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Structured Systems

Symmetries



System invariant by the action of an Abelian group
Definition

Let I be an ideal. I is said to be stable under the action of G (G-stable)
if: @f P I,@A P G f A P I

Action of GLnpkq on polynomials.
G is a finite subgroup of GLnpkq.
Let X be the column vector whose entries are x1, . . . , xn.

For f a polynomial and A P G, let f A be the polynomial obtained by
substituting the components of A.X to x1, . . . , xn.
Since pf AqB “ f AB, we obtain an action of G on the ring of polynomials

Remark
The action of G preserves the homogeneous components.

Main focus: G is an Abelian Group



System invariant by the action of an Abelian group

Consider the following system: 5 degree 3 equations in 5 variables:
invariant by the action of G “ C5 (ground field is F65521):
f1 “

y3
1 `y3

2 `y3
3 `y3

4 `y3
5 `52524 y1 y5

2 ` 52524 y1
2y2 ` 52524 y2

2y3 ` 52524 y3
2y4 ` 52524 y4

2y5`

19910 y2
2y4 ` 19910 y1

2y3 ` 37058 y1
2y4 ` 30323 y1

2y5 ` 30323 y1 y2
2 ` 12774 y1 y2 y3 `

2708 y1 y2 y4 ` 12774 y1 y2 y5 ` 37058 y1 y3
2 ` 2708 y1 y3 y4 ` 2708 y1 y3 y5 ` 19910 y1 y4

2 `

12774 y1 y4 y5 `y2
3 `37058 y2

2y5 `30323 y2 y3
2 `12774 y2 y3 y4 `2708 y2 y3 y5 `37058 y2 y4

2 `

2708 y2 y4 y5 `19910 y2 y5
2 `y3

3 `19910 y3
2y5 `30323 y3 y4

2 `12774 y3 y4 y5 `37058 y3 y5
2 `

y4
3 ` 30323 y4 y5

2 ` y5
3 ` 19604 y1

2 ` 42627 y1 y2 ` 4321 y1 y3 ` 4321 y1 y4 ` 42627 y1 y5 `

19604 y2
2 ` 42627 y2 y3 ` 4321 y2 y4 ` 4321 y2 y5 ` 19604 y3

2 ` 42627 y3 y4 ` 4321 y3 y5 `

19604 y4
2 ` 42627 y4 y5 ` 19604 y5

2 ` 1032 y1 ` 1032 y2 ` 1032 y3 ` 1032 y4 ` 1032 y5 ` 9254

f2, f3, f4, f5 “ same shape ¨ ¨ ¨

Not Generic at all!
The system has 125 solutions.

How to use the symmetry ?
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Abelian Group G
Theorem

Any finite commutative group G is uniquely isomorphic to a product
Z{q1Z ˆ ¨ ¨ ¨ ˆ Z{qℓZ with q1| . . . |qℓ.

Definition

Following the notations of the previous theorem, the integer e “ qℓ is
called the exponent of the group and is the lowest common multiple of
the orders of the elements of the group.

When ℓ “ 1 and n “ q1 so that G is the n cyclic group.

Theorem

Let G be a cyclic group of order n. Let ω be a primitive e-th root of 1.
The subgroup G is diagonalizable, meaning that there exists a matrix
P in GLnpK q, such that the group P´1G P “ tP´1A P | A P Gu is a
diagonal group.
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Example: cyclic Group G

Let Cn be the subgroup of Sn generated by the n-cycle σ “ p1 2 . . . nq.
Cn is a cyclic group of order n, embedded in GLnpkq and generated by:

Mσ“

¨

˚

˚

˝

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
1 0 0 . . . 0

˛

‹

‹

‚

The cyclic group Cn is diagonalizable:
Then if we denote K “ kpωq where ω is a primitive n-root of 1, with the
base-change matrix P “ pωijqi,jPt1,...,nu.
The matrix associated to the cycle p1 . . . nq becomes the diagonal
matrix Dσ “ diagpω, . . . , ωn´1,1q.



Grading induced by a diagonal matrix group

G “ Z{q1Z ˆ ¨ ¨ ¨ ˆ Z{qℓZ with q1| . . . |qℓ.

Proposition

For every monomial m and for each i, there exists a unique
µi P t0, . . . ,qi ´ 1u such that mDi “ ω

e
qi
µi m.

