Lecture 2-13-1
 Polynomial systems, computer algebra and applications

Gröbner bases and Buchberger's algorithm

Jean-Charles Faugère ${ }^{1}$ Vincent Neiger ${ }^{2}$ Mohab Safey El Din ${ }^{2}$
${ }^{1}$ Inria and CryptoNext Security
${ }^{2}$ Sorbonne University, CNRS

Warm-up

During the last course, we have introduced and studied:

- polynomial ideals and solution sets to polynomial systems over algebraically closed fields (algebraic varieties);

Warm-up

During the last course, we have introduced and studied:

- polynomial ideals and solution sets to polynomial systems over algebraically closed fields (algebraic varieties);
- topical algorithmic problems: rewriting into triangular systems, membership ideal problem (recall the weak Hilbert's Nullstellensatz), and many others;

Warm-up

During the last course, we have introduced and studied:

- polynomial ideals and solution sets to polynomial systems over algebraically closed fields (algebraic varieties);
- topical algorithmic problems: rewriting into triangular systems, membership ideal problem (recall the weak Hilbert's Nullstellensatz), and many others;
- notions of dimension and degree for algebraic sets;

Warm-up

During the last course, we have introduced and studied:

- polynomial ideals and solution sets to polynomial systems over algebraically closed fields (algebraic varieties);
- topical algorithmic problems: rewriting into triangular systems, membership ideal problem (recall the weak Hilbert's Nullstellensatz), and many others;
- notions of dimension and degree for algebraic sets;
- monomial orderings;

Warm-up

During the last course, we have introduced and studied:

- polynomial ideals and solution sets to polynomial systems over algebraically closed fields (algebraic varieties);
- topical algorithmic problems: rewriting into triangular systems, membership ideal problem (recall the weak Hilbert's Nullstellensatz), and many others;
- notions of dimension and degree for algebraic sets;
- monomial orderings;
- definition of Gröbner bases.
... all of this being motivated by important applications in engineering sciences and post-quantum cryptology

Warm-up

During the last course, we have introduced and studied:

- polynomial ideals and solution sets to polynomial systems over algebraically closed fields (algebraic varieties);
- topical algorithmic problems: rewriting into triangular systems, membership ideal problem (recall the weak Hilbert's Nullstellensatz), and many others;
- notions of dimension and degree for algebraic sets;
- monomial orderings;
- definition of Gröbner bases.
... all of this being motivated by important applications in engineering sciences and post-quantum cryptology

> We need algorithms

Gröbner bases - Definition

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec an admissible monomial ordering over R.

Definition

Let $I \subset R$ be an ideal. One says that $G \subset R$ is a Gröbner basis for (I, \prec) if the following conditions hold:

- G is finite;
- $G \subset I$;
- $\left\langle\mathrm{LM}_{\prec}(g) \mid g \in G\right\rangle=\langle\mathrm{LM}(f) \mid f \in I\rangle$.

Gröbner bases - Definition

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec an admissible monomial ordering over R.

Definition

Let $I \subset R$ be an ideal. One says that $G \subset R$ is a Gröbner basis for (I, \prec) if the following conditions hold:

- G is finite;
- $G \subset I$;
- $\left\langle\mathrm{LM}_{\prec}(\mathrm{g}) \mid \mathrm{g} \in G\right\rangle=\langle\mathrm{LM}(f) \mid f \in I\rangle$.

Why is this definition so useful?

Gröbner bases - Definition

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec an admissible monomial ordering over R.

Definition

Let $I \subset R$ be an ideal. One says that $G \subset R$ is a Gröbner basis for (I, \prec) if the following conditions hold:

- G is finite;
- $G \subset I$;
- $\left\langle\mathrm{LM}_{\prec}(g) \mid g \in G\right\rangle=\langle\mathrm{LM}(f) \mid f \in I\rangle$.

Why is this definition so useful?

How to compute Gröbner bases?

Reductions of a polynomial modulo a polynomial family

Definitions, properties and algorithms

Reduction (division) notion

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec an admissible monomial ordering over R.

Reduction (division) notion

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec an admissible monomial ordering over R.

Consider f and f_{1}, \ldots, f_{s} in R
Decide $f \in\left\langle f_{1}, \ldots, f_{s}\right\rangle$?
We can try to mimick the Euclide's algorithm.

Reduction (division) notion

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec an admissible monomial ordering over R.

Consider f and f_{1}, \ldots, f_{s} in R Decide $f \in\left\langle f_{1}, \ldots, f_{s}\right\rangle$?

We can try to mimick the Euclide's algorithm.

$$
\begin{gathered}
f=q_{1} f_{1}+\cdots+q_{s} f_{s}+r \text { such that } r, q_{i} \in R \text { with } \\
\mathrm{LM}_{\prec}(r) \notin\left\langle\mathrm{LM}_{\prec}\left(f_{1}\right), \ldots, \mathrm{LM}_{\prec}\left(f_{s}\right)\right\rangle
\end{gathered}
$$

Reduction (division) notion

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec an admissible monomial ordering over R.

Consider f and f_{1}, \ldots, f_{s} in R Decide $f \in\left\langle f_{1}, \ldots, f_{s}\right\rangle$?

We can try to mimick the Euclide's algorithm.

$$
\begin{gathered}
f=q_{1} f_{1}+\cdots+q_{s} f_{s}+r \text { such that } r, q_{i} \in R \text { with } \\
\mathrm{LM}_{\prec}(r) \notin\left\langle\mathrm{LM}_{\prec}\left(f_{1}\right), \ldots, \mathrm{LM}_{\prec}\left(f_{s}\right)\right\rangle
\end{gathered}
$$

- note that $r=0 \Longrightarrow f \in\left\langle f_{1}, \ldots, f_{s}\right\rangle$
- note that $f-r \in\left\langle f_{1}, \ldots, f_{s}\right\rangle$

A first example

Take $f=x_{1} x_{2}^{3}+x_{1}^{2} x_{2}^{2}+x_{1}^{3}, f_{1}=x_{1} x_{2}$ and $f_{2}=x_{1}^{2}+x_{2}^{2}$
$\quad \operatorname{LM}_{\text {grevlex }}(f)=x_{1}^{2} x_{2}^{2} \quad \operatorname{LM}_{\text {grevlex }}\left(f_{1}\right)=x_{1} x_{2} \quad \operatorname{LM} M_{\text {grevlex }}\left(f_{2}\right)=x_{1}^{2}$

A first example

Take $f=x_{1} x_{2}^{3}+x_{1}^{2} x_{2}^{2}+x_{1}^{3}, f_{1}=x_{1} x_{2}$ and $f_{2}=x_{1}^{2}+x_{2}^{2}$
$\quad \operatorname{LM}_{\text {grevlex }}(f)=x_{1}^{2} x_{2}^{2} \quad \operatorname{LM}_{\text {grevlex }}\left(f_{1}\right)=x_{1} x_{2} \quad \operatorname{LM} M_{\text {grevlex }}\left(f_{2}\right)=x_{1}^{2}$

ー $r=f-\left(x_{1} x_{2}+x_{2}^{2}\right) f_{1}-x_{1} f_{2}+x_{2} f_{1}=0$

A first example

Take $f=x_{1} x_{2}^{3}+x_{1}^{2} x_{2}^{2}+x_{1}^{3}, f_{1}=x_{1} x_{2}$ and $f_{2}=x_{1}^{2}+x_{2}^{2}$
$\quad \operatorname{LM}_{\text {grevlex }}(f)=x_{1}^{2} x_{2}^{2} \quad \operatorname{LM}_{\text {grevlex }}\left(f_{1}\right)=x_{1} x_{2} \quad \operatorname{LM}_{\text {grevlex }}\left(f_{2}\right)=x_{1}^{2}$

- $r=f-\left(x_{1} x_{2}+x_{2}^{2}\right) f_{1}-x_{1} f_{2}+x_{2} f_{1}=0$

But we could have done:
$\checkmark r=f-x_{2}^{2} f_{2}-x_{2}^{2} f_{1}=\boxed{-x_{2}^{4}}+x_{1}^{3}$

A first example

Take $f=x_{1} x_{2}^{3}+x_{1}^{2} x_{2}^{2}+x_{1}^{3}, f_{1}=x_{1} x_{2}$ and $f_{2}=x_{1}^{2}+x_{2}^{2}$
$\quad \operatorname{LM}_{\text {grevlex }}(f)=x_{1}^{2} x_{2}^{2} \quad \operatorname{LM}_{\text {grevlex }}\left(f_{1}\right)=x_{1} x_{2} \quad \operatorname{LM}_{\text {grevlex }}\left(f_{2}\right)=x_{1}^{2}$

ー $r=f-\left(x_{1} x_{2}+x_{2}^{2}\right) f_{1}-x_{1} f_{2}+x_{2} f_{1}=0$
But we could have done:
ー $r=f-x_{2}^{2} f_{2}-x_{2}^{2} f_{1}=-x_{2}^{4}+x_{1}^{3}$

- non canonical output (order of the computations)
- non fully reduced

A first example

Take $f=x_{1} x_{2}^{3}+x_{1}^{2} x_{2}^{2}+x_{1}^{3}, f_{1}=x_{1} x_{2}$ and $f_{2}=x_{1}^{2}+x_{2}^{2}$
$\quad \operatorname{LM}_{\text {grevlex }}(f)=x_{1}^{2} x_{2}^{2} \quad \quad \operatorname{LM}$ grevlex $\left(f_{1}\right)=x_{1} x_{2} \quad \operatorname{LM} M_{\text {grevlex }}\left(f_{2}\right)=x_{1}^{2}$

ー $r=f-\left(x_{1} x_{2}+x_{2}^{2}\right) f_{1}-x_{1} f_{2}+x_{2} f_{1}=0$
But we could have done:
ー $r=f-x_{2}^{2} f_{2}-x_{2}^{2} f_{1}=-x_{2}^{4}+x_{1}^{3}$

- non canonical output (order of the computations)
- non fully reduced

A first example

Take $f=x_{1} x_{2}^{3}+x_{1}^{2} x_{2}^{2}+x_{1}^{3}, f_{1}=x_{1} x_{2}$ and $f_{2}=x_{1}^{2}+x_{2}^{2}$
$\quad \operatorname{LM}_{\text {grevlex }}(f)=x_{1}^{2} x_{2}^{2} \quad \quad \operatorname{LM}$ grevlex $\left(f_{1}\right)=x_{1} x_{2} \quad \operatorname{LM} M_{\text {grevlex }}\left(f_{2}\right)=x_{1}^{2}$

ー $r=f-\left(x_{1} x_{2}+x_{2}^{2}\right) f_{1}-x_{1} f_{2}+x_{2} f_{1}=0$

But we could have done:

- $r=f-x_{2}^{2} f_{2}-x_{2}^{2} f_{1}=-x_{2}^{4}+x_{1}^{3}$
- non canonical output (order of the computations)
- non fully reduced

Full reduction

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec an admissible monomial ordering over R.

Full reduction

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec an admissible monomial ordering over R.

Consider f and f_{1}, \ldots, f_{s} in R

$$
\leadsto \quad \text { Decide } f \in\left\langle f_{1}, \ldots, f_{s}\right\rangle ?
$$

For $g \in R$, denote by Monomials (g) the monomial support of g.

Full reduction

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec an admissible monomial ordering over R.

Consider f and f_{1}, \ldots, f_{s} in R Decide $f \in\left\langle f_{1}, \ldots, f_{s}\right\rangle$?

For $g \in R$, denote by Monomials (g) the monomial support of g.

$$
\begin{aligned}
f & =q_{1} f_{1}+\cdots+q_{s} f_{s}+r \text { such that } r, q_{i} \in R \text { with } \\
\forall m & \in \operatorname{Monomials}(r), \quad m \notin\left\langle\operatorname{LM}_{\prec}\left(f_{1}\right), \ldots, \operatorname{LM}_{\prec}\left(f_{s}\right)\right\rangle
\end{aligned}
$$

Full reduction

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec an admissible monomial ordering over R.

Consider f and f_{1}, \ldots, f_{s} in R Decide $f \in\left\langle f_{1}, \ldots, f_{s}\right\rangle$?

For $g \in R$, denote by Monomials (g) the monomial support of g.

$$
\begin{gathered}
f=q_{1} f_{1}+\cdots+q_{s} f_{s}+r \text { such that } r, q_{i} \in R \text { with } \\
\forall m \in \operatorname{Monomials}(r), \quad m \notin\left\langle\mathrm{LM}_{\prec}\left(f_{1}\right), \ldots, \mathrm{LM}_{\prec}\left(f_{s}\right)\right\rangle
\end{gathered}
$$

- note that $r=0 \Longrightarrow f \in\left\langle f_{1}, \ldots, f_{s}\right\rangle$
- note that $f-r \in\left\langle f_{1}, \ldots, f_{s}\right\rangle$

Example (I)

Take $f=x_{1} x_{2}^{3}+x_{1}^{2} x_{2}^{2}+x_{1}^{3}, f_{1}=x_{1} x_{2}$ and $f_{2}=x_{1}^{2}+x_{2}^{2}$
$\quad \operatorname{LM}_{\text {grevlex }}(f)=x_{1}^{2} x_{2}^{2} \quad \operatorname{LM}_{\text {grevlex }}\left(f_{1}\right)=x_{1} x_{2} \quad \operatorname{LM} M_{\text {grevlex }}\left(f_{2}\right)=x_{1}^{2}$

- $r=f-x_{2}^{2} f_{2}-x_{2}^{2} f_{1}=-x_{2}^{4}+x_{1}^{3}$

Example (I)

Take $f=x_{1} x_{2}^{3}+x_{1}^{2} x_{2}^{2}+x_{1}^{3}, f_{1}=x_{1} x_{2}$ and $f_{2}=x_{1}^{2}+x_{2}^{2}$
$\quad \operatorname{LM}_{\text {grevlex }}(f)=x_{1}^{2} x_{2}^{2} \quad \operatorname{LM}_{\text {grevlex }}\left(f_{1}\right)=x_{1} x_{2} \quad \quad \operatorname{LM}_{\text {grevlex }}\left(f_{2}\right)=x_{1}^{2}$

- $r=f-x_{2}^{2} f_{2}-x_{2}^{2} f_{1}=-x_{2}^{4}+x_{1}^{3}$

Pushing further the reduction, we obtain
ー $r=f-x_{2}^{2} f_{2}-x_{2}^{2} f_{1}-x_{1} f_{2}+x_{2} f_{1}=-x_{2}^{4}$

Example (II)

Take $f=x_{1} x_{2}^{2}+1, f_{1}=x_{1} x_{2}+1$ and $f_{2}=x_{2}+1$.

