexity of the BMS-based method for

the general case. For the detailed description of the BMS algo-
rithm, which is not given in this paper, readers may refer to [17].
As already explained, the computation of one value e of E can be
achieved within O(N) operations, where N is the maximal number
of nonzero entries in matrices T1, . . . ,Tn. The three steps with their
complexities in the subalgorithm BMSUpdate() are:

1. checking whether every polynomial in F is valid up to Next(u),
which needs O(N̂D) operations, where N̂ is the number of polyno-
mials in G2 (Note that the number of terms in every polynomial is
bounded by D+1 because of the reduction step);

2. computing the new delta set up to Next(u), which only in-
volves integer computations and thus no field operation is needed;

3. constructing the new polynomial set F+ such that every poly-
nomial is valid up to Next(u), which requires O(N̂D) operations at
most.

In step 1 above, new values of E other than e may be needed for
the verification. The complexity for computing them is still O(N)
and this is another difference from the original BMS algorithm for
graded term orderings. After the update is complete, a polynomial
reduction is applied to F control the size of every polynomial. This
requires O(N̂N̄D) operations, where N̄ denotes the maximum term
number of polynomials in G2. To summarize, the total operations
needed in each pass of the main loop in algorithm 2 is

O(N + N̂D+ N̂N̄D) = O(N + N̂N̄D).

Hence to estimate the whole complexity of the method, we only
need an upper bound for the number of passes it takes in the main
loop.

119

Table 1: Sakata
Term Δ F
(0,0) (0,0) x1,x2
(1,0) —– x1 +65437,x2
(2,0) (0,0),(1,0) x2

1 +65437x1 +21672,x2
(3,0) —– x2

1 +62681x1 +41493,x2
(4,0) (0,0),(1,0),(2,0) x3

1 +62681x2
1 +35812x1 +18557,x2

(5,0) —– x3
1 +30688x2

1 +45566x1 +54643,x2
(6,0) (0,0),(1,0),(2,0),(3,0) x4

1 +30688x3
1 +20026x2

1 +45766x1 +5434,x2
(7,0) —– g1,x2
(0,1) —– g1,x2 +65034x3

1 +24330x2
1 +14876x1 +52361

...
...

...

THEOREM 4.2. Suppose that the input ideal I ⊂K[x1, . . . ,xn] is
of degree D. Then the passes of the loop (lines 18–24) in algorithm
2 is bounded by 2nD.

PROOF. See Section 6.

Thus the method based on the BMS algorithm for the general
case requires at most O(nD(N + N̂N̄D)) field operations to finish.

5. EXPERIMENTS
The method for the shape position case has been implemented in

C, while a preliminary implementation of the BMS-based method
has been done in Magma. Several benchmarks are used to test
the correctness and efficiency of these two methods. All the ex-
periments were made under Scientific Linux OS release 5.5 on 8
Intel(R) Xeon(R) CPUs E5420 at 2.50 GHz with 20.55G RAM.

Table 2 illustrates performances of the implementation for the
shape position case with benchmarks like Cyclic or Katsura in-
stances, MinRank problems [13], randomly generated quadratic
polynomial systems and examples coming from algebraic crypt-
analysis of some curve-based cryptosystem. Instances with ideals
not in shape position are marked with †, and the timings for such
instances only indicate that of computing the minimal polynomial.
In this table, D denotes the degree of the input ideal, and the column
"Sparsity" means the percentage of nonzero entries in T1. Timings
for the computation of Gröbner bases w.r.t. DRL and the change
of ordering to LEX are recorded (in seconds) for our implementa-
tion and corresponding implementations in Magma (version 2-17-
1) and Singular (version 3-1-2), together with the speedup factors.

As shown by all the instances here, the multiplication matrix T1
has a sparsity structure, even for random dense polynomial sys-
tems. Furthermore, in fact only last columns of this matrix are
dense, with most of the other columns have only one nonzero com-
ponent equal to 1. For matrices with such structures, we store them
in a half-sparse way, that is, the sparse parts of these matrices are
stored as a permutation and the others normally.

The current implementation of the algorithm for change of order-
ing outperforms the FGLM implementations in Magma/Singular/
FGb. For example, changing the ordering to LEX for the Katsura12
instance, an ideal of degree 212, can be achieved in 26.3 seconds
(1408.1 sec in Magma and 2623.5 sec in Singular respectively). It
is important to note that with the new algorithm the time devoted
to the change of ordering is of the same order of magnitude as the
DRL Gröbner basis computation.

