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Warm-up

During the last course, we have introduced and studied:

• polynomial ideals and solution sets to polynomial systems over
algebraically closed fields (algebraic varieties);

• topical algorithmic problems: rewriting into triangular systems,
membership ideal problem (recall the weak Hilbert’s Nullstellensatz),
and many others;

• notions of dimension and degree for algebraic sets;

• monomial orderings;

• definition of Gröbner bases.

… all of this being motivated by important applications in engineering
sciences and post-quantum cryptology

We need algorithms
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Gröbner bases – Definition

Let K be a field, R = K[x1, . . . , xn] and ≺ an admissible monomial ordering
over R.

Definition
Let I ⊂ R be an ideal. One says that G ⊂ R is a Gröbner basis for (I ,≺)
if the following conditions hold:

• G is finite;

• G ⊂ I ;

• 〈LM≺(g) | g ∈ G〉 = 〈LM(f ) | f ∈ I 〉.

Why is this definition so useful?

How to compute Gröbner bases?
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Reductions of a polynomial
modulo a polynomial family
Definitions, properties and algorithms



Reduction (division) notion

Let K be a field, R = K[x1, . . . , xn] and ≺ an admissible monomial ordering
over R.

Consider f and f1, . . . , fs in R ; Decide f ∈ 〈f1, . . . , fs〉?

We can try to mimick the Euclide’s algorithm.

f = q1f1 + · · ·+ qsfs + r such that r , qi ∈ R with

LM≺(r) /∈ 〈LM≺(f1), . . . , LM≺(fs)〉

• note that r = 0 =⇒ f ∈ 〈f1, . . . , fs〉
• note that f − r ∈ 〈f1, . . . , fs〉
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A first example

Take f = x1x32 + x21x
2
2 + x31 , f1 = x1x2 and f2 = x21 + x22

LMgrevlex(f ) = x21x
2
2 LMgrevlex(f1) = x1x2 LMgrevlex(f2) = x21

* r = f − (x1x2 + x22 )f1 − x1f2 + x2f1 = 0

But we could have done:

* r = f − x22 f2 − x22 f1 = −x42 + x31

• non canonical output
(order of the computations)

• non fully reduced

4
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Full reduction

Let K be a field, R = K[x1, . . . , xn] and ≺ an admissible monomial ordering
over R.

Consider f and f1, . . . , fs in R ; Decide f ∈ 〈f1, . . . , fs〉?

For g ∈ R, denote by Monomials(g) the monomial support of g.

f = q1f1 + · · ·+ qsfs + r such that r , qi ∈ R with

∀m ∈ Monomials(r), m /∈ 〈LM≺(f1), . . . , LM≺(fs)〉

• note that r = 0 =⇒ f ∈ 〈f1, . . . , fs〉
• note that f − r ∈ 〈f1, . . . , fs〉
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Example (I)

Take f = x1x32 + x21x
2
2 + x31 , f1 = x1x2 and f2 = x21 + x22

LMgrevlex(f ) = x21x
2
2 LMgrevlex(f1) = x1x2 LMgrevlex(f2) = x21

* r = f − x22 f2 − x22 f1 = −x42 + x31

Pushing further the reduction, we obtain

* r = f − x22 f2 − x22 f1 −x1f2 + x2f1 = −x42
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Example (II)

Take f = x1x22 + 1, f1 = x1x2 + 1 and f2 = x2 + 1.

LMlex(f ) = x1x22 LMlex(f1) = x1x2 LMlex(f2) = x2

ß f − x2f1 + f2 = 2

Note that we can deduce that 〈f , f1, f2〉 = 〈1〉
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Example (III)

Take f = x21x2 + x1x22 + x22 , f1 = x1x2 + 1 and f2 = x22 − 1.

