Lecture 2-13-1 - Polynomial systems, computer algebra and applications

Jean-Charles Faugère

Solving Algebraic Systems with Symmetries

2022 - 2023 - MPRI

Structured Systems

Symmetries

System invariant by the action of an Abelian group

Definition

Let *I* be an ideal. *I* is said to be *stable* under the action of *G* (*G*-*stable*) if: $\forall f \in I, \forall A \in G \quad f^A \in I$

Action of $GL_n(k)$ on polynomials. *G* is a finite subgroup of $GL_n(k)$. Let *X* be the column vector whose entries are x_1, \ldots, x_n .

For *f* a polynomial and $A \in G$, let f^A be the polynomial obtained by substituting the components of A.X to x_1, \ldots, x_n . Since $(f^A)^B = f^{AB}$, we obtain an action of *G* on the ring of polynomials

Remark

The action of *G* preserves the homogeneous components.

Main focus: *G* is an Abelian Group

System invariant by the action of an Abelian group

Consider the following system: 5 degree 3 equations in 5 variables: invariant by the action of $G = C_5$ (ground field is \mathbb{F}_{65521}): $f_1 = y_1^3 + y_2^3 + y_3^3 + y_4^3 + y_5^3 + 52524 y_1 y_5^2 + 52524 y_1^2 y_2 + 52524 y_2^2 y_3 + 52524 y_3^2 y_4 + 52524 y_4^2 y_5 + 19910 y_2^2 y_4 + 19910 y_1^2 y_3 + 37058 y_1^2 y_4 + 30323 y_1^2 y_5 + 30323 y_1 y_2^2 + 12774 y_1 y_2 y_3 + 2708 y_1 y_2 y_4 + 12774 y_1 y_2 y_5 + 37058 y_1 y_3^2 + 2708 y_1 y_3 y_4 + 2708 y_1 y_3 y_5 + 19910 y_1 y_4^2 + 12774 y_1 y_4 y_5 + y_2^3 + 37058 y_2^2 y_5 + 30323 y_2 y_3^2 + 12774 y_2 y_3 y_4 + 2708 y_2 y_3 y_5 + 37058 y_2 y_5^2 + y_3^3 + 19910 y_3^2 y_5 + 30323 y_3 y_4^2 + 12774 y_3 y_4 y_5 + 37058 y_3 y_5^2 + y_4^3 + 30323 y_4 y_5^2 + y_5^3 + 19604 y_1^2 + 42627 y_1 y_2 + 4321 y_1 y_3 + 4321 y_1 y_4 + 42627 y_1 y_5 + 19604 y_2^2 + 42627 y_2 y_3 + 4321 y_2 y_5 + 19604 y_3^2 + 42627 y_3 y_4 + 4321 y_3 y_5 + 19604 y_4^2 + 42627 y_4 y_5 + 19604 y_5^2 + 1032 y_1 + 1032 y_2 + 1032 y_3 + 1032 y_4 + 1032 y_5 + 9254$

 $f_2, f_3, f_4, f_5 =$ same shape \cdots

System invariant by the action of an Abelian group

> Not **Generic** at all! The system has 125 solutions. How to use the symmetry ?

Abelian Group G

Theorem

Any finite commutative group **G** is uniquely isomorphic to a product $\mathbb{Z}/q_1\mathbb{Z} \times \cdots \times \mathbb{Z}/q_\ell\mathbb{Z}$ with $q_1| \dots |q_\ell$.

Definition

Following the notations of the previous theorem, the integer $e = q_{\ell}$ is called the exponent of the group and is the lowest common multiple of the orders of the elements of the group.

When $\ell = 1$ and $n = q_1$ so that *G* is the *n* cyclic group.

Abelian Group G

Theorem

Any finite commutative group **G** is uniquely isomorphic to a product $\mathbb{Z}/q_1\mathbb{Z} \times \cdots \times \mathbb{Z}/q_\ell\mathbb{Z}$ with $q_1| \dots |q_\ell$.

