Lecture 2-13-1 - Polynomial systems,

 computer algebra and applications
Jean-Charles Faugère

Solving Algebraic Systems with Symmetries 2022-2023 - MPRI

Structured Systems

Symmetries

Definition

Let / be an ideal. / is said to be stable under the action of G (G-stable) if: $\forall f \in I, \forall A \in G \quad f^{A} \in I$

Action of $G L_{n}(k)$ on polynomials.
G is a finite subgroup of $G L_{n}(k)$.
Let X be the column vector whose entries are x_{1}, \ldots, x_{n}.
For f a polynomial and $A \in G$, let f^{A} be the polynomial obtained by substituting the components of $A . X$ to x_{1}, \ldots, x_{n}.
Since $\left(f^{A}\right)^{B}=f^{A B}$, we obtain an action of G on the ring of polynomials

Remark

The action of G preserves the homogeneous components.

System invariant by the action of an Abelian group

Consider the following system: 5 degree 3 equations in 5 variables: invariant by the action of $G=C_{5}$ (ground field is \mathbb{F}_{65521}):
$f_{1}=$
$y_{1}^{3}+y_{2}^{3}+y_{3}^{3}+y_{4}^{3}+y_{5}^{3}+52524 y_{1} y_{5}^{2}+52524 y_{1}^{2} y_{2}+52524 y_{2}^{2} y_{3}+52524 y_{3}^{2} y_{4}+52524 y_{4}^{2} y_{5}+$ $19910 y_{2}^{2} y_{4}+19910 y_{1}^{2} y_{3}+37058 y_{1}^{2} y_{4}+30323 y_{1}^{2} y_{5}+30323 y_{1} y_{2}^{2}+12774 y_{1} y_{2} y_{3}+$ $2708 y_{1} y_{2} y_{4}+12774 y_{1} y_{2} y_{5}+37058 y_{1} y_{3}^{2}+2708 y_{1} y_{3} y_{4}+2708 y_{1} y_{3} y_{5}+19910 y_{1} y_{4}^{2}+$ $12774 y_{1} y_{4} y_{5}+y_{2}^{3}+37058 y_{2}^{2} y_{5}+30323 y_{2} y_{3}^{2}+12774 y_{2} y_{3} y_{4}+2708 y_{2} y_{3} y_{5}+37058 y_{2} y_{4}^{2}+$ $2708 y_{2} y_{4} y_{5}+19910 y_{2} y_{5}{ }^{2}+y_{3}{ }^{3}+19910 y_{3}{ }^{2} y_{5}+30323 y_{3} y_{4}{ }^{2}+12774 y_{3} y_{4} y_{5}+37058 y_{3} y_{5}^{2}+$ $y_{4}^{3}+30323 y_{4} y_{5}^{2}+y_{5}^{3}+19604 y_{1}^{2}+42627 y_{1} y_{2}+4321 y_{1} y_{3}+4321 y_{1} y_{4}+42627 y_{1} y_{5}+$ $19604 y_{2}{ }^{2}+42627 y_{2} y_{3}+4321 y_{2} y_{4}+4321 y_{2} y_{5}+19604 y_{3}{ }^{2}+42627 y_{3} y_{4}+4321 y_{3} y_{5}+$ $19604 y_{4}{ }^{2}+42627 y_{4} y_{5}+19604 y_{5}{ }^{2}+1032 y_{1}+1032 y_{2}+1032 y_{3}+1032 y_{4}+1032 y_{5}+9254$
$f_{2}, f_{3}, f_{4}, f_{5}=$ same shape \cdots