LMlex(f ) = x21x2 LMlex(f1) = x1x2 LMlex(f2) = x22

r1 = f − (x1 + x2)f1 = x1 + x22 + x2.

r = r1 − f2 = x1 + x2 + 1.
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Reduction algorithm Reduction

Input: • f , f1, . . . , fs in R

• ≺ an admissible monomial order over R
Output: r ∈ R such that LT≺(r) /∈ 〈LT≺(f1), . . . , LT≺(fs)〉 and f −r ∈

〈f1, . . . , fs〉

1. If f = 0 then return f

2. r ← f

3. boo← true

4. while boo = true

4.1 boo← false
4.2 for 1 ≤ i ≤ s do

4.2.1 if LM≺(fi) divides LM≺(r) then
• r ← r − LT≺(r)

LT≺(fi)
fi

• boo← true

5. return r

3 Termination

* because ≺ is admissible

3 Correction

* loop invariant
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Reduction algorithm

We reuse the above notation.

There exist (g1, . . . , gk) ⊂ {f1, . . . , fs}k and monomials m1, . . . ,mk such
that

• f − r = m1g1 + · · ·+mkgk
• LM≺(mkgk) ≺ LM≺(mk−1gk−1) ≺ · · · ≺ LM≺(m1g1) � LM≺(f )

The map f 7→ Reduction(f , [f1, . . . , fs]) is linear and its kernel lies in
〈f1, . . . , fs〉.

Consequence.
One can rephrase Reduction with linear algebra operations. Let us do it…

10
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Full reduction algorithm FullReduction

Input: • h and f = (f1, . . . , fs) in R

• ≺ an admissible monomial order over R
Output: r ∈ R such that for any m ∈ Monomials(r) m /∈

〈LT≺(f1), . . . , LT≺(fs)〉 and f − r ∈ 〈f1, . . . , fs〉

1. If h = 0 then return h

2. r ← 0

3. g ← h

4. while g 6= 0

4.1 g ← Reduction(g, f ,≺)
4.2 if g 6= 0

• r ← r + LT≺(g)
• g ← g − LT≺(g)

5. return r

3 Termination

* because ≺ is admissible

3 Correction

* loop invariant
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Full reduction algorithm

We reuse the above notation.

Let r = FullReduction(f , f ,≺).
Then Monomials(r) ∩ 〈LT≺(f1), . . . , LT≺(fs)〉 = ∅.

The map f 7→ FullReduction(f , [f1, . . . , fs]) is linear and its kernel lies
in 〈f1, . . . , fs〉.

Consequence.
One can again rephrase Reduction with linear algebra operations.

Let us do it and emphasize the difference…
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Back to Hilbert’s basis theorem

Let K be a field and R = K[x1, . . . , xn].

Refined statement of Hilbert’s basis theorem
Let I ⊂ R be an ideal. There exists a finite set g1 . . . , gs in R such that

• I = 〈g1, . . . , gs〉
• LM≺(I ) = 〈LM≺(f ) | f ∈ I 〉 = 〈LM≺(gi) | 1 ≤ i ≤ s〉

Proof. Easy case is I = 〈0〉. We assume now I 6= 〈0〉.

• Dickson’s lemma⇒
∃(g1, . . . , gs) ⊂ I such that LM≺(I ) = 〈LM≺(g1), . . . , LM≺(gs)〉

• consider r = Reduction(f , [g1, . . . , gs],≺) for some f ∈ I .
• r = 0 3else conclude that LM≺(r) ∈ 〈LM≺(I )〉 7contradiction

Good news. Gröbner bases do exist!
… but this proof is not constructive
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Characterizations and first
properties of Gröbner bases



Normal forms

Let K be a field, R = K[x1, . . . , xn] and ≺ an admissible monomial ordering
over R.

Let I ⊂ R be an ideal and G = (g1, . . . , gs) ⊂ R be a Gröbner basis for
(I ,≺). Take f ∈ R. There exists a unique r ∈ R such that:

• No term of r is divisible by any of LM≺(g1), . . . , LM≺(gs);

• There exists g ∈ I such that f = g + r .

Also, r = FullReduction(f ,G,≺) (whatever the choice of ordering of
the polynomials in G).

It is called the normal form of f modulo G.

r = 0 if and only if f ∈ I = 〈G〉

Gröbner bases with the full reduction algorithm solve
the ideal membership problem

14
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Normal forms

• Recall that the kernel of the map

NF≺ : f 7→ FullReduction(f ,G,≺)

is 〈G〉. The function NF≺(.,G) is a projection on a linear subspace
which is normal to 〈G〉.