☞ We take µi in Z{qiZ

Definition

The k -tuple pµ1, . . . , µk q P
ś

Z{qiZ is said to be the G-degree of m and
is denoted G´degreepmq.
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Cyclic Group G

C3 is the matrix group generated by the diagonal matrix
Dσ “ Diagpω, ω2,1q where ω is a primitive third root of 1.
Each xi has G-degree i mod 3, so

G-degreep
ź

xαj
j q “

ÿ

j αj mod 3

Hence, x1x2x3 (resp. x1x2
2 ) has G-degree 0 (resp. 2).

The repartition into same G-degree is as follows :

G-degree 0 1 2
monomials 1, x3, x2

3 , x1x2 x1, x1x3, x2
2 x2, x2x3, x2

1
x3

3 , x1x2x3, x3
2 , x

3
1 x1x2

3 , x
2
2 x3, x2

1 x2 x2x2
3 , x

2
1 x3, x1x2

2



Solving systems invariant by the action of an Abelian group
We diagonalize the group:

G “

»

—

—

—

—

—

—

—

—

–

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

compute Q s.t. Q G Q´1 “

»

—

—

—

—

—

—

—

—

—

–

w2 0 0 0 0

0 w4 0 0 0

0 0 w 0 0

0 0 0 w3 0

0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where w5 “ 1. ☞ New variables Q

»

—

—

—

–

y1
y2
y3
y4
y5

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

x0
x1
x2
x3
x4

fi

ffi

ffi

ffi

fl

g1 “ 41 x0
3 ` 9 x0 x1 x4 ` 7 x0 x2 x3 ´ 17 x1

2x3 ` 28 x1 x2
2 ` 15 x2 x4

2 ` 44 x3
2x4 ´ 21 x0

2 ´

42 x1 x4 ´ 27 x2 x3 ` 22 x0 ´ 4120
g2, g3, g4, g5 “ same shape ¨ ¨ ¨

The new system is sparse: lengthpg1q “ 12 ! 56 “ lengthpf1q

Support of the polys: monomials xixjxk s.t. i ` j ` k “ 0 mod n
ÝÑ New grading: G-degreepxi1 ¨ ¨ ¨ xik q “ i1 ` ¨ ¨ ¨ ` ik mod n
gpw0x0,w1x1, . . . ,wn´1xn´1q “ wG´degreepgqgpx0, x1, . . . , xn´1q

ÝÑ Here all the polynomials of G-degree 0



Solving systems invariant by the action of an Abelian group
We diagonalize the group:

G “

»

—

—

—

—

—

—

—

—

–

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

compute Q s.t. Q G Q´1 “

»

—

—

—

—

—

—

—

—

—

–

w2 0 0 0 0

0 w4 0 0 0

0 0 w 0 0

0 0 0 w3 0

0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where w5 “ 1. ☞ New variables Q

»

—

—

—

–

y1
y2
y3
y4
y5

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

x0
x1
x2
x3
x4

fi

ffi

ffi

ffi

fl

g1 “ 41 x0
3 ` 9 x0 x1 x4 ` 7 x0 x2 x3 ´ 17 x1

2x3 ` 28 x1 x2
2 ` 15 x2 x4

2 ` 44 x3
2x4 ´ 21 x0

2 ´

42 x1 x4 ´ 27 x2 x3 ` 22 x0 ´ 4120
g2, g3, g4, g5 “ same shape ¨ ¨ ¨

The new system is sparse: lengthpg1q “ 12 ! 56 “ lengthpf1q

Support of the polys: monomials xixjxk s.t. i ` j ` k “ 0 mod n
ÝÑ New grading: G-degreepxi1 ¨ ¨ ¨ xik q “ i1 ` ¨ ¨ ¨ ` ik mod n
gpw0x0,w1x1, . . . ,wn´1xn´1q “ wG´degreepgqgpx0, x1, . . . , xn´1q

ÝÑ Here all the polynomials of G-degree 0



G-homogeneity

For algorithms: the S-polynomial of two G-homogeneous polynomials
is also G-homogeneous

Definition

A polynomial f is said to be G-homogeneous if all monomials of f
share the same G-degree pµ1, . . . , µk q. In this case, we set
G-degreepf q “ G-degreepLMpf qq “ pµ1, . . . , µk q.

