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Algorithms

Algorithms: for computing Grébner bases.
e Buchberger (1965,1979,1985)
= First and Second Criteria
e 4 using linear algebra (1999) (strategies)
e F5 no reduction to zero (2002)
» Today — simple matrix Fs algorithm

e Signature-based Grobner computations (2008-. ..



Fs algorithm

o Goal: avoid useless reduction to 0
generate full rank matrices

e Incremental algorithm
(f1) + C';prev

e We have to explain: new Fs5 criterion



Fs an example 1

We consider the following example: (b is a parameter):

fh=3x>+ 7+ byxy+22xz+11yz+222% 4+ 8y?

fa=x2+18xy +19y? + 8xz +5yz + 722
Sp
fi=6x2+12xy +4y? +14x2+9yz +72?

For now we assume that b =0
With Buchberger x > y > z:

e 5 useless reductions
e 5 useful pairs



Fs an example 11

We proceed degree by degree.

X< Xy y° Xz yz z
2 /1 18 19 8 5 7
2T K| 3 7 8 22 11 22
fil6 12 4 14 9 7
x> xy y? xz yz Z2?
A _h|1 1819 8 5 7
27 5 1 3 2 4 -
f, 1 -11 -3 -5

“new” polynomials 7, = xy + 4 yz +2xz + 3y? — z? and
fs =y? —11xz—-3yz—-52°



Fs an example II1

f3=x%>+18xy +19y? + 8xz +5yz + 7 2?
h=3x2+7xy+22xz+11yz 422272+ 8y?
fi=6x2+12xy +4y? +14xz2+9yz + 722
fa=xy+4yz+2xz+3y?— 22

fo=y? —11xz—-3yz—-52°

fo — Iy
fo s £



Degree 3 (first try)

fa=x%+18xy +19y? + 8xz + 5yz + 7 2?
h=3x2+7xy+22xz+11yz+2222 +8y?
fi=6x2+12xy +4y? +14xz+9yz +72?
fo=xy+4yz+2xz+3y?—2?

fs=y? —11xz—-3yz—-52°

and

fo — 1y
fo— fs



Degree 3 (first try)

A3:

Zf3
yh
Xf3
Zf2
yb
Xf2
zfy
¥
xf

DO O WOO 00

X2y xy?
0 0
1 18
18 19
0 0
3 7
7 8
0 0
6 12
12 4

—
©° %

O~ OO0WOO

>
N

z
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—
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Degree 3 (first try)

A3:

Zf3
yh
Xf3
Zf2
yb
Xf2
zfy
¥
xf

DO O WOO 00

X2y xy?
0 0
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18 19
0 0
3 7
7 8
0 0
6 12
12 4
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Degree 3 (first try)
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Degree 3 (first try)

A3:

Zf3
yh
Xf3
Zf2
yb
Xf2
zfy
¥
xf

DO O WOO 00

X2y xy?
0 0
1 18
18 19
0 0
3 7
7 8
0 0
6 12
12 4

—
©° %

o@ﬁ o@oo o@

O~ OO0WOO

>

—
o

N
N




Degree 3 (first try)

A3:

Zf3
yh
Xf3
Zf2
yb
Xf2
zfy
¥
xf

DO O WOO 00

X2y xy?
0 0
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Degree 3 (first try)

Already
Done !
fo — Iy
fi — f5

Zf3
i
Xf3
Zf2
A3 . yf2
Xf2
zf;
yh
xf

x3

DO O WOO 00

X2y xy?
0 0

18

19

-
[0¢]

—

NP ONWO
—

Ao

—
©° %

o(:)B oc:)w<3(:)

O~ OO0WOO

>

—
o

N
N




Degree 3

x3 X2y xy? y® Xz xyz y?’z xz?

zfs 1 18 19 8
yis i 18 19 0 8 5 0
x| 1 18 19 0o 8 5 0 7
zfy 1 3 2
Az = yfy 1 3 0 2 4 0
Xy 1 3 0 2 4 0 22
zfs 1 12
yfs i 0 12 20 O
xfs i 0 12 20 0 18

cogpgooNoo~wN,




Degree 3

Xf3
28
v
ng
Zf3
Zf2
zf;
vh
xf

X3
1

X2y xy? )P
18 19 O
1 18 19

1 3

1

X’z xyz y’z xz°

5

N —= OO

=
N

yz

22
18

20
11




Degree 3

Summary: we have constructed 3 new polynomials
fs = y® +8y%z+ xz° + 18 yz%2 + 15 2°

fr=xz°> +11yz?> +132°
fg = yz? + 18 28

And we have the linear equivalences:

Xf2<—>Xf4<—>f6
fa — I



Degree 4

The matrix whose rows are

is not full rank !



Why ? (1)

6 x 3 =18 rows
x4 x3y,...,yz% z* 15 columns



Why ? (1)

6 x 3 =|18 rows|
x*,x%y.....y 2% z* 15 columns|

Simple linear algebra theorem: 3 useless row (but which ones ?)



Trivial relations

hlh—fh=0

can be rewritten

3x2f+ (74 b)xyf +8y?f +22xzf;

+1yzf + 222213 —

X2 f2

—18xyfh —19y% 1,

—8xzb—5yzb—72°H =0

We can remove the row x°f

same way fif3 — f3f; = 0 — remove x?f
but fifo — frfy = 0 —> remove x2f; | 2?22



Combining trivial relations

(fy — fif) — 3(fi — fifs)
= (fg - 3f3)f1 — fifo + 3f1f3
= |fu|fy — o+ 3fifz

o o oo
|

= ((1— b)xy+4yz+2xz+3y2—22)

—(6x% + - ) +3(6x° + - )fy

e if b#1remove xy fi
o if b=1remove yz f

Need “some” computation




Degree 4 1

y2f17XZf17ny1722f17xyf27y2f27XZf27
y zh, Z2hy, X213, X yh3, y2 13, X Zf3, y 23, Z%f3

In order to use previous computations (degree 2 and 3):

Xf2 — fe fg — f4
Xf1 — fg yf1 — f7
f, — fs

v, zly, zfr, 2215, s, y2 1, 2l y 21y,
221y, x2hy, X b5, Y213, X 23, y 23, 2213,



Degree 4 11

1 18 19 0 0

1 18 19 0

o o o o O

-
©

© v o

19

18

a o o
- o o o o
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o N O o o o o

-
©

22
18

13
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18
13
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Degree 4 111