$$
\begin{array}{ll}
\underset{\mathrm{LM}}{\text { lex }} & (f)=x_{1} x_{2}^{2} \\
\rightarrow f-x_{2} f_{1}+f_{2}=2 & \mathrm{LM}_{\text {lex }}\left(f_{1}\right)=x_{1} x_{2} \\
\mathrm{LM}_{\text {lex }}\left(f_{2}\right)=x_{2} \\
\hline
\end{array}
$$

Example (III)

Take $f=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{2}^{2}, f_{1}=x_{1} x_{2}+1$ and $f_{2}=x_{2}^{2}-1$.

$$
\operatorname{LM}_{l e x}(f)=x_{1}^{2} x_{2}
$$

$$
\operatorname{LM}_{l e x}\left(f_{1}\right)=x_{1} x_{2}
$$

$$
\mathrm{LM}_{\text {lex }}\left(f_{2}\right)=x_{2}^{2}
$$

Example (III)

Take $f=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{2}^{2}, f_{1}=x_{1} x_{2}+1$ and $f_{2}=x_{2}^{2}-1$.

$$
\operatorname{LM}_{l e x}(f)=x_{1}^{2} x_{2}
$$

$$
\operatorname{LM}_{l e x}\left(f_{1}\right)=x_{1} x_{2}
$$

$$
\mathrm{LM}_{\text {lex }}\left(f_{2}\right)=x_{2}^{2}
$$

$$
r_{1}=f-\left(x_{1}+x_{2}\right) f_{1}=x_{1}+x_{2}^{2}+x_{2}
$$

Example (III)

Take $f=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{2}^{2}, f_{1}=x_{1} x_{2}+1$ and $f_{2}=x_{2}^{2}-1$.

$$
\operatorname{LM}_{l e x}(f)=x_{1}^{2} x_{2}
$$

$$
\mathrm{LM}_{l e x}\left(f_{1}\right)=x_{1} x_{2}
$$

$$
\mathrm{LM}_{\text {lex }}\left(f_{2}\right)=x_{2}^{2}
$$

$$
\begin{aligned}
& r_{1}=f-\left(x_{1}+x_{2}\right) f_{1}=x_{1}+x_{2}^{2}+x_{2} . \\
& r=r_{1}-f_{2}=x_{1}+x_{2}+1 .
\end{aligned}
$$

Reduction algorithm Reduction

Input: • f, f_{1}, \ldots, f_{s} in R

- \prec an admissible monomial order over R

Output: $r \in R$ such that $\mathrm{LT}_{\prec}(r) \notin\left\langle\mathrm{LT}_{\prec}\left(f_{1}\right), \ldots, \mathrm{LT}_{\prec}\left(f_{s}\right)\right\rangle$ and $f-r \in$ $\left\langle f_{1}, \ldots, f_{s}\right\rangle$

Reduction algorithm Reduction

InPut: • f, f_{1}, \ldots, f_{s} in R

- \prec an admissible monomial order over R

Output: $r \in R$ such that $\mathrm{LT}_{\prec}(r) \notin\left\langle\mathrm{LT}_{\prec}\left(f_{1}\right), \ldots, \mathrm{LT}_{\prec}\left(f_{s}\right)\right\rangle$ and $f-r \in$ $\left\langle f_{1}, \ldots, f_{s}\right\rangle$

1. If $f=0$ then return f
2. $r \leftarrow f$

Reduction algorithm Reduction

Input: - f, f_{1}, \ldots, f_{s} in R

- \prec an admissible monomial order over R

Output: $r \in R$ such that $\mathrm{LT}_{\prec}(r) \notin\left\langle\mathrm{LT}_{\prec}\left(f_{1}\right), \ldots, \mathrm{LT}_{\prec}\left(f_{s}\right)\right\rangle$ and $f-r \in$ $\left\langle f_{1}, \ldots, f_{s}\right\rangle$

1. If $f=0$ then return f
2. $r \leftarrow f$
3. boo \leftarrow true
4. while boo = true
4.1 boo \leftarrow false
4.2 for $1 \leq i \leq s$ do
4.2.1 if $\mathrm{LM}_{\prec}\left(f_{i}\right)$ divides LM 々 (r) then

- $r \leftarrow r-\frac{\mathrm{LT}<(r)}{\mathrm{LT}\left\langle\left(f_{i}\right)\right.} f_{i}$
- boo \leftarrow true

Reduction algorithm Reduction

Input: - f, f_{1}, \ldots, f_{s} in R

- \prec an admissible monomial order over R

Output: $r \in R$ such that $\mathrm{LT}_{\prec}(r) \notin\left\langle\mathrm{LT}_{\prec}\left(f_{1}\right), \ldots, \mathrm{LT}_{\prec}\left(f_{s}\right)\right\rangle$ and $f-r \in$ $\left\langle f_{1}, \ldots, f_{s}\right\rangle$

1. If $f=0$ then return f
2. $r \leftarrow f$
3. boo \leftarrow true
4. while boo $=$ true
4.1 boo \leftarrow false
4.2 for $1 \leq i \leq s$ do
4.2.1 if $\mathrm{LM}_{\prec}\left(f_{i}\right)$ divides $\mathrm{LM}_{\prec}(r)$ then

- $r \leftarrow r-\frac{\mathrm{LT}_{\prec}(r)}{\mathrm{LT}_{\prec}\left(f_{i}\right)} f_{i}$
- boo \leftarrow true

5. return r

Reduction algorithm Reduction

InPut: • f, f_{1}, \ldots, f_{s} in R

- \prec an admissible monomial order over R

Output: $r \in R$ such that $\mathrm{LT}_{\prec}(r) \notin\left\langle\mathrm{LT}_{\prec}\left(f_{1}\right), \ldots, \mathrm{LT}_{\prec}\left(f_{s}\right)\right\rangle$ and $f-r \in$ $\left\langle f_{1}, \ldots, f_{s}\right\rangle$

1. If $f=0$ then return f
2. $r \leftarrow f$
3. boo \leftarrow true
4. while boo = true

Termination

because \prec is admissible

$$
4.1 \text { boo } \leftarrow \text { false }
$$

4.2 for $1 \leq i \leq s$ do
4.2.1 if $\mathrm{LM}_{\prec}\left(f_{i}\right)$ divides $\mathrm{LM}_{\prec}(r)$ then

- $r \leftarrow r-\frac{\mathrm{LT}_{\prec}(r)}{\mathrm{LT}_{\prec}\left(f_{i}\right)} f_{i}$
- boo \leftarrow true

5. return r

Reduction algorithm Reduction

InPUT: • f, f_{1}, \ldots, f_{s} in R

- \prec an admissible monomial order over R

Output: $r \in R$ such that $\mathrm{LT}_{\prec}(r) \notin\left\langle\mathrm{LT}_{\prec}\left(f_{1}\right), \ldots, \mathrm{LT}_{\prec}\left(f_{s}\right)\right\rangle$ and $f-r \in$ $\left\langle f_{1}, \ldots, f_{s}\right\rangle$

1. If $f=0$ then return f
2. $r \leftarrow f$
3. boo \leftarrow true
4. while boo = true

$$
4.1 \text { boo } \leftarrow \text { false }
$$

4.2 for $1 \leq i \leq s$ do
4.2.1 if $\mathrm{LM}_{\prec}\left(f_{i}\right)$ divides $\mathrm{LM}_{\prec}(r)$ then

Termination

because \prec is admissible

- $r \leftarrow r-\frac{\mathrm{LT}_{\alpha}(r)}{\mathrm{LT}_{\prec}\left(f_{i}\right)} f_{i}$
- boo \leftarrow true

5. return r

Reduction algorithm

We reuse the above notation.
There exist $\left(g_{1}, \ldots, g_{k}\right) \subset\left\{f_{1}, \ldots, f_{s}\right\}^{k}$ and monomials m_{1}, \ldots, m_{k} such that

- $f-r=m_{1} g_{1}+\cdots+m_{k} g_{k}$
- $\mathrm{LM}_{\prec}\left(m_{k} g_{k}\right) \prec \mathrm{LM}_{\prec}\left(m_{k-1} g_{k-1}\right) \prec \cdots \prec \mathrm{LM}_{\prec}\left(m_{1} g_{1}\right) \preceq \mathrm{LM}_{\prec}(f)$

Reduction algorithm

We reuse the above notation.
There exist $\left(g_{1}, \ldots, g_{k}\right) \subset\left\{f_{1}, \ldots, f_{s}\right\}^{k}$ and monomials m_{1}, \ldots, m_{k} such that

- $f-r=m_{1} g_{1}+\cdots+m_{k} g_{k}$
- $\mathrm{LM}_{\prec}\left(m_{k} g_{k}\right) \prec \mathrm{LM}_{\prec}\left(m_{k-1} g_{k-1}\right) \prec \cdots \prec \mathrm{LM}_{\prec}\left(m_{1} g_{1}\right) \preceq \mathrm{LM}_{\prec}(f)$

The map $f \mapsto \operatorname{Reduction}\left(f,\left[f_{1}, \ldots, f_{s}\right]\right)$ is linear and its kernel lies in $\left\langle f_{1}, \ldots, f_{s}\right\rangle$.

Reduction algorithm

We reuse the above notation.
There exist $\left(g_{1}, \ldots, g_{k}\right) \subset\left\{f_{1}, \ldots, f_{s}\right\}^{k}$ and monomials m_{1}, \ldots, m_{k} such that

- $f-r=m_{1} g_{1}+\cdots+m_{k} g_{k}$
- $\mathrm{LM}_{\prec}\left(m_{k} g_{k}\right) \prec \mathrm{LM}_{\prec}\left(m_{k-1} g_{k-1}\right) \prec \cdots \prec \mathrm{LM}_{\prec}\left(m_{1} g_{1}\right) \preceq \mathrm{LM}_{\prec}(f)$

The map $f \mapsto \operatorname{Reduction}\left(f,\left[f_{1}, \ldots, f_{s}\right]\right)$ is linear and its kernel lies in $\left\langle f_{1}, \ldots, f_{s}\right\rangle$.

Consequence.

One can rephrase Reduction with linear algebra operations.

Reduction algorithm

We reuse the above notation.
There exist $\left(g_{1}, \ldots, g_{k}\right) \subset\left\{f_{1}, \ldots, f_{s}\right\}^{k}$ and monomials m_{1}, \ldots, m_{k} such that

- $f-r=m_{1} g_{1}+\cdots+m_{k} g_{k}$
- $\mathrm{LM}_{\prec}\left(m_{k} g_{k}\right) \prec \mathrm{LM}_{\prec}\left(m_{k-1} g_{k-1}\right) \prec \cdots \prec \mathrm{LM}_{\prec}\left(m_{1} g_{1}\right) \preceq \mathrm{LM}_{\prec}(f)$

The map $f \mapsto \operatorname{Reduction}\left(f,\left[f_{1}, \ldots, f_{s}\right]\right)$ is linear and its kernel lies in $\left\langle f_{1}, \ldots, f_{s}\right\rangle$.

Consequence.

One can rephrase Reduction with linear algebra operations. Let us do it...

Full reduction algorithm FullReduction

InPut: - h and $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ in R

- \prec an admissible monomial order over R

Output: $r \in R$ such that for any $m \in \operatorname{Monomials}(r) m \notin$

$$
\left\langle\mathrm{LT}_{\prec}\left(f_{1}\right), \ldots, \mathrm{LT}_{\prec}\left(f_{s}\right)\right\rangle \text { and } f-r \in\left\langle f_{1}, \ldots, f_{s}\right\rangle
$$

Full reduction algorithm FullReduction

InPut: - h and $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ in R

- \prec an admissible monomial order over R

Output: $r \in R$ such that for any $m \in \operatorname{Monomials}(r) m \notin$

$$
\left\langle\mathrm{LT}_{\prec}\left(f_{1}\right), \ldots, \mathrm{LT}_{\prec}\left(f_{s}\right)\right\rangle \text { and } f-r \in\left\langle f_{1}, \ldots, f_{s}\right\rangle
$$

1. If $h=0$ then return h
2. $r \leftarrow 0$
3. $g \leftarrow h$

Full reduction algorithm FullReduction

InPut: - h and $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ in R

- \prec an admissible monomial order over R

Output: $r \in R$ such that for any $m \in \operatorname{Monomials}(r) m \notin$

$$
\left\langle\mathrm{LT}_{\prec}\left(f_{1}\right), \ldots, \mathrm{LT}_{\prec}\left(f_{s}\right)\right\rangle \text { and } f-r \in\left\langle f_{1}, \ldots, f_{s}\right\rangle
$$

1. If $h=0$ then return h
2. $r \leftarrow 0$
3. $g \leftarrow h$
4. while $g \neq 0$

$$
4.1 \mathrm{~g} \leftarrow \operatorname{Reduction}(g, \boldsymbol{f}, \prec)
$$

$$
4.2 \text { if } g \neq 0
$$

- $r \leftarrow r+\mathrm{LT}_{\prec}(g)$
- $g \leftarrow g-\mathrm{LT}_{\prec}(g)$

Full reduction algorithm FullReduction

InPUT: - h and $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ in R

- \prec an admissible monomial order over R

Output: $r \in R$ such that for any $m \in \operatorname{Monomials}(r) m \notin$

$$
\left\langle\mathrm{LT}_{\prec}\left(f_{1}\right), \ldots, \mathrm{LT}_{\prec}\left(f_{s}\right)\right\rangle \text { and } f-r \in\left\langle f_{1}, \ldots, f_{s}\right\rangle
$$

1. If $h=0$ then return h
2. $r \leftarrow 0$
3. $g \leftarrow h$
4. while $g \neq 0$

$$
\begin{gathered}
4.1 \quad g \leftarrow \operatorname{Reduction}(g, f, \prec) \\
4.2 \text { if } g \neq 0 \\
\bullet \quad r \leftarrow r+\mathrm{LT}_{\prec}(g) \\
\quad \bullet g \leftarrow g-\mathrm{LT}_{\prec}(g)
\end{gathered}
$$

5. return r

Full reduction algorithm FullReduction

InPuT: - h and $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ in R

- \prec an admissible monomial order over R

Output: $r \in R$ such that for any $m \in \operatorname{Monomials}(r) m \notin$

$$
\left\langle\mathrm{LT}_{\prec}\left(f_{1}\right), \ldots, \mathrm{LT}_{\prec}\left(f_{s}\right)\right\rangle \text { and } f-r \in\left\langle f_{1}, \ldots, f_{s}\right\rangle
$$

1. If $h=0$ then return h
2. $r \leftarrow 0$
3. $g \leftarrow h$
4. while $g \neq 0$

$$
\begin{gathered}
4.1 \quad g \leftarrow \operatorname{Reduction}(g, f, \prec) \\
4.2 \text { if } g \neq 0 \\
\bullet \quad r \leftarrow r+\mathrm{LT}_{\prec}(g) \\
\quad \bullet g \leftarrow g-\mathrm{LT}_{\prec}(g)
\end{gathered}
$$

5. return r

Full reduction algorithm FullReduction

InPut: - h and $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ in R

- \prec an admissible monomial order over R

Output: $r \in R$ such that for any $m \in \operatorname{Monomials}(r) m \notin$

$$
\left\langle\mathrm{LT}_{\prec}\left(f_{1}\right), \ldots, \mathrm{LT}_{\prec}\left(f_{s}\right)\right\rangle \text { and } f-r \in\left\langle f_{1}, \ldots, f_{s}\right\rangle
$$

1. If $h=0$ then return h
2. $r \leftarrow 0$
3. $g \leftarrow h$
4. while $g \neq 0$

$$
\begin{gathered}
4.1 \quad g \leftarrow \operatorname{Reduction}(g, f, \prec) \\
4.2 \text { if } g \neq 0 \\
\bullet \quad r \leftarrow r+\mathrm{LT}_{\prec}(g) \\
\quad \bullet g \leftarrow g-\mathrm{LT}_{\prec}(g)
\end{gathered}
$$

5. return r

Full reduction algorithm

We reuse the above notation.
Let $r=\operatorname{FullReduction~}(f, \boldsymbol{f}, \prec)$.
Then Monomials $(r) \cap\left\langle\mathrm{LT}_{\prec}\left(f_{1}\right), \ldots, \mathrm{LT}_{\prec}\left(f_{s}\right)\right\rangle=\emptyset$.

