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System invariant by the action of an Abelian group

Let / be an ideal. / is said to be stable under the action of G (G-stable)
if: Vfe IVAe G fAel

Action of GL,(k) on polynomials.
G is a finite subgroup of GLj(k).
Let X be the column vector whose entries are x4, ..., x,.

For f a polynomial and A € G, let f be the polynomial obtained by

substituting the components of A. X to xq,..., Xp.
Since ()8 = 4B we obtain an action of G on the ring of polynomials

The action of G preserves the homogeneous components.

| Main focus: G is an Abelian Group |




System invariant by the action of an Abelian group

Consider the following system: 5 degree 3 equations in 5 variables:
invariant by the action of G = Cs (ground field is Fgs521):

fi =

V3 +yS+y3+yS+yS+52524 vy ys2 + 52524 y12y, + 52524 yo2ys + 52524 y32y, + 52524 ya2ys+
19910 y22y4 4+ 19910 y12y5 + 37058 y12y, + 30323 y42y5 + 30323 yq yo2 + 12774 y1 yo y3 +
2708 y1 Yo ya + 12774 y4 yo y5 + 37058 y4 y32 + 2708 y1 y3 ¥4 + 2708 y1 y3 y5 + 19910 y4 }/42 +
12774 y1 y4 Y5+ Y23 +37058 o2 y5 +30323 yo 32+ 12774 Yo 3 4+ 2708 yo y3 ¥5+ 37058 yp ya2 +
2708 yo y4 5+ 19910 o y52 + y3° + 19910 y32y5 + 30323 y3 ys2 + 12774 y3 y4 y5 + 37058 y3 y5° +
ya3 + 30323 y4 y52 + y5° + 19604 y12 + 42627 yq yo + 4321 y4 ya3 + 4321 yy y4 + 42627 y4 y5 +
19604 }/22 + 42627 Yoys + 4321 Yo Va4 + 4321 Yo y5 + 19604 y32 + 42627 Y3 Y4 + 4321 Y3 ys +
19604 y42 + 42627 y4 y5 + 19604 y52 + 1032 4 + 1032 )5 + 1032 y5 + 1032 y4 + 1032 y5 + 9254

fo, f3, f4, f = same shape - - -



System invariant by the action of an Abelian group

Consider the following system: 5 degree 3 equations in 5 variables:
invariant by the action of G = Cs (ground field is Fgs521):

fi =

V3 +yS+y3+yS+yS+52524 vy ys2 + 52524 y12y, + 52524 yo2ys + 52524 y32y, + 52524 ya2ys+
19910 y22y4 4+ 19910 y12y5 + 37058 y12y, + 30323 y42y5 + 30323 yq yo2 + 12774 y1 yo y3 +
2708 y1 yo Y4 + 12774y yo y5 + 37058 yq y32 + 2708 yq ya ya + 2708 yq ya y5 + 19910 yy y42 +
12774 y1 y4 Y5+ Y23 +37058 o2 y5 +30323 yo 32+ 12774 Yo 3 4+ 2708 yo y3 ¥5+ 37058 yp ya2 +
2708 yo y4 5+ 19910 o y52 + y3° + 19910 y32y5 + 30323 y3 ys2 + 12774 y3 y4 y5 + 37058 y3 y5° +
ya3 + 30323 y4 y52 + y5° + 19604 y12 + 42627 yq yo + 4321 y4 ya3 + 4321 yy y4 + 42627 y4 y5 +
19604 }/22 + 42627 Yoys + 4321 Yo Va4 + 4321 Yo y5 + 19604 y32 + 42627 Y3 Y4 + 4321 Y3 ys +
19604 y42 + 42627 4 ys + 19604 y52 + 1032 y; + 1032 yo + 1032 y5 + 1032y, + 1032 y5 + 9254

fo, f3, f4, f = same shape - - -

Not Generic at all!
The system has 125 solutions.
How to use the symmetry ?




Abelian Group G

Any finite commutative group G is uniquely isomorphic to a product
Z/q1Z X ooo ¥ Z/qKZ with a1 | a0 ‘qg

Following the notations of the previous theorem, the integer e = q; is
called the exponent of the group and is the lowest common multiple of
the orders of the elements of the group.

When ¢/ = 1 and n = g so that G is the n cyclic group.



Abelian Group G

Any finite commutative group G is uniquely isomorphic to a product
Z/Q1Z X ooo ¥ Z/QgZ with a1 | a0 ‘QZ

Following the notations of the previous theorem, the integer e = q; is
called the exponent of the group and is the lowest common multiple of
the orders of the elements of the group.

When ¢/ = 1 and n = g so that G is the n cyclic group.