Table 3 illustrates the performances of the BMS-based method
for the general case. As currently this method is only implemented
preliminarily in Magma, only the number of field multiplications
and other important parameters are recorded, instead of the timings.

Benchmarks derived from Cyclic 5 and 6 instances are used. In-
stances with ideals in shape position (marked with ‡) are also tested

to demonstrate the generality of this method. Besides n and D de-
noting the number of variables and degree of the input ideal, the
columns "Mat Density" and "Poly Density" denote the maximal
percentage of nonzero entries in the matrices T1, . . . ,Tn and the
density of resulting Gröbner bases respectively. The following 4
columns record the numbers of passes in the main loop of algorithm
2, matrix multiplications, reductions and field multiplications.

As shown in this table, the numbers of passes accord with the-
orem 4.2, and the number of operations is less than the original
FGLM algorithm for Cyclic-like benchmarks. However, for in-
stances with ideals in shape position, this method works but the
complexity is not satisfactory. This is mainly because the resulting
Gröbner bases in these cases are no longer sparse, and thus the re-
duction step becomes complex. The complexity may be reduced if
the reduction step is handled more carefully.

6. PROOF OF THEOREM 4.2
The delta set in the BMS algorithm is determined in the follow-

ing way. Given an array E, suppose F is a polynomial set valid for
E up to u and the current delta set up to u is Δu. If there exists f ∈
F such that f is not valid up to Next(u) and Next(u)− lt(f) 	∈ Δu,
then Next(u)− lt(f) is confirmed as a new term in ΔNext(u) [17].

This observation sheds light on which terms are indeed needed to
handle in the BMS-based method on the assumption that the delta
set Δ of E is known. On one hand, we have to handle the terms
one of whose corresponding terms is in Δ (Criterion 1). For exam-
ple, suppose v ∈ Δ, then the first term u such that u− lt(f) = v
for some f ∈ F has to be handled. On the other hand, we can skip
those terms whose corresponding terms are not in Δ (Criterion 2),
for F will be valid up to those terms automatically, otherwise the
final delta set will be a wrong one. Based on these two criteria, the
terms needed at most in this method are determined by the follow-
ing inductive procedure.

Let G be the Gröbner basis of I(E) w.r.t LEX and Δ be the delta
set of E. Denote Δi = Δ∩K[x1, . . . ,xi], i = 1, . . . ,n. Suppose f ∈
G∩K[x1] and deg(f) = d1. Then the terms needed to compute f
are P0 = {(j,0, . . . ,0) ∈ Z

n
≥0 : j = 0, . . . ,2d1 −1}. Set P = P̂0 and

Q = Δ1, where P̂0 is the set obtained by deleting the biggest term
w.r.t. LEX from P0, These two sets P and Q will be updated from
time to time in the whole procedure.

Now suppose G∩K[x1, . . . ,xk] has been computed with updated
P,Q ⊆K[x1, . . . ,xk]. Next we show the terms needed at most to ob-
tain G∩K[x1, . . . ,xk+1]. For convenience, we will omit the last n−t
zero components for a term u= (u1, . . . ,ut ,0, . . . ,0)∈K[x1, . . . ,xt]
if no ambiguity occurs.

Suppose Δk+1 =
⋃

j=0,...,m Δk+1, j for some integer m, where

Δk+1, j = Δk+1 ∩{u : u= (u1, . . . ,uk, j)}.
Then we have the following results.

120

Table 2: Timings of the method for the shape position case from DRL to LEX
FGb Magma Singular Speedup

Name D Sparsity F5(C) New Algorithm F4 FGLM DRL FGLM Magma Singular
Katsura11 211 21.53% 4.9 3.4 18.2 178.6 632.0 328.4 52.7 96.9
Katsura12 212 21.26% 31.9 26.3 147.9 1408.1 5061.8 2623.5 53.6 99.8
Katsura13 213 19.86% 186.3 189.1 1037.2 10895.4 57.6
Katsura14 214 19.64% 1838.9 1487.4 9599.0 87131.9 58.5
Katsura15 215 18.52% 11456.3 12109.2