Full reduction algorithm

We reuse the above notation.
Let $r=\operatorname{FullReduction~}(f, \boldsymbol{f}, \prec)$.
Then Monomials $(r) \cap\left\langle\mathrm{LT}_{\prec}\left(f_{1}\right), \ldots, \mathrm{LT}_{\prec}\left(f_{s}\right)\right\rangle=\emptyset$.

The map $f \mapsto \operatorname{FullReduction}\left(f,\left[f_{1}, \ldots, f_{s}\right]\right)$ is linear and its kernel lies in $\left\langle f_{1}, \ldots, f_{s}\right\rangle$.

Full reduction algorithm

We reuse the above notation.
Let $r=\operatorname{FullReduction~}(f, \boldsymbol{f}, \prec)$.
Then Monomials $(r) \cap\left\langle\mathrm{LT}_{\prec}\left(f_{1}\right), \ldots, \mathrm{LT}_{\prec}\left(f_{s}\right)\right\rangle=\emptyset$.

The map $f \mapsto \operatorname{FulLReduction}\left(f,\left[f_{1}, \ldots, f_{s}\right]\right)$ is linear and its kernel lies in $\left\langle f_{1}, \ldots, f_{s}\right\rangle$.

Consequence.
One can again rephrase Reduction with linear algebra operations.

Full reduction algorithm

We reuse the above notation.
Let $r=\operatorname{FullReduction~}(f, \boldsymbol{f}, \prec)$.
Then Monomials $(r) \cap\left\langle\mathrm{LT}_{\prec}\left(f_{1}\right), \ldots, \mathrm{LT}_{\prec}\left(f_{s}\right)\right\rangle=\emptyset$.

The map $f \mapsto \operatorname{FulLReduction}\left(f,\left[f_{1}, \ldots, f_{s}\right]\right)$ is linear and its kernel lies in $\left\langle f_{1}, \ldots, f_{s}\right\rangle$.

Consequence.
One can again rephrase Reduction with linear algebra operations.
Let us do it and emphasize the difference...

Back to Hilbert's basis theorem

Let \mathbb{K} be a field and $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.

Refined statement of Hilbert's basis theorem

Let $I \subset R$ be an ideal. There exists a finite set $g_{1} \ldots, g_{s}$ in R such that

- $I=\left\langle g_{1}, \ldots, g_{s}\right\rangle$
- $\mathrm{LM}_{\prec}(I)=\left\langle\mathrm{LM}_{\prec}(f) \mid f \in I\right\rangle=\left\langle\mathrm{LM}_{\prec}\left(g_{i}\right) \mid 1 \leq i \leq s\right\rangle$

Back to Hilbert's basis theorem

Let \mathbb{K} be a field and $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.

Refined statement of Hilbert's basis theorem

Let $I \subset R$ be an ideal. There exists a finite set $g_{1} \ldots, g_{s}$ in R such that

- $I=\left\langle g_{1}, \ldots, g_{s}\right\rangle$
- $\mathrm{LM}_{\prec}(I)=\left\langle\mathrm{LM}_{\prec}(f) \mid f \in I\right\rangle=\left\langle\mathrm{LM}_{\prec}\left(g_{i}\right) \mid 1 \leq i \leq s\right\rangle$

Proof. Easy case is $I=\langle 0\rangle$. We assume now $I \neq\langle 0\rangle$.

Back to Hilbert's basis theorem

Let \mathbb{K} be a field and $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.

Refined statement of Hilbert's basis theorem

Let $I \subset R$ be an ideal. There exists a finite set $g_{1} \ldots, g_{s}$ in R such that

- $I=\left\langle g_{1}, \ldots, g_{s}\right\rangle$
- $\mathrm{LM}_{\prec}(I)=\left\langle\mathrm{LM}_{\prec}(f) \mid f \in I\right\rangle=\left\langle\mathrm{LM}_{\prec}\left(g_{i}\right) \mid 1 \leq i \leq s\right\rangle$

Proof. Easy case is $I=\langle 0\rangle$. We assume now $I \neq\langle 0\rangle$.

- Dickson's lemma \Rightarrow
$\exists\left(g_{1}, \ldots, g_{s}\right) \subset I$ such that $\mathrm{LM}_{\prec}(I)=\left\langle\mathrm{LM}_{\prec}\left(g_{1}\right), \ldots, \mathrm{LM}_{\prec}\left(g_{s}\right)\right\rangle$

Back to Hilbert's basis theorem

Let \mathbb{K} be a field and $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.

Refined statement of Hilbert's basis theorem

Let $I \subset R$ be an ideal. There exists a finite set $g_{1} \ldots, g_{s}$ in R such that

- $I=\left\langle g_{1}, \ldots, g_{s}\right\rangle$
- $\mathrm{LM}_{\prec}(I)=\left\langle\mathrm{LM}_{\prec}(f) \mid f \in I\right\rangle=\left\langle\mathrm{LM}_{\prec}\left(g_{i}\right) \mid 1 \leq i \leq s\right\rangle$

Proof. Easy case is $I=\langle 0\rangle$. We assume now $I \neq\langle 0\rangle$.

- Dickson's lemma \Rightarrow
$\exists\left(g_{1}, \ldots, g_{s}\right) \subset I$ such that $\mathrm{LM}_{\prec}(I)=\left\langle\mathrm{LM}_{\prec}\left(g_{1}\right), \ldots, \mathrm{LM}_{\prec}\left(g_{s}\right)\right\rangle$
- consider $r=\operatorname{Reduction}\left(f,\left[g_{1}, \ldots, g_{s}\right], \prec\right)$ for some $f \in I$.

Back to Hilbert's basis theorem

Let \mathbb{K} be a field and $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.

Refined statement of Hilbert's basis theorem

Let $I \subset R$ be an ideal. There exists a finite set $g_{1} \ldots, g_{s}$ in R such that

- $I=\left\langle g_{1}, \ldots, g_{s}\right\rangle$
- $\mathrm{LM}_{\prec}(I)=\left\langle\mathrm{LM}_{\prec}(f) \mid f \in I\right\rangle=\left\langle\mathrm{LM}_{\prec}\left(g_{i}\right) \mid 1 \leq i \leq s\right\rangle$

Proof. Easy case is $I=\langle 0\rangle$. We assume now $I \neq\langle 0\rangle$.

- Dickson's lemma \Rightarrow
$\exists\left(g_{1}, \ldots, g_{s}\right) \subset I$ such that $\mathrm{LM}_{\prec}(I)=\left\langle\mathrm{LM}_{\prec}\left(g_{1}\right), \ldots, \mathrm{LM}_{\prec}\left(g_{s}\right)\right\rangle$
- consider $r=\operatorname{Reduction}\left(f,\left[g_{1}, \ldots, g_{s}\right], \prec\right)$ for some $f \in I$.
- $r=0 \sqrt{ }$ else conclude that $\mathrm{LM}_{\prec}(r) \in\left\langle\mathrm{LM}_{\prec}(I)\right\rangle$ Xcontradiction

Back to Hilbert's basis theorem

Let \mathbb{K} be a field and $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.

Refined statement of Hilbert's basis theorem

Let $I \subset R$ be an ideal. There exists a finite set $g_{1} \ldots, g_{s}$ in R such that

- $I=\left\langle g_{1}, \ldots, g_{s}\right\rangle$
- $\mathrm{LM}_{\prec}(I)=\left\langle\mathrm{LM}_{\prec}(f) \mid f \in I\right\rangle=\left\langle\mathrm{LM}_{\prec}\left(g_{i}\right) \mid 1 \leq i \leq s\right\rangle$

Proof. Easy case is $I=\langle 0\rangle$. We assume now $I \neq\langle 0\rangle$.

- Dickson's lemma \Rightarrow
$\exists\left(g_{1}, \ldots, g_{s}\right) \subset I$ such that $\mathrm{LM}_{\prec}(I)=\left\langle\mathrm{LM}_{\prec}\left(g_{1}\right), \ldots, \mathrm{LM}_{\prec}\left(g_{s}\right)\right\rangle$
- consider $r=\operatorname{Reduction}\left(f,\left[g_{1}, \ldots, g_{s}\right], \prec\right)$ for some $f \in I$.
- $r=0 \sqrt{ }$ else conclude that $\mathrm{LM}_{\prec}(r) \in\left\langle\mathrm{LM}_{\prec}(I)\right\rangle \boldsymbol{X}_{\text {contradiction }}$

Good news. Gröbner bases do exist!

Back to Hilbert's basis theorem

Let \mathbb{K} be a field and $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.

Refined statement of Hilbert's basis theorem

Let $I \subset R$ be an ideal. There exists a finite set $g_{1} \ldots, g_{s}$ in R such that

- $I=\left\langle g_{1}, \ldots, g_{s}\right\rangle$
- $\mathrm{LM}_{\prec}(I)=\left\langle\mathrm{LM}_{\prec}(f) \mid f \in I\right\rangle=\left\langle\mathrm{LM}_{\prec}\left(g_{i}\right) \mid 1 \leq i \leq s\right\rangle$

Proof. Easy case is $I=\langle 0\rangle$. We assume now $I \neq\langle 0\rangle$.

- Dickson's lemma \Rightarrow
$\exists\left(g_{1}, \ldots, g_{s}\right) \subset I$ such that $\mathrm{LM}_{\prec}(I)=\left\langle\mathrm{LM}_{\prec}\left(g_{1}\right), \ldots, \mathrm{LM}_{\prec}\left(g_{s}\right)\right\rangle$
- consider $r=\operatorname{Reduction}\left(f,\left[g_{1}, \ldots, g_{s}\right], \prec\right)$ for some $f \in I$.
- $r=0 \sqrt{ }$ else conclude that $\mathrm{LM}_{\prec}(r) \in\left\langle\mathrm{LM}_{\prec}(I)\right\rangle \boldsymbol{X}_{\text {contradiction }}$

Good news. Gröbner bases do exist!
... but this proof is not constructive

Characterizations and first properties of Gröbner bases

Normal forms

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec an admissible monomial ordering over R.

Let $I \subset R$ be an ideal and $G=\left(g_{1}, \ldots, g_{s}\right) \subset R$ be a Gröbner basis for (I, \prec). Take $f \in R$. There exists a unique $r \in R$ such that:

Normal forms

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec an admissible monomial ordering over R.

Let $I \subset R$ be an ideal and $G=\left(g_{1}, \ldots, g_{s}\right) \subset R$ be a Gröbner basis for (I, \prec). Take $f \in R$. There exists a unique $r \in R$ such that:

- No term of r is divisible by any of $\mathrm{LM}_{\prec}\left(g_{1}\right), \ldots, \mathrm{LM}_{\prec}\left(g_{s}\right)$;
- There exists $g \in I$ such that $f=g+r$.

Normal forms

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec an admissible monomial ordering over R.

Let $I \subset R$ be an ideal and $G=\left(g_{1}, \ldots, g_{s}\right) \subset R$ be a Gröbner basis for (I, \prec). Take $f \in R$. There exists a unique $r \in R$ such that:

- No term of r is divisible by any of $\mathrm{LM}_{\prec}\left(g_{1}\right), \ldots, \mathrm{LM}_{\prec}\left(g_{s}\right)$;
- There exists $g \in I$ such that $f=g+r$.

Also, $r=\operatorname{FullReduction}(f, G, \prec)$ (whatever the choice of ordering of the polynomials in G).

Normal forms

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec an admissible monomial ordering over R.

Let $I \subset R$ be an ideal and $G=\left(g_{1}, \ldots, g_{s}\right) \subset R$ be a Gröbner basis for (I, \prec). Take $f \in R$. There exists a unique $r \in R$ such that:

- No term of r is divisible by any of $\mathrm{LM}_{\prec}\left(g_{1}\right), \ldots, \mathrm{LM}_{\prec}\left(g_{s}\right)$;
- There exists $g \in I$ such that $f=g+r$.

Also, $r=\operatorname{FullReduction}(f, G, \prec)$ (whatever the choice of ordering of the polynomials in G). It is called the normal form of f modulo G.

Normal forms

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec an admissible monomial ordering over R.

Let $I \subset R$ be an ideal and $G=\left(g_{1}, \ldots, g_{s}\right) \subset R$ be a Gröbner basis for (I, \prec). Take $f \in R$. There exists a unique $r \in R$ such that:

- No term of r is divisible by any of $\mathrm{LM}_{\prec}\left(g_{1}\right), \ldots, \mathrm{LM}_{\prec}\left(g_{s}\right)$;
- There exists $g \in I$ such that $f=g+r$.

Also, $r=\operatorname{FullReduction}(f, G, \prec)$ (whatever the choice of ordering of the polynomials in G). It is called the normal form of f modulo G.
$r=0$ if and only if $f \in I=\langle G\rangle$

Normal forms

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec an admissible monomial ordering over R.

Let $I \subset R$ be an ideal and $G=\left(g_{1}, \ldots, g_{s}\right) \subset R$ be a Gröbner basis for (I, \prec). Take $f \in R$. There exists a unique $r \in R$ such that:

- No term of r is divisible by any of $\mathrm{LM}_{\prec}\left(g_{1}\right), \ldots, \mathrm{LM}_{\prec}\left(g_{s}\right)$;
- There exists $g \in I$ such that $f=g+r$.