Definition

Following the notations of the previous theorem, the integer $e = q_{\ell}$ is called the exponent of the group and is the lowest common multiple of the orders of the elements of the group.

When $\ell = 1$ and $n = q_1$ so that *G* is the *n* cyclic group.

Theorem

Let *G* be a cyclic group of order *n*. Let ω be a primitive *e*-th root of 1. The subgroup *G* is diagonalizable, meaning that there exists a matrix *P* in *GL*_n(*K*), such that the group $P^{-1}GP = \{P^{-1}AP \mid A \in G\}$ is a diagonal group.

Example: cyclic Group G

Let C_n be the subgroup of \mathfrak{S}_n generated by the *n*-cycle $\sigma = (1 \ 2 \ \dots \ n)$. C_n is a cyclic group of order *n*, embedded in $GL_n(k)$ and generated by:

$$M_{\sigma} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 1 & 0 & 0 & \dots & 0 \end{pmatrix}$$

The cyclic group C_n is diagonalizable:

Then if we denote $K = k(\omega)$ where ω is a primitive *n*-root of 1, with the base-change matrix $P = (\omega^{ij})_{i,j \in \{1,...,n\}}$. The matrix associated to the cycle $(1 \dots n)$ becomes the diagonal matrix $D_{\sigma} = \text{diag}(\omega, \dots, \omega^{n-1}, 1)$.

Grading induced by a diagonal matrix group

$$G = \mathbb{Z}/q_1\mathbb{Z} \times \cdots \times \mathbb{Z}/q_\ell\mathbb{Z}$$
 with $q_1|\ldots|q_\ell$.

Proposition

For every monomial *m* and for each *i*, there exists a unique $\mu_i \in \{0, ..., q_i - 1\}$ such that $m^{D_i} = \omega^{\frac{\theta}{q_i} \mu_i} m$.

We take μ_i in $\mathbb{Z}/q_i\mathbb{Z}$

Grading induced by a diagonal matrix group

$$G = \mathbb{Z}/q_1\mathbb{Z} \times \cdots \times \mathbb{Z}/q_\ell\mathbb{Z}$$
 with $q_1|\ldots|q_\ell$.

Proposition

For every monomial *m* and for each *i*, there exists a unique $\mu_i \in \{0, ..., q_i - 1\}$ such that $m^{D_i} = \omega^{\frac{\theta}{q_i} \mu_i} m$.

We take
$$\mu_i$$
 in $\mathbb{Z}/q_i\mathbb{Z}$

Definition

The *k*-tuple $(\mu_1, \ldots, \mu_k) \in \prod \mathbb{Z}/q_i\mathbb{Z}$ is said to be the *G*-degree of *m* and is denoted *G*-degree(*m*).

Cyclic Group G

 C_3 is the matrix group generated by the diagonal matrix $D_{\sigma} = \text{Diag}(\omega, \omega^2, 1)$ where ω is a primitive third root of 1. Each x_i has *G*-degree *i* mod 3, so

$$G$$
-degree $(\prod x_j^{\alpha_j}) = \sum j \alpha_j \mod 3$

Hence, $x_1x_2x_3$ (resp. $x_1x_2^2$) has *G*-degree 0 (resp. 2).

The repartition into same G-degree is as follows :

G-degree	0	1	2
monomials	$1, x_3, x_3^2, x_1 x_2$	$x_1, x_1 x_3, x_2^2$	$x_2, x_2 x_3, x_1^2$
	$x_3^3, x_1x_2x_3, x_2^3, x_1^3$	$x_1 x_3^2, x_2^2 x_3, x_1^2 x_2$	$x_2 x_3^2, x_1^2 x_3, x_1 x_2^2$

Solving systems invariant by the action of an Abelian group We diagonalize the group:

$$G = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$
compute Q s.t. $Q G Q^{-1} = \begin{bmatrix} w^2 & 0 & 0 & 0 & 0 \\ 0 & w^4 & 0 & 0 & 0 \\ 0 & 0 & w & 0 & 0 \\ 0 & 0 & 0 & w^3 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$
where $w^5 = 1$.
Solve variables $Q \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$