Proposition

If f is G-homogeneous and m is a monomial, then m f is also
G-homogeneous. Moreover, G-degreepm f q “ G-degreepmq`

G-degreepf q.
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G-homogeneity

The cornerstone of the new Abelian-F5 algorithm is that the
S-polynomial of two G-homogeneous polynomials is G-homogeneous:

Theorem

Let f ,g be two G-homogeneous polynomials. The S-polynomial of f
and g is also G-homogeneous of G-degree: G-degreepLMpf q _ LMpgqq.
Where LMpf q _ LMpgq “ lowest common multiple of LMpf q and LMpgq.



Test in a CAS

We consider the cyclic group Cn:

Home Work
write the matrix MG of G
Compute P such that

P´1 MG P “ D a diagonal matrix

write a function to change the variables
Apply the change of variables to some interesting polynomial, for
instance:

x1 ` x2 ` ¨ ¨ ¨ ` xn



Test 1
We will use the well known Cyclic-n problem. The ideal I generated by:

pIq

$

’

’

’

’

’

&

’

’

’

’

’

%

f1 “ x1 ` ¨ ¨ ¨ ` xn
f2 “ x1x2 ` x2x3 ` ¨ ¨ ¨ ` xnx1
...
fn´1 “ x1x2 . . . xn´1 ` x2 . . . xnx1 ` ¨ ¨ ¨ ` xnx1 . . . xn´2
fn “ x1x2 . . . xn´1xn ´ 1

The ideal I is invariant under the cyclic group Cn, since each hi
satisfies hMσ

i “ hi

Home Work
write the equations
change the variables
compute the G-degree of each equations
Are the polynomials G-homogeneous ?



Test 2:Random Systems

We consider a system of f1, . . . , fn equations in Fprx1, . . . , , xns which
are invariant by the action of cyclic group Cn

Home Work
Generate the equations using the operator:

Rpf q “
1

|G|

σ
ÿ

σPG

f

change the variables
compute the G-degree of each equations



Test 3: NTRU (basic problem of several PQC cryptosystem)
p is a prime number
f1 “

řn´1
i“0 aix i with ai P t0,1u

f2 “
řn´1

i“0 bix i with bi P t0,1u

Then Pub “ f1 ˆ pf2q´1 mod pxn ´ 1q mod p

Goal: find a polynomial f “
řn´1

i“0 xix i with xi P t0,1u such that:

all the coefficients of Pub ˆ f mod pxn ´ 1q mod p are in t0,1u

Home Work
write the original algebraic equations
change the variables
compute the G-degree of each equations
Are the polynomials G-homogeneous ?



Fundamental Theorem

G is a diagonal group, and I is a G-stable ideal generated by f1, . . . , fm.
A Grbner basis computation preserves the G-degree, but the
polynomials fi are not necessarily G-homogeneous. Our aim here is to
prove that the G-homogeneous components of the fi are in I, and so to
compute a Grbner basis of I, we take the G-homogeneous
components of generators of I as inputs.

Definition

Let I be an ideal. I is said to be stable under the action of G (G-stable)
if: @f P I,@A P G f A P I

Definition

An ideal J is said to be G-homogeneous if for any polynomial f P J, its
G-homogeneous components are also in J.
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Fundamental Theorem

G is a diagonal group, and I is a G-stable ideal generated by f1, . . . , fm.
A Grbner basis computation preserves the G-degree, but the
polynomials fi are not necessarily G-homogeneous. Our aim here is to
prove that the G-homogeneous components of the fi are in I, and so to
compute a Grbner basis of I, we take the G-homogeneous
components of generators of I as inputs.

Theorem
An ideal is G-homogeneous if and only if it is G-stable.

Remark
True also when G “ t1u



Test 1,2,3

If G “ Cn then

f “

n´1
ÿ

i“0

f piq where G ´ degreepf piqq “ i

Home Work
split the equations into G-homogeneous components:



Speedup the computation

Abelian Group « Multi-homogeneous :
Use the new Grading to split the matrices

Instead of one matrix in degree d
Md

we can split Md wrt G-degree 0,1,2,3,4.

Theorem ([F., Svartz 2013])

I “ pf1, . . . , fmq a 0-dimensional ideal, invariant under an Abelian Group
G. Divides the GB complexity by: |G|3

☞ Provide dedicated F5 and FGLM algorithms.



Abelian F5



Faster?