Also, $r=\operatorname{FullReduction}(f, G, \prec)$ (whatever the choice of ordering of the polynomials in G). It is called the normal form of f modulo G.
$r=0$ if and only if $f \in I=\langle G\rangle$

Gröbner bases with the full reduction algorithm solve the ideal membership problem

Normal forms

- Recall that the kernel of the map

$$
\mathrm{NF}_{\prec}: f \mapsto \operatorname{FullReduction}(f, G, \prec)
$$

is $\langle G\rangle$. The function $\mathrm{NF}_{\prec}(., G)$ is a projection on a linear subspace which is normal to $\langle G\rangle$.

Normal forms

- Recall that the kernel of the map

$$
\mathrm{NF}_{\prec}: f \mapsto \operatorname{FulLReduction}(f, G, \prec)
$$

is $\langle G\rangle$. The function $\mathrm{NF}_{\prec}(., G)$ is a projection on a linear subspace which is normal to $\langle G\rangle$.

- The function $\mathrm{NF}_{\prec}(., G)$ returns a canonical representative of the quotient ring $\frac{R}{\langle G\rangle}$.
Equivalence relation: $f \sim g \Longleftrightarrow f-g \in\langle G\rangle$

Normal forms

- Recall that the kernel of the map

$$
\mathrm{NF}_{\prec}: f \mapsto \operatorname{FulLReduction}(f, G, \prec)
$$

is $\langle G\rangle$. The function $\mathrm{NF}_{\prec}(., G)$ is a projection on a linear subspace which is normal to $\langle G\rangle$.

- The function $\mathrm{NF}_{\prec}(., G)$ returns a canonical representative of the quotient ring $\frac{R}{\langle G\rangle}$.
Equivalence relation: $f \sim g \Longleftrightarrow f-g \in\langle G\rangle$
Example. Consider $G=\left\langle x_{1}^{2}-1, x_{2}^{2}-2\right\rangle$.
Is it a Gröbner basis for \prec grevlex $?$
Equivalence classes of $\frac{R}{\langle G\rangle}$?

Normal forms

- Recall that the kernel of the map

$$
\mathrm{NF}_{\prec}: f \mapsto \operatorname{FullReduction}(f, G, \prec)
$$

is $\langle G\rangle$. The function $\mathrm{NF}_{\prec}(., G)$ is a projection on a linear subspace which is normal to $\langle G\rangle$.

- The function $\mathrm{NF}_{\prec}(., G)$ returns a canonical representative of the quotient ring $\frac{R}{\langle G\rangle}$.
Equivalence relation: $f \sim g \Longleftrightarrow f-g \in\langle G\rangle$
Example. Consider $G=\left\langle x_{1}^{2}-1, x_{2}^{2}-2\right\rangle$.
Is it a Gröbner basis for $\prec_{\text {grevlex }}$?
Equivalence classes of $\frac{R}{\langle G\rangle}$?
This will be developed further.

Characterizations of Gröbner bases

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec an admissible monomial ordering over R.

Warm-up - S-polynomials
Let f and g be in $R-\{0\}$. Let $\lambda=\operatorname{Icm}_{\prec}(f, g)$.
We define the S-polynomial of (f, g) w.r.t. \prec as

$$
\operatorname{spol}_{\prec}(f, g)=\frac{\lambda}{\mathrm{LT}_{\prec}(f)} f-\frac{\lambda}{\mathrm{LT}_{\prec}(g)} g
$$

Characterizations of Gröbner bases

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec an admissible monomial ordering over R.

Warm-up - S-polynomials
Let f and g be in $R-\{0\}$. Let $\lambda=\operatorname{Icm}_{\prec}(f, g)$.
We define the S-polynomial of (f, g) w.r.t. \prec as

$$
\operatorname{spol}_{\prec}(f, g)=\frac{\lambda}{\mathrm{LT}_{\prec}(f)} f-\frac{\lambda}{\mathrm{LT}_{\prec}(g)} g
$$

Buchberger's criterion

Let $I \subset R$ be an ideal and $G=\left(g_{1}, \ldots, g_{s}\right) \subset R$ be such that $I=\langle G\rangle(G$ is a basis for I).
It holds that G is a Gröbner basis for (I, \prec) if and only if

$$
\text { for all } 1 \leq i, j \leq s, \mathrm{NF}_{\prec}\left(\operatorname{spol}_{\prec}\left(g_{i}, g_{j}\right)\right) \text { is identically zero. }
$$

Buchberger's criterion

- Provides an algorithm which on input \prec and G decides whether G is a Gröbner basis for $(\langle G\rangle, \prec)$;

Buchberger's criterion

- Provides an algorithm which on input \prec and G decides whether G is a Gröbner basis for $(\langle G\rangle, \prec)$;
- This algorithm always computes 0 in case G is a Gröbner basis;
- When G is not a Gröbner basis,
$\mathrm{NF}_{\prec}\left(\operatorname{spol}\left(g_{i}, g_{j}\right), G\right)$ is still interesting.

Buchberger's criterion

- Provides an algorithm which on input \prec and G decides whether G is a Gröbner basis for $(\langle G\rangle, \prec)$;
- This algorithm always computes 0 in case G is a Gröbner basis;
- When G is not a Gröbner basis,

$$
\mathrm{NF}_{\prec}\left(\operatorname{spol}\left(g_{i}, g_{j}\right), G\right) \text { is still interesting. }
$$

We reuse the above notation. It holds that

$$
g=\mathrm{NF}_{\prec}\left(\operatorname{spol}\left(g_{i}, g_{j}\right), G\right) \in\langle G\rangle
$$

When it is not zero $\mathrm{LM}_{\prec}(g) \notin\left\langle\mathrm{LM}_{\prec}(G)\right\rangle$.

Buchberger's algorithm

Buchberger's algorithm

Idea. Consider all pairs $\left(g, g^{\prime}\right)$ in the current basis $G \quad \sim \operatorname{Pairs}(G)$

Buchberger's algorithm

Input: • $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ in R

- \prec an admissible monomial order over R

Output: A Gröbner basis for ($\langle\boldsymbol{f}\rangle, \prec)$.

1. $G \leftarrow f$
2. $G^{\prime} \leftarrow \emptyset$

Buchberger's algorithm

Input: • $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ in R

- \prec an admissible monomial order over R

Output: A Gröbner basis for ($\langle\boldsymbol{f}\rangle, \prec)$.

1. $G \leftarrow f$
2. $G^{\prime} \leftarrow \emptyset$
3. while $G^{\prime} \neq G$ do
$3.1 \mathscr{P} \leftarrow \operatorname{Pairs}(G)$
$3.2 G^{\prime} \leftarrow G$
3.3 for all $\left(g, g^{\prime}\right) \in \mathscr{P}$ do

Buchberger's algorithm

Input: • $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ in R

- \prec an admissible monomial order over R

Output: A Gröbner basis for ($\langle\boldsymbol{f}\rangle, \prec)$.

1. $G \leftarrow f$
2. $G^{\prime} \leftarrow \emptyset$
3. while $G^{\prime} \neq G$ do
$3.1 \mathscr{P} \leftarrow \operatorname{Pairs}(G)$
$3.2 G^{\prime} \leftarrow G$
3.3 for all $\left(g, g^{\prime}\right) \in \mathscr{P}$ do

- $r \leftarrow$ FullReduction $\left(\operatorname{spol}_{\prec}\left(g, g^{\prime}\right), G^{\prime}\right)$

Buchberger's algorithm

Input: • $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ in R

- \prec an admissible monomial order over R

Output: A Gröbner basis for ($\langle\boldsymbol{f}\rangle, \prec)$.

1. $G \leftarrow f$
2. $G^{\prime} \leftarrow \emptyset$
3. while $G^{\prime} \neq G$ do
$3.1 \mathscr{P} \leftarrow \operatorname{Pairs}(G)$
$3.2 G^{\prime} \leftarrow G$
3.3 for all $\left(g, g^{\prime}\right) \in \mathscr{P}$ do

- $r \leftarrow$ FullReduction $\left(\operatorname{spol}_{\prec}\left(g, g^{\prime}\right), G^{\prime}\right)$
- if $r \neq 0$ then
- $G \leftarrow G \cup\{r\}$

4. return G

Buchberger's algorithm

On input $\boldsymbol{f} \subset R$ and \prec, Buchberger (\boldsymbol{f}, \prec) terminates and returns a Gröbner basis for $(\langle\boldsymbol{f}\rangle, \prec)$.

Buchberger's algorithm

On input $\boldsymbol{f} \subset R$ and \prec, Buchberger (\boldsymbol{f}, \prec) terminates and returns a Gröbner basis for $(\langle\boldsymbol{f}\rangle, \prec)$.

- Prove that $G \subset\langle\boldsymbol{f}\rangle$ at each step.

Buchberger's algorithm

On input $\boldsymbol{f} \subset R$ and \prec, Buchberger (\boldsymbol{f}, \prec) terminates and returns a Gröbner basis for $(\langle\boldsymbol{f}\rangle, \prec)$.

- Prove that $G \subset\langle\boldsymbol{f}\rangle$ at each step.
- Prove that whenever it terminates, it returns a Gröbner basis for $(\langle\boldsymbol{f}\rangle, \prec)$. Buchberger's criterion.

Buchberger's algorithm

On input $\boldsymbol{f} \subset R$ and \prec, Buchberger (\boldsymbol{f}, \prec) terminates and returns a Gröbner basis for $(\langle\boldsymbol{f}\rangle, \prec)$.

- Prove that $G \subset\langle\boldsymbol{f}\rangle$ at each step.
- Prove that whenever it terminates, it returns a Gröbner basis for $(\langle\boldsymbol{f}\rangle, \prec)$. Buchberger's criterion.
- Prove that $\left\langle\mathrm{LM}_{\prec}\left(G^{\prime}\right)\right\rangle \subset\left\langle\mathrm{LM}_{\prec}(G)\right\rangle$

Buchberger's algorithm

On input $\boldsymbol{f} \subset R$ and \prec, Buchberger (\boldsymbol{f}, \prec) terminates and returns a Gröbner basis for $(\langle\boldsymbol{f}\rangle, \prec)$.

- Prove that $G \subset\langle\boldsymbol{f}\rangle$ at each step.
- Prove that whenever it terminates, it returns a Gröbner basis for $(\langle\boldsymbol{f}\rangle, \prec)$. Buchberger's criterion.
- Prove that $\left\langle\mathrm{LM}_{\prec}\left(G^{\prime}\right)\right\rangle \subset\left\langle\mathrm{LM}_{\prec}(G)\right\rangle$
- Use the theorem on ascending chain of ideals.

Behaviour of Buchberger's algorithm

- Choice of the pairs $\left(g, g^{\prime}\right) \leadsto$ A selection strategy is required

Behaviour of Buchberger's algorithm

- Choice of the pairs $\left(g, g^{\prime}\right) \leadsto$ A selection strategy is required
- A commonly used strategy is by refining with the degree of the $\mathrm{Icm}_{\prec}\left(g, g^{\prime}\right)$ but we need more.

Behaviour of Buchberger's algorithm

- Choice of the pairs $\left(g, g^{\prime}\right) \leadsto$ A selection strategy is required
- A commonly used strategy is by refining with the degree of the $\mathrm{Icm}_{\prec}\left(g, g^{\prime}\right)$ but we need more.
There has been a whole industry on identifying a "good" strategy
Giovini, Mora, Niesi, Robbiano, Traverso'91

Behaviour of Buchberger's algorithm

- Choice of the pairs $\left(g, g^{\prime}\right) \sim$ A selection strategy is required
- A commonly used strategy is by refining with the degree of the $\mathrm{Icm}_{\prec}\left(g, g^{\prime}\right)$ but we need more.
There has been a whole industry on identifying a "good" strategy
Giovini, Mora, Niesi, Robbiano, Traverso'91
- Most of reductions in Buchberger's algorithm compute 0 (!)

Behaviour of Buchberger's algorithm

- Choice of the pairs $\left(g, g^{\prime}\right) \sim$ A selection strategy is required
- A commonly used strategy is by refining with the degree of the $\mathrm{Icm}_{\prec}\left(g, g^{\prime}\right)$ but we need more.
There has been a whole industry on identifying a "good" strategy
Giovini, Mora, Niesi, Robbiano, Traverso'91
- Most of reductions in Buchberger's algorithm compute 0 (!)
- These are useless computations

Behaviour of Buchberger's algorithm

- Choice of the pairs $\left(g, g^{\prime}\right) \leadsto$ A selection strategy is required
- A commonly used strategy is by refining with the degree of the $\mathrm{Icm}_{\prec}\left(g, g^{\prime}\right)$ but we need more.
There has been a whole industry on identifying a "good" strategy
Giovini, Mora, Niesi, Robbiano, Traverso'91
- Most of reductions in Buchberger's algorithm compute 0 (!)
- These are useless computations
- Prove that when some pair reduces to 0 , it will always further reduce to $0 \leadsto$ rewrite the algorithm.

Behaviour of Buchberger's algorithm

- Choice of the pairs $\left(g, g^{\prime}\right) \sim$ A selection strategy is required
- A commonly used strategy is by refining with the degree of the $\mathrm{Icm}_{\prec}\left(g, g^{\prime}\right)$ but we need more.
There has been a whole industry on identifying a "good" strategy
Giovini, Mora, Niesi, Robbiano, Traverso'91
- Most of reductions in Buchberger's algorithm compute 0 (!)
- These are useless computations
- Prove that when some pair reduces to 0 , it will always further reduce to $0 \leadsto$ rewrite the algorithm.
- Note that once the selection strategy is fixed, one can remember which pairs reduce to 0

Useful for multi-modular computations (Gröbner bases over \mathbb{Q}).

Behaviour of Buchberger's algorithm

- Choice of the pairs $\left(g, g^{\prime}\right) \sim$ A selection strategy is required
- A commonly used strategy is by refining with the degree of the $\mathrm{Icm}_{\prec}\left(g, g^{\prime}\right)$ but we need more.
There has been a whole industry on identifying a "good" strategy Giovini, Mora, Niesi, Robbiano, Traverso'91
- Most of reductions in Buchberger's algorithm compute 0 (!)
- These are useless computations
- Prove that when some pair reduces to 0 , it will always further reduce to $0 \leadsto$ rewrite the algorithm.
- Note that once the selection strategy is fixed, one can remember which pairs reduce to 0

Useful for multi-modular computations (Gröbner bases over \mathbb{Q}).

Modern algorithms (F4/F5) bring new efficient solutions to these issues

Example (I)

Take $f_{1}=x_{1}^{3}-2 x_{1} x_{2}$ and $f_{2}=x_{1}^{2} x_{2}-2 x_{2}^{2}+x_{1}$ and $\prec_{\text {grevlex }}$.

Example (I)

Take $f_{1}=x_{1}^{3}-2 x_{1} x_{2}$ and $f_{2}=x_{1}^{2} x_{2}-2 x_{2}^{2}+x_{1}$ and $\prec_{\text {grevlex }}$

Example (I)

Take $f_{1}=x_{1}^{3}-2 x_{1} x_{2}$ and $f_{2}=x_{1}^{2} x_{2}-2 x_{2}^{2}+x_{1}$ and $\prec_{\text {grevlex }}$.