1 18 19 0o 0 8 5 0 0 7|0 0O 0O 0 0
1+ 18 19 0 0 8 5 0 0|7 0 0O 0 0
1 18 19 0 0 8 5 0[]0 7 0 0 0
13 0 0 2 4 0[]0 2 0 0 0
t 0o 0 o0 8 O0[1 18 0 15 0
1 18 19 0 8|5 0 7 0 0
1 18 19 0|8 5 0 7 0
Ay = 13 0|2 4 0 2 0
1t o]o 8 1 18 15
118 19 8 5 7
11 0 1 o
\ 112 20 18
\ 111 13
\ 118
| |1 3 2 4 22




Degree 4 IV

We need to consider only a small sub-matrix:

3 4

xyz? y2z%2 xz8 yz® z
vt /1 11 0 13 0

2215 1 12 20 18
L= zf 1 11 13
2fy 1 18

26\ 1 3 2 4 22



F5 Criterion : analysis

Example: compute a Grébner basis of [fi, f, f3]
Any combination of the trivial relations f;f; = f;f; can always be written:

U(fgfg — f3f2) + V(f1 fz — f3f1) + W(f2f1 — fi f2) =0



F5 Criterion : analysis

Example: compute a Grébner basis of [fi, f, f3]
Any combination of the trivial relations f;f; = f;f; can always be written:

U(f2f3 — f3f2) + V(f1 f3 — f3f1) + W(f2f1 — f1 f2) =0
where u, v, w are arbitrary polynomials.

(ng—Vfg) fi+tubfy—ufgfh +vifs—whh=0

(ng—Vf3) f1 — 0



F5 Criterion : analysis

Example: compute a Grébner basis of [fi, f, f3]
Any combination of the trivial relations f;f; = f;f; can always be written:
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where u, v, w are arbitrary polynomials.

(ng—Vfg) fi+tubfy—ufgfh +vifs—whh=0

(ng—Vf3) f1 — 0

(trivial) relation hfy +--- =0« held(fh, f)



F5 Criterion : analysis

Example: compute a Grébner basis of [fi, f, f3]
Any combination of the trivial relations f;f; = f;f; can always be written:

U(fgfg — f3f2) + V(f1 f3 — f3f1) + W(f2f1 — f1 f2) =0
where u, v, w are arbitrary polynomials.

(WfQ—Vfg) fi+tubfy—ufgfh +vifs—whh=0

(ng—Vf3) f1 — 0

(trivial) relation hfy +--- =0« held(fh, f)

Fs Criterion: compute a Grobner basis G’ of Id(f, f3).

’ Remove row { f; iff t reducible by LT(G')

| Keep row tf; iff t not reducible by LT(G)




matrix-Fs algorithm

e Incremental algorithm
(f1) =+ Gprev

e Incremental degree by degree

Special/Simpler version of F5 for dense/generic quadratic polynomials.
the maximal degree D is a parameter of the algorithm.

uyfy 1 X X x X
. 0 X XX
ur i 0 0 1 X X
V1 fk—1 o o0 1 X X
wy fi 0 0 0 1 «x
Wo i 0o 0 o0 o0 1



F5: compute Groebner ({fy, . .

Already computed
Groebner ({fy, ..., f)), d)
Matrix in degree d
my mp mg my
uqfy 1 X X X
. 0 X X
ury fi 0o 0 1 x
v fer |00 1 x x
W fi 0 0 0 1 «x
W fi 0 0 0 0 1

ms ...
X

X
X

L), d+1)



F5: compute Groebner ({fy, . .

urfy

Ury fy

V'Ii o fe—1

Matrix in degree d

m
1

my

mg

my
X

X
X

-

ms ...

X

x X

X X -

o), d+1)



F5: compute Groebner ({fy, . .

Matrix in degree d

m

mg my

X

X
1

X

X
X

ms ...

x X

X X -

o), d+1)



F5: compute Groebner ({fy,... fx)),d + 1)

Matrix in degree d

my mp mg my ms ...

uyfy 1 X X X X
. 0 -X X X ..
Uy 0o 0 1 x «x Matrix in degree d + 1

P S T S

o
(SR
>

0o 0 1 «x :
o 0 0 1 w1 X;fy 0 1 x x x ...
W1 Xj 41 fi 0 0 1 x x ...

Wy Xpfi 00 0 1 x ...



F5: compute Groebner ({fy,... fx)),d + 1)

Matrix in degree d

my mp mg my ms ...

uify 1 X X X X
. 0 . X X X ..
un f 0 0 1 x «x Matrix in degree d + 1
: b ot o3ty t5 ...
Y 1 | O 0 1 x  x ( )
Wx-f 0 1 x x x
— 777




F5: compute Groebner ({fy,... fx)),d + 1)

Matrix in degree d

my mp mg my ms ...

uify 1 X X X X
X 0 XX X ... ..
un f o 0 1 x x ... Matrix in degree d + 1

P S T S

W Xif,

S~
=
|
o
o
>
x
-
o
-
+ x
>
>
N
)
=)
=)

Remove wy X; 1 fi iff J

< wiXji1 € LT(CA, ..o foq))




F5: compute Groebner ({fy,... fx)),d + 1)

Matrix in degree d

my mp mg my ms ...

uyfy 1 X X X X
. 0 X X X .
Uy 0o 0 1 x «x Matrix in degree d + 1

P S T S

Yot | 00 1 x x o :
2 Wx-f 0 1 x x x
: e

< Remove wq Xjt+1 fk iff
Wi X1 € LT(Groebner ({fi,...,fk_1)),d —1)




(Final) F5: compute Groebner ({fy,... fx)),d + 1)

Matrix in degree d — 1

I e

uify X x x X

Matrix in degree d + 1

hoboty ty by ...
u;1f1 0o 0 x X

Gier |00 0 [ 5 SN
W) fi 0 0 0 o0 Wy Xnf 000 1 x ...

wh i 0 0 0 o0

Remove w; X; 1 fi iff
WiXj1 € LT(<m1>"'7m57" >)



(Final) F5: compute Groebner ({fy,... fx)),d + 1)

Matrix in degree d — 1

Matrix in degree d + 1

o bty b4 ot5 ...

uify

0
uy fq 0
! wy Xjfy 01 x x x
w1 Xj 1 fk 00 1 x x
Vrlk,1 fr_q 0 : Do
wy fie 0 Wy Xnfy 00 0 1 x
w; fie 0
Remove w; X; 1 fi iff
WA Xj 1 € LT (<m1>"' 55 >)



Properties of Fs

IfF =[fi,... x| is a (semi) reqular sequence, then all the matrices
generated by the algorithm have full rank.