Solving systems invariant by the action of an Abelian group We diagonalize the group:

$$G = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 compute Q s.t. $Q G Q^{-1} = \begin{bmatrix} w^2 & 0 & 0 & 0 & 0 \\ 0 & w^4 & 0 & 0 & 0 \\ 0 & 0 & w & 0 & 0 \\ 0 & 0 & w & 0 & 0 \\ 0 & 0 & 0 & w^3 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$
where $w^5 = 1$. If New variables $Q \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$
 $g_1 = 41 x_0^3 + 9 x_0 x_1 x_4 + 7 x_0 x_2 x_3 - 17 x_1^2 x_3 + 28 x_1 x_2^2 + 15 x_2 x_4^2 + 44 x_3^2 x_4 - 21 x_0^2 42 x_1 x_4 - 27 x_2 x_3 + 22 x_0 - 4120 g_2, g_3, g_4, g_5 = same shape \cdots$

- The new system is sparse: $length(g_1) = 12 \ll 56 = length(f_1)$
- Support of the polys: monomials $x_i x_j x_k$ s.t. $i + j + k = 0 \mod n$ \longrightarrow New grading: G-degree $(x_{i_1} \cdots x_{i_k}) = i_1 + \cdots + i_k \mod n$ $g(w^0 x_0, w^1 x_1, \dots, w^{n-1} x_{n-1}) = w^{G-degree(g)}g(x_0, x_1, \dots, x_{n-1})$ \longrightarrow Here all the polynomials of G-degree 0

G-homogeneity

For algorithms: the S-polynomial of two G-homogeneous polynomials is also G-homogeneous

Definition

A polynomial *f* is said to be *G*-homogeneous if all monomials of *f* share the same *G*-degree (μ_1, \ldots, μ_k) . In this case, we set *G*-degree(f) = G-degree $(LM(f)) = (\mu_1, \ldots, \mu_k)$.

G-homogeneity

For algorithms: the S-polynomial of two G-homogeneous polynomials is also G-homogeneous

Definition

A polynomial *f* is said to be *G*-homogeneous if all monomials of *f* share the same *G*-degree (μ_1, \ldots, μ_k) . In this case, we set *G*-degree(f) = G-degree $(LM(f)) = (\mu_1, \ldots, \mu_k)$.

Proposition

If f is G-homogeneous and m is a monomial, then m f is also G-homogeneous. Moreover, G-degree(m f) = G-degree(m) + G-degree(f).

The cornerstone of the new Abelian-F5 algorithm is that the S-polynomial of two *G*-homogeneous polynomials is *G*-homogeneous:

Theorem

Let f, g be two G-homogeneous polynomials. The S-polynomial of fand g is also G-homogeneous of G-degree: G-degree($LM(f) \lor LM(g)$). Where $LM(f) \lor LM(g) =$ lowest common multiple of LM(f) and LM(g).

Test in a CAS

We consider the cyclic group C_n :

Home Work

- write the matrix M_G of G
- Compute *P* such that

 $P^{-1} M_G P = D$ a diagonal matrix

- write a function to change the variables
- Apply the change of variables to some interesting polynomial, for instance:

 $x_1 + x_2 + \cdots + x_n$

Test 1

We will use the well known *Cyclic-n problem*. The ideal *I* generated by:

$$(I) \begin{cases} f_1 = x_1 + \dots + x_n \\ f_2 = x_1 x_2 + x_2 x_3 + \dots + x_n x_1 \\ \vdots \\ f_{n-1} = x_1 x_2 \dots x_{n-1} + x_2 \dots x_n x_1 + \dots + x_n x_1 \dots x_{n-2} \\ f_n = x_1 x_2 \dots x_{n-1} x_n - 1 \end{cases}$$

The ideal *I* is invariant under the cyclic group C_n , since each h_i satisfies $h_i^{M_\sigma} = h_i$

Home Work

- write the equations
- change the variables
- compute the G-degree of each equations
- Are the polynomials G-homogeneous ?