Example (I)

Take $f_{1}=x_{1}^{3}-2 x_{1} x_{2}$ and $f_{2}=x_{1}^{2} x_{2}-2 x_{2}^{2}+x_{1}$ and $\prec_{\text {grevlex }}$.

Example (I)

Take $f_{1}=x_{1}^{3}-2 x_{1} x_{2}$ and $f_{2}=x_{1}^{2} x_{2}-2 x_{2}^{2}+x_{1}$ and $\prec_{\text {grevlex }}$.
$G=\left(f_{1}, f_{2}\right) \sim S_{\text {grevlex }}\left(f_{1}, f_{2}\right)=-x_{1}^{2}$, note that $x_{1}^{2} \notin\left\langle x_{1}^{3}, x_{1}^{2} x_{2}\right\rangle$

- $f_{3}=\operatorname{NF}_{\text {grevlex }}\left(\operatorname{spol}_{\text {grevlex }}\left(f_{1}, f_{2}\right), G\right)=-x_{1}^{2}$

$$
G=\left(f_{1}, f_{2}, f_{3}\right)
$$

Example (I)

Take $f_{1}=x_{1}^{3}-2 x_{1} x_{2}$ and $f_{2}=x_{1}^{2} x_{2}-2 x_{2}^{2}+x_{1}$ and $\prec_{\text {grevlex }}$.
$G=\left(f_{1}, f_{2}\right) \sim S_{\text {grevlex }}\left(f_{1}, f_{2}\right)=-x_{1}^{2}$, note that $x_{1}^{2} \notin\left\langle x_{1}^{3}, x_{1}^{2} x_{2}\right\rangle$

- $f_{3}=\operatorname{NF}_{\text {grevlex }}\left(\operatorname{spol}_{\text {grevlex }}\left(f_{1}, f_{2}\right), G\right)=-x_{1}^{2}$

$$
G=\left(f_{1}, f_{2}, f_{3}\right)
$$

Example (I)

Take $f_{1}=x_{1}^{3}-2 x_{1} x_{2}$ and $f_{2}=x_{1}^{2} x_{2}-2 x_{2}^{2}+x_{1}$ and $\prec_{\text {grevlex }}$.
$G=\left(f_{1}, f_{2}\right) \sim S_{\text {grevlex }}\left(f_{1}, f_{2}\right)=-x_{1}^{2}$, note that $x_{1}^{2} \notin\left\langle x_{1}^{3}, x_{1}^{2} x_{2}\right\rangle$

- $f_{3}=\operatorname{NF}_{\text {grevlex }}\left(\operatorname{spol}_{\text {grevlex }}\left(f_{1}, f_{2}\right), G\right)=-x_{1}^{2}$
$G=\left(f_{1}, f_{2}, f_{3}\right)$
$\leadsto \operatorname{spol}_{\text {grevlex }}\left(f_{1}, f_{3}\right)=-x_{1} x_{2}$
- $f_{4}=\operatorname{NF}_{\text {grevlex }}\left(\operatorname{spol}_{\text {grevlex }}\left(f_{1}, f_{3}\right), G\right)=-x_{1} x_{2}$ with $x_{1} x_{2} \notin\left\langle x_{1}^{3}, x_{1}^{2} x_{2}, x_{1}^{2}\right\rangle$

Example (I)

Take $f_{1}=x_{1}^{3}-2 x_{1} x_{2}$ and $f_{2}=x_{1}^{2} x_{2}-2 x_{2}^{2}+x_{1}$ and $\prec_{\text {grevlex }}$
$G=\left(f_{1}, f_{2}\right) \sim S_{\text {grevlex }}\left(f_{1}, f_{2}\right)=-x_{1}^{2}$, note that $x_{1}^{2} \notin\left\langle x_{1}^{3}, x_{1}^{2} x_{2}\right\rangle$

- $f_{3}=\operatorname{NF}_{\text {grevlex }}\left(\operatorname{spol}_{\text {grevlex }}\left(f_{1}, f_{2}\right), G\right)=-x_{1}^{2}$
$G=\left(f_{1}, f_{2}, f_{3}\right)$
$\leadsto \operatorname{spol}_{\text {grevlex }}\left(f_{1}, f_{3}\right)=-x_{1} x_{2}$
- $f_{4}=\operatorname{NF}_{\text {grevlex }}\left(\operatorname{spol}_{\text {grevlex }}\left(f_{1}, f_{3}\right), G\right)=-x_{1} x_{2}$ with $x_{1} x_{2} \notin\left\langle x_{1}^{3}, x_{1}^{2} x_{2}, x_{1}^{2}\right\rangle$
$\leadsto \operatorname{spol}_{\text {grevlex }}\left(f_{2}, f_{3}\right)=-2 x_{2}^{2}+x_{1}$

- $f_{5}=\operatorname{NF}_{\text {grevlex }}\left(\operatorname{spol}_{\text {grevlex }}\left(f_{2}, f_{3}\right), G\right)=-2 x_{2}^{2}+x_{1}$

$$
G=\left(f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right)
$$

Example (I)

Take $f_{1}=x_{1}^{3}-2 x_{1} x_{2}$ and $f_{2}=x_{1}^{2} x_{2}-2 x_{2}^{2}+x_{1}$ and $\prec_{\text {grevlex }}$.
$G=\left(f_{1}, f_{2}\right) \sim S_{\text {grevlex }}\left(f_{1}, f_{2}\right)=-x_{1}^{2}$, note that $x_{1}^{2} \notin\left\langle x_{1}^{3}, x_{1}^{2} x_{2}\right\rangle$

- $f_{3}=\operatorname{NF}_{\text {grevlex }}\left(\operatorname{spol}_{\text {grevlex }}\left(f_{1}, f_{2}\right), G\right)=-x_{1}^{2}$
$G=\left(f_{1}, f_{2}, f_{3}\right)$
$\leadsto \operatorname{spol}_{\text {grevlex }}\left(f_{1}, f_{3}\right)=-x_{1} x_{2}$
- $f_{4}=\operatorname{NF}_{\text {grevlex }}\left(\operatorname{spol}_{\text {grevlex }}\left(f_{1}, f_{3}\right), G\right)=-x_{1} x_{2}$ with $x_{1} x_{2} \notin\left\langle x_{1}^{3}, x_{1}^{2} x_{2}, x_{1}^{2}\right\rangle$
$\leadsto \operatorname{spol}_{\text {grevlex }}\left(f_{2}, f_{3}\right)=-2 x_{2}^{2}+x_{1}$

- $f_{5}=\operatorname{NF}_{\text {grevlex }}\left(\operatorname{spol}_{\text {grevlex }}\left(f_{2}, f_{3}\right), G\right)=-2 x_{2}^{2}+x_{1}$

$$
G=\left(f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right)
$$

Example (II)

$$
G=\left(f_{1}, f_{2}, f_{3}, f_{4}\right)
$$

If remains to investigate $\left(f_{1}, f_{4}\right),\left(f_{2}, f_{4}\right),\left(f_{3}, f_{4}\right),\left(f_{1}, f_{5}\right), \ldots$

Example (II)

$G=\left(f_{1}, f_{2}, f_{3}, f_{4}\right)$
If remains to investigate $\left(f_{1}, f_{4}\right),\left(f_{2}, f_{4}\right),\left(f_{3}, f_{4}\right),\left(f_{1}, f_{5}\right), \ldots$
$\leadsto \operatorname{spol}_{\text {grevlex }}\left(f_{1}, f_{4}\right)=x_{2} f_{4} \quad \operatorname{NF}_{\text {grevlex }}\left(\operatorname{spol}_{\text {grevlex }}\left(f_{1}, f_{4}\right), G\right)=0$

Example (II)

$G=\left(f_{1}, f_{2}, f_{3}, f_{4}\right)$
If remains to investigate $\left(f_{1}, f_{4}\right),\left(f_{2}, f_{4}\right),\left(f_{3}, f_{4}\right),\left(f_{1}, f_{5}\right), \ldots$
$\leadsto \operatorname{spol}_{\text {grevlex }}\left(f_{1}, f_{4}\right)=x_{2} f_{4}$
$\leadsto \operatorname{spol}_{\text {grevlex }}\left(f_{2}, f_{4}\right)=f_{5}$

- $\mathrm{NF}_{\text {grevlex }}\left(\operatorname{spol}_{\text {grevlex }}\left(f_{1}, f_{4}\right), G\right)=0$
- $\mathrm{NF}_{\text {grevlex }}\left(\operatorname{spol}_{\text {grevlex }}\left(f_{2}, f_{4}\right), G\right)=0$

Example (II)

$G=\left(f_{1}, f_{2}, f_{3}, f_{4}\right)$
If remains to investigate $\left(f_{1}, f_{4}\right),\left(f_{2}, f_{4}\right),\left(f_{3}, f_{4}\right),\left(f_{1}, f_{5}\right), \ldots$
$\leadsto \operatorname{spol}_{\text {grevlex }}\left(f_{1}, f_{4}\right)=x_{2} f_{4}$
$\leadsto \operatorname{spol}_{\text {grevlex }}\left(f_{2}, f_{4}\right)=f_{5}$
$\leadsto \operatorname{spol}_{\text {grevlex }}\left(f_{3}, f_{4}\right)=0$

- $\mathrm{NF}_{\text {grevlex }}\left(\operatorname{spol}_{\text {grevlex }}\left(f_{1}, f_{4}\right), G\right)=0$
- $\mathrm{NF}_{\text {grevlex }}\left(\operatorname{spol}_{\text {grevlex }}\left(f_{2}, f_{4}\right), G\right)=0$
- $\mathrm{NF}_{\text {grevlex }}\left(\operatorname{spol}_{\text {grevlex }}\left(f_{3}, f_{4}\right), G\right)=0$

Example (II)

$$
G=\left(f_{1}, f_{2}, f_{3}, f_{4}\right)
$$

If remains to investigate $\left(f_{1}, f_{4}\right),\left(f_{2}, f_{4}\right),\left(f_{3}, f_{4}\right),\left(f_{1}, f_{5}\right), \ldots$
$\leadsto \operatorname{spol}_{\text {grevlex }}\left(f_{1}, f_{4}\right)=x_{2} f_{4}$
$\leadsto \operatorname{spol}_{\text {grevlex }}\left(f_{2}, f_{4}\right)=f_{5}$
$\leadsto \operatorname{spol}_{\text {grevlex }}\left(f_{3}, f_{4}\right)=0$
$\leadsto \operatorname{spol}_{\text {grevlex }}\left(f_{1}, f_{5}\right)=-\frac{1}{2} x_{1} f_{3}+x_{2} f_{4}$

- $\mathrm{NF}_{\text {grevlex }}\left(\operatorname{spol}_{\text {grevlex }}\left(f_{1}, f_{4}\right), G\right)=0$
- $\mathrm{NF}_{\text {grevlex }}\left(\operatorname{spol}_{\text {grevlex }}\left(f_{2}, f_{4}\right), G\right)=0$
- $\mathrm{NF}_{\text {grevlex }}\left(\operatorname{spol}_{\text {grevlex }}\left(f_{3}, f_{4}\right), G\right)=0$
- $\mathrm{NF}_{\text {grevlex }}\left(\operatorname{spol}_{\text {grevlex }}\left(f_{1}, f_{5}\right), G\right)=0$

Example (II)

$$
G=\left(f_{1}, f_{2}, f_{3}, f_{4}\right)
$$

If remains to investigate $\left(f_{1}, f_{4}\right),\left(f_{2}, f_{4}\right),\left(f_{3}, f_{4}\right),\left(f_{1}, f_{5}\right), \ldots$
$\leadsto \operatorname{spol}_{\text {grevlex }}\left(f_{1}, f_{4}\right)=x_{2} f_{4}$
$\leadsto \operatorname{spol}_{\text {grevlex }}\left(f_{2}, f_{4}\right)=f_{5}$
$\leadsto \operatorname{spol}_{\text {grevlex }}\left(f_{3}, f_{4}\right)=0$
$\leadsto \operatorname{spol}_{\text {grevlex }}\left(f_{1}, f_{5}\right)=-\frac{1}{2} x_{1} f_{3}+x_{2} f_{4} \backsim \mathrm{NF}_{\text {grevlex }}\left(\operatorname{spol}_{\text {grevlex }}\left(f_{1}, f_{5}\right), G\right)=0$
And so on... All S-polynomials reduce to 0 .

Example (II)

$$
G=\left(f_{1}, f_{2}, f_{3}, f_{4}\right)
$$

If remains to investigate $\left(f_{1}, f_{4}\right),\left(f_{2}, f_{4}\right),\left(f_{3}, f_{4}\right),\left(f_{1}, f_{5}\right), \ldots$
$\leadsto \operatorname{spol}_{\text {grevlex }}\left(f_{1}, f_{4}\right)=x_{2} f_{4}$
$\leadsto \operatorname{spol}_{\text {grevlex }}\left(f_{2}, f_{4}\right)=f_{5}$
$\leadsto \operatorname{spol}_{\text {grevlex }}\left(f_{3}, f_{4}\right)=0$
$\leadsto \operatorname{spol}_{\text {grevlex }}\left(f_{1}, f_{5}\right)=-\frac{1}{2} x_{1} f_{3}+x_{2} f_{4}$

- $\mathrm{NF}_{\text {grevlex }}\left(\operatorname{spol}_{\text {grevlex }}\left(f_{1}, f_{4}\right), G\right)=0$
- $\mathrm{NF}_{\text {grevlex }}\left(\operatorname{spol}_{\text {grevlex }}\left(f_{2}, f_{4}\right), G\right)=0$
- $\mathrm{NF}_{\text {grevlex }}\left(\operatorname{spol}_{\text {grevlex }}\left(f_{3}, f_{4}\right), G\right)=0$
- $\mathrm{NF}_{\text {grevlex }}\left(\operatorname{spol}_{\text {grevlex }}\left(f_{1}, f_{5}\right), G\right)=0$

And so on... All S-polynomials reduce to 0 .
We can conclude that G is a Gröbner basis for $\left(\left\langle f_{1}, f_{2}\right\rangle, \prec_{\text {grevlex }}\right)$

Uniqueness of Gröbner bases (I)

$$
G=\left\{\begin{array}{l}
x_{1}^{3}-2 x_{1} x_{2} \\
x_{1}^{2} x_{2}-2 x_{2}^{2}+x_{1} \\
f_{3}=-x_{1}^{2} \\
f_{5}=-2 x_{2}^{2}+x_{1}
\end{array} \quad f_{4}=-x_{1} x_{2}\right.
$$

Uniqueness of Gröbner bases (I)

$$
G= \begin{cases}x_{1}^{3}-2 x_{1} x_{2} & =-x_{1} f_{3}+2 f_{4} \\ x_{1}^{2} x_{2}-2 x_{2}^{2}+x_{1} \\ f_{3}=-x_{1}^{2}, & f_{4}=-x_{1} x_{2} \\ f_{5}=-2 x_{2}^{2}+x_{1} & \end{cases}
$$

Uniqueness of Gröbner bases (I)

$$
G= \begin{cases}x_{1}^{3}-2 x_{1} x_{2} & =-x_{1} f_{3}+2 f_{4} \\ x_{1}^{2} x_{2}-2 x_{2}^{2}+x_{1} & =-x_{2} f_{4}+f_{5} \\ f_{3}=-x_{1}^{2}, & f_{4}=-x_{1} x_{2} \\ f_{5}=-2 x_{2}^{2}+x_{1} & \end{cases}
$$

Uniqueness of Gröbner bases (I)

Uniqueness of Gröbner bases (I)

$G=\left\{\begin{array}{ll}x_{1}^{3}-2 x_{1} x_{2} & =-x_{1} f_{3}+2 f_{4} \\ x_{1}^{2} x_{2}-2 x_{2}^{2}+x_{1} & =-x_{2} f_{4}+f_{5} \\ f_{3}=-x_{1}^{2}, & f_{4}=-x_{1} x_{2} \\ f_{5}=-2 x_{2}^{2}+x_{1}\end{array} \quad\right.$ " \quad redundant elements...
Minimal Gröbner bases
Let G be a Gröbner basis for (I, \prec). One says that G is a minimal Gröbner basis if for all $f \in G$:

- $\mathrm{LC}_{\prec}(f)=1$;
- $\mathrm{LM}_{\prec}(f) \notin\left\langle\mathrm{LM}_{\prec}(G \backslash\{f\})\right\rangle$.