e Easy to adapt for special cases Fo
w new trivial relation: f?> = f;

e Swap the two loops: degree first and the equation by equation
e Full version of the algorithm F5 : D is no more a parameter

e However, matrix F5 is very easy to implement and efficient for
dense system: for instance HFE Challenge 1 broken
80 dense equations in 80 variables
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after 10m 12 17 19 19 22 35



Properties of Fs

IfF =[fi,... x| is a (semi) reqular sequence, then all the matrices
generated by the algorithm have full rank.

e Easy to adapt for special cases Fo
w new trivial relation: f? = f;

e Swap the two loops: degree first and the equation by equation
e Full version of the algorithm F5 : D is no more a parameter

e However, matrix F5 is very easy to implement and efficient for
dense system: for instance HFE Challenge 1 broken
80 dense equations in 80 variables

Buchberger
Maple slimGb Macaulay 2 Singular F;  F5
after 10m 12 17 19 19 22 35

after 2h 14 19 21 21 28 45



Signature-based Grbner basis computations
To obtain the algorithm Fs we need critical pairs and polynomials.
Linear Algebra Polynomials
Indexofarowse T Signature s of polynomial p
p=>/hfands=LT(h)
Gauss without pivoting -



Signature-based Grbner basis computations
To obtain the algorithm Fs we need critical pairs and polynomials.
Linear Algebra Polynomials
Indexofarowse T Signature s of polynomial p
p=>/hfands=LT(h)
Gauss without pivoting

with C. Eder “‘A survey on signature- based Grbner basis
computations”: the area of signature-based Grbner basis algorithms is
confusing and vast.




Hilbert function I

Hilbert function of an ideal / : combinatorial and geometric properties
of /.
Intrinsic: does not depend on the chosen generator set [4].

For d € N we define the set
K[Xx1,...,Xp]lg = {f € K[xq,...,x5] | deg(f) = d} itis a K vectorial
space of dimension ("*3"). If /is an ideal, then

lg =1nK[xq,...,xn]|qis also a K vectorial space.

Definition
The Hilbert function of an homogeneous ideal / = Id (fq,..., fy) in de-
gree d is defined by

HF/(C/) = HF(O') = dim(K[X1 5600 ,Xn]//)d = dim(K[X1 9000 Xn]d)—dim(ld)



Hilbert function I1

For some degree d, there exists a polynomial P such that
HF,(d) = P(d) whend > dy

do Is the index of regularity; it is denoted by H(I).
The degree of P is also the dimension of the ideal; it is denoted by
dim(/).




Hilbert function 111
Definition (Hilbert series)

The Hilbert series is the generated series of HF:

HS,(t) = ) HF(d) ¢
d=0

from the Hilbert theorem we deduce that it is a rational function:

HS,(1) (1’\'_(%d with N(1) % 0

where d is the dimension of |
and deg(/) := N(1) is the degree of the ideal I.

Generating series: HS(t) = >, r4t?, where

rq = # Cols — Rank(Macaulay(F, d))

Finite number of solution: HS(t) = .7 "' ;¢




Degree of regularity

Definition
The degree of regularity of an homogeneous ideal | = (f;, ..., fy) in the
ring K[x1, ..., Xp] is

Greg = min{d >0 | dimg({f e I, deg(f) = d}) = My(n)}

where My(n) := ("*97") is the number of monomials in degree d.
d



Degree of regularity

Definition
The degree of regularity of an homogeneous ideal / = (f;, ..., fy) in the
ring K[x1,..., Xp] is

Oeg = min{d >0 | dimg({f e I, deg(f) = d}) = My(n)}

where My(n) := ("9~ is the number of monomials in degree d.

Remark
For a non zero-dimensional ideal dreg = ©



Degree of regularity

Definition
The degree of regularity of an homogeneous ideal | = (f;, ..., fy) in the
ring K[x1, ..., Xp] is

Greg = min{d > 0| dimg({f e/, deg(f) = d}) = My(n)}
where My(n) := ("9~ is the number of monomials in degree d.

Remark

Consequence: the maximal degree occurring in the computation of a
DRL Grobner basis is bounded by dreg.



Degree of regularity

Definition
The degree of regularity of an homogeneous ideal / = {fy, ..., f,) in the
ring K[x1,..., Xp] is

Grog = min{d >0 | dimg({f € I, deg(f) = d}) = My(n)}
where My(n) := ("9~ is the number of monomials in degree d.

Remark

Consequence: the maximal degree occurring in the computation of a
DRL Grobner basis is bounded by dreg.

The complexity of computing a DRL Grébner basis is bounded by:

re ) )




Examples Hilbert

| = <x3,xy,y2> in Q[x, y]

then

dim(/)
deg(/)

HS,(t)=t2+2t+1={ 2



Examples Hilbert

| = <x3,xy,y2> in Q[x, y]

then

dim(/)
deg(/)

HS,(t)=t2+2t+1={ 2

I={(xy,yz,x2z)inQ[x,y,Z|

then

2t+1 dim(/)
HS/(O = 5—¢ = { deg(/)



Examples Hilbert

| = <x3,xy,y2> in Q[x, y]

then
HS/(f) =P +2t+1 ={ 3':;58 :2
I={(xy,yz,xz)inQ[x,y,Z|
then
R =



Regular sequences (revisited) 1

original definition:

Definition

Geometric definition: the homogeneous polynomial system (f,.... fn)
is regular ifforallje {1,..., m}, the dimension of (fi,... f)estn—i.
In that case, the sequence (fi, ..., f;,) said regular.

new definition of semi-regularity: Algebraic definition: the homoge-
neous polynomial system (fi,... fy) is regular if forall /i = 1,...,m
and g such that

g-fielf,....fiiq)

then gisalsoin (f,... . fi ).
The non homogeneous system of polynomial equations (f{,...,fy) is

degree of f).



Regular sequences (revisited) 11

Remark
In other words, one cannot find algebraic relations

>19i- fi = 0 with g € K[xy, ..., Xg]
i

except the trivial relations (or combined from the) f;f; = ff;.

Remark
From the geometric definition: regular sequences do not exist when

Regular sequences are well understood mathematical objects:
e We can predict their Hilbert function



Example of generating series

n quadratic equations f; over ) then under regularity assumption:
HS(t)=(1+1t)"




Example of generating series

n quadratic equations f; over ) then under regularity assumption:
HS(t)=(1+1t)"

Consequently, dreg = n+ 1.

Example
Over Q, n = m = 50 quadratic equations

(14+2)® =1+50z++ 20+ 0| 25]

Hence the maximal degree occurring in the computation is .