System invariant by the action of an Abelian group

Consider the following system: 5 degree 3 equations in 5 variables: invariant by the action of $G=C_{5}$ (ground field is \mathbb{F}_{65521}):
$f_{1}=$
$y_{1}^{3}+y_{2}^{3}+y_{3}^{3}+y_{4}^{3}+y_{5}^{3}+52524 y_{1} y_{5}^{2}+52524 y_{1}^{2} y_{2}+52524 y_{2}^{2} y_{3}+52524 y_{3}^{2} y_{4}+52524 y_{4}^{2} y_{5}+$ $19910 y_{2}{ }^{2} y_{4}+19910 y_{1}^{2} y_{3}+37058 y_{1}{ }^{2} y_{4}+30323 y_{1}{ }^{2} y_{5}+30323 y_{1} y_{2}{ }^{2}+12774 y_{1} y_{2} y_{3}+$ $2708 y_{1} y_{2} y_{4}+12774 y_{1} y_{2} y_{5}+37058 y_{1} y_{3}^{2}+2708 y_{1} y_{3} y_{4}+2708 y_{1} y_{3} y_{5}+19910 y_{1} y_{4}^{2}+$ $12774 y_{1} y_{4} y_{5}+y_{2}^{3}+37058 y_{2}^{2} y_{5}+30323 y_{2} y_{3}^{2}+12774 y_{2} y_{3} y_{4}+2708 y_{2} y_{3} y_{5}+37058 y_{2} y_{4}^{2}+$ $2708 y_{2} y_{4} y_{5}+19910 y_{2} y_{5}{ }^{2}+y_{3}{ }^{3}+19910 y_{3}{ }^{2} y_{5}+30323 y_{3} y_{4}{ }^{2}+12774 y_{3} y_{4} y_{5}+37058 y_{3} y_{5}{ }^{2}+$ $y_{4}^{3}+30323 y_{4} y_{5}{ }^{2}+y_{5}^{3}+19604 y_{1}{ }^{2}+42627 y_{1} y_{2}+4321 y_{1} y_{3}+4321 y_{1} y_{4}+42627 y_{1} y_{5}+$ $19604 y_{2}^{2}+42627 y_{2} y_{3}+4321 y_{2} y_{4}+4321 y_{2} y_{5}+19604 y_{3}^{2}+42627 y_{3} y_{4}+4321 y_{3} y_{5}+$ $19604 y_{4}^{2}+42627 y_{4} y_{5}+19604 y_{5}^{2}+1032 y_{1}+1032 y_{2}+1032 y_{3}+1032 y_{4}+1032 y_{5}+9254$ $f_{2}, f_{3}, f_{4}, f_{5}=$ same shape \cdots

Not Generic at all!

The system has 125 solutions.
How to use the symmetry ?

Abelian Group G

Theorem

Any finite commutative group G is uniquely isomorphic to a product $\mathbb{Z} / q_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / q_{\ell} \mathbb{Z}$ with $q_{1}|\ldots| q_{\ell}$.

Definition

Following the notations of the previous theorem, the integer $e=q_{\ell}$ is called the exponent of the group and is the lowest common multiple of the orders of the elements of the group.

When $\ell=1$ and $n=q_{1}$ so that G is the n cyclic group.

Abelian Group G

Theorem

Any finite commutative group G is uniquely isomorphic to a product $\mathbb{Z} / q_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / q_{\ell} \mathbb{Z}$ with $q_{1}|\ldots| q_{\ell}$.

Definition

Following the notations of the previous theorem, the integer $e=q_{\ell}$ is called the exponent of the group and is the lowest common multiple of the orders of the elements of the group.

When $\ell=1$ and $n=q_{1}$ so that G is the n cyclic group.

Theorem

Let G be a cyclic group of order n. Let ω be a primitive e-th root of 1 . The subgroup G is diagonalizable, meaning that there exists a matrix P in $G L_{n}(K)$, such that the group $P^{-1} G P=\left\{P^{-1} A P \mid A \in G\right\}$ is a diagonal group.

Example: cyclic Group G

Let C_{n} be the subgroup of \mathfrak{S}_{n} generated by the n-cycle $\sigma=(12 \ldots n)$. C_{n} is a cyclic group of order n, embedded in $G L_{n}(k)$ and generated by:

$$
M_{\sigma}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
1 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

The cyclic group C_{n} is diagonalizable:
Then if we denote $K=k(\omega)$ where ω is a primitive n-root of 1 , with the base-change matrix $P=\left(\omega^{j}\right)_{i, j \in\{1, \ldots, n\}}$.
The matrix associated to the cycle $(1 \ldots n)$ becomes the diagonal matrix $D_{\sigma}=\operatorname{diag}\left(\omega, \ldots, \omega^{n-1}, 1\right)$.

Grading induced by a diagonal matrix group

$$
G=\mathbb{Z} / q_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / q_{\ell} \mathbb{Z} \text { with } q_{1}|\cdots| q_{l} .
$$

Proposition

For every monomial m and for each i, there exists a unique $\mu_{i} \in\left\{0, \ldots, q_{i}-1\right\}$ such that $m^{D_{i}}=\omega^{\frac{e}{q_{i}} \mu_{i}} m$.
[-7) We take μ_{i} in $\mathbb{Z} / q_{i} \mathbb{Z}$

Grading induced by a diagonal matrix group

$$
G=\mathbb{Z} / q_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / q_{\ell} \mathbb{Z} \text { with } q_{1}|\cdots| q_{\ell} .
$$

Proposition

For every monomial m and for each i, there exists a unique $\mu_{i} \in\left\{0, \ldots, q_{i}-1\right\}$ such that $m^{D_{i}}=\omega^{\frac{e}{q_{i}} \mu_{i}} m$.