• The function NF≺(.,G) returns a canonical representative of the
quotient ring R

〈G〉 .
Equivalence relation: f ∼ g ⇐⇒ f − g ∈ 〈G〉
Example. Consider G = 〈x21 − 1, x22 − 2〉.

Is it a Gröbner basis for ≺grevlex?
Equivalence classes of R

〈G〉?
This will be developed further.
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Characterizations of Gröbner bases

Let K be a field, R = K[x1, . . . , xn] and ≺ an admissible monomial ordering
over R.

Warm-up – S-polynomials

Let f and g be in R − {0}. Let λ = lcm≺(f , g).
We define the S-polynomial of (f , g) w.r.t. ≺ as

spol≺(f , g) =
λ

LT≺(f )
f − λ

LT≺(g)
g

Buchberger’s criterion
Let I ⊂ R be an ideal and G = (g1, . . . , gs) ⊂ R be such that I = 〈G〉 (G
is a basis for I ).
It holds that G is a Gröbner basis for (I ,≺) if and only if

for all 1 ≤ i, j ≤ s, NF≺(spol≺(gi, gj)) is identically zero.

16
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Buchberger’s criterion

* Provides an algorithm which on input ≺ and G decides whether G is
a Gröbner basis for (〈G〉,≺);

• This algorithm always computes 0 in case G is a Gröbner basis;

• When G is not a Gröbner basis,
NF≺(spol(gi, gj),G) is still interesting.

We reuse the above notation. It holds that

g = NF≺(spol(gi, gj),G) ∈ 〈G〉.

When it is not zero LM≺(g) /∈ 〈LM≺(G)〉.

17
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Buchberger’s algorithm



Buchberger’s algorithm

Idea. Consider all pairs (g, g′) in the current basis G ; Pairs(G)

Input: • f = (f1, . . . , fs) in R

• ≺ an admissible monomial order over R
Output: A Gröbner basis for (〈f 〉,≺).

1. G ← f

2. G′ ← ∅
3. while G′ 6= G do

3.1 P ← Pairs(G)
3.2 G′ ← G
3.3 for all (g, g′) ∈P do

• r ← FullReduction(spol≺(g, g′),G′)
• if r 6= 0 then
• G ← G ∪ {r}

4. return G

18
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Buchberger’s algorithm

On input f ⊂ R and ≺, Buchberger(f ,≺) terminates and returns a
Gröbner basis for (〈f 〉,≺).

• Prove that G ⊂ 〈f 〉 at each step.

• Prove that whenever it terminates, it returns a Gröbner basis for
(〈f 〉,≺). Buchberger’s criterion.

• Prove that 〈LM≺(G′)〉 ⊂ 〈LM≺(G)〉
• Use the theorem on ascending chain of ideals.

19
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• Prove that 〈LM≺(G′)〉 ⊂ 〈LM≺(G)〉
• Use the theorem on ascending chain of ideals.
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Behaviour of Buchberger’s algorithm

* Choice of the pairs (g, g′); A selection strategy is required

• A commonly used strategy is by refining with the degree of the
lcm≺(g, g′) but we need more.
There has been a whole industry on identifying a “good” strategy

Giovini, Mora, Niesi, Robbiano, Traverso’91

* Most of reductions in Buchberger’s algorithm compute 0 (!)

• These are useless computations
• Prove that when some pair reduces to 0, it will always further reduce

to 0; rewrite the algorithm.
• Note that once the selection strategy is fixed, one can remember

which pairs reduce to 0
Useful for multi-modular computations (Gröbner bases over Q).

Modern algorithms (F4/F5) bring new efficient
solutions to these issues
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Example (I)

Take f1 = x31 − 2x1x2 and f2 = x21x2 − 2x22 + x1 and ≺grevlex .