Uniqueness of Gröbner bases (I)

$G=\left\{\begin{array}{ll}x_{1}^{3}-2 x_{1} x_{2} & =-x_{1} f_{3}+2 f_{4} \\ x_{1}^{2} x_{2}-2 x_{2}^{2}+x_{1} & =-x_{2} f_{4}+f_{5} \\ f_{3}=-x_{1}^{2}, & f_{4}=-x_{1} x_{2} \\ f_{5}=-2 x_{2}^{2}+x_{1}\end{array} \quad \Leftrightarrow\right.$ redundant elements...

Minimal Gröbner bases

Let G be a Gröbner basis for (I, \prec). One says that G is a minimal Gröbner basis if for all $f \in G$:

- $\mathrm{LC}_{\prec}(f)=1$;
- $\mathrm{LM}_{\prec}(f) \notin\left\langle\mathrm{LM}_{\prec}(G \backslash\{f\})\right\rangle$.

Reduced Gröbner bases

Let G be a Gröbner basis for (I, \prec). One says that G is a reduced Gröbner basis if for all $f \in G$:

- $\mathrm{LC}_{\prec}(f)=1$;
- no monomial of f lies in $\left\langle\mathrm{LM}_{\prec}(G \backslash\{f\})\right\rangle$.

Uniqueness of Gröbner bases (II)

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec be a an admissible monomial ordering.

Let I be an ideal of R which is not $\{0\}$. There exists a unique reduced Gröbner basis for (I, \prec).

Uniqueness of Gröbner bases (II)

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec be a an admissible monomial ordering.

Let I be an ideal of R which is not $\{0\}$. There exists a unique reduced Gröbner basis for (I, \prec).

- G reduced $\Rightarrow G$ minimal $\Rightarrow\left\langle\mathrm{LM}_{\prec}(G)\right\rangle$ is unique

Uniqueness of Gröbner bases (II)

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec be a an admissible monomial ordering.

Let I be an ideal of R which is not $\{0\}$. There exists a unique reduced Gröbner basis for (I, \prec).

- G reduced $\Rightarrow G$ minimal $\Rightarrow\left\langle\mathrm{LM}_{\prec}(G)\right\rangle$ is unique
- Existence:
design an algorithm which makes a Gröbner basis reduced (!)

Uniqueness of Gröbner bases (II)

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec be a an admissible monomial ordering.

Let I be an ideal of R which is not $\{0\}$. There exists a unique reduced Gröbner basis for (I, \prec).

- G reduced $\Rightarrow G$ minimal $\Rightarrow\left\langle\mathrm{LM}_{\prec}(G)\right\rangle$ is unique
- Existence:
design an algorithm which makes a Gröbner basis reduced (!)
- Uniqueness: by contradiction + uniqueness of the normal form

Uniqueness of Gröbner bases (II)

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec be a an admissible monomial ordering.

Let I be an ideal of R which is not $\{0\}$. There exists a unique reduced Gröbner basis for (I, \prec).

- G reduced $\Rightarrow G$ minimal $\Rightarrow\left\langle\mathrm{LM}_{\prec}(G)\right\rangle$ is unique
- Existence:
design an algorithm which makes a Gröbner basis reduced (!)
- Uniqueness: by contradiction + uniqueness of the normal form

> One can decide whether two ideals given by distinct generating sets are equal.

Properties of Gröbner bases

The elimination theorem (I)

Goal. Represent projections of \mathbb{K}-algebraic sets.

The elimination theorem (I)

Goal. Represent projections of \mathbb{K}-algebraic sets.
Remark. Let π_{i} be the canonical projection $\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(x_{i}, \ldots, x_{n}\right)$ and $V \subset \overline{\mathbb{K}}^{n}$ be a \mathbb{K}-algebraic set. It holds that $\pi_{i}(V)$ may not be a \mathbb{K}-algebraic set.

The elimination theorem (I)

Goal. Represent projections of \mathbb{K}-algebraic sets.
Remark. Let π_{i} be the canonical projection $\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(x_{i}, \ldots, x_{n}\right)$ and $V \subset \overline{\mathbb{K}}^{n}$ be a \mathbb{K}-algebraic set. It holds that $\pi_{i}(V)$ may not be a \mathbb{K}-algebraic set.

Example. $x_{1} x_{2}-1=0$.

The elimination theorem (I)

Goal. Represent projections of \mathbb{K}-algebraic sets.
Remark. Let π_{i} be the canonical projection $\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(x_{i}, \ldots, x_{n}\right)$ and $V \subset \overline{\mathbb{K}}^{n}$ be a \mathbb{K}-algebraic set. It holds that $\pi_{i}(V)$ may not be a \mathbb{K}-algebraic set.

$$
\text { Example. } x_{1} x_{2}-1=0
$$

Locally closed algebraic sets

Let $W \subset \overline{\mathbb{K}}^{n}$. One says that W is a locally closed algebraic set if it is the intersection of a Zariski open set with an algebraic set (defined over \mathbb{K}).

The elimination theorem (I)

Goal. Represent projections of \mathbb{K}-algebraic sets.
Remark. Let π_{i} be the canonical projection $\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(x_{i}, \ldots, x_{n}\right)$ and $V \subset \overline{\mathbb{K}}^{n}$ be a \mathbb{K}-algebraic set. It holds that $\pi_{i}(V)$ may not be a \mathbb{K}-algebraic set. Example. $x_{1} x_{2}-1=0$.

Locally closed algebraic sets

Let $W \subset \overline{\mathbb{K}}^{n}$. One says that W is a locally closed algebraic set if it is the intersection of a Zariski open set with an algebraic set (defined over \mathbb{K}).

Constructible sets

A constructible set is a finite union of locally closed sets.

The elimination theorem (I)

Goal. Represent projections of \mathbb{K}-algebraic sets.
Remark. Let π_{i} be the canonical projection $\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(x_{i}, \ldots, x_{n}\right)$ and $V \subset \overline{\mathbb{K}}^{n}$ be a \mathbb{K}-algebraic set. It holds that $\pi_{i}(V)$ may not be a \mathbb{K}-algebraic set. Example. $x_{1} x_{2}-1=0$.

Locally closed algebraic sets

Let $W \subset \overline{\mathbb{K}}^{n}$. One says that W is a locally closed algebraic set if it is the intersection of a Zariski open set with an algebraic set (defined over \mathbb{K}).

Constructible sets

A constructible set is a finite union of locally closed sets.

Let $V \subset \overline{\mathbb{K}}^{n}$ be an algebraic set and π_{i} as above. Then, $\pi_{i}(V)$ is a constructible set.

The elimination theorem (II)

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec be a an admissible monomial ordering.

Elimination ordering
We say that \prec is an elimination ordering, which eliminates $\left(x_{1}, \ldots, x_{i}\right)$ if for all $f \in R-\{0\}$,

$$
\mathrm{LM}_{\prec}(f) \in \mathbb{K}\left[x_{i+1}, \ldots, x_{n}\right] \Longrightarrow f \in \mathbb{K}\left[x_{i+1}, \ldots, x_{n}\right]
$$

The elimination theorem (II)

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec be a an admissible monomial ordering.

Elimination ordering
We say that \prec is an elimination ordering, which eliminates $\left(x_{1}, \ldots, x_{i}\right)$ if for all $f \in R-\{0\}$,

$$
\mathrm{LM}_{\prec}(f) \in \mathbb{K}\left[x_{i+1}, \ldots, x_{n}\right] \Longrightarrow f \in \mathbb{K}\left[x_{i+1}, \ldots, x_{n}\right]
$$

- The lexicographical ordering is an elimination ordering;

The elimination theorem (II)

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec be a an admissible monomial ordering.

Elimination ordering
We say that \prec is an elimination ordering, which eliminates $\left(x_{1}, \ldots, x_{i}\right)$ if for all $f \in R-\{0\}$,

$$
\mathrm{LM}_{\prec}(f) \in \mathbb{K}\left[x_{i+1}, \ldots, x_{n}\right] \Longrightarrow f \in \mathbb{K}\left[x_{i+1}, \ldots, x_{n}\right]
$$

- The lexicographical ordering is an elimination ordering;
- Consider $\prec_{\text {grevlex }}$ and $\prec_{\text {grevlex }}^{2}$, two grevlex orderings over monomials of $\mathbb{K}\left[x_{1}, \ldots, x_{i}\right]$ and $\mathbb{K}\left[x_{i+1}, \ldots, x_{n}\right]$. The block ordering \prec using these two grevlex orderings is an elimination ordering.

The elimination theorem (III)

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec be a an admissible block monomial ordering which eliminates x_{1}, \ldots, x_{i} built with \prec_{1} and \prec_{2}.

Let π_{i} be the canonical projection $\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(x_{i}, \ldots, x_{n}\right)$.

The elimination theorem (III)

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec be a an admissible block monomial ordering which eliminates x_{1}, \ldots, x_{i} built with \prec_{1} and \prec_{2}.

Let π_{i} be the canonical projection $\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(x_{i}, \ldots, x_{n}\right)$.

The elimination theorem

Let $I \subset R$ be an ideal and G be a Gröbner basis of (I, \prec). Denote by I_{i} the ideal $I \cap \mathbb{K}\left[x_{i+1}, \ldots, x_{n}\right]$.
Then $G_{i}=G \cap \mathbb{K}\left[x_{i+1}, \ldots, x_{n}\right]$ is a Gröbner basis for $\left(I_{i}, \prec_{2}\right)$. Besides, $V\left(G_{i}\right)$ equals the Zariski closure of $\pi_{i}(V(I))$.

The elimination theorem (III)

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec be a an admissible block monomial ordering which eliminates x_{1}, \ldots, x_{i} built with \prec_{1} and \prec_{2}.

Let π_{i} be the canonical projection $\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(x_{i}, \ldots, x_{n}\right)$.

The elimination theorem

Let $I \subset R$ be an ideal and G be a Gröbner basis of (I, \prec). Denote by I_{i} the ideal $I \cap \mathbb{K}\left[x_{i+1}, \ldots, x_{n}\right]$.
Then $G_{i}=G \cap \mathbb{K}\left[x_{i+1}, \ldots, x_{n}\right]$ is a Gröbner basis for $\left(I_{i}, \prec_{2}\right)$. Besides, $V\left(G_{i}\right)$ equals the Zariski closure of $\pi_{i}(V(I))$.

Proof of the first statement.

- It suffices to prove that $\left\langle\mathrm{LM}_{\prec_{2}}\left(G_{i}\right)\right\rangle=\left\langle\mathrm{LM}_{\prec_{2}}\left(I_{i}\right)\right\rangle$.

The elimination theorem (III)

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec be a an admissible block monomial ordering which eliminates x_{1}, \ldots, x_{i} built with \prec_{1} and \prec_{2}.

Let π_{i} be the canonical projection $\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(x_{i}, \ldots, x_{n}\right)$.

The elimination theorem

Let $I \subset R$ be an ideal and G be a Gröbner basis of (I, \prec). Denote by I_{i} the ideal $I \cap \mathbb{K}\left[x_{i+1}, \ldots, x_{n}\right]$.
Then $G_{i}=G \cap \mathbb{K}\left[x_{i+1}, \ldots, x_{n}\right]$ is a Gröbner basis for $\left(I_{i}, \prec_{2}\right)$. Besides, $V\left(G_{i}\right)$ equals the Zariski closure of $\pi_{i}(V(I))$.

Proof of the first statement.

- It suffices to prove that $\left\langle\mathrm{LM}_{\prec_{2}}\left(G_{i}\right)\right\rangle=\left\langle\mathrm{LM}_{\prec_{2}}\left(I_{i}\right)\right\rangle$.
- Use the property of elimination orderings to prove that for $f \in I_{i}$, $\mathrm{L} M_{\prec_{2}}(f)$ is divisible by $\mathrm{LM}_{\prec_{2}}(g)$ for some $g \in I_{i}$.

The elimination theorem (III)

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec be a an admissible block monomial ordering which eliminates x_{1}, \ldots, x_{i} built with \prec_{1} and \prec_{2}.

Let π_{i} be the canonical projection $\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(x_{i}, \ldots, x_{n}\right)$.

The elimination theorem

Let $I \subset R$ be an ideal and G be a Gröbner basis of (I, \prec). Denote by I_{i} the ideal $I \cap \mathbb{K}\left[x_{i+1}, \ldots, x_{n}\right]$.
Then $G_{i}=G \cap \mathbb{K}\left[x_{i+1}, \ldots, x_{n}\right]$ is a Gröbner basis for $\left(I_{i}, \prec_{2}\right)$. Besides, $V\left(G_{i}\right)$ equals the Zariski closure of $\pi_{i}(V(I))$.

Proof of the first statement.

- It suffices to prove that $\left\langle\mathrm{LM}_{\prec_{2}}\left(G_{i}\right)\right\rangle=\left\langle\mathrm{LM}_{\prec_{2}}\left(I_{i}\right)\right\rangle$.
- Use the property of elimination orderings to prove that for $f \in I_{i}$, $\mathrm{L} M_{\prec_{2}}(f)$ is divisible by $\mathrm{LM}_{\prec_{2}}(g)$ for some $g \in I_{i}$.