We take μ_{i} in $\mathbb{Z} / q_{i} \mathbb{Z}$

Definition

The k-tuple $\left(\mu_{1}, \ldots, \mu_{k}\right) \in \prod \mathbb{Z} / q_{i} \mathbb{Z}$ is said to be the G-degree of m and is denoted G-degree (m).

Cyclic Group G

C_{3} is the matrix group generated by the diagonal matrix $D_{\sigma}=\operatorname{Diag}\left(\omega, \omega^{2}, 1\right)$ where ω is a primitive third root of 1 . Each x_{i} has G-degree $i \bmod 3$, so

$$
G \text {-degree }\left(\prod x_{j}^{\alpha_{j}}\right)=\sum j \alpha_{j} \bmod 3
$$

Hence, $x_{1} x_{2} x_{3}$ (resp. $x_{1} x_{2}^{2}$) has G-degree 0 (resp. 2).
The repartition into same G-degree is as follows :

G-degree	0	1	2
monomials	$1, x_{3}, x_{3}^{2}, x_{1} x_{2}$	$x_{1}, x_{1} x_{3}, x_{2}^{2}$	$x_{2}, x_{2} x_{3}, x_{1}^{2}$
	$x_{3}^{3}, x_{1} x_{2} x_{3}, x_{2}^{3}, x_{1}^{3}$	$x_{1} x_{3}^{2}, x_{2}^{2} x_{3}, x_{1}^{2} x_{2}$	$x_{2} x_{3}^{2}, x_{1}^{2} x_{3}, x_{1} x_{2}^{2}$

Solving systems invariant by the action of an Abelian group We diagonalize the group:
$G=\left[\begin{array}{ccccc}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0\end{array}\right]$ compute Q s.t. $Q G Q^{-1}=\left[\begin{array}{ccccc}w^{2} & 0 & 0 & 0 & 0 \\ 0 & w^{4} & 0 & 0 & 0 \\ 0 & 0 & w & 0 & 0 \\ 0 & 0 & 0 & w^{3} & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$
where $w^{5}=1$.

Solving systems invariant by the action of an Abelian group

 We diagonalize the group:$G=\left[\begin{array}{lllll}0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0\end{array}\right]$ compute Q s.t. $Q G Q^{-1}=\left[\begin{array}{ccccc}w^{2} & 0 & 0 & 0 & 0 \\
0 & w^{4} & 0 & 0 & 0 \\
0 & 0 & w & 0 & 0 \\
0 & 0 & 0 & w^{3} & 0 \\
0 & 0 & 0 & 0 & 1\end{array}\right]$
where $w^{5}=1$. New variables $Q\left[\begin{array}{l}y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5}\end{array}\right]=\left[\begin{array}{l}x_{0} \\
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}\end{array}\right]$

$g_{1}=41 x_{0}{ }^{3}+9 x_{0} x_{1} x_{4}+7 x_{0} x_{2} x_{3}-17 x_{1}^{2} x_{3}+28 x_{1} x_{2}{ }^{2}+15 x_{2} x_{4}{ }^{2}+44 x_{3}^{2} x_{4}-21 x_{0}{ }^{2}-$
$42 x_{1} x_{4}-27 x_{2} x_{3}+22 x_{0}-4120$
$g_{2}, g_{3}, g_{4}, g_{5}=\operatorname{same}$ shape \cdots

- The new system is sparse: length $\left(g_{1}\right)=12 \ll 56=\operatorname{length}\left(f_{1}\right)$
- Support of the polys: monomials $x_{i} x_{j} x_{k}$ s.t. $i+j+k=0 \bmod n$ \longrightarrow New grading: G-degree $\left(x_{i_{1}} \cdots x_{i_{k}}\right)=i_{1}+\cdots+i_{k} \bmod n$ $g\left(w^{0} x_{0}, w^{1} x_{1}, \ldots, w^{n-1} x_{n-1}\right)=w^{G-\operatorname{degree}(g)} g\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$ \longrightarrow Here all the polynomials of G-degree 0

G-homogeneity

For algorithms: the S-polynomial of two G-homogeneous polynomials is also G-homogeneous

Definition

A polynomial f is said to be G-homogeneous if all monomials of f share the same G-degree $\left(\mu_{1}, \ldots, \mu_{k}\right)$. In this case, we set G-degree $(f)=$ G-degree $(\operatorname{LM}(f))=\left(\mu_{1}, \ldots, \mu_{k}\right)$.