MinR(9,6,3) 980 26.82% 1.1 0.5 6.3 22.7 137.5 38.1 43.6 73.2
MinR(9,7,4) 4116 22.95% 28.4 28.5 208.1 1360.4 4985.8 2490.3 47.7 87.4
MinR(9,8,5) 14112 19.04% 543.6 1032.8
MinR(9,9,6) 41580 16.91% 9048.2 22171.3
Random 11 211 21.53% 4.7 3.4 18.1 169.3 623.9 328.6 49.2 95.5
Random 12 212 21.26% 26.6 26.9 134.9 1335.8 4867.4 2581.1 49.6 95.8
Random 13 213 19.98% 146.8 193.5 949.6 10757.4 36727.0 19820.23 55.6 102.4
Random 14 214 19.64% 1000.7 1489.5 7832.4 84374.6 56.6
Random 15 215 18.52% 6882.5 10914.02
Weierstrass 4096 7.54% 4.0 9.0 5.8 418.3 72.4 1823.6 46.7 203.7
Edwards † 4096 3.41% 0.1 2.4 0.2 176.7 1.0 839.9 72.7 345.6
Cyclic 10 † 34940 1.00% 3586.9 >16 hrs and >16 Gig

Table 3: Performances of the BMS-based method from DRL to LEX
Name n D Mat Density Poly Density N. Passes N. Matrix N. Reduction N. Multiplication

Cyclic5-2 2 55 4.89% 17.86% 165 318 107 nD2.544

Cyclic5-3 3 65 8.73% 19.7% 294 704 227 nD2.674

Cyclic5-4 4 70 10.71% 21.13% 429 1205 355 nD2.723

Cyclic5 5 70 12.02% 21.13% 499 1347 421 nD2.702

Cyclic6 6 156 11.46% 17.2% 1363 4464 1187 nD2.781

Uteshev Bikker ‡ 4 36 60.65% 100% 179 199 105 nD2.992

D1 ‡ 12 48 34.2% 51.02% 624 780 517 nD2.874

Dessin2-6 ‡ 6 42 46.94% 100% 294 336 205 nD2.968

1. For j = 0, the terms needed by the BMS-based method are
(Q,1), where (Q, i) := {(q, i) : q ∈ Q}.

2. For each j = 1, . . . ,m, the terms needed are{
(Q, i)∪P′, i = 2 j;
(Q, i), i = 2 j+1,

where P′ is defined as follows.

(a) If there does not exist g ∈ G ∩K[x1, . . . ,xk+1] such that
deg(g,xk+1) = j, then P′ = (P, i).

(b) Else suppose lt(g) = v = (v1, . . . ,vk, j). Then

P′ := {u+(0, . . . ,0, j) : u∈ Δk+1, j}∪{u+v : u∈Δk+1, j}.
Furthermore, P and Q are updated as

Q := {q : (q, j) ∈ Δk+1, j}, P := {p : (p, j) ∈ P̂′},
where P̂′ is the set obtained by deleting the biggest term from
P′, similar to P̂0.

3. Finally when G∩K[x1, . . . ,xk+1] is obtained, P is updated as
the set of all terms needed for G∩K[x1, . . . ,xk+1] and Q as Δk+1.

For example, figure 1 illustrates the procedure described above
for the instance Cyclic5-2.

Actually the sets P and Q represent the two criteria 1 and 2 men-
tioned above: P is the set of terms we have to handle so that all
terms in Δ are correctly added, while Q stands for those we need
to handle at most according to Criterion 2. Furthermore, P is to-
tally determined by the current Δk+1, j we have to add to Δ, and Q
is determined by the latest Δk+1, j′ already handled. Hence when a
polynomial in G∩K[x1, . . . ,xk+1] is found, say at the term (. . . ,2 j),

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30

Terms needed
Delta set

x1

x2

Figure 1: Delta set (+) and terms needed (�) for Cyclic5-2

all the following Δk+1,l (l ≥ j) will be different from Δk+1, j−1, and
thus P and Q are updated accordingly.

The justification of the procedure follows naturally from the above
remarks and how the terms in Δ are determined. First computation
of the polynomial f ∈ G∩K[x1] is the same as what is done in the
Berlekamp algorithm, thus at most P0 are needed. Then P is set
with one term less than P0. This is because only deg(f) = d1, and
for all the other g ∈ G, deg(g,x1) < d1. Hence the terms needed
here to get Δ∩K[x1] have one term more than others at least. This
difference can be seen from figure 1 for x2 = 0 and 2. Moreover, Q
is set as Δ1.