Unifying the Boolean case with the standard case

Describe simultaneously the general case K and the particular case F»
— notation: ok r, Kronecker’s symbol is equalto 1 if K = F et 0
else.

If K = IF» if want to search the solutions in K of the algebraic system
(fy,...,fm), then we need to add to / = Id(f, ..., f) the field equations
X2 — X;.
In the quotient ring:

Fo[X1, ..., Xn] = Fo[Xq, ..., Xn] /X2 — Xq,..., X2 — Xp),

any polynomial f of the ideal 1d(fy, ..., fy) is solution of the trivial
equation
o= f



Boolean case

Ry denotes the polynomial ring
Rk = K[X1,...,Xn] if K £ Fo

and
Re, = Fa[X1, ..., Xl /OZ, ... XE) K = Fy

(Square free polynomials)

Hence if My(n) denotes the number of terms in n variables of degree
din Ry itis easy to see that My(n) = (""9") and My(n) = (]) if

K = Fo.

Consequently:

1-2z

i My(n)z9 = (1 ML Zz) (1)
a=0



Degree of regularity (Boolean/Standard case)

There is no regular sequence when m > n — we need to change the
usual definition of regular sequence by imposing a limit on the degree
of non zero divisors:

Definition (Degree of Regularity)

The degree of regularity of an homogeneous ideal | = (f;, ..., fy) in the
ring Rx is

Greg = min{d =0 | dimg({f € I, deg(f) = d}) = My(n)}



Semi-regularity

Definition
Algebraic definition: the homogeneous polynomial system (i, ..., fn) is
regular if forall i = 1,..., mand g such that

g-fielfi,....fi1)

then gisalsoin (f,... . fi ).

Definition
The homogeneous polynomial system (fq, ... fy) is semi-regular if for
alli=1.....mand g such that

g-fielh .., e

then gis alsoin (fi,...,fi_1) if deg(g - fj) < Oreg-



Overdetermined systems- Complexity
with M. Bardet, B Salvy

m>n

Estimate dmax the maximal degree of the polynomials occurring in the
Grébner basis computation.

We build A, following step by step the F5 algorithm — Ay non
singular matrices — number of rows.

momoms degree d in xq,..., X,
monom (d — 2) x f
Ag = monom (d — 2) x f;,
monom (d — 2) x f;



Fs criterion

Keep 1 f; is in the matrix if ¢ ¢ Id(LT-(G;_1)), where G;_4 is a GrObner
basis of {f;,..., fi_1}.

Ug,i(n) := number of rows in the matrix generated by F5 when
computing a Grébner basis of [fi, ..., f;] in degree d.



F5: compute Groebner ({fy, . .

Already computed
Groebner ({fy, ..., f)), d)
Matrix in degree d
my mp mg my
uqfy 1 X X X
. 0 X X
ury fi 0o 0 1 x
v fer |00 1 x x
W fi 0 0 0 1 «x
W fi 0 0 0 0 1

ms ...
X

X
X

L), d+1)



F5: compute Groebner ({fy, . .

urfy

Ury fy

V'Ii o fe—1

Matrix in degree d

m
1

my

mg

my
X

X
X

-

ms ...

X

x X

X X -

o), d+1)



F5: compute Groebner ({fy, . .

Matrix in degree d

m

mg my

X

X
1

X

X
X

ms ...

x X

X X -

o), d+1)



F5: compute Groebner ({fy,... fx)),d + 1)

Matrix in degree d

my mp mg my ms ...

uyfy 1 X X X X
. 0 -X X X ..
Uy 0o 0 1 x «x Matrix in degree d + 1

P S T S

o
(SR
>

0o 0 1 «x :
o 0 0 1 w1 X;fy 0 1 x x x ...
W1 Xj 41 fi 0 0 1 x x ...

Wy Xpfi 00 0 1 x ...



F5: compute Groebner ({fy,... fx)),d + 1)

Matrix in degree d

my mp mg my ms ...

uify 1 X X X X
. 0 . X X X ..
un f 0 0 1 x «x Matrix in degree d + 1
: b ot o3ty t5 ...
Y 1 | O 0 1 x  x ( )
Wx-f 0 1 x x x
— 777




F5: compute Groebner ({fy,... fx)),d + 1)

Matrix in degree d

my mp mg my ms ...

uify 1 X X X X
X 0 XX X ... ..
un f o 0 1 x x ... Matrix in degree d + 1

P S T S

W Xif,

S~
=
|
o
o
>
x
-
o
-
+ x
>
>
N
)
=)
=)

Remove wy X; 1 fi iff J

< wiXji1 € LT(CA, ..o foq))




F5: compute Groebner ({fy,... fx)),d + 1)

Matrix in degree d

my mp mg my ms ...

uyfy 1 X X X X
. 0 X X X .
Uy 0o 0 1 x «x Matrix in degree d + 1

P S T S

Yot | 00 1 x x o :
2 Wx-f 0 1 x x x
: e

< Remove wq Xjt+1 fk iff
Wi X1 € LT(Groebner ({fi,...,fk_1)),d —1)




Induction

Whend > 1:

i—1
Ug.1.(n) =i - Ma_1(n) — > Ug1,4(n)
— =

number of monomials ‘“—m— ——
degree < d — 1 Fs criterion



Induction

Whend > 1:

i*1+5]}\{,ﬁ<‘2
Ug1,i(n) =i - My_1(n) — > Ug_1j(n)
—_—— -

number of monomials
degree <d-—1 Fs criterion




End of the computation

#col

#row

Matrix

generated
by F5

~



End of the computation

#col= My(n)

Matrix
#row = Uy m(n) generated
by F5



End of the computation

#col= My(n)

Matrix
#row = Uy ;n(n) generated
by F5

=" When hy ,(n) = #col — #row < 0 this end of the computation !

We can compute explicitly: hy ,(n) = My(n) — hg m(n)

and so compute the biggest real root n > 0 of hy (1) = 0.