G-homogeneity

For algorithms: the S-polynomial of two G-homogeneous polynomials is also G-homogeneous

Definition

A polynomial f is said to be G-homogeneous if all monomials of f share the same G-degree $\left(\mu_{1}, \ldots, \mu_{k}\right)$. In this case, we set G-degree $(f)=$ G-degree $(\operatorname{LM}(f))=\left(\mu_{1}, \ldots, \mu_{k}\right)$.

Proposition

If f is G-homogeneous and m is a monomial, then $m f$ is also G-homogeneous. Moreover, G-degree $(m f)=$ G-degree(m)+ G-degree (f).

G-homogeneity

The cornerstone of the new Abelian-F5 algorithm is that the S-polynomial of two G-homogeneous polynomials is G-homogeneous:

Theorem

Let f, g be two G-homogeneous polynomials. The S-polynomial of f and g is also G-homogeneous of G-degree: G-degree $(L M(f) \vee L M(g))$. Where $L M(f) \vee L M(g)=$ lowest common multiple of $L M(f)$ and $L M(g)$.

Test in a CAS

We consider the cyclic group C_{n} :

Home Work

- write the matrix M_{G} of G
- Compute P such that

$$
P^{-1} M_{G} P=D \text { a diagonal matrix }
$$

- write a function to change the variables
- Apply the change of variables to some interesting polynomial, for instance:

$$
x_{1}+x_{2}+\cdots+x_{n}
$$

Test 1

We will use the well known Cyclic-n problem. The ideal / generated by:

The ideal I is invariant under the cyclic group C_{n}, since each h_{i} satisfies $h_{i}^{M \sigma}=h_{i}$

Home Work

- write the equations
- change the variables
- compute the G-degree of each equations
- Are the polynomials G-homogeneous ?

Test 2:Random Systems

We consider a system of f_{1}, \ldots, f_{n} equations in $\mathbb{F}_{p}\left[x_{1}, \ldots, x_{n}\right]$ which are invariant by the action of cyclic group C_{n}

Home Work

- Generate the equations using the operator:

$$
R(f)=\frac{1}{|G|} \sum_{\sigma \in G}^{\sigma} f
$$

- change the variables
- compute the G-degree of each equations

Test 3: NTRU (basic problem of several PQC cryptosystem) p is a prime number
$f_{1}=\sum_{i=0}^{n-1} a_{i} x^{i}$ with $a_{i} \in\{0,1\}$
$f_{2}=\sum_{i=0}^{n-1} b_{i} x^{i}$ with $b_{i} \in\{0,1\}$
Then Pub $=f_{1} \times\left(f_{2}\right)^{-1} \bmod \left(x^{n}-1\right) \bmod p$
Goal: find a polynomial $f=\sum_{i=0}^{n-1} x_{i} x^{i}$ with $x_{i} \in\{0,1\}$ such that:
all the coefficients of Pub $\times f \bmod \left(x^{n}-1\right) \quad \bmod p$ are in $\{0,1\}$

Home Work

- write the original algebraic equations
- change the variables
- compute the G-degree of each equations
- Are the polynomials G-homogeneous ?

Fundamental Theorem

G is a diagonal group, and $/$ is a G-stable ideal generated by f_{1}, \ldots, f_{m}. A Grbner basis computation preserves the G-degree, but the polynomials f_{i} are not necessarily G-homogeneous. Our aim here is to prove that the G-homogeneous components of the f_{i} are in I, and so to compute a Grbner basis of I, we take the G-homogeneous components of generators of $/$ as inputs.

Fundamental Theorem

G is a diagonal group, and $/$ is a G-stable ideal generated by f_{1}, \ldots, f_{m}. A Grbner basis computation preserves the G-degree, but the polynomials f_{i} are not necessarily G-homogeneous. Our aim here is to prove that the G-homogeneous components of the f_{i} are in I, and so to compute a Grbner basis of I, we take the G-homogeneous components of generators of $/$ as inputs.