G = (f1, f2) ; Sgrevlex(f1, f2) = −x21 , note that x21 /∈ 〈x31 , x21x2〉

* f3 = NFgrevlex(spolgrevlex(f1, f2),G) = −x21

G = (f1, f2, f3)

; spolgrevlex(f1, f3) = −x1x2

* f4 = NFgrevlex(spolgrevlex(f1, f3),G) = −x1x2
with x1x2 /∈ 〈x31 , x21x2, x21 〉

; spolgrevlex(f2, f3) = −2x22 + x1

* f5 = NFgrevlex(spolgrevlex(f2, f3),G) = −2x22 + x1

G = (f1, f2, f3, f4, f5)

21

•

•
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Example (II)

G = (f1, f2, f3, f4)

If remains to investigate (f1, f4), (f2, f4), (f3, f4), (f1, f5), . . .

; spolgrevlex(f1, f4) = x2f4 * NFgrevlex(spolgrevlex(f1, f4),G) = 0

; spolgrevlex(f2, f4) = f5 * NFgrevlex(spolgrevlex(f2, f4),G) = 0

; spolgrevlex(f3, f4) = 0 * NFgrevlex(spolgrevlex(f3, f4),G) = 0

; spolgrevlex(f1, f5) = − 1
2x1f3 + x2f4 * NFgrevlex(spolgrevlex(f1, f5),G) = 0

And so on… All S-polynomials reduce to 0.

We can conclude that G is a Gröbner basis for (〈f1, f2〉,≺grevlex)
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Uniqueness of Gröbner bases (I)

G =


x3
1 − 2x1x2
x2
1x2 − 2x2

2 + x1
f3 = −x2

1 , f4 = −x1x2
f5 = −2x2

2 + x1

Minimal Gröbner bases
LetG be aGröbner basis for (I ,≺). One says thatG is aminimal Gröbner
basis if for all f ∈ G:

• LC≺(f ) = 1;
• LM≺(f ) /∈ 〈LM≺(G \ {f })〉.

Reduced Gröbner bases
LetG be aGröbner basis for (I ,≺). One says thatG is a reducedGröbner
basis if for all f ∈ G:

• LC≺(f ) = 1;
• no monomial of f lies in 〈LM≺(G \ {f })〉.
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Reduced Gröbner bases
LetG be aGröbner basis for (I ,≺). One says thatG is a reducedGröbner
basis if for all f ∈ G:

• LC≺(f ) = 1;
• no monomial of f lies in 〈LM≺(G \ {f })〉.
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Uniqueness of Gröbner bases (II)

Let K be a field, R = K[x1, . . . , xn] and ≺ be a an admissible monomial
ordering.

Let I be an ideal of R which is not {0}. There exists a unique reduced
Gröbner basis for (I ,≺).

• G reduced⇒ G minimal⇒ 〈LM≺(G)〉 is unique

• Existence:
design an algorithm which makes a Gröbner basis reduced (!)

• Uniqueness: by contradiction + uniqueness of the normal form

One can decide whether two ideals
given by distinct generating sets are equal.
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Properties of Gröbner bases



The elimination theorem (I)

Goal. Represent projections of K-algebraic sets.

Remark. Let πi be the canonical projection (x1, . . . , xn)→ (xi, . . . , xn)
and V ⊂ Kn

be a K-algebraic set. It holds that πi(V ) may not be a
K-algebraic set. Example. x1x2 − 1 = 0.

Locally closed algebraic sets

LetW ⊂ Kn
. One says thatW is a locally closed algebraic set if it is the

intersection of a Zariski open set with an algebraic set (defined over K).

Constructible sets
A constructible set is a finite union of locally closed sets.

Let V ⊂ Kn
be an algebraic set and πi as above. Then, πi(V ) is a con-

structible set.
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The elimination theorem (II)

Let K be a field, R = K[x1, . . . , xn] and ≺ be a an admissible monomial
ordering.

Elimination ordering

We say that ≺ is an elimination ordering, which eliminates (x1, . . . , xi)
if for all f ∈ R − {0},

LM≺(f ) ∈ K[xi+1, . . . , xn] =⇒ f ∈ K[xi+1, . . . , xn]

• The lexicographical ordering is an elimination ordering;

• Consider ≺grevlex1 and ≺grevlex2 , two grevlex orderings over monomials
of K[x1, . . . , xi] and K[xi+1, . . . , xn]. The block ordering ≺ using these
two grevlex orderings is an elimination ordering.
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The elimination theorem (III)

Let K be a field, R = K[x1, . . . , xn] and ≺ be a an admissible block
monomial ordering which eliminates x1, . . . , xi built with ≺1 and ≺2.