Consider the following system: 5 degree 3 equations in 5 variables:
invariant by the action of G “ C5 (ground field is F65521):
f1 “

y3
1 `y3

2 `y3
3 `y3

4 `y3
5 `52524 y1 y5

2 ` 52524 y1
2y2 ` 52524 y2

2y3 ` 52524 y3
2y4 ` 52524 y4

2y5`

19910 y2
2y4 ` 19910 y1

2y3 ` 37058 y1
2y4 ` 30323 y1

2y5 ` 30323 y1 y2
2 ` 12774 y1 y2 y3 `

2708 y1 y2 y4 ` 12774 y1 y2 y5 ` 37058 y1 y3
2 ` 2708 y1 y3 y4 ` 2708 y1 y3 y5 ` 19910 y1 y4

2 `

12774 y1 y4 y5 `y2
3 `37058 y2

2y5 `30323 y2 y3
2 `12774 y2 y3 y4 `2708 y2 y3 y5 `37058 y2 y4

2 `

2708 y2 y4 y5 `19910 y2 y5
2 `y3

3 `19910 y3
2y5 `30323 y3 y4

2 `12774 y3 y4 y5 `37058 y3 y5
2 `

y4
3 ` 30323 y4 y5

2 ` y5
3 ` 19604 y1

2 ` 42627 y1 y2 ` 4321 y1 y3 ` 4321 y1 y4 ` 42627 y1 y5 `

19604 y2
2 ` 42627 y2 y3 ` 4321 y2 y4 ` 4321 y2 y5 ` 19604 y3

2 ` 42627 y3 y4 ` 4321 y3 y5 `

19604 y4
2 ` 42627 y4 y5 ` 19604 y5

2 ` 1032 y1 ` 1032 y2 ` 1032 y3 ` 1032 y4 ` 1032 y5 ` 9254

f2, f3, f4, f5 “ same shape ¨ ¨ ¨

The system has 125 solutions.



Solving Systems with Symmetries
Recall that we want to solve the following system: 5 degree 3
equations in 5 variables which are invariant by the action C5
f1 “

y3
1 `y3

2 `y3
3 `y3

4 `y3
5 `52524 y1 y5

2 `52524 y1
2y2 `52524 y2

2y3 `52524 y3
2y4 `52524 y4

2y5 `

19910 y2
2y4 ` 19910 y1

2y3 ` 37058 y1
2y4 ` 30323 y1

2y5 ` 30323 y1 y2
2 ` 12774 y1 y2 y3 `

2708 y1 y2 y4 ` 12774 y1 y2 y5 ` 37058 y1 y3
2 ` 2708 y1 y3 y4 ` 2708 y1 y3 y5 ` 19910 y1 y4

2 `

12774 y1 y4 y5 `y2
3 `37058 y2

2y5 `30323 y2 y3
2 `12774 y2 y3 y4 `2708 y2 y3 y5 `37058 y2 y4

2 `

2708 y2 y4 y5 `19910 y2 y5
2 `y3

3 `19910 y3
2y5 `30323 y3 y4

2 `12774 y3 y4 y5 `37058 y3 y5
2 `

y4
3 ` 30323 y4 y5

2 ` y5
3 ` 19604 y1

2 ` 42627 y1 y2 ` 4321 y1 y3 ` 4321 y1 y4 ` 42627 y1 y5 `

19604 y2
2 ` 42627 y2 y3 ` 4321 y2 y4 ` 4321 y2 y5 ` 19604 y3

2 ` 42627 y3 y4 ` 4321 y3 y5 `

19604 y4
2 ` 42627 y4 y5 ` 19604 y5

2 ` 1032 y1 ` 1032 y2 ` 1032 y3 ` 1032 y4 ` 1032 y5 ` 9254

f2, f3, f4, f5 “ same shape ¨ ¨ ¨

Diagonalize the group !
Change of variables

g1 “ 41 x0
3 ` 9 x0 x1 x4 ` 7 x0 x2 x3 ´ 17 x1

2x3 ` 28 x1 x2
2 ` 15 x2 x4

2 ` 44 x3
2x4 ´ 21 x0

2 ´

42 x1 x4 ´ 27 x2 x3 ` 22 x0 ´ 4120

g2, g3, g4, g5 “ same shape ¨ ¨ ¨

☞ Use the sparsity !