Definition

Let I be an ideal. I is said to be stable under the action of G (G-stable) if: $\forall f \in I, \forall A \in G \quad f^{A} \in I$

Fundamental Theorem

G is a diagonal group, and $/$ is a G-stable ideal generated by f_{1}, \ldots, f_{m}. A Grbner basis computation preserves the G-degree, but the polynomials f_{i} are not necessarily G-homogeneous. Our aim here is to prove that the G-homogeneous components of the f_{i} are in I, and so to compute a Grbner basis of I, we take the G-homogeneous components of generators of / as inputs.

Definition

Let / be an ideal. / is said to be stable under the action of G (G-stable) if: $\forall f \in I, \forall A \in G \quad f^{A} \in I$

Definition

An ideal J is said to be G-homogeneous if for any polynomial $f \in J$, its G-homogeneous components are also in J.

Fundamental Theorem

G is a diagonal group, and $/$ is a G-stable ideal generated by f_{1}, \ldots, f_{m}. A Grbner basis computation preserves the G-degree, but the polynomials f_{i} are not necessarily G-homogeneous. Our aim here is to prove that the G-homogeneous components of the f_{i} are in I, and so to compute a Grbner basis of I, we take the G-homogeneous components of generators of / as inputs.

Theorem

An ideal is G-homogeneous if and only if it is G-stable.

Remark

True also when $G=\{1\}$

Test 1,2,3

If $G=C_{n}$ then

$$
f=\sum_{i=0}^{n-1} f^{(i)} \quad \text { where } \quad G-\operatorname{degree}\left(f^{(i)}\right)=i
$$

Home Work

- split the equations into G-homogeneous components:

Speedup the computation

Abelian Group \approx Multi-homogeneous:
Use the new Grading to split the matrices

Instead of one matrix in degree d

$$
\mathcal{M}_{d}
$$

we can split \mathcal{M}_{d} wrt G-degree $0,1,2,3,4$.

Theorem ([F., Svartz 2013])

$\mathbf{I}=\left(f_{1}, \ldots, f_{m}\right)$ a 0-dimensional ideal, invariant under an Abelian Group
G. Divides the GB complexity by: $|G|^{3}$

Provide dedicated F_{5} and FGLM algorithms.

Abelian F5

```
\(\ldots\) Abelian- \(F_{5}\) (homogeneous-case)
Input: The set \(\hat{G}\) of \(G_{\mathscr{D}}\)-degrees, homogeneous and \(G_{\mathscr{D}}\)-homogeneous
polynomials \(\left(f_{1}, \ldots, f_{m}\right)\) with degrees \(d_{1} \leq \ldots \leq d_{m}\) and a maximal de-
gree \(D\).
Output: the elements of degree at most \(D\) of a Gröbner basis of \(\left(f_{1}, \ldots, f_{i}\right)\)
for \(i=1, \ldots, m\).
for \(i\) from 1 to \(m\) do \(\mathscr{G}_{i}:=\emptyset\) end for
for \(d\) from \(d_{1}\) to \(D\) do
    for \(g\) in \(\hat{G}\) do
        \(M_{d, 0, g}:=\emptyset, \tilde{M}_{d, 0, g}:=\emptyset\)
            for \(i\) from 1 to \(m\) do
                case
                    \(\left.d<d_{i}\right) M_{d, i, g}:=\tilde{M}_{d, i-1, g}\)
            \(\left.d=d_{i}\right)\) if \(g=\operatorname{deg}_{G_{\mathscr{Q}}}\left(f_{i}\right)\) then
                                    \(M_{d, i, g}:=\) add new row \(f_{i}\) to \(\tilde{M}_{d, i-1, g}\) with index \((i, 1)\)
                                else
                                \(M_{d, i, g}:=\tilde{M}_{d, i-1, g}\)
                            end if
            \(\left.d>d_{i}\right) M_{d, i, g}:=\) add new row \(m \cdot f_{i}\) for all monomials \(m\) of degree
\(d-d_{i}\) with \(\operatorname{deg}_{G_{\mathscr{Q}}}(m)=g-\operatorname{deg}_{G_{\mathscr{D}}}\left(f_{i}\right)\) that do not appear as leading mono-
mials in the matrix \(\tilde{M}_{d-d_{i}, i-1, u-\operatorname{deg}_{G_{\mathscr{D}}}\left(f_{i}\right)}\) to \(\tilde{M}_{d, i-1, g}\) with index \((i, m)\).
            end case
            Compute \(\tilde{M}_{d, i, g}\) by Gaussian elimination from \(M_{d, i, g}\).
            Add to \(\mathscr{G}_{i}\) all rows of \(\tilde{M}_{d, i, g}\) not reducible by \(\operatorname{LM}\left(\mathscr{G}_{i}\right)\).
            end for
    end for
end for
veturn \(C_{1} \ldots C_{0}\)
```


Faster?