See Cox, Little, O'Shea for a proof of the 2nd statement.

Application: implicitization

Consider the parametric curve
$t \mapsto\left(\frac{2 t}{1+2 t^{2}}, \frac{1-3 t^{2}}{1+t^{2}}\right)$
Problem. Compute the implicit equation $f=0($ for $f \in \mathbb{Q}[x, y])$

Application: implicitization

Consider the parametric curve
$t \mapsto\left(\frac{2 t}{1+2 t^{2}}, \frac{1-3 t^{2}}{1+t^{2}}\right)$
Problem. Compute the implicit equation $f=0($ for $f \in \mathbb{Q}[x, y])$

\leadsto Gröbner basis computation for an elimination ordering $t \succ_{\text {elim }} x, y$

$$
f=x^{2} y^{2}-10 x^{2} y+25 x^{2}+4 y^{2}+8 y-12
$$

Shape of Gröbner bases (lex)

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.
Let $I \subset R$ be an ideal and G be a Gröbner basis for $\left(I, \prec_{l e x}\right)$. Then $G=T_{n} \cup T_{n-1} \cup \cdots \cup T_{1}$ with:

- $T_{i} \subset \mathbb{K}\left[x_{i}, \ldots, x_{n}\right]$;
- $T_{n} \cup \cdots \cup T_{i}$ is a Gröbner basis for $\left(I \cap \mathbb{K}\left[x_{i}, \ldots, x_{n}\right], \prec_{l e x}\right)$;
- $V\left(T_{n} \cup \cdots \cup T_{i}\right)$ is the Zariski closure of the projection of $V(I)$ on the $\left(x_{i}, \ldots, x_{n}\right)$-space.

Shape of Gröbner bases (lex)

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.
Let $I \subset R$ be an ideal and G be a Gröbner basis for $\left(I, \prec_{l e x}\right)$. Then $G=T_{n} \cup T_{n-1} \cup \cdots \cup T_{1}$ with:

- $T_{i} \subset \mathbb{K}\left[x_{i}, \ldots, x_{n}\right]$;
- $T_{n} \cup \cdots \cup T_{i}$ is a Gröbner basis for $\left(I \cap \mathbb{K}\left[x_{i}, \ldots, x_{n}\right], \prec_{l e x}\right)$;
- $V\left(T_{n} \cup \cdots \cup T_{i}\right)$ is the Zariski closure of the projection of $V(I)$ on the $\left(x_{i}, \ldots, x_{n}\right)$-space.
- When $V(I)$ is finite, $I \cap \mathbb{K}\left[x_{n}\right]$ is not $\{0\}$;
$\rightarrow I \cap \mathbb{K}\left[x_{i}\right]$ is not $\{0\}$ for all $1 \leq i \leq n$.

Shape of Gröbner bases (lex)

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.
Let $I \subset R$ be an ideal and G be a Gröbner basis for $\left(I, \prec_{l e x}\right)$. Then $G=T_{n} \cup T_{n-1} \cup \cdots \cup T_{1}$ with:

- $T_{i} \subset \mathbb{K}\left[x_{i}, \ldots, x_{n}\right]$;
- $T_{n} \cup \cdots \cup T_{i}$ is a Gröbner basis for $\left(I \cap \mathbb{K}\left[x_{i}, \ldots, x_{n}\right], \prec_{l e x}\right)$;
- $V\left(T_{n} \cup \cdots \cup T_{i}\right)$ is the Zariski closure of the projection of $V(I)$ on the $\left(x_{i}, \ldots, x_{n}\right)$-space.
- When $V(I)$ is finite, $I \cap \mathbb{K}\left[x_{n}\right]$ is not $\{0\}$;
$\rightarrow I \cap \mathbb{K}\left[x_{i}\right]$ is not $\{0\}$ for all $1 \leq i \leq n$.
- Gröbner basis computed for lexicographical monomial orderings provide a triangular rewriting.

Shape of Gröbner bases (lex)

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.
Let $I \subset R$ be an ideal and G be a Gröbner basis for $\left(I, \prec_{l e x}\right)$. Then $G=T_{n} \cup T_{n-1} \cup \cdots \cup T_{1}$ with:

- $T_{i} \subset \mathbb{K}\left[x_{i}, \ldots, x_{n}\right]$;
- $T_{n} \cup \cdots \cup T_{i}$ is a Gröbner basis for $\left(I \cap \mathbb{K}\left[x_{i}, \ldots, x_{n}\right], \prec_{l e x}\right)$;
- $V\left(T_{n} \cup \cdots \cup T_{i}\right)$ is the Zariski closure of the projection of $V(I)$ on the $\left(x_{i}, \ldots, x_{n}\right)$-space.
- When $V(I)$ is finite, $I \cap \mathbb{K}\left[x_{n}\right]$ is not $\{0\}$;
$\rightarrow I \cap \mathbb{K}\left[x_{i}\right]$ is not $\{0\}$ for all $1 \leq i \leq n$.
- Gröbner basis computed for lexicographical monomial orderings provide a triangular rewriting.
\rightarrow Comprehensive description of varieties through projections

Consequence

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.
Let $I \subset R$ be an ideal. The quotient ring $\frac{R}{I}$ is defined as the set of equivalence classes $f \sim g \Leftrightarrow f-g \in I$ (where + and \times are induced by polynomial addition an multiplication). It is also a \mathbb{K}-vector space.

Consequence

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.
Let $I \subset R$ be an ideal. The quotient ring $\frac{R}{I}$ is defined as the set of equivalence classes $f \sim g \Leftrightarrow f-g \in I$ (where + and \times are induced by polynomial addition an multiplication). It is also a \mathbb{K}-vector space.

Let $I \subset R$ be an ideal. Assume that $V(I)$ is finite. Then the quotient ring is a finite dimensional \mathbb{K}-vector space.

Consequence

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.
Let $I \subset R$ be an ideal. The quotient ring $\frac{R}{I}$ is defined as the set of equivalence classes $f \sim g \Leftrightarrow f-g \in I$ (where + and \times are induced by polynomial addition an multiplication). It is also a \mathbb{K}-vector space.

Let $I \subset R$ be an ideal. Assume that $V(I)$ is finite. Then the quotient ring is a finite dimensional \mathbb{K}-vector space.

When $V(I)$ is finite and a Gröbner basis is known for (I, \prec), we obtain unique representatives in $\frac{R}{I}$ (depending on the chosen basis).

Consequence

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.
Let $I \subset R$ be an ideal. The quotient ring $\frac{R}{I}$ is defined as the set of equivalence classes $f \sim g \Leftrightarrow f-g \in I$ (where + and \times are induced by polynomial addition an multiplication). It is also a \mathbb{K}-vector space.

Let $I \subset R$ be an ideal. Assume that $V(I)$ is finite. Then the quotient ring is a finite dimensional \mathbb{K}-vector space.

When $V(I)$ is finite and a Gröbner basis is known for (I, \prec), we obtain unique representatives in $\frac{R}{I}$ (depending on the chosen basis). Many algorithmic questions can then be rephrased as linear algebra problems / matrix operations.

Shape of Gröbner bases (graded ordering)

Let f be a homogeneous polynomial in R.

- if for $k \in \mathbb{N}$, x_{n}^{k} divides $L M_{\text {grevlex }}(f)$ then x_{n}^{k} divides f;
- if for all $1 \leq j \leq n, \operatorname{LM}_{\text {grevex }}(f)$ is divisible by x_{j} and $f \in \mathbb{K}\left[x_{1}, \ldots, x_{j}\right]$, then f is divisible by x_{j}.

Shape of Gröbner bases (graded ordering)

Let f be a homogeneous polynomial in R.

- if for $k \in \mathbb{N}, x_{n}^{k}$ divides $L M_{\text {grevlex }}(f)$ then x_{n}^{k} divides f;
- if for all $1 \leq j \leq n$, $\operatorname{LM}_{\text {grevlex }}(f)$ is divisible by x_{j} and $f \in \mathbb{K}\left[x_{1}, \ldots, x_{j}\right]$, then f is divisible by x_{j}.

Let $I \subset R$ be an ideal and $d=\min (\operatorname{deg}(f) \mid f \in I \backslash\{0\})$. Consider a Gröbner basis G for $\left(I, \prec_{\text {grevlex }}\right)$.
It holds that

$$
\operatorname{Span}(g \in G \mid \operatorname{deg}(G)=d)=\operatorname{Span}(f \in I \mid \operatorname{deg}(f)=d)
$$

Shape of Gröbner bases (graded ordering)

Let f be a homogeneous polynomial in R.

- if for $k \in \mathbb{N}, x_{n}^{k}$ divides $L M_{\text {grevlex }}(f)$ then x_{n}^{k} divides f;
- if for all $1 \leq j \leq n$, $\operatorname{LM}_{\text {grevlex }}(f)$ is divisible by x_{j} and $f \in \mathbb{K}\left[x_{1}, \ldots, x_{j}\right]$, then f is divisible by x_{j}.

Let $I \subset R$ be an ideal and $d=\min (\operatorname{deg}(f) \mid f \in I \backslash\{0\})$. Consider a Gröbner basis G for $\left(I, \prec_{\text {grevlex }}\right)$.
It holds that

$$
\operatorname{Span}(g \in G \mid \operatorname{deg}(G)=d)=\operatorname{Span}(f \in I \mid \operatorname{deg}(f)=d)
$$

- This theorem holds for all graded orderings.

Shape of Gröbner bases (graded ordering)

Let f be a homogeneous polynomial in R.

- if for $k \in \mathbb{N}, x_{n}^{k}$ divides $L M_{\text {grevlex }}(f)$ then x_{n}^{k} divides f;
- if for all $1 \leq j \leq n$, $\operatorname{LM}_{\text {grevlex }}(f)$ is divisible by x_{j} and $f \in \mathbb{K}\left[x_{1}, \ldots, x_{j}\right]$, then f is divisible by x_{j}.

Let $I \subset R$ be an ideal and $d=\min (\operatorname{deg}(f) \mid f \in I \backslash\{0\})$. Consider a Gröbner basis G for $\left(I, \prec_{\text {grevlex }}\right)$.
It holds that

$$
\operatorname{Span}(g \in G \mid \operatorname{deg}(G)=d)=\operatorname{Span}(f \in I \mid \operatorname{deg}(f)=d)
$$

- This theorem holds for all graded orderings.
- G contains polynomials of the least possible degree in $I \backslash\{0\}$

Back to Hilbert series (I)

We had defined Hilbert series for monomial ideals. We define the Hilbert function as follows:

$$
d \mapsto \operatorname{HF}_{I}(d)=\sharp\left\{\boldsymbol{\beta} \in \mathbb{N}^{n} \mid \operatorname{deg}\left(\boldsymbol{x}^{\boldsymbol{\beta}}\right)=d \text { and } \boldsymbol{x}^{\boldsymbol{\beta}} \notin I\right\} .
$$

Back to Hilbert series (I)

We had defined Hilbert series for monomial ideals. We define the Hilbert function as follows:

$$
d \mapsto \operatorname{HF}_{I}(d)=\sharp\left\{\boldsymbol{\beta} \in \mathbb{N}^{n} \mid \operatorname{deg}\left(\boldsymbol{x}^{\boldsymbol{\beta}}\right)=d \text { and } \boldsymbol{x}^{\boldsymbol{\beta}} \notin I\right\} .
$$

The Hilbert series is $\mathrm{HS}_{I}(t)=\sum_{d=0}^{\infty} \mathrm{HF}_{I}(d) t^{d}$.

Back to Hilbert series (I)

We had defined Hilbert series for monomial ideals. We define the Hilbert function as follows:

$$
d \mapsto \mathrm{HF}_{I}(d)=\sharp\left\{\boldsymbol{\beta} \in \mathbb{N}^{n} \mid \operatorname{deg}\left(\boldsymbol{x}^{\boldsymbol{\beta}}\right)=d \text { and } \boldsymbol{x}^{\boldsymbol{\beta}} \notin I\right\} .
$$

The Hilbert series is $\mathrm{HS}_{I}(t)=\sum_{d=0}^{\infty} \mathrm{HF}_{I}(d) t^{d}$.
Recall that $\frac{R}{I}$ is a \mathbb{K}-vector space.

$$
\text { There is a monomial basis for } \frac{R}{I} \text {. }
$$

Back to Hilbert series (I)

We had defined Hilbert series for monomial ideals. We define the Hilbert function as follows:

$$
d \mapsto \mathrm{HF}_{I}(d)=\sharp\left\{\boldsymbol{\beta} \in \mathbb{N}^{n} \mid \operatorname{deg}\left(\boldsymbol{x}^{\boldsymbol{\beta}}\right)=d \text { and } \boldsymbol{x}^{\boldsymbol{\beta}} \notin I\right\} .
$$

The Hilbert series is $\mathrm{HS}_{I}(t)=\sum_{d=0}^{\infty} \mathrm{HF}_{I}(d) t^{d}$.
Recall that $\frac{R}{I}$ is a \mathbb{K}-vector space.

$$
\text { There is a monomial basis for } \frac{R}{I} \text {. }
$$

$\mathrm{HF}_{I}(d)$ counts the number of elements in this basis of degree d.
$\rightarrow \rightarrow$ The Hilbert series is actually associated to $\frac{R}{I}$

Hilbert series (II)

We can now extend the definition to ideals in R.
Let I be in R.
Degree compliant monomial basis \mathscr{B} of $\frac{R}{I} \leftrightarrow$ Monomial basis \mathscr{B} of $\left\langle\mathrm{LM}_{\text {grevlex }}(I)\right\rangle$.

Hilbert series (II)

We can now extend the definition to ideals in R.
Let I be in R.
Degree compliant monomial basis \mathscr{B} of $\frac{R}{I} \leftrightarrow$ Monomial basis \mathscr{B} of $\left\langle\mathrm{LM}_{\text {grevlex }}(I)\right\rangle$.

$$
\mathrm{HF}_{R / I}: d \mapsto \sharp\{\boldsymbol{\beta} \in \mathscr{B} \mid \operatorname{deg}(\boldsymbol{\beta})=d\} .
$$

Hilbert series (II)

We can now extend the definition to ideals in R.
Let I be in R.
Degree compliant monomial basis \mathscr{B} of $\frac{R}{I} \leftrightarrow$ Monomial basis \mathscr{B} of $\left\langle\mathrm{LM}_{\text {grevlex }}(I)\right\rangle$.

$$
\mathrm{HF}_{R / I}: d \mapsto \sharp\{\boldsymbol{\beta} \in \mathscr{B} \mid \operatorname{deg}(\boldsymbol{\beta})=d\} .
$$

The Hilbert series is then defined as

$$
\mathrm{HS}_{R / I}(t)=\sum_{d=0}^{\infty} \mathrm{HF}_{R / I}(d) t^{d}
$$

Hilbert series (III)

Let $I \subset R$ be an ideal. When $V(I)$ is finite, $\frac{R}{I}$ is a finite dimensional \mathbb{K}-vector space.