New Unified Approach : Sparse Gröbner basis
with PJ Spaenlehauer and J Svartz - 2014

Unified approach based on monomial sparsity

● Consider only monomials in the initial Support: polytope P
● Multiply these monomials⇝ 2P “ tu ˆ v | pu, vq P P2u

x

y
P

x

2P

x

y

3P

f “Dense

x

y

P

f “Dense

x

y

2P

f “Dense

x3P
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x

y
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New Approach ! Sparse Polynomials
with PJ Spaenlehauer and J Svartz

f “c0`c1x`c2xy`c3x2`c4x2y`c5x2y2

x

y

or

f “c0`c1x2`c2xy`c3y2

x

y

We want to keep the initial structure!
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New Approach ! Sparse Polynomials

f “c0`c1x`c2xy`c3x2`c4x2y`c5x2y2

x

y

or

f “c0`c1x2`c2xy`c3y2

x

y

We want to keep the initial structure!

Monomials of degree 1:
M1 “ Supportpf q

Monomials of degree 2:
M2 “ tu ˆ v | pu, vq P

M1 ˆ M1u

. . .
Monomials of degree d:
Md “ tu ˆ v | pu, vq P

Md´1 ˆ M1u

Macaulay Matrix in degree d

Md “

¨

˚

˚

˚

˚

˚

˚

˝

m1 ą m2 ą ¨ ¨ ¨ ą mk

t1,1f1 . . .
t1,2f1 . . .

... coeff pt fi ,mj q

t2,1f2 . . .
...

...

˛

‹

‹

‹

‹

‹

‹

‚

all products t fi , t P Md´degpfi q



New Approach ! Sparse Polynomials

f “c0`c1x`c2xy`c3x2`c4x2y`c5x2y2

x

y

or

f “c0`c1x2`c2xy`c3y2

x

y

We want to keep the initial structure!

● dedicated matrix-F5
algorithm

Goal
Under algebraic assumptions:
m eqs with the same support

● complexity ?
● Hibert Series?

Macaulay Matrix in degree d

Md “

¨

˚

˚

˚

˚

˚

˚

˝

m1 ą m2 ą ¨ ¨ ¨ ą mk

t1,1f1 . . .
t1,2f1 . . .

... coeff pt fi ,mj q

t2,1f2 . . .
...

...

˛

‹

‹

‹

‹

‹

‹

‚

all products t fi , t P Md´degpfi q



Solving with symmetries using sparsity

Initial support P “ th1, . . . ,h12u “ Supportpgiq “ txixjxk s.t.
i ` j ` k “ 0 mod 5u ÝÑ #P “ 12

We have to estimate dmax ?
Monomials of degree 1: #P “ 12

Monomials of degree 2:
2P “ tu ˆ v | pu, vq P P ˆ Pu ÝÑ #2P “ 68
. . .
Monomials of degree d: dP “ tu ˆ v | pu, vq P pd ´ 1qP ˆ Pu

Compute the Hilbert series of the monomial ring:

HRpzq “ 1 `
ÿ

dą0

#pdPq zd “
z4 ` 6 z3 ` 11 z2 ` 6 z ` 1

p1 ´ zq
6



Compute the Hilbert series of the monomial ring:

HRpzq “ 1 `
ř

dą0 #Md zd “ z4`6 z3`11 z2`6 z`1
p1´zq

6

“ 1 ` 12 z ` 68 z2 ` 254 z3 ` 730 z4 ` 1756 z5 ` ¨ ¨ ¨

Since we have 5 equations of “degree” 1, the Hilbert series is

Hpzq “ HRpzqp1 ´ zq5

“ 1 ` 7 z ` 18 z2 ` 24 z3 ` 25 z4 ` 25 z5 ` 25 z6 ` ¨ ¨ ¨

Hence we have only 25 “ 125
|G|

solutions
and the maximal degree dmax “ 4.

☞ We can run the sparse matrix F5 and compute the minimal
polynomial of Mt (where t “ x2

0 ) of degree 25:
t25 ` 62732 t24 ` 26240 t23 ` 63778 t22 ` 38558 t21 ` 9283 h8

20 ` 29068 t19 ` 49606 t18 ` 34528 t17 ` 22383 t16 `

11568 h8
15 ` 8861 t14 ` 38583 t13 ` 60089 t12 ` 23443 t11 ` 62330 h8

10 ` 38047 t9 ` 41549 t8 ` 42497 t7 ` 32676 t6 `

13919 t5 ` 22256 t4 ` 25537 t3 ` 61988 t2 ` 108 t ` 60264 then recover the values of m P P,
and the values of x0, x1, . . . , x4.
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