Let G be a cyclic group of order n. Letw be a primitive e-th root of 1.
The subgroup G is diagonalizable, meaning that there exists a matrix
P in GLy(K), such that the group PGP = {P~'AP | Ac G} is a
diagonal group.




Example: cyclic Group G

Let C, be the subgroup of &, generated by the n-cycle o = (12 ... n).
Cy is a cyclic group of order n, embedded in GL,(k) and generated by:

o 1 0 ... O
o o1 ... O
Mo=1: + + .
o 0 0o ... 1
1 0 O 0

The cyclic group C, is diagonalizable:

Then if we denote K = k(w) where w is a primitive n-root of 1, with the
base-change matrix P = (w/); jc(1. _n.-

The matrix associated to the cycle (1...n) becomes the diagonal
matrix D, = diag(w,...,w"1,1).



Grading induced by a diagonal matrix group

G=7Z/Q7Z x --- x Z/quZ with q¢| ... |qy.

For every monomial m and for each i, there exists a unique

;€ 1{0,...,q; — 1} such that mP = wa"'m.

" We take i in7Z/q;Z



Grading induced by a diagonal matrix group

G=7Z/Q7Z x --- x Z/quZ with q¢| ... |qy.

For every monomial m and for each i, there exists a unique

;€ 1{0,...,q; — 1} such that mP = wa"'m.

" We take i in7Z/q;Z

The k-tuple (4, ..., 1) € || Z/qiZ is said to be the G-degree of m and
is denoted G—degree(m).




Cyclic Group G

Cs is the matrix group generated by the diagonal matrix
D, = Diag(w,w?, 1) where w is a primitive third root of 1.
Each x; has G-degree i mod 3, so

G-degree(| [ x;") = > }j; mod 3

Hence, x1x2X3 (resp. x1x5) has G-degree 0 (resp. 2).

The repartition into same G-degree is as follows :

| G-degree 0 1 2 |
monomials | 1, X3, X5, X1 X X1, X1 X3, X5 Xo, XoX3, X%
3 3,3 2 v 2y 42 2 2 2
X3, X1X2X3, X5, X{ | X1 X3, X5 X3, Xy X2 | XoX3, X1 X3, X1 X5




Solving systems invariant by the action of an Abelian group
We diagonalize the group:

0O 1 0 0 O w2 0 0 0O 0
0O 0 1 0 O 0 wt 0 0O 0
G=|0 0 0 1 0 |computeQst. QGQ'=| 0 0 w 0 0
00 0 0 1 0 0 0 wd o
100 00 ¥ Xo o o0 o0 o 1
Y X1
where w° = 1. I New variables Q | y3 | = | X
Ya X3

Y5 X4



Solving systems invariant by the action of an Abelian group
We diagonalize the group:

0 1 0 0 O w2 0 0 0 O
0 0 1 0 O 0 w* 0 0 ©0
G=|0 0 0 1 0 |computeQst.QGQ'=| 0 0 w 0 O
00 0 0 1 0 0 0 wd o
1 0 0 0 O 12 X0 0 o 0 0 1
Y Xq
where w° = 1. I New variables Q | y3 | = | xo
Ya X3

6 X4

g1 = 41 X0 + 9 X0 X1 Xq + 7 X X2 X3 — 17 X1 X3 + 28 X1 X2 + 15 X2 X% + 44 x5%x4 — 21 Xo?
42 X1 X4 — 27 Xo X3 + 22 Xg — 4120

92,93, 94, g5 = same shape - - -

e The new system is sparse: length(gy) = 12 « 56 = length(f;)

e Support of the polys: monomials x;x;xx s.t. i +j+ k =0 mod n
— New grading: G-degree(x;, ---Xx; ) =iy +---+ ik mod n
g(WOX07 w!' X150, Wni‘]Xn*'l) = WGidegree(g)g(Xm X150, an'l)
— Here all the polynomials of G-degree 0




G-homogeneity

For algorithms: the S-polynomial of two G-homogeneous polynomials
is also G-homogeneous

A polynomial f is said to be G-homogeneous if all monomials of f
share the same G-degree (1.4, ..., 11x). In this case, we set
G-degree(f) = G-degree(LM(f)) = (uq, .-, fk)-




G-homogeneity

For algorithms: the S-polynomial of two G-homogeneous polynomials
is also G-homogeneous

A polynomial f is said to be G-homogeneous if all monomials of f
share the same G-degree (1.4, ..., 11x). In this case, we set
G-degree(f) = G-degree(LM(f)) = (uq, .-, fk)-

If f is G-homogeneous and m is a monomial, then mf is also
G-homogeneous. Moreover, G-degree(m f) = G-degree(m)+
G-degree(f).