Next for each i = 1, . . . ,2m+ 1, (Q, i) are the terms needed at
most according to Criterion 2 and they are included every time.
For odd i = 2 j + 1 (j = 0, . . . ,m), no term is going to be added

121

to Δ, therefore (Q, i) are all the terms needed. While for even i =
2 j (j = 1, . . . ,m), new terms are added to Δ. In case (a), we have

Δk+1, j = Δk+1, j−1 +(0, . . . ,0,1), (8)

thus P′ here is just a translation of the previous P for Δk+1, j−1. In
case (b) however, the equality (8) does not hold, and P′ is defined
according to Δk+1, j based on both Criteria 1 and 2. Next P and Q
are updated so that subsequent computation can follow correctly.
Note for similar reasons to P = P̂0, P here is set with one term less
than P′.

With the preparation above, now we are able to give the proof of
Theorem 4.2.

PROOF OF THEOREM 4.2. Denote the number of terms needed
to compute G∩K[x1, . . . ,xi] by χi and Δi = Δ∩K[x1, . . . ,xi] still.
Clearly Δ = Δn. As I ⊂ I(E), we know that Δ, the delta set of
E, is a subset of the canonical basis of K[x1, . . . ,xn]/I, and hence
|Δ| ≤ D. To prove the theorem, we only need to prove 2n|Δ| is an
upper bound.

We induce on the number of variable i of K[x1, . . . ,xi]. For i = 1,
one can easily see χ1 ≤ 2|Δ1|. Now suppose χk ≤ 2k|Δk| for k(< n).
Next we prove χk+1 ≤ 2(k+1)|Δk+1|.

First we ignore all the terms (Q, i) as in case (b) from all the
terms needed to compute G∩K[x1, . . . ,xk+1], with all the remain-
ing terms denoted by Tk+1. We claim that |Tk+1| is bounded by
(2k+1)|Δk+1|.

Suppose

Δk+1 =
⋃

j=0,...,m

Δk+1, j, Tk+1 =
⋃

l=0,...,2m+1

Tk+1,l

for some integer m, where

Δk+1, j = Δk+1 ∩{u : u= (u1, . . . ,uk, j)},
Tk+1,l = Tk+1 ∩{u : u= (u1, . . . ,uk, l)}.

Then for each Δk+1, j, one can see from the procedure above that
|Tk+1,2 j| is bounded by either 2k|Δk| (if Δk+1, j is before the first ele-
ment in G is found, and in that case |Δk+1, j|= |Δk|), or 2|Δk+1, j| (≤
2k|Δk+1, j|). Furthermore, |Tk+1,2 j+1| is bounded by |Δk+1, j|. Hence
we have

|Tk+1,2 j|+ |Tk+1,2 j+1| ≤ (2k+1)|Δk+1, j|,
which leads to |Tk+1| ≤ (2k+1)|Δk+1|.

Now we only need to prove the number of all the terms (Q, i)
in case (b) is bounded by |Δk+1|. Suppose these cases occur at
(pl , l), l = i1, . . . , im′ . Again from the procedure, one can see that
the number of terms in (Q, i) for (p1, i1) is bounded by |Δk|. And
after it occurs at some term (pil , il), the newly updated set Qil will
bound the terms occurring at (pil+1 , il+1). Then the conclusion
can be proved if one notices Δk ∪ (Qi1 , i1)∪ ·· · ∪ (Qim′−1

, im′−1) ⊆
Δk+1.

7. CONCLUDING REMARKS
Both methods proposed in this paper follow the thought of Wiede-

mann algorithm. That is, we take advantage of the matrix sparsity
by first constructing linearly recurring relations and then finding the
generators for these relations with the (generalized) Berlekamp–
Massey algorithm. Multiplication matrices in the FGLM algorithm
serve as a bridge between the change of ordering and linearly re-
curring relations.

The BMS algorithm itself, as a multi-dimensional generalization
of the Berlekamp–Massey algorithm, is worth studying. We hope
that this paper is just a first step for the study of this algorithm.
Several problems concerning it are still unsolved and left as future

works: the complete characterization of its termination criteria, the
probability for I(E) = I, what to do when I(E) 	= I, and further
improvement of the algorithm.