Hilbert series (III)

Let $I \subset R$ be an ideal. When $V(I)$ is finite, $\frac{R}{I}$ is a finite dimensional \mathbb{K}-vector space.
Let G be a Gröbner basis for (I, \prec). For all $1 \leq i \leq n$, there exists $k_{i} \in \mathbb{N}$ and $g \in G$ such that $x_{i}^{k_{i}}=\mathrm{LM}_{\prec}(g)$.

Hilbert series (III)

Let $I \subset R$ be an ideal. When $V(I)$ is finite, $\frac{R}{I}$ is a finite dimensional \mathbb{K}-vector space.
Let G be a Gröbner basis for (I, \prec). For all $1 \leq i \leq n$, there exists $k_{i} \in \mathbb{N}$ and $g \in G$ such that $x_{i}^{k_{i}}=\mathrm{LM}_{\prec}(g)$.

When $V(I)$ is finite, $\mathrm{HS}_{R / I}(t)$ is a polynomial. Its evaluation at 1 is the degree of I, which coincides with dimension of $\frac{R}{I}$ (as a \mathbb{K} vector space).

Hilbert series (III)

Let $I \subset R$ be an ideal. When $V(I)$ is finite, $\frac{R}{I}$ is a finite dimensional \mathbb{K}-vector space.
Let G be a Gröbner basis for (I, \prec). For all $1 \leq i \leq n$, there exists $k_{i} \in \mathbb{N}$ and $g \in G$ such that $x_{i}^{k_{i}}=\mathrm{LM}_{\prec}(g)$.

When $V(I)$ is finite, $\mathrm{HS}_{R / I}(t)$ is a polynomial. Its evaluation at 1 is the degree of I, which coincides with dimension of $\frac{R}{I}$ (as a \mathbb{K} vector space). When I is radical, it coincides with the cardinality of $V(I)$.

Hilbert series (III)

Let $I \subset R$ be an ideal. When $V(I)$ is finite, $\frac{R}{I}$ is a finite dimensional \mathbb{K}-vector space.
Let G be a Gröbner basis for (I, \prec). For all $1 \leq i \leq n$, there exists $k_{i} \in \mathbb{N}$ and $g \in G$ such that $x_{i}^{k_{i}}=\mathrm{LM}_{\prec}(g)$.

When $V(I)$ is finite, $\mathrm{HS}_{R / I}(t)$ is a polynomial. Its evaluation at 1 is the degree of I, which coincides with dimension of $\frac{R}{I}$ (as a \mathbb{K} vector space). When I is radical, it coincides with the cardinality of $V(I)$.

Some interesting Hilbert series.

- When $I=\langle R\rangle, \mathrm{HS}_{R / I}(t)=$?
- When $I=\langle 0\rangle, \mathrm{HS}_{R / I}(t)=$?
- When $I=\left\langle x_{1}, \ldots, x_{n}\right\rangle, \mathrm{HS}_{R / I}(t)=$?

The hunt of reductions to zero

A crucial activity

- The ratio of critical pairs which reduce to 0 tends to 1 .

This is observed for all known monomial orderings.
$\rightarrow 99 \%$ of the runtime is spent in computing 0 (!)

A crucial activity

- The ratio of critical pairs which reduce to 0 tends to 1 .

This is observed for all known monomial orderings.
$\xrightarrow{\prime \prime} \rightarrow 99 \%$ of the runtime is spent in computing $0(!)$
Some reductions to 0 arise naturally:

- $f_{i} f_{j}=f_{j} f_{i}$ yields a reduction to 0
$~$ Syzygies
- If there exists $h \in R$ such that $h f_{i} \in\left\langle f_{1}, \ldots, f_{i-1}\right\rangle$ and $h \notin\left\langle f_{1}, \ldots, f_{i-1}\right\rangle$ then a reduction to 0 will occur.

Buchberger's first criterion

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec be a an admissible monomial ordering.

Product criterion (First Buchberger criterion)

Let $G \subset R-\{0\}$ and g_{1}, g_{2} in G. Assume that $\operatorname{lcm}_{\prec}(f, g)=$ $\mathrm{LM}_{\prec}(f) \mathrm{LM}_{\prec}(g)$. Then $\operatorname{spol}_{\prec}(f, g)$ reduces to 0 modulo G.

Buchberger's first criterion

Let \mathbb{K} be a field, $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and \prec be a an admissible monomial ordering.

Product criterion (First Buchberger criterion)

Let $G \subset R-\{0\}$ and g_{1}, g_{2} in G. Assume that $\operatorname{lcm}_{\prec}(f, g)=$ $\mathrm{LM}_{\prec}(f) \mathrm{LM}_{\prec}(g)$. Then $\operatorname{spol}_{\prec}(f, g)$ reduces to 0 modulo G.

Proof. Assume $f=\mathrm{LM}_{\prec}(f)+p, g=\mathrm{LM}_{\prec}(g)+q$. Write $\operatorname{spol}_{\prec}(f, g)=p g-q f$.
Observe that $\mathrm{LM}_{\prec}(\operatorname{spol}(f, g))=\max _{\prec}\left(\mathrm{LM}_{\prec}(p g), \mathrm{LM}_{\prec}(q f)\right)$
(using again $\mathrm{Icm}_{\prec}(f, g)=\mathrm{LM}_{\prec}(f) \mathrm{LM}_{\prec}(g)$).

Buchberger's second criterion (I)

Standard representation.

Let $G \subset R-\{0\}$ be a finite set. We say that f has a standard representation w.r.t. $G, \prec \mathrm{if}$:

- $f=\sum_{i=1}^{s} m_{i} g_{i}$ for some $m_{i} \neq 0$ (and the g_{i} 's are pairwise distinct)
- $\max _{\prec}\left(\mathrm{LM}_{\prec}\left(m_{i} g_{i}\right), 1 \leq i \leq s\right) \prec \mathrm{LM}_{\prec}(f)$.

Buchberger's second criterion (I)

Standard representation.

Let $G \subset R-\{0\}$ be a finite set. We say that f has a standard representation w.r.t. $G, \prec \mathrm{if}$:

- $f=\sum_{i=1}^{s} m_{i} g_{i}$ for some $m_{i} \neq 0$ (and the g_{i} 's are pairwise distinct)
- $\max _{\prec}\left(\mathrm{LM}_{\prec}\left(m_{i} g_{i}\right), 1 \leq i \leq s\right) \prec \mathrm{LM}_{\prec}(f)$.

A second characterization of Gröbner bases

Let $G \subset R-\{0\}$ be a finite set. If for any $f \in\langle G\rangle$ with $f \neq 0, f$ has a standard representation w.r.t. G, \prec then G is a Gröbner basis for $(\langle G\rangle, \prec)$.

Buchberger's second criterion (II)

Chain criterion (Second Buchberger criterion)

Let f, g and h in R, and $G \subset R-\{0\}$ finite. If

- $\mathrm{LM}_{\prec}(h)$ divides $\operatorname{Icm}\left(\mathrm{LM}_{\prec}(f), \mathrm{LM}_{\prec}(g)\right)$
- and $\operatorname{spol}_{\prec}(f, h)$ and $\operatorname{spol}_{\prec}(g, h)$ both have a standard representation w.r.t G
then $\operatorname{spol}_{\prec}(f, g)$ has a standard representation w.r.t G, \prec.

Buchberger's second criterion (II)

Chain criterion (Second Buchberger criterion)

Let f, g and h in R, and $G \subset R-\{0\}$ finite. If

- $\mathrm{LM}_{\prec}(h)$ divides $\operatorname{Icm}\left(\mathrm{LM}_{\prec}(f), \mathrm{LM}_{\prec}(g)\right)$
- and $\operatorname{spol}_{\prec}(f, h)$ and $\operatorname{spol}_{\prec}(g, h)$ both have a standard representation w.r.t G
then $\operatorname{spol}_{\prec}(f, g)$ has a standard representation w.r.t G, \prec.
$\xrightarrow{\prime} \rightarrow \operatorname{spol}_{\prec}(f, h)$ and $\operatorname{spol}_{\prec}(g, h)$ reduce to 0 modulo G, then $\operatorname{spol}_{\prec}(f, g)$ will reduce to 0 modulo G

Back to the example

$$
\begin{aligned}
& \text { We had } G=\left(f_{1}, f_{2}, f_{3}, f_{4}\right) \text { with } \\
& \operatorname{LM}\left(f_{1}\right)=x_{1}^{3}, \operatorname{LM}\left(f_{2}\right)=x_{1}^{2} x_{2}, \operatorname{LM}\left(f_{3}\right)=x_{1}^{2}, \operatorname{LM}\left(f_{4}\right)=x_{1} x_{2}, \operatorname{LM}\left(f_{5}\right)=x_{2}^{2}
\end{aligned}
$$

Back to the example

$$
\begin{aligned}
& \text { We had } G=\left(f_{1}, f_{2}, f_{3}, f_{4}\right) \text { with } \\
& \operatorname{LM}\left(f_{1}\right)=x_{1}^{3}, \operatorname{LM}\left(f_{2}\right)=x_{1}^{2} x_{2}, \operatorname{LM}\left(f_{3}\right)=x_{1}^{2}, \operatorname{LM}\left(f_{4}\right)=x_{1} x_{2}, \operatorname{LM}\left(f_{5}\right)=x_{2}^{2}
\end{aligned}
$$

- $\left(f_{3}, f_{4}\right)$ reduces to 0 and we know that $\left(f_{3}, f_{5}\right)$ will reduce to 0 .
$\xrightarrow{\prime} \rightarrow\left(f_{4}, f_{5}\right)$ will reduce to 0 (look at the LM's).

Back to the example

$$
\begin{aligned}
& \text { We had } G=\left(f_{1}, f_{2}, f_{3}, f_{4}\right) \text { with } \\
& \operatorname{LM}\left(f_{1}\right)=x_{1}^{3}, \operatorname{LM}\left(f_{2}\right)=x_{1}^{2} x_{2}, \operatorname{LM}\left(f_{3}\right)=x_{1}^{2}, \operatorname{LM}\left(f_{4}\right)=x_{1} x_{2}, \operatorname{LM}\left(f_{5}\right)=x_{2}^{2}
\end{aligned}
$$

- $\left(f_{3}, f_{4}\right)$ reduces to 0 and we know that $\left(f_{3}, f_{5}\right)$ will reduce to 0 .
$\rightarrow\left(f_{4}, f_{5}\right)$ will reduce to 0 (look at the LM's).
- The pair $\left(f_{3}, f_{5}\right)$ can be discarded (but not too early);

Back to the example

$$
\begin{aligned}
& \text { We had } G=\left(f_{1}, f_{2}, f_{3}, f_{4}\right) \text { with } \\
& \operatorname{LM}\left(f_{1}\right)=x_{1}^{3}, \operatorname{LM}\left(f_{2}\right)=x_{1}^{2} x_{2}, \operatorname{LM}\left(f_{3}\right)=x_{1}^{2}, \operatorname{LM}\left(f_{4}\right)=x_{1} x_{2}, \operatorname{LM}\left(f_{5}\right)=x_{2}^{2}
\end{aligned}
$$

- $\left(f_{3}, f_{4}\right)$ reduces to 0 and we know that $\left(f_{3}, f_{5}\right)$ will reduce to 0 .
$\rightarrow\left(f_{4}, f_{5}\right)$ will reduce to 0 (look at the LM's).
- The pair $\left(f_{3}, f_{5}\right)$ can be discarded (but not too early);
- Can you discard more pairs ?

Back to the example

We had $G=\left(f_{1}, f_{2}, f_{3}, f_{4}\right)$ with
$\operatorname{LM}\left(f_{1}\right)=x_{1}^{3}, \operatorname{LM}\left(f_{2}\right)=x_{1}^{2} x_{2}, \operatorname{LM}\left(f_{3}\right)=x_{1}^{2}, \operatorname{LM}\left(f_{4}\right)=x_{1} x_{2}, \operatorname{LM}\left(f_{5}\right)=x_{2}^{2}$

- $\left(f_{3}, f_{4}\right)$ reduces to 0 and we know that $\left(f_{3}, f_{5}\right)$ will reduce to 0 .
$\rightarrow\left(f_{4}, f_{5}\right)$ will reduce to 0 (look at the LM's).
- The pair $\left(f_{3}, f_{5}\right)$ can be discarded (but not too early);
- Can you discard more pairs ?

Improved Buchberger

- $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ in R
- \prec an admissible monomial order over R

Output: The reduced Gröbner basis for $(\langle\boldsymbol{f}\rangle, \prec)$.

1. $G \leftarrow f$ and $m \leftarrow s$
2. $\mathscr{P} \leftarrow \emptyset$
3. while $\boldsymbol{f} \neq \emptyset$
3.1 Choose $f \in \boldsymbol{f}, \boldsymbol{f} \backslash\{f\}$
$3.2(G, \mathscr{P}) \leftarrow \operatorname{Update}(f, G, \mathscr{P}, \prec)$
4. while $\mathscr{P} \neq \emptyset$

$$
\begin{aligned}
& 4.1 \text { select }(f, g) \text { from } \mathscr{P} \text { and } \mathscr{P} \leftarrow \mathscr{P} \backslash\{(f, g)\} \\
& 4.2 f_{m+1} \leftarrow \text { FuLLReduction }\left(\operatorname{spol} l_{\prec}(f, g), G, \prec\right) \\
& 4.3 \text { if } f_{m+1} \neq 0 \text { then } \\
& \bullet m \leftarrow m+1 \\
& \bullet(G, \mathscr{P}) \leftarrow \operatorname{UpdAtE}\left(f_{m}, G, \mathscr{P}, \prec\right)
\end{aligned}
$$

5. return ReduceBasis (G, \prec)

The Update routine

1. $\mathscr{P}_{1} \leftarrow\{(f, g) \mid g \in G\}$
2. $\mathscr{P}_{2} \leftarrow \emptyset$ and $\mathscr{P}_{2} \leftarrow \emptyset$
3. while $\mathscr{P}_{1} \neq \emptyset$
3.1 select (f, g) from \mathscr{P}_{1} and $\mathscr{P}_{1} \leftarrow \mathscr{P}_{1} \backslash\{(f, g)\}$
3.2 if Criterion $1(f, g)$ or $\operatorname{NOT}\left(\operatorname{Criterion} 2\left(f, g, \mathscr{P}_{1} \cup \mathscr{P}_{2}\right)\right)$
3.3 3.3.1
3.3.2

Change of orderings

The FGLM algorithm