G-homogeneity

The cornerstone of the new Abelian-F5 algorithm is that the
S-polynomial of two G-homogeneous polynomials is G-homogeneous:

Letf, g be two G-homogeneous polynomials. The S-polynomial of f
and g is also G-homogeneous of G-degree: G-degree(LM(f) v LM(g)).
Where LM(f) v LM(g) = lowest common multiple of LM(f) and LM(g).




Test in a CAS

We consider the cyclic group Cj:

o write the matrix Mgz of G
e Compute P such that

P~" Mg P = D a diagonal matrix

e write a function to change the variables

e Apply the change of variables to some interesting polynomial, for
instance:
X1+ Xo+ -+ Xp




Test 1

We will use the well known Cyclic-n problem. The ideal / generated by:
fi=X4+ -+ Xp

fo = X{Xo + XoX3 + -+ - + XnXq

fooi = X1Xo ... Xp_1 +Xo...XpXq + -+ + XnX1 ... Xn_2

fo=X1Xo...Xp_1Xn — 1

The ideal / is invariant under the cyclic group C,, since each h;
satisfies h> = h;

o write the equations
e change the variables

e compute the G-degree of each equations
e Are the polynomials G-homogeneous ?




Test 2:Random Systems

We consider a system of f;, ..., f, equations in [Fp[ x4, ..., x,| which
are invariant by the action of cyclic group C,

o Generate the equations using the operator:

1 (o2
R(f)=@§6f

e change the variables
e compute the G-degree of each equations




Test 3: NTRU (basic problem of several PQC cryptosystem)
p is a prime number

fi = 370 ax' with a; € {0,1}

f, = 374 bix" with b; € {0,1}

Then Pub = f; x ()~ mod (X" —1) mod p

Goal: find a polynomial f = ,’-’:‘01 x;x" with x; € {0, 1} such that:

all the coefficients of Pub x f mod (x” —1) mod parein {0,1}

o write the original algebraic equations
e change the variables

e compute the G-degree of each equations
e Are the polynomials G-homogeneous ?




Fundamental Theorem

G is a diagonal group, and / is a G-stable ideal generated by f, ..., .
A Grbner basis computation preserves the G-degree, but the
polynomials f; are not necessarily G-homogeneous. Our aim here is to
prove that the G-homogeneous components of the f; are in /, and so to
compute a Grbner basis of /, we take the G-homogeneous
components of generators of / as inputs.



Fundamental Theorem

G is a diagonal group, and / is a G-stable ideal generated by fi, ..., fy.
A Grbner basis computation preserves the G-degree, but the
polynomials f; are not necessarily G-homogeneous. Our aim here is to
prove that the G-homogeneous components of the f; are in /, and so to
compute a Grbner basis of /, we take the G-homogeneous
components of generators of / as inputs.

Let / be an ideal. / is said to be stable under the action of G (G-stable)
if: vVfe IVAe G fAel




Fundamental Theorem

G is a diagonal group, and / is a G-stable ideal generated by fi, ..., fy.
A Grbner basis computation preserves the G-degree, but the
polynomials f; are not necessarily G-homogeneous. Our aim here is to
prove that the G-homogeneous components of the f; are in /, and so to
compute a Grbner basis of /, we take the G-homogeneous
components of generators of / as inputs.

Let / be an ideal. / is said to be stable under the action of G (G-stable)
if: Vfe IVAe G fAel

An ideal J is said to be G-homogeneous if for any polynomial f € J, its
G-homogeneous components are also in J.




Fundamental Theorem

G is a diagonal group, and / is a G-stable ideal generated by fi, ..., .
A Grbner basis computation preserves the G-degree, but the
polynomials f; are not necessarily G-homogeneous. Our aim here is to
prove that the G-homogeneous components of the f; are in /, and so to
compute a Grbner basis of /, we take the G-homogeneous
components of generators of / as inputs.

An ideal is G-homogeneous if and only if it is G-stable.

True also when G = {1}




Test 1,2,3

If G = C, then

n—1
f=> 1 where G- degree(f)) =i
i-0

e split the equations into G-homogeneous components: I




Speedup the computation

Abelian Group ~ Multi-homogeneous :
Use the new Grading to split the matrices

Instead of one matrix in degree d
My

we can split My wrt G-degree 0, 1,2, 3, 4.

| = (fy,...,fn) a O-dimensional ideal, invariant under an Abelian Group
G. Divides the GB complexity by: |G|®
ww  Provide dedicated Fs and FGLM algorithms.