Consider the following system: 5 degree 3 equations in 5 variables: invariant by the action of $G=C_{5}$ (ground field is \mathbb{F}_{65521}):
$f_{1}=$
$y_{1}^{3}+y_{2}^{3}+y_{3}^{3}+y_{4}^{3}+y_{5}^{3}+52524 y_{1} y_{5}^{2}+52524 y_{1}{ }^{2} y_{2}+52524 y_{2}{ }^{2} y_{3}+52524 y_{3}{ }^{2} y_{4}+52524 y_{4}{ }^{2} y_{5}+$ $19910 y_{2}{ }^{2} y_{4}+19910 y_{1}{ }^{2} y_{3}+37058 y_{1}{ }^{2} y_{4}+30323 y_{1}{ }^{2} y_{5}+30323 y_{1} y_{2}{ }^{2}+12774 y_{1} y_{2} y_{3}+$ $2708 y_{1} y_{2} y_{4}+12774 y_{1} y_{2} y_{5}+37058 y_{1} y_{3}^{2}+2708 y_{1} y_{3} y_{4}+2708 y_{1} y_{3} y_{5}+19910 y_{1} y_{4}{ }^{2}+$ $12774 y_{1} y_{4} y_{5}+y_{2}{ }^{3}+37058 y_{2}{ }^{2} y_{5}+30323 y_{2} y_{3}{ }^{2}+12774 y_{2} y_{3} y_{4}+2708 y_{2} y_{3} y_{5}+37058 y_{2} y_{4}{ }^{2}+$ $2708 y_{2} y_{4} y_{5}+19910 y_{2} y_{5}{ }^{2}+y_{3}{ }^{3}+19910 y_{3}{ }^{2} y_{5}+30323 y_{3} y_{4}{ }^{2}+12774 y_{3} y_{4} y_{5}+37058 y_{3} y_{5}{ }^{2}+$ $y_{4}^{3}+30323 y_{4} y_{5}^{2}+y_{5}^{3}+19604 y_{1}^{2}+42627 y_{1} y_{2}+4321 y_{1} y_{3}+4321 y_{1} y_{4}+42627 y_{1} y_{5}+$ $19604 y_{2}{ }^{2}+42627 y_{2} y_{3}+4321 y_{2} y_{4}+4321 y_{2} y_{5}+19604 y_{3}{ }^{2}+42627 y_{3} y_{4}+4321 y_{3} y_{5}+$ $19604 y_{4}^{2}+42627 y_{4} y_{5}+19604 y_{5}^{2}+1032 y_{1}+1032 y_{2}+1032 y_{3}+1032 y_{4}+1032 y_{5}+9254$
$f_{2}, f_{3}, f_{4}, f_{5}=$ same shape \cdots

The system has 125 solutions.