Example

For quadratic equations, m = n over [F,: using the previous recurrence
relation we can compute explicitly:

Uo,i(n) = Uy i(n) =0

Usi(n) =i (§) — 0= i

Us,i(n) =i (§) - Z’] Upj(n)y=in

=

. i . n(n— i i(mP—n—i-1

U4¢,-(n) =] (g) = 211 Ug,j(n) = n(r; ) —1211 j= 7I(n 2 i-1)
j= =



Example

For quadratic equations, m = n over [F»: using the previous recurrence
relation we can compute explicitly:

Uo,i(n) = Uy ,i(n) =0

Usi(n) =i (§) — 0= i

U3,,-(n) = I<’17) — Z’: Uu-(n) =1in

j=1
. i e i iRp it
Uni) = Q) = 5 o) = 12650 - 3 j = (P=r=0)

1= J=

Then:
han(n) = Ms(n) — Us 5(n)
- () -
n(mP—-9n+2)



Example

For quadratic equations, m = n over [F»: using the previous recurrence
relation we can compute explicitly:

Uo,i(n) = Uy i(n) =0

Ug",‘()—l() 0=

U3¢,-(n) = <1) — Z’: Uu-(n) =1in

Uasn) = 19— 5, Uy = 2520 — 5, 1Pt
Then: = j=
hs.n(n) = Ms(n) — Uz n(n)
“(
_ sz
- 6

Compute the biggest real root of this polynomial:

han(m)=n (n—9/2—1/27/73) (n-9/2+1/2V73)



Example
han(n)=n (n—9/2—1/2v/73) (n—9/2+1/2+/73)

the biggest real root is: 9/2 + 1/2+/73 ~ 8.772 so that N3 = 9.



Example
han(n)=n (n—9/2—1/2v/73) (n—9/2+1/2+/73)

the biggest real root is: 9/2 + 1/2+/73 ~ 8.772 so that N3 = 9.
So that d < 3 when then number of variables is n < 9 and:

d|2|3|4|5|6|7|8|9
Ny |3|9|16 |24 |32 |41 |49 58




Example
han(n)=n (n—9/2—1/2v/73) (n—9/2+1/2+/73)

the biggest real root is: 9/2 + 1/2+/73 ~ 8.772 so that N3 = 9.
So that d < 3 when then number of variables is n < 9 and:

d|2|3|4|5|6|7]|8]|9
Ny |3|9|16 |24 |32 |41 |49 58

To read the previous tabular we start from the bottom line:

@ When 3 < n < 9 = N3 then the maximal degree in 5 is 3;
consequently the maximal matrix is of size n® x n®; the total
complexity cost is thus O(n°).

@ When N3 =9 < n < Ny = 16 the maximal degree is 4 and the
total complexity is bounded by O(n'?).

@ When Ny = 16 < n < N5 = 24 the maximal degree is 5and the
total complexity is bounded by O(n'®).



Generating series

fi of degree d;, i = 1, ..., m finite field I 4 then

M1 (1-6) 2% _ w
Hm =Z?jo=0 hd,mzd = H (1 (!H_?z ) (11§§2) with § = 5K,]F2




Generating series

fi of degree d;, i = 1,..., m finite field F , then

m —(1—6) 2% _ n .
Hm = szo=0 hd,mzd = H (1 (11+§)z ) (11E§2> with § = 6K,]F2

particular case: d; = 2, F», n = m equations

0 n
1+2

2 hd,nzd: ( 2)

e 1+2Z



Generating series

particular case: d; = 2, F», n = m equations
a0 1 +Z n
Snaet (122)
ey 1+Zz

Example
Fs, n = m = 50 quadratic equations

50
(ﬂj;z) =1+50z+ 117522 + 17100 28 + 170325 z* + 1202510 z°

15915475 26 + 17831400 27 + 9196475 28 —205886050| 2° |
+0(2'9)

Hence the maximal degree occurring in the computation is @



Asymptotic estimate (sketch of the proof)

Biggest real root of

dy = n—2n O

>
Wl
3

Q
&
=,
N
+
—
'o S
o
w
=
[
+
(@)
—~
4

where \g = 3/2+/3 +5/2 +1/2/72 +42+/3 ~ 11.11360

the expression of A4 contains the biggest real root of the Airy function
2
(solution of 5% — zy = 0)

The formula is almost exact when n > 3 |



Maximal degree

Maxi%al Degree
T

20

15

10

—— HFE 129
—— HFE 96
—— Random Eqgs Deg 2

| | | | | n

| | |
20 40 60

80

100 120 140 160 180 200



Complexity: classification I

k is a constant (does not depend on n).

d; total degree of f..

m Degree Omax
m<n| K,d =2 | m+ 1 (Macaulay bound)
n+1
m<n|K 14+ >, (di — 1) ( Macaulay bound)
i=1
n+k | K d =2 %—th %4—0(1)
n+k n+k 2
n+k | K dl;‘—hm Zd'61+o(1)
i=1 i=1
2n | K0 =2 | 1oy +1.040% —1.47 +1.71075 + O (n"5)
kn |Kd=2|(k-3%—k(k—1)n+—=2ni+O(1)
; 2(k(kf‘|))€1
Fo,d;i =2 | 171559 + 1.0034ns —1.58 + O(n"3)
kn |Fad=2 <—k+;+;\/2k(k—5)—1+2(k+2) k(k+2)>.



Classification

Classification: m number of polynomials, n number of variables

Number of Egs Complexity
m = cste n exponential
m=cste n'77 | sub exponential
m = cste P polynomial

For instance: if we have m = o n'*# quadratic equations with 3 > 0

1-8
n
dmax S -

8«



Overdetermined systems

For m = o n semi-regular quadratic equations (o« > 1) in Q[xq, . ..

(1—)m

HS(t) = W and dreg = (a — % — \/oz(a — 1))”

1 T

0.8F :

0.6 2

0.4 :

0.2 :




Overdetermined systems

For m = o n semi-regular quadratic equations (o = 1) inFo[xy, ..., Xa]:
" 1+4/2a2—-10a—14+2 (a+2)y/a (a+2
1
0.8 |
06 i
—Q
[— FZ
0.4r i
0.2 \ .
0 : : ‘ ! . o




The Boolean case




The Boolean case: problem Statement

Input: (fi,....fy) € Fo[xq, ..., x,]" with
deg(f;) = 2
Question: Find — if any — one z € [F] such that

e Itis an NP-complete problem whose random instances seem
difficult to solve.

e Decrease significantly this complexity of 2” is a long-standing
open problem



Related Works

Boolean MQ problem is NP-complete — cannot expect to solve it in
sub-exponential time.

e Worst case complexity 4 log,(n)2" [Bouillaguet, Chen, Cheng, Chou,
Niederhagen, Yang, Shamir, CHES’10].

e O(208765M) Ip_ | okshtanov, R. Paturi, S. Tamaki, R. Williams, H. Yu,

SODA2017], no assumption best complexity bound to solve
Boolean MQ is operations.
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e using Grobner bases: we have n equations / n unknowns over F»
What is the complexity ?