Abelian F5

Abelian-F5 (homogeneous-case) __
Input: The set G of Gg-degrees, homogeneous and Gg-homogeneous

polynomials (fi,..., fm) with degrees di < ... < dy and a maximal de-
gree D.

Output the elements of degree at most D of a Grébner basis of (f1,..., /i)
fori=1,...,m.

for i from 1 to i do %; := () end for
for d from dy to D do
for ginGdo _
Md'.[).g = B, Mdbg_‘, =0
for i from 1 to m do
case B
d<di)Mgig:=Mai 1,
d =d;) if g = degg,, (/i) then
My, := add new row f; to Md_,‘_l_g with index (i,1)
else
Mgig:=Mai-1g
end if
d > d;) My j o :=add new row m. f; for all monomials m of degree
d —d; with deggf(mj =g —degg,, (i) that do notappear as leading mono-
mials in the matrix M,_ dii— 1 u—degg,, (/i) to My, 1,¢ With index (i,m).

end case _
Compute Mg i, by Gaussian elimination from Mg ;q.
Add (o % all rows of My ; , not reducible by LM(%}).
end for
end for

end for
roturn (&2 .. (&




Faster?

Consider the following system: 5 degree 3 equations in 5 variables:

invariant by the action of G = Cs (ground field is Fgs521):

fi =

V3+yS+yS+yi+yS+52524 vy y5? + 52524 y12ys + 52524 yo2ys + 52524 y32y, + 52524 ys2ys -+
19910 y22y4 4+ 19910 y12y3 + 37058 y12y, + 30323 y42ys + 30323 yq yo2 + 12774 y4 yo y3 +
2708 yy ya 4 + 12774 y1 yo y5 + 37058 yy y3° + 2708 yy y3 ya + 2708 4 ya ¥5 + 19910 yy y4? +
12774 y4 Y4 Y5+ yo° +37058 yo2y5 +30323 yp y32 + 12774 yo y3 ya +2708 yo y3 y5+ 37058 yo ya? +
2708 y2 ya y5 + 19910 yo y52 + y3° + 19910 325 + 30323 5 Y42 + 12774 y3 y4 y5 + 37058 3 y52 +
V43 + 30323 y4 y52 + y5° + 19604 y12 + 42627 yy yo + 4321 yq y3 + 4321 yy y4 + 42627 yq y5 +
19604 yo2 + 42627 o y3 + 4321 yo ya + 4321 yo ys5 + 19604 y32 + 42627 y5 yu + 4321 y3 y5 +
19604 y42 + 42627 y4 y5 + 19604 y52 + 1032 y4 + 1032 yo + 1032 y5 + 1032 y, + 1032 y5 + 9254

fo, f3, f4, fs = same shape - - -

The system has 125 solutions. )




Solving Systems with Symmetries

Recall that we want to solve the following system: 5 degree 3

equations in 5 variables which are invariant by the action Cs

f; =

V3 +y3+y3+y5+ Y2 +52524 yy y52 +52524 y1 2y, + 52524 y,2y3 + 52524 y32ys + 52524 y42ys +
19910 y22y4 4+ 19910 y12y3 + 37058 y12y, + 30323 y42ys + 30323 yq yo2 + 12774 y4 yo y3 +
2708 y1 Y2 ya + 12774 1 o s + 37058 yy y32 + 2708 y1 Y3 Ya + 2708 y1 y3 ys + 19910 y; y42 +
12774 y4 Y4 Y5+ yo° +37058 yo2y5+30323 yp y32 + 12774 yo Y3 ya +2708 ya y3 Y5+ 37058 yo ya? +
2708 2 4 5 +19910 2 ¥52 + y3° + 19910 y5?y5 + 30323 y3 y42 + 12774 y3 4 y5 + 37058 y3 ys° +
y43 + 30323y, 52 + y5° + 19604 112 + 42627 vy yo + 4321 yy y5 + 4321 vy ya + 42627 yy s +
19604 yo2 + 42627 y5 y5 + 4321 yo ya + 4321 yp y5 + 19604 y32 + 42627 y5 ys + 4321 y3 y5 +
19604 y42 + 42627 yy ys5 + 19604 y52 + 1032 y; + 1032 y» + 1032 y5 + 1032 y4 + 1032 y5 + 9254

fo, f3, f4, f5 = same shape - - -

Diagonalize the group !
Change of variables J

g1 = 41 X03 +9XOX1 Xq + 7XOX2X3 — 17X12X3 + 28X1 X22 —+ 15X2X42 +44X32X4 —21 X02 —
42 x1 X4 — 27 Xo X3 + 22 X9 — 4120

92,093,094,05 = same Shape s

= Use the sparsity ! J




New Unified Approach : Sparse Grobner basis

with PJ Spaenlehauer and J Svartz - 2014

] Unified approach based on monomial sparsity\

® Consider only monomials in the initial Support: polytope P
® Multiply these monomials ~ 2P = {u x v | (u,v) € P?} J