Solving Systems with Symmetries

Recall that we want to solve the following system: 5 degree 3 equations in 5 variables which are invariant by the action C_{5}

```
f
y}\mp@subsup{1}{1}{3}+\mp@subsup{y}{2}{3}+\mp@subsup{y}{3}{3}+\mp@subsup{y}{4}{3}+\mp@subsup{y}{5}{3}+52524\mp@subsup{y}{1}{}\mp@subsup{y}{5}{2}+52524\mp@subsup{y}{1}{2}\mp@subsup{}{}{2}\mp@subsup{y}{2}{}+52524\mp@subsup{y}{2}{2}\mp@subsup{}{}{2}\mp@subsup{y}{3}{}+52524\mp@subsup{y}{3}{2}\mp@subsup{y}{4}{}+52524\mp@subsup{y}{4}{2}\mp@subsup{y}{5}{}
19910 y2}\mp@subsup{}{2}{2}\mp@subsup{y}{4}{}+19910\mp@subsup{y}{1}{2}\mp@subsup{y}{3}{}+37058\mp@subsup{y}{1}{2}\mp@subsup{y}{4}{}+30323\mp@subsup{y}{1}{2}\mp@subsup{y}{5}{}+30323\mp@subsup{y}{1}{}\mp@subsup{y}{2}{2}+12774\mp@subsup{y}{1}{}\mp@subsup{y}{2}{}\mp@subsup{y}{3}{}
2708 y1 y2 y4+12774 y1 y2 y5 + 37058 y1 y3 2}+2708\mp@subsup{y}{1}{}\mp@subsup{y}{3}{}\mp@subsup{y}{4}{}+2708\mp@subsup{y}{1}{}\mp@subsup{y}{3}{}\mp@subsup{y}{5}{}+19910\mp@subsup{y}{1}{}\mp@subsup{y}{4}{2}
12774 y y y y y y + y2}\mp@subsup{}{}{3}+37058\mp@subsup{y}{2}{2}\mp@subsup{y}{5}{}+30323\mp@subsup{y}{2}{}\mp@subsup{y}{3}{2}+12774\mp@subsup{y}{2}{}\mp@subsup{y}{3}{}\mp@subsup{y}{4}{}+2708\mp@subsup{y}{2}{}\mp@subsup{y}{3}{}\mp@subsup{y}{5}{}+37058\mp@subsup{y}{2}{}\mp@subsup{y}{4}{2}
2708 y2 y4 y y + 19910 y2 y5
y4}\mp@subsup{}{}{3}+30323\mp@subsup{y}{4}{}\mp@subsup{y}{5}{2}+\mp@subsup{y}{5}{3}+19604\mp@subsup{y}{1}{2}+42627\mp@subsup{y}{1}{}\mp@subsup{y}{2}{}+4321\mp@subsup{y}{1}{}\mp@subsup{y}{3}{}+4321\mp@subsup{y}{1}{}\mp@subsup{y}{4}{}+42627\mp@subsup{y}{1}{}\mp@subsup{y}{5}{}
19604 y2}\mp@subsup{}{2}{2}+42627\mp@subsup{y}{2}{}\mp@subsup{y}{3}{}+4321\mp@subsup{y}{2}{}\mp@subsup{y}{4}{}+4321\mp@subsup{y}{2}{}\mp@subsup{y}{5}{}+19604\mp@subsup{y}{3}{2}+42627\mp@subsup{y}{3}{}\mp@subsup{y}{4}{}+4321\mp@subsup{y}{3}{}\mp@subsup{y}{5}{}
19604 y4}\mp@subsup{}{2}{2}+42627\mp@subsup{y}{4}{}\mp@subsup{y}{5}{}+19604\mp@subsup{y}{5}{2}+1032\mp@subsup{y}{1}{}+1032\mp@subsup{y}{2}{}+1032\mp@subsup{y}{3}{}+1032\mp@subsup{y}{4}{}+1032\mp@subsup{y}{5}{}+925
f},\mp@subsup{f}{3}{},\mp@subsup{f}{4}{},\mp@subsup{f}{5}{\prime}=\mathrm{ same shape }
```


Diagonalize the group! Change of variables

$g_{1}=41 x_{0}^{3}+9 x_{0} x_{1} x_{4}+7 x_{0} x_{2} x_{3}-17 x_{1}^{2} x_{3}+28 x_{1} x_{2}^{2}+15 x_{2} x_{4}^{2}+44 x_{3}^{2} x_{4}-21 x_{0}^{2}-$
$42 x_{1} x_{4}-27 x_{2} x_{3}+22 x_{0}-4120$
$g_{2}, g_{3}, g_{4}, g_{5}=$ same shape \cdots

New Unified Approach : Sparse Gröbner basis

with PJ Spaenlehauer and J Svartz - 2014

Unified approach based on monomial sparsity

- Consider only monomials in the initial Support: polytope \mathcal{P}
- Multiply these monomials $\rightsquigarrow 2 \mathcal{P}=\left\{u \times v \mid(u, v) \in \mathcal{P}^{2}\right\}$

New Unified Approach : Sparse Gröbner basis

 with PJ Spaenlehauer and J Svartz - 2014Unified approach based on monomial sparsity

- Consider only monomials in the initial Support: polytope \mathcal{P}
- Multiply these monomials $\rightsquigarrow 2 \mathcal{P}=\left\{u \times v \mid(u, v) \in \mathcal{P}^{2}\right\}$

New Approach! Sparse Polynomials

with PJ Spaenlehauer and J Svartz

We want to keep the initial structure!

New Approach! Sparse Polynomials

We want to keep the initial structure!

- Monomials of degree 1:
$\mathcal{M}_{1}=\operatorname{Support}(f)$
- Monomials of degree 2:
$\mathcal{M}_{2}=\{u \times v \mid(u, v) \in$ $\left.\mathcal{M}_{1} \times \mathcal{M}_{1}\right\}$
- Monomials of degree d:

$$
\begin{aligned}
& \mathcal{M}_{d}=\{u \times v \mid(u, v) \in \\
& \left.\mathcal{M}_{d-1} \times \mathcal{M}_{1}\right\}
\end{aligned}
$$

New Approach! Sparse Polynomials

We want to keep the initial structure!