Let πi be the canonical projection (x1, . . . , xn)→ (xi, . . . , xn).

The elimination theorem
Let I ⊂ R be an ideal and G be a Gröbner basis of (I ,≺). Denote by Ii
the ideal I ∩K[xi+1, . . . , xn].
Then Gi = G ∩ K[xi+1, . . . , xn] is a Gröbner basis for (Ii,≺2). Besides,
V (Gi) equals the Zariski closure of πi(V (I )).

Proof of the first statement.

• It suffices to prove that 〈LM≺2(Gi)〉 = 〈LM≺2(Ii)〉.
• Use the property of elimination orderings to prove that for f ∈ Ii ,

LM≺2(f ) is divisible by LM≺2(g) for some g ∈ Ii .

See Cox, Little, O’Shea for a proof of the 2nd statement.
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Application: implicitization

Consider the parametric curve

t 7→
(

2t
1+2t2 ,

1−3t2
1+t2

)
Problem. Compute the implicit equation
f = 0 (for f ∈ Q[x, y])

−2 −1 0 1 2

−3

−2

−1

0

1

; Gröbner basis computation for an elimination ordering t �elim x, y

f = x2y2 − 10x2y + 25x2 + 4y2 + 8y − 12

28



Application: implicitization

Consider the parametric curve

t 7→
(

2t
1+2t2 ,

1−3t2
1+t2

)
Problem. Compute the implicit equation
f = 0 (for f ∈ Q[x, y])

−2 −1 0 1 2

−3

−2

−1

0

1

; Gröbner basis computation for an elimination ordering t �elim x, y

f = x2y2 − 10x2y + 25x2 + 4y2 + 8y − 12

28



Shape of Gröbner bases (lex)

Let K be a field, R = K[x1, . . . , xn].

Let I ⊂ R be an ideal and G be a Gröbner basis for (I ,≺lex). Then
G = Tn ∪ Tn−1 ∪ · · · ∪ T1 with:

• Ti ⊂ K[xi, . . . , xn];

• Tn ∪ · · · ∪ Ti is a Gröbner basis for (I ∩K[xi, . . . , xn],≺lex);

• V (Tn ∪ · · · ∪ Ti) is the Zariski closure of the projection of V (I ) on
the (xi, . . . , xn)-space.

• When V (I ) is finite, I ∩K[xn] is not {0};
ß I ∩K[xi] is not {0} for all 1 ≤ i ≤ n.

• Gröbner basis computed for lexicographical monomial orderings
provide a triangular rewriting.
ß Comprehensive description of varieties through projections
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Consequence

Let K be a field, R = K[x1, . . . , xn].

Let I ⊂ R be an ideal. The quotient ring R
I is defined as the set of equiv-

alence classes f ∼ g ⇔ f − g ∈ I (where + and × are induced by
polynomial addition an multiplication). It is also a K-vector space.

Let I ⊂ R be an ideal. Assume that V (I ) is finite. Then the quotient ring
is a finite dimensional K-vector space.

When V (I ) is finite and a Gröbner basis is known for (I ,≺), we obtain
unique representatives in R

I (depending on the chosen basis). Many al-
gorithmic questions can then be rephrased as linear algebra problems /
matrix operations.
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Shape of Gröbner bases (graded ordering)

Let f be a homogeneous polynomial in R.

• if for k ∈ N, xkn divides LMgrevlex(f ) then xkn divides f ;

• if for all 1 ≤ j ≤ n, LMgrevlex(f ) is divisible by xj and
f ∈ K[x1, . . . , xj ], then f is divisible by xj .

Let I ⊂ R be an ideal and d = min(deg(f ) | f ∈ I \ {0}). Consider a
Gröbner basis G for (I ,≺grevlex).
It holds that

Span (g ∈ G | deg(G) = d) = Span (f ∈ I | deg(f ) = d) .