Yy
3P
y 2P
[ P - | .
X X X
y y
. f=Dense ) /=Dense
f=Dense
P op " 3p
X X X




New Unified Approach : Sparse Grobner basis

with PJ Spaenlehauer and J Svartz - 2014

] Unified approach based on monomial sparsity\

® Consider only monomials in the initial Support: polytope P
® Multiply these monomials ~ 2P = {u x v | (u, v) € P?} J

y y
 f—Dense « f=Dense
f=Dense
P 2p © 3P

. X . . . -—> X . . . . . . -—> X
y
f=Bideg(1,1)

f}isidegm) Ir}iBidegW)
P 2P 3P

X

X X



New Approach ! Sparse Polynomials

with PJ Spaenlehauer and J Svartz

y

f=Co+L1 X+CoXy+Cax2+CyX2y+Csx2y2

L

We want to keep the initial structure!

X

or

y

f=co+C1 X2 +Coxy+c3y?




New Approach ! Sparse Polynomials
y

f=co+p1 x+02xy+63x2+04x2y+c5x2y2

e e—— X

y

f=cp+cy x2+02xy+03y2

or

We want to keep the initial structure!

@ Monomials of degree 1:
M = Support(f)

@ Monomials of degree 2:
Mo ={uxv]|(uv)e
M1 X ./\/11}

@ Monomials of degree d:
Mg ={uxv](uv)e
Mg_1 x My}



New Approach ! Sparse Polynomials
y y

f=Co—+L1 X+CoXy+C3x2+C4x2y+c5x2y? f=co+Cy X2+Coxy+c3y?

or

¢ X X
We want to keep the initial structure!

@ Monomials of degree 1:

My = Support(f) my > My > --- > my
@ Monomials of degree 2: t1fy

Mo ={uxv|(uv)e b.2fi

My x My} My= :

: coeff (t f;, my)

° ... t2,1 fg e

@ Monomials of degree d:
Mg ={uxv|(uv)e

M1 x Mi} all products ¢ f;, t € My_geg(r)




New Approach ! Sparse Polynomials
y

f=Co—+L1 X+CoXy+C3x2+C4x2y+c5x2y?

L

or

X

y

f=co+Cy X2+Coxy+c3y?

We want to keep the initial structure!

® dedicated matrix-Fs
algorithm

.

Under algebraic assumptions:
m eqgs with the same support
@ complexity ?

@ Hibert Series?

t1fy
b 2fy

My =
b1t

all products t fj, t € Md_de&b

m > me > --- > Mg

coeff (t f;, my)




Solving with symmetries using sparsity

Initial support P = {hy, ..., hy2} = Support(g;) = {Xx;x;Xx s.t.
i+j+k=0 mod5} — #P =12

We have to estimate dj, ?
@ Monomials of degree 1: #P = 12

@ Monomials of degree 2:
2P ={uxv|(u,v)eP x P} — #2P =68

o ...
e Monomials of degree d: dP = {u x v | (u,v) e (d —1)P x P}
Compute the Hilbert series of the monomial ring:

46234+ 11224+62+1
(1-2)°

Hr(z) =1+ ) #(dP)z°
a>0



Compute the Hilbert series of the monomial ring:

4 3 11 2 1
Hp(z) =1 +Zd>0 #Mdzd = 2362 (—:72§6+6Z+

=1+122+682°+2542% +7302% +17562° + - --

Since we have 5 equations of “degree” 1, the Hilbert series is

H(z) = Hg(z)(1—2z)°
=14+72+18224+2428 4+ 2524+ 2525+ 2526 4+ ...

Hence we have only 25 = % solutions

and the maximal degree 0n.x = 4.

== We can run the sparse matrix F5 and compute the minimal
polynomial of M; (where t = xZ) of degree 25:

1?5 4 62732 1?4 + 26240 123 4+ 63778 1?2 4+ 38558 121 + 9283 hg?0 + 29068 t'° + 49606 '8 + 34528 7 4 22383116 +
11568 hg'° + 8861 14 + 38583 t13 4 60089 t2 + 23443 t'1 4 62330 hg "0 + 38047 t° + 41549 t® + 42497 7 + 32676 {° +
1301915 + 22056 ¢ 1 255373 + 6198812 + 1081 + 60264 then recover the values of me P,
and the values of xp, X1, ..., X4.
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