We consider a system of f_1, \ldots, f_n equations in $\mathbb{F}_p[x_1, \ldots, x_n]$ which are invariant by the action of cyclic group C_n

Home Work

• Generate the equations using the operator:

$$R(f) = \frac{1}{|G|} \sum_{\sigma \in G}^{\sigma} f$$

- change the variables
- compute the G-degree of each equations

Test 3: NTRU (basic problem of several PQC cryptosystem)

p is a prime number

 $f_{1} = \sum_{i=0}^{n-1} a_{i} x^{i} \text{ with } a_{i} \in \{0, 1\}$ $f_{2} = \sum_{i=0}^{n-1} b_{i} x^{i} \text{ with } b_{i} \in \{0, 1\}$

Then $Pub = f_1 \times (f_2)^{-1} \mod (x^n - 1) \mod p$

Goal: find a polynomial $f = \sum_{i=0}^{n-1} x_i x^i$ with $x_i \in \{0, 1\}$ such that:

all the coefficients of $Pub \times f \mod (x^n - 1) \mod p$ are in $\{0, 1\}$

Home Work

- write the original algebraic equations
- change the variables
- compute the G-degree of each equations
- Are the polynomials G-homogeneous ?

G is a diagonal group, and *I* is a *G*-stable ideal generated by f_1, \ldots, f_m . A Grbner basis computation preserves the *G*-degree, but the polynomials f_i are not necessarily *G*-homogeneous. Our aim here is to prove that the *G*-homogeneous components of the f_i are in *I*, and so to compute a Grbner basis of *I*, we take the *G*-homogeneous components of generators of *I* as inputs.

G is a diagonal group, and *I* is a *G*-stable ideal generated by f_1, \ldots, f_m . A Grbner basis computation preserves the *G*-degree, but the polynomials f_i are not necessarily *G*-homogeneous. Our aim here is to prove that the *G*-homogeneous components of the f_i are in *I*, and so to compute a Grbner basis of *I*, we take the *G*-homogeneous components of generators of *I* as inputs.

Definition

Let *I* be an ideal. *I* is said to be *stable* under the action of *G* (*G*-*stable*) if: $\forall f \in I, \forall A \in G \quad f^A \in I$

G is a diagonal group, and *I* is a *G*-stable ideal generated by f_1, \ldots, f_m . A Grbner basis computation preserves the *G*-degree, but the polynomials f_i are not necessarily *G*-homogeneous. Our aim here is to prove that the *G*-homogeneous components of the f_i are in *I*, and so to compute a Grbner basis of *I*, we take the *G*-homogeneous components of generators of *I* as inputs.

Definition

Let *I* be an ideal. *I* is said to be *stable* under the action of *G* (*G*-*stable*) if: $\forall f \in I, \forall A \in G \quad f^A \in I$

Definition

An ideal J is said to be G-homogeneous if for any polynomial $f \in J$, its G-homogeneous components are also in J.

G is a diagonal group, and *I* is a *G*-stable ideal generated by f_1, \ldots, f_m . A Grbner basis computation preserves the *G*-degree, but the polynomials f_i are not necessarily *G*-homogeneous. Our aim here is to prove that the *G*-homogeneous components of the f_i are in *I*, and so to compute a Grbner basis of *I*, we take the *G*-homogeneous components of generators of *I* as inputs.

Theorem			
An ideal is G-homogeneous if and only if it is G-stable.			
Remark			
True also when $G = \{1\}$			

Test 1,2,3

If $G = C_n$ then

$$f = \sum_{i=0}^{n-1} f^{(i)}$$
 where G - degree $(f^{(i)}) = i$

Home Work

• split the equations into G-homogeneous components:

Speedup the computation

Abelian Group ≈ Multi-homogeneous : Use the new Grading to split the matrices

Instead of **one** matrix in degree d \mathcal{M}_d

we can split \mathcal{M}_d wrt *G*-degree 0, 1, 2, 3, 4.

Theorem ([F., Svartz 2013])

 $I = (f_1, \dots, f_m)$ a 0-dimensional ideal, invariant under an Abelian Group G. Divides the GB complexity by: $|G|^3$ \square Provide dedicated F_5 and FGLM algorithms.