Moreover, the sparsity of multiplication matrices is now demon-
strated by several benchmarks. Could we express the sparsity of the
matrices as O(Dα) with α < 2, it would give immediately a better
complexity for the change of ordering.

8. REFERENCES
[1] A. Basiri and J.-C. Faugère. Changing the ordering of Gröbner bases

with LLL: case of two variables. In Proceedings of ISSAC 2003,
pages 23–29. ACM, 2003.

[2] E. Becker, T. Mora, M. Marinari, and C. Traverso. The shape of the
Shape Lemma. In Proceedings of ISSAC 1994, pages 129–133.
ACM, 1994.

[3] T. Becker, V. Weispfenning, and H. Kredel. Gröbner Bases: a
Computational Approach to Commutative Algebra. Graduate Texts in
Mathematics. Springer, New York, 1993.

[4] R. P. Brent, F. G. Gustavson, and D. Y. Y. Yun. Fast solution of
toeplitz systems of equations and computation of Padé approximants.
Journal of Algorithms, 1(3):259–295, 1980.

[5] B. Buchberger. Gröbner bases: An algorithmic method in polynomial
ideal theory. In Multidimensional Systems Theory, pages 184–232.
Reidel, Dordrecht, 1985.

[6] J. Buchmann, A. Pyshkin, and R.-P. Weinmann. A zero-dimensional
Gröbner basis for AES-128. In M. Robshaw, editor, Fast Software
Encryption, volume 4047 of LNCS, pages 78–88. Springer, Berlin /
Heidelberg, 2006.

[7] S. Collart, M. Kalkbrener, and D. Mall. Converting bases with the
Gröbner walk. Journal of Symbolic Computation, 24(3–4):465–469,
1997.

[8] D. A. Cox, J. B. Little, and D. O’Shea. Ideals, Varieties, and
Algorithms: an Introduction to Computational Algebraic Geometry
and Commutative Algebra (2nd edn.). Undergraduate Texts in
Mathematics. Springer, New York, 1997.

[9] X. Dahan, X. Jin, M. Moreno Maza, and E. Schost. Change of order
for regular chains in positive dimension. Theoretical Computer
Science, 392:37–65, 2008.

[10] J.-C. Faugère. A new efficient algorithm for computing Gröbner
bases (F4). Journal of Pure and Applied Algebra, 139(1–3):61–88,
1999.

[11] J.-C. Faugère. A new efficient algorithm for computing Gröbner
bases without reduction to zero (F5). In Proceedings of ISSAC 2002,
pages 75–83. ACM, 2002.

[12] J.-C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient
computation of zero-dimensional Gröbner bases by change of
ordering. Journal of Symbolic Computation, 16(4):329–344, 1993.

[13] J.-C. Faugère, M. Safey El Din, and P.-J. Spaenlehauer. Computing
loci of rank defects of linear matrices using Gröbner bases and
applications to cryptology. In Proceedings of ISSAC 2010, pages
257–264. ACM, 2010.

[14] E. Jonckheere and C. Ma. A simple Hankel interpretation of the
Berlekamp–Massey algorithm. Linear Algebra and its Applications,
125:65–76, 1989.

[15] P. Loustaunau and E. York. On the decoding of cyclic codes using
Gröbner bases. Applicable Algebra in Engineering, Communication
and Computing, 8(6):469–483, 1997.

[16] C. Pascal and E. Schost. Change of order for bivariate triangular sets.
In Proceedings of ISSAC 2006, pages 277–284. ACM, 2006.

[17] K. Saints and C. Heegard. Algebraic-geometric codes and
multidimensional cyclic codes: a unified theory and algorithms for
decoding using Gröbner bases. IEEE Transactions on Information
Theory, 41(6):1733–1751, 2002.

[18] S. Sakata. Finding a minimal set of linear recurring relations capable
of generating a given finite two-dimensional array. Journal of
Symbolic Computation, 5(3):321–337, 1988.

[19] S. Sakata. Extension of the Berlekamp–Massey algorithm to N
dimensions. Information and Computation, 84(2):207–239, 1990.

[20] D. Wiedemann. Solving sparse linear equations over finite fields.
IEEE Transactions on Information Theory, 32(1):54–62, 1986.

122

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