• This theorem holds for all graded orderings.

• G contains polynomials of the least possible degree in I \ {0}
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Back to Hilbert series (I)

We had defined Hilbert series for monomial ideals. We define the Hilbert
function as follows:

d 7→ HFI (d) = ]{β ∈ Nn | deg(xβ) = d and xβ /∈ I}.

The Hilbert series is HSI (t) =
∑∞

d=0 HFI (d)td .

Recall that RI is a K-vector space.

There is a monomial basis for R
I .

HFI (d) counts the number of elements in this basis of degree d .

ß The Hilbert series is actually associated to R
I

32



Back to Hilbert series (I)

We had defined Hilbert series for monomial ideals. We define the Hilbert
function as follows:

d 7→ HFI (d) = ]{β ∈ Nn | deg(xβ) = d and xβ /∈ I}.

The Hilbert series is HSI (t) =
∑∞

d=0 HFI (d)td .

Recall that RI is a K-vector space.

There is a monomial basis for R
I .

HFI (d) counts the number of elements in this basis of degree d .

ß The Hilbert series is actually associated to R
I

32



Back to Hilbert series (I)

We had defined Hilbert series for monomial ideals. We define the Hilbert
function as follows:

d 7→ HFI (d) = ]{β ∈ Nn | deg(xβ) = d and xβ /∈ I}.

The Hilbert series is HSI (t) =
∑∞

d=0 HFI (d)td .

Recall that RI is a K-vector space.

There is a monomial basis for R
I .

HFI (d) counts the number of elements in this basis of degree d .

ß The Hilbert series is actually associated to R
I
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Hilbert series (II)

We can now extend the definition to ideals in R.

Let I be in R.

Degree compliant monomial basis B of R
I ↔Monomial basis B of

〈LMgrevlex(I )〉.

HFR/I : d 7→ ]{β ∈ B | deg(β) = d}.

The Hilbert series is then defined as

HSR/I (t) =
∞∑
d=0

HFR/I (d)td .
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Hilbert series (III)

Let I ⊂ R be an ideal. When V (I ) is finite, R
I is a finite dimensional

K-vector space.

Let G be a Gröbner basis for (I ,≺). For all 1 ≤ i ≤ n, there exists ki ∈ N
and g ∈ G such that xkii = LM≺(g).

When V (I ) is finite, HSR/I (t) is a polynomial. Its evaluation at 1 is the
degree of I , which coincides with dimension of R

I (as a K vector space).

When I is radical, it coincides with the cardinality of V (I ).

Some interesting Hilbert series.

• When I = 〈R〉, HSR/I (t) =?

• When I = 〈0〉, HSR/I (t) =?

• When I = 〈x1, . . . , xn〉, HSR/I (t) =?

34



Hilbert series (III)

Let I ⊂ R be an ideal. When V (I ) is finite, R
I is a finite dimensional

K-vector space.
Let G be a Gröbner basis for (I ,≺). For all 1 ≤ i ≤ n, there exists ki ∈ N
and g ∈ G such that xkii = LM≺(g).

When V (I ) is finite, HSR/I (t) is a polynomial. Its evaluation at 1 is the
degree of I , which coincides with dimension of R

I (as a K vector space).

When I is radical, it coincides with the cardinality of V (I ).

Some interesting Hilbert series.

• When I = 〈R〉, HSR/I (t) =?

• When I = 〈0〉, HSR/I (t) =?

• When I = 〈x1, . . . , xn〉, HSR/I (t) =?

34



Hilbert series (III)

Let I ⊂ R be an ideal. When V (I ) is finite, R
I is a finite dimensional

K-vector space.
Let G be a Gröbner basis for (I ,≺). For all 1 ≤ i ≤ n, there exists ki ∈ N
and g ∈ G such that xkii = LM≺(g).

When V (I ) is finite, HSR/I (t) is a polynomial. Its evaluation at 1 is the
degree of I , which coincides with dimension of R

I (as a K vector space).

When I is radical, it coincides with the cardinality of V (I ).

Some interesting Hilbert series.

• When I = 〈R〉, HSR/I (t) =?

• When I = 〈0〉, HSR/I