Abelian F5

Abelian- F_5 (homogeneous-case) Input: The set \hat{G} of $G_{\mathscr{D}}$ -degrees, homogeneous and $G_{\mathscr{D}}$ -homogeneous polynomials (f_1, \ldots, f_m) with degrees $d_1 \leq \ldots \leq d_m$ and a maximal degree D. Output: the elements of degree at most D of a Gröbner basis of (f_1, \ldots, f_i) for i = 1, ..., m. for *i* from 1 to *m* do $\mathscr{G}_i := \emptyset$ end for for d from d_1 to D do for g in \hat{G} do $M_{d,0,g} := \emptyset, M_{d,0,g} := \emptyset$ for *i* from 1 to *m* do case $d < d_i$ $M_{d,i,q} := \tilde{M}_{d,i-1,q}$ $d = d_i$) if $g = \deg_{G_{\mathcal{A}}}(f_i)$ then $M_{d,i,g} :=$ add new row f_i to $\tilde{M}_{d,i-1,g}$ with index (i,1)else $M_{d,i,g} := \tilde{M}_{d,i-1,g}$ end if $d > d_i$ $M_{d,i,g}$:=add new row $m.f_i$ for all monomials m of degree $d - d_i$ with deg_{G_Q} $(m) = g - deg_{G_Q}(f_i)$ that do not appear as leading monomials in the matrix $\tilde{M}_{d-d_i,i-1,u-\deg_{G_{\tilde{\omega}}}(f_i)}$ to $\tilde{M}_{d,i-1,g}$ with index (i,m). end case Compute $\tilde{M}_{d,i,g}$ by Gaussian elimination from $M_{d,i,g}$. Add to \mathscr{G}_i all rows of $\tilde{M}_{d,i,\varrho}$ not reducible by $\mathsf{LM}(\mathscr{G}_i)$. end for end for end for enturn (l. (l

Faster?

Consider the following system: 5 degree 3 equations in 5 variables: invariant by the action of $G = C_5$ (ground field is \mathbb{F}_{65521}): $f_1 = y_1^3 + y_2^3 + y_3^3 + y_4^3 + 52524 y_1 y_5^2 + 52524 y_1^2 y_2 + 52524 y_2^2 y_3 + 52524 y_3^2 y_4 + 52524 y_4^2 y_5 + 52524 y_4^2 y$

 $y_1^3 + y_2^3 + y_3^3 + y_4^3 + y_5^3 + 52524 y_1 y_5^2 + 52524 y_1^2 y_2 + 52524 y_2^2 y_3 + 52524 y_3^2 y_4 + 52524 y_4^2 y_5 + 19910 y_2^2 y_4 + 19910 y_1^2 y_3 + 37058 y_1^2 y_4 + 30323 y_1^2 y_5 + 30323 y_1 y_2^2 + 12774 y_1 y_2 y_3 + 2708 y_1 y_2 y_4 + 12774 y_1 y_2 y_5 + 37058 y_1 y_3^2 + 2708 y_1 y_3 y_4 + 2708 y_1 y_3 y_5 + 19910 y_1 y_4^2 + 12774 y_1 y_4 y_5 + y_2^3 + 37058 y_2^2 y_5 + 30323 y_2 y_3^2 + 12774 y_2 y_3 y_4 + 2708 y_2 y_3 y_5 + 37058 y_2 y_4^2 + 2708 y_2 y_4 y_5 + 19910 y_2 y_5^2 + y_3^3 + 19910 y_3^2 y_5 + 30323 y_3 y_4^2 + 12774 y_3 y_4 y_5 + 37058 y_3 y_5^2 + y_4^3 + 30323 y_4 y_5^2 + y_5^3 + 19604 y_1^2 + 42627 y_1 y_2 + 4321 y_1 y_3 + 4321 y_1 y_4 + 42627 y_1 y_5 + 19604 y_2^2 + 42627 y_2 y_3 + 4321 y_2 y_5 + 19604 y_3^2 + 42627 y_3 y_4 + 4321 y_3 y_5 + 19604 y_4^2 + 42627 y_4 y_5 + 19604 y_5^2 + 1032 y_1 + 1032 y_2 + 1032 y_3 + 1032 y_4 + 1032 y_5 + 9254$

 $f_2, f_3, f_4, f_5 =$ same shape \cdots

The system has 125 solutions.