Related Works

Boolean MQ problem is NP-complete — cannot expect to solve it in
sub-exponential time.

e Worst case complexity 4 log,(n)2" [Bouillaguet, Chen, Cheng, Chou,
Niederhagen, Yang, Shamir, CHES’10].

e O(208765M) D, Lokshtanov, R. Paturi, S. Tamaki, R. Williams, H. Yu,
SODA2017], no assumption

e using Grobner bases: we have n equations / n unknowns over F»
\What is the complexity ?

n w
<dreg> and dreg ~ 5




Related Works

Boolean MQ problem is NP-complete — cannot expect to solve it in
sub-exponential time.

e Worst case complexity 4 log,(n)2" [Bouillaguet, Chen, Cheng, Chou,
Niederhagen, Yang, Shamir, CHES’10].

e O(208765M Ip, | okshtanov, R. Paturi, S. Tamaki, R. Williams, H. Yu,
SODA2017], no assumption

e using Grobner bases: we have n equations / n unknowns over >
\What is the complexity ?




Related Works

Boolean MQ problem is NP-complete — cannot expect to solve it in
sub-exponential time.

e Worst case complexity 4 log,(n)2" [Bouillaguet, Chen, Cheng, Chou,
Niederhagen, Yang, Shamir, CHES’10].

e O(208765M Ip_ | okshtanov, R. Paturi, S. Tamaki, R. Williams, H. Yu,
SODA2017], no assumption

e using Grobner bases: we have n equations / n unknowns over [
‘What is the complexity ?

n w
<dreg> and dreg ~ 777

n
ing (1) = (=(5 = 1) n(3 = 1)/3 + In(3)) /1)

Ing <n76> ~ 0.436 n




Related Works

Boolean MQ problem is NP-complete — cannot expect to solve it in
sub-exponential time.
e Worst case complexity 4 log,(n)2" [Bouillaguet, Chen, Cheng, Chou,
Niederhagen, Yang, Shamir, CHES’10].
e O(20:8765M) Ip_ | okshtanov, R. Paturi, S. Tamaki, R. Williams, H. Yu,
SODA2017], N0 assumption
e using Grobner bases: we have n equations / n unknowns over F»
\What is the complexity ?

ing (1) = (=(5 = 1) (3 = 1)/3 + In(3)) /I

Ing <n7ﬁ> ~ 04361

The total Complexity is 2'-%4" with w — 2.376



Related Works

Boolean MQ problem is NP-complete — cannot expect to solve it in
sub-exponential time.

e Worst case complexity 4 log,(n)2" [Bouillaguet, Chen, Cheng, Chou,
Niederhagen, Yang, Shamir, CHES’10].

e O(208765M) Ip, [ okshtanov, R. Paturi, S. Tamaki, R. Williams, H. Yu,
SODA’2017], no assumption best complexity bound to solve
Boolean MQ is operations.

e using Grébner bases: n equations/unknowns over F,  O(21-047)



Related Works

Boolean MQ problem is NP-complete — cannot expect to solve it in
sub-exponential time.
e Worst case complexity 4 log,(n)2" [Bouillaguet, Chen, Cheng, Chou,
Niederhagen, Yang, Shamir, CHES’10].
e O(208765M) Ip_ | okshtanov, R. Paturi, S. Tamaki, R. Williams, H. Yu,
SODA2017], ho assumption
e using Grébner bases: n equations/unknowns over ', O(21047)
e for very Sparse Equations (sparse = each equation depends on
¢ variables), the expected complexity of the Agreeing-Gluing
Algorithm is:
O(20-4157m) when ¢ = 6
O(201544m)  when ¢ = 3 .

@ |. Semaev.
Sparse algebraic equations over finite fields.
SIAM J. Comput., 39(2):388—409, 2009.



Finite Fields
The Boolean case




The Boolean case: problem Statement

Input: (fi,....fy) € Fo[xq, ..., x,]" with
deg(f;) = 2
Question: Find — if any — one z € [F] such that

e Itis an NP-complete problem whose random instances seem
difficult to solve.

e Decrease significantly this complexity of 2” was a long-standing
open problem



Main result
= Algorithm BooleanSolve to solve determined or overdetermined
systems (m = anwith o > 1).

Deterministic and Las Vegas variants, depending on the choice of
some linear algebra subroutines

m = n and under some algebraic assumptions, the Boolean MQ
Problem can be solved in:

o O(20841n) ysing the deterministic variant;
o O(29792M) ysing the Las Vegas probabilistic variant.

Las Vegas: the result is always correct, but the complexity is a random
variable.



General approach for finite fields

e mix efficiently exhaustive search, field equations and Grobner
bases.

e Use complexity results to estimate the complexity.

Simple Idea:

. . ) ; ig #equations _ _m_
we fix k variables (trade-off.) — we increase the ratio Zvars = -k

The gain obtained by solving overdetermined systems may overcome
the loss due to the exhaustive search on the fixed variables.

overdetermined exhaustive
systems search

QIF

The goal is to find k the best trade-off



Complexity of the General Hybrid Method

[fi, ..., fm| of quadratic equations in n variables. Under assumptions,
when n — o, q — o and n > log(q), asymptotically:

w2
k ~0.30 IoggW

Gy = o(1.38w—0.4402 loga(q) ") n

direct Grobner basis approach - 20.62 wn
hybrid approach




Complexity of the General Hybrid Method
Theorem

[fi, ..., fm] of quadratic equations in n variables. Under assumptions,
when n — w0, q — o and n > log(q), asymptotically:

Crypy = 2(1.38w—0.4442 logy(q) ")

over [F S over [F N
0240 4 L 240 210 ob 5@
g/ & S 7E
2200 8 %S 5200 Q Q
g
2160 S ,:f\b 2160
120 5/ 9 120
27 Y 2
080 | 9/ 280
240 240
nb. vars

0 25 50 75 100125150 0 25 50 75 100125150



Comparison Solving Methods (fixed q = 256)

Nb Ops (q = 256)

2240 1 Exhaustive search

2200

2160

2120

0 4 8 12 16 20 24 28
Theoretical complexity (explicit formula).