- Monomials of degree 1 : $\mathcal{M}_{1}=\operatorname{Support}(f)$
- Monomials of degree 2: $\mathcal{M}_{2}=\{u \times v \mid(u, v) \in$ $\left.\mathcal{M}_{1} \times \mathcal{M}_{1}\right\}$
- Monomials of degree d:
$\mathcal{M}_{d}=\{u \times v \mid(u, v) \in$ $\left.\mathcal{M}_{d-1} \times \mathcal{M}_{1}\right\}$

Macaulay Matrix in degree d

all products $t f_{i}, t \in \mathcal{M}_{d-\operatorname{deg}\left(f_{i}\right)}$

New Approach! Sparse Polynomials

We want to keep the initial structure!

- dedicated matrix- F_{5} algorithm

Goal

Under algebraic assumptions: m eqs with the same support

- complexity ?
- Hibert Series?

Solving with symmetries using sparsity

Initial support $\mathcal{P}=\left\{h_{1}, \ldots, h_{12}\right\}=\operatorname{Support}\left(g_{i}\right)=\left\{x_{i} x_{j} x_{k}\right.$ s.t.
$i+j+k=0 \bmod 5\} \longrightarrow \# \mathcal{P}=12$
We have to estimate $d_{\text {max }}$?

- Monomials of degree 1: \#P = 12
- Monomials of degree 2 :

$$
2 \mathcal{P}=\{u \times v \mid(u, v) \in \mathcal{P} \times \mathcal{P}\} \longrightarrow \# 2 \mathcal{P}=68
$$

- Monomials of degree d: $d \mathcal{P}=\{u \times v \mid(u, v) \in(d-1) \mathcal{P} \times \mathcal{P}\}$

Compute the Hilbert series of the monomial ring:

$$
H_{R}(z)=1+\sum_{d>0} \#(d \mathcal{P}) z^{d}=\frac{z^{4}+6 z^{3}+11 z^{2}+6 z+1}{(1-z)^{6}}
$$

Compute the Hilbert series of the monomial ring:

$$
\begin{aligned}
H_{R}(z) & =1+\sum_{d>0} \# \mathcal{M}_{d} z^{d}=\frac{z^{4}+6 z^{3}+11 z^{2}+6 z+1}{(1-z)^{6}} \\
& =1+12 z+68 z^{2}+254 z^{3}+730 z^{4}+1756 z^{5}+\cdots
\end{aligned}
$$

Since we have 5 equations of "degree" 1, the Hilbert series is

$$
\begin{aligned}
H(z) & =H_{R}(z)(1-z)^{5} \\
& =1+7 z+18 z^{2}+24 z^{3}+25 z^{4}+25 z^{5}+25 z^{6}+\cdots
\end{aligned}
$$

Hence we have only $25=\frac{125}{|G|}$ solutions and the maximal degree $d_{\max }=4$.

We can run the sparse matrix F_{5} and compute the minimal polynomial of M_{t} (where $t=x_{0}^{2}$) of degree 25:
$t^{25}+62732 t^{24}+26240 t^{23}+63778 t^{22}+38558 t^{21}+9283 h_{8}{ }^{20}+29068 t^{19}+49606 t^{18}+34528 t^{17}+22383 t^{16}+$ $11568 h_{8}{ }^{15}+8861 t^{14}+38583 t^{13}+60089 t^{12}+23443 t^{11}+62330 h_{8}{ }^{10}+38047 t^{9}+41549 t^{8}+42497 t^{7}+32676 t^{6}+$ $13919 t^{5}+22256 t^{4}+25537 t^{3}+61988 t^{2}+108 t+60264$ then recover the values of $m \in \mathcal{P}$, and the values of $x_{0}, x_{1}, \ldots, x_{4}$.

Références I

固 B．Buchberger．
An algorithm for finding the basis elements in the residue class ring modulo a zero dimensional polynomial ideal．
Journal of Symbolic Computation，41（3－4）：475－511， 32006.
围 Buchberger B．
Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal． PhD thesis，Innsbruck， 1965.
圊 Buchberger B．
An Algorithmical Criterion for the Solvability of Algebraic Systems． Aequationes Mathematicae，4（3）：374－383， 1970. （German）．
B Cox D．，Little J．，and O＇Shea D． Ideals，Varieties and Algorithms． Springer Verlag，New York， 1992.