Solving Systems with Symmetries

Recall that we want to solve the following system: 5 degree 3 equations in 5 variables which are invariant by the action C_5

 $\begin{array}{l} f_1 = & \\ y_1^3 + y_2^3 + y_3^3 + y_4^3 + y_5^3 + 52524 \ y_1 \ y_5^2 + 52524 \ y_1^2 \ y_2 + 52524 \ y_2^2 \ y_3 + 52524 \ y_3^2 \ y_4 + 52524 \ y_4^2 \ y_5 + \\ 19910 \ y_2^2 \ y_4 + 19910 \ y_1^2 \ y_3 + 37058 \ y_1^2 \ y_4 + 30323 \ y_1^2 \ y_5 + 30323 \ y_1 \ y_2^2 + 12774 \ y_1 \ y_2 \ y_3 + \\ 2708 \ y_1 \ y_2 \ y_4 + 12774 \ y_1 \ y_2 \ y_5 + 37058 \ y_1^2 \ y_3^2 + 2708 \ y_1 \ y_3 \ y_4 + 2708 \ y_1 \ y_3 \ y_5 + 19910 \ y_1 \ y_4^2 + \\ 12774 \ y_1 \ y_4 \ y_5 + y_2^3 \ + 37058 \ y_2^2 \ y_5 + 30323 \ y_2 \ y_3^2 + 12774 \ y_2 \ y_3 \ y_4 + 2708 \ y_2 \ y_3 \ y_5 + 37058 \ y_2 \ y_4^2 + \\ 2708 \ y_2 \ y_4 \ y_5 + 19910 \ y_2 \ y_5^2 + y_3^3 \ + 19910 \ y_3^2 \ y_5 + 30323 \ y_3 \ y_4^2 + 12774 \ y_3 \ y_4 \ y_5 + 37058 \ y_3 \ y_5^2 + \\ y_4^3 \ + 30323 \ y_4 \ y_5^2 + y_5^3 \ + 19604 \ y_1^2 \ + 42627 \ y_1 \ y_2 \ + 4321 \ y_1 \ y_3 \ + 4321 \ y_1 \ y_4 \ + 42627 \ y_1 \ y_5 \ + \\ 19604 \ y_2^2 \ + 42627 \ y_3 \ y_4 \ + 4321 \ y_2 \ y_5 \ + 19604 \ y_3^2 \ + 42627 \ y_3 \ y_4 \ + 4321 \ y_3 \ y_5 \ + \\ 19604 \ y_4^2 \ + 42627 \ y_4 \ y_5 \ + 19604 \ y_5^2 \ + 1032 \ y_1 \ + 1032 \ y_2 \ + 1032 \ y_3 \ + 1032 \ y_4 \ + 1032 \ y_5 \ + 9254 \end{array}$

 $f_2, f_3, f_4, f_5 =$ same shape \cdots

Diagonalize the group ! Change of variables

 $g_1 = 41 x_0^3 + 9 x_0 x_1 x_4 + 7 x_0 x_2 x_3 - 17 x_1^2 x_3 + 28 x_1 x_2^2 + 15 x_2 x_4^2 + 44 x_3^2 x_4 - 21 x_0^2 - 42 x_1 x_4 - 27 x_2 x_3 + 22 x_0 - 4120$

 $g_2, g_3, g_4, g_5 =$ same shape \cdots

New Unified Approach : Sparse Gröbner basis with PJ Spaenlehauer and J Svartz - 2014

Unified approach based on monomial sparsity

New Unified Approach : Sparse Gröbner basis with PJ Spaenlehauer and J Svartz - 2014

Unified approach based on monomial sparsity

- Consider only monomials in the initial Support: polytope \mathcal{P}
- Multiply these monomials $\rightsquigarrow 2\mathcal{P} = \{u \times v \mid (u, v) \in \mathcal{P}^2\}$

New Approach ! Sparse Polynomials with PJ Spaenlehauer and J Svartz

New Approach ! Sparse Polynomials

 $\mathcal{M}_1 \times \mathcal{M}_1 \}$

o . . .