Roadmap of the new algorithm over o
with M Bardet, B Salvy, PJ Spaenlehauer

e Instead of applying Gaussian Elimination on several matrices we
want to solve only one linear system.

e To solve this linear system: use the Wiedemann algorithm so that
w = 2.

o Find the new optimal trade-off



Roadmap of the new algorithm over o

with M Bardet, B Salvy, PJ Spaenlehauer
e Instead of applying Gaussian Elimination on several matrices we

want to solve only one linear system.
e To solve this linear system: use the Wiedemann algorithm so that

w=2.
e Find the new optimal trade-off

The usual strategy is the following:

degree of the polynomials




Roadmap of the new algorithm over o

with M Bardet, B Salvy, PJ Spaenlehauer
e Instead of applying Gaussian Elimination on several matrices we

want to solve only one linear system.
e To solve this linear system: use the Wiedemann algorithm so that

w=2.
e Find the new optimal trade-off

The usual strategy is the following:

degree of the polynomials




Roadmap of the new algorithm over o

with M Bardet, B Salvy, PJ Spaenlehauer
e Instead of applying Gaussian Elimination on several matrices we

want to solve only one linear system.
e To solve this linear system: use the Wiedemann algorithm so that

w=2.
e Find the new optimal trade-off

The usual strategy is the following:

degree of the polynomials




Roadmap of the new algorithm over o
with M Bardet, B Salvy, PJ Spaenlehauer
e Instead of applying Gaussian Elimination on several matrices we
want to solve only one linear system.
e To solve this linear system: use the Wiedemann algorithm so that
w=2.
e Find the new optimal trade-off

The usual strategy is the following:

degree of the polynomials
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Roadmap of the new algorithm over o

with M Bardet, B Salvy, PJ Spaenlehauer
e Instead of applying Gaussian Elimination on several matrices we

want to solve only one linear system.
e To solve this linear system: use the Wiedemann algorithm so that

w=2.
e Find the new optimal trade-off

The usual strategy is the following:

degree of the polynomials

sgveral Gaussian eliminations




ldea/Goal of the new algorithm

e Use the Wiedemann algorithm so that w = 2.

e Hide as much as possible the Grébner basis algorithm to solve
only one linear system.

e Combine with exhaustive search

We define a new d,;; so that we obtain the final GB in one step:

degree of the polynomials
1 Solve one (big) linear system

e A

Goal: show that dyit ~ Oeg

steps in the algorithm



Algorithm

(f1(X1,...

7Xn)a“’

7fm)

N

Fix k = [5n| variables | (0,0)

—

(f1(X1,...,0,0),-” ,fm)

(1,0)

!

(0,1) (1,1

(f1(X1,...,

)
1,1), , fm)




Algorithm (F (X1, ...y Xn), -+, fm)

N

Fix k = |5n| variables | (0,0) (1,0) (0,1) (1,1

i

)
(f1(X17"'7050)a”'7fm) (f1(x17"'7131)""7fm)

The probability that a ran- prdbability to have no solution

dom polynomial system of fjapem s s
n + k random equations of  0.78
degree d (d = 2) in n vari- gg;

ables over 5, has no solu-
tionis e=2 " (asymptotically) 0

0 2 4 6 8 10




Algorithm (B4, X))+ F)

N

Fix k = | 8n| variables | (0,0) (1,00 [(0,1) |(1,1)
17

|

(f1(X17"'7070)5”'7fm) (f1(X17"'7 1)77fm)

test consistency of the
specialized overdetermined systems

Instead of solving —



Consistency check: Hilbert’s Nullstellensatz over IF»

fi,--+,fn = 0 has no solution < Find hy, ..., hn ian[Xh...,Xn,k]

hify+-+hpfm=1 mod <x,.2_x,-,i:1,..,(n—k)>.

Given a bound d,;: on deg(h;), the h; can be founded by linear algebra:



Consistency check: Hilbert’s Nullstellensatz over IF»
fi,--+,fm = 0has no solution <= Find hy, ..., hpin Fa[xq,..., Xp_«]

Given a bound d,;: on deg(h;), the h; can be founded by linear algebra:
my ce my

Macaulay Matrix_ (d) = t.fi ( c;j = coeff(t f;, m;) )

Columns: squarefree monomials of degree d.
Rows: all products t f; (remove squares) where deg(t) < d — 2.



Consistency check: Hilbert’s Nullstellensatz over IF»
fi,--+ ,fm = 0 has no solution <= Find hy,..., hnin Fa[xq,..., Xn k]

hify+---+hnfr=1 mod <x,-2—x,-,i=1,..,(n—k)>.

Given a bound d,;: on deg(h;), the h; can be founded by linear algebra:
m ce my

Macaulay Matrix_ (d) = t.f,- ( 6i; = coef(t £, m) )

Columns: squarefree monomials of degree d.
Rows: all products t f; (remove squares) where deg(f) < d — 2.

1 =T[1,0,...] vector which represent the monomial 1. If the linear
systemu-M = 1 has a solution, then f; = --- = f;, = 0 has no solution.




Consistency check: Hilbert’s Nulllgtellensatz over Fr%
: ’
Macaulay Matrix_ (d) = tf ( ¢, = coeff(t f;, m) )

Columns: squarefree monomials of degree d.
Rows: all products t f; (remove squares) where deg(t) < d — 2.

1 ="[1,0,...] vector which represent the monomial 1. If the linear
systemu-M = 1 has a solution, then f; = - -- = f, = 0 has no solution.

number of columns of M < =2, (")
. 2@ d
=< number of rows of M < m—zh 55 (7)

density of M < nz%(g)_1 — 0.

1
IfD = >




Solving sparse linear systems

[3

D. Wiedemann.
Solving sparse linear equations over finite fields.
IEEE Transactions on Information Theory, 32(1):54—62, 1986.

E. Kaltofen and B. David Saunders.
On Wiedemann’s method of solving sparse linear systems.
AAECC, p. 29-38, 1991.

G. Villard.

Further analysis of Coppersmith’s block Wiedemann algorithm for the solution of
sparse linear systems.

ISSAC’97, p. 32-39. ACM, 1997.

M. Giesbrecht, A. Lobo, and B. D. Saunders.
Certifying inconsistency of sparse linear systems.
ISSAC’98, p. 113—-119, 1998.



Wiedemann : main idea
We want to solve M x = b where b is a given vector and M is a sparse
n x n matrix. (we assume that det(M) = 0).
The goal is to find a polynomial P(X) = 37 p;X’ with py + 0 and
d < nsuch that
P(M).b=0
Note that the characteristic (minimal) polynomial of M is a solution.

d
pob + > piM'b = 0
i=1
s0 that a solution of M x = bis x = — 3.7, 2M="p
To compute P, we choose a random vector and the sequences

vw=nandvi=Mv, qfori=1,...,(2xn—1)
zj ={v;, r) (scalar product) for i = 0,1,...,(2«n—1)

We then apply the Berlekamp-Massey algorithm to retrieve a

candidate polynomial P.
Complexity ?