• Monomials of degree d: $\mathcal{M}_d = \{ u \times v \mid (u, v) \in \mathcal{M}_{d-1} \times \mathcal{M}_1 \}$

 $\mathcal{M}_{d-1} \times \mathcal{M}_1$

 $\checkmark \text{ all products } t f_i, t \in \mathcal{M}_{d-\deg(f_i)}$

Solving with symmetries using sparsity

Initial support $\mathcal{P} = \{h_1, \dots, h_{12}\} = \text{Support}(g_i) = \{x_i x_j x_k \text{ s.t.} i + j + k = 0 \mod 5\} \longrightarrow \#\mathcal{P} = 12$

We have to estimate d_{max} ?

- Monomials of degree 1: #P = 12
- Monomials of degree 2: $2\mathcal{P} = \{u \times v \mid (u, v) \in \mathcal{P} \times \mathcal{P}\} \longrightarrow \#2\mathcal{P} = 68$
- . . .
- Monomials of degree d: $d\mathcal{P} = \{u \times v \mid (u, v) \in (d-1)\mathcal{P} \times \mathcal{P}\}$

Compute the Hilbert series of the monomial ring:

$$H_R(z) = 1 + \sum_{d>0} \#(d\mathcal{P}) \, z^d = \frac{z^4 + 6 \, z^3 + 11 \, z^2 + 6 \, z + 1}{(1-z)^6}$$

Compute the Hilbert series of the monomial ring:

$$H_{R}(z) = 1 + \sum_{d>0} \# \mathcal{M}_{d} z^{d} = \frac{z^{4} + 6 z^{3} + 11 z^{2} + 6 z + 1}{(1-z)^{6}}$$

= 1 + 12 z + 68 z^{2} + 254 z^{3} + 730 z^{4} + 1756 z^{5} + \cdots

Since we have 5 equations of "degree" 1, the Hilbert series is

 $H(z) = H_R(z)(1-z)^5$ = 1 + 7 z + 18 z² + 24 z³ + 25 z⁴ + 25 z⁵ + 25 z⁶ + ...

Hence we have only $25 = \frac{125}{|G|}$ solutions and the maximal degree $d_{max} = 4$.

We can run the sparse matrix F_5 and compute the minimal polynomial of M_t (where $t = x_0^2$) of degree 25:

 $t^{25} + 62732 t^{24} + 26240 t^{23} + 63778 t^{22} + 38558 t^{21} + 9283 h_8^{20} + 29068 t^{19} + 49606 t^{18} + 34528 t^{17} + 22383 t^{16} + 11568 h_8^{15} + 8861 t^{14} + 38583 t^{13} + 60089 t^{12} + 23443 t^{11} + 62330 h_8^{10} + 38047 t^9 + 41549 t^8 + 42497 t^7 + 32676 t^6 + 13919 t^5 + 22256 t^4 + 25537 t^3 + 61988 t^2 + 108 t + 60264$ then recover the values of $m \in \mathcal{P}$, and the values of X_0, X_1, \dots, X_4 .

Références I

B. Buchberger.

An algorithm for finding the basis elements in the residue class ring modulo a zero dimensional polynomial ideal. *Journal of Symbolic Computation*, 41(3-4):475–511, 3 2006.

Buchberger B.

Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, Innsbruck, 1965.

Buchberger B.

An Algorithmical Criterion for the Solvability of Algebraic Systems. *Aequationes Mathematicae*, 4(3):374–383, 1970. (German).

Cox D., Little J., and O'Shea D. Ideals, Varieties and Algorithms. Springer Verlag, New York, 1992.