Consistency of singular linear system (Wiedemann)

TestConsistency (Gisbrecht,Lobo,Saunders 98)
Input: Black boxes for x — A - x and x — "A- x where A € KN*N
and b e KN~
Output:

e (“consistent”,x) with A - x = b if the system has a
solution

e (7 ="inconsistent”,u) if the system does not have
a solution, withu - A = 0 and u - b # 0, certifying
the inconsistency.

Algorithm determines the consistency of an N x N matrix
with expected complexity O(N log N)) evaluations of the
black boxes and O(N? log? N log log N) additional
operations in F».




Algorithm : a filtering process

(f1(X1,...

7)(n)’...

7fm)

T

k=2 (0,0)

/

(1,0)

l

(0,1)

l

(1,1)

\

(f1(X1,...,0,0),"' ;fm)
TestConsistency uM = 1

(f1(X17"'a171)a"' ,fm)
TestConsistency uM = 1




Algorithm : a filtering process

(f1(X1,...

;Xn)7"' ;fm)

T

k=2 (0,0)

/

l

(1,0)

(0,1) (1,1)

l

(f1(X1,...,0,0),"' ;fm)
TestConsistency uM = 1

(f1(X17"'a171)a"' ,fm)
TestConsistency uM = 1

Y

%)

Y

Y Y

%)

‘consistent’ @




Algorithm : a filtering process
(f1(X17"'7Xn)7"' ;fm)

T

k=2 (0,0) (1,0) (0,1) (1,1)
(f1(X1,...,0,0),-'- 7fm) (f1(X17"'a171)a"' afm)
TestConsistency u M = 1 o || TestConsistency uM =1

Y Y Y A\
@ @ ‘consistent’ @

Y

Apply recursively
the algorithm




Bounding the Witness Degree

fi, -+, fm = 0has no solution < Find g, ...,gmin Fa[Xq,..., Xp_«]
gifi+-+gmfn=1 mod <x,-2—x,-,i=1,..,(n—k)>.
<= Find homogeneous hy, ..., hyin

FZ[X17"' 7ank7h]

hifi+ -+ A = K™t mod <x,.2—x,h, i:1,..,(n—k)>.



Bounding the Witness Degree

fi, -+, fm = 0has no solution < Find g, ...,gmin Fa[Xq,..., Xp_«]
Gifi+ -t gmfn=1 mod <x,?—x,-, = 1,..,(n—k)>.
<= Find homogeneous hy, ..., hyin

FZ[X17"‘7Xn7k7h]

hyfy+ -+ B = ht mod <x,?‘—x,-h, i:1,..,(n—k)>.

LetF = (fi,....fm, X2 — X1,..., X5 — Xp) S.t. the system F = 0 has no
solution. Then, dy. < dreg(I'") the homogenized ideal

1 — <f1(h),...,f,§1h),x12 —xih, ... X3 —x,,h>.
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solution. Then, dyi: < dreg(/'") the homogenized ideal

1 — <f1(h),...,f,§1h),x12 —xih, ... X3 —x,,h>.

Assuming m = o n. Under some semi-regularity assumption:

1 1+ , ,
HSpm(t) == mﬁ (Hilbert Series)




Bounding the Witness Degree

LetF = (fi,....fm, X2 — X1,..., X5 — Xp) S.t. the system F = 0 has no
solution. Then, dyi: < dreg(/'") the homogenized ideal

1 — <f1(h),...,f,§1h),x12 —xih, ... X3 —x,,h>.

Assuming m = o n. Under some semi-regularity assumption:

1 (1+8" , ,
HSpm(t) == mﬁ (Hilbert Series)

14+4/202—10a—142(a+2)4/a(a+2)
dWit ~ dfeg ~ (_OZ T \/ 2 n.
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Complexity: putting all together

Complexity — 27" Consistency(n — (n vars, an equations)
log, Complexity = (84 2(3 — 1) logo(DP(1 — D)'"P)) n

where

144/292—10y—14+2(y+2 42
D=—~+ \/V Y 2(7 VAl )andyzﬁ
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Complexity — 27" Consistency(n — (n vars, an equations)
log, Complexity = (84 2(3 — 1) logo(DP(1 — D)'"P)) n

where
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Complexity: putting all together

Complexity = 277 Consistency(n — 3n vars, an equations)
log, Complexity = (8 +2(3 —1)logo(DP(1 — D)'=P))n

where

1+4/292—10y—1+2(y+2 +2
D= oy HIIN126042G ) and = 12

Remaining task : find 1 > 3 > 0 to minimize the complexity

Under algebraic assumption, a Boolean quadratic polynomial
(fi,..., fan) can be solved in probabilistic time:

0(2(1-0-208)m) for o < 1.82 using 8 = 1 — 0.55a

If « > 1.82, the best complexity is achieved for 5 = 0.
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Complexity: putting all together

Complexity = 277 Consistency(n — 3n vars, an equations)
|Og2 Complexity = (5 + 2(6 _ 1) |0g2(DD(1 B D)17D)) .

where
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Complexity: putting all together

omplexty = 2°" Consistency(n — (n vars, an equations)
|Og2 Complexity = (ﬂ + 2(6 _ 1) |0g2(DD(1 B D)17D)) .

where

1+4/292—10y—1+2(y+2 +2
D=—~+ vy Y Z(W)W(W)and’y:ﬁ

Remaining task : find 1 > 5 > 0 to minimize the complexity



Complexity: putting all together

Complexity = 277 Consistency(n — 3n vars, an equations)
log, Complexity = (8 +2(3 —1)logo(DP(1 — D)'=P))n

where

1+4/292—10y—1+2(y+2 +2
D=—y+ \/7 Y 2(7 Wy )andy:ﬁ

Remaining task : find 1 > 5 > 0 to minimize the complexity

A Boolean quadratic polynomials (fi, ..., f,n) which is
(1 — .55«)-strong semi-regular, can be solved in probabilistic time:

O(2(1-020820)n for o, < 1.82 using 5 = 1 — 0.55a

If « > 1.82, the best complexity is achieved for 5 = 0.




Solving

A

1]

c: exponent of the complexity
°
&

0.31+

an equations in N variables: 2°"

Exhaustive search

Algorithm
! Grobner
Bases

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,




Solving an equations in N variables: 2°"

c: exponent of the complexity

Exhaustive search

New
Algorithm

VS Wiedemamm=




Is it practical ? Comparison w Exhaustive Search




Is it practical ? Comparison w Exhaustive Search

Linear System
4 638 592 x 3 847 592 matrix
Density 2.76%

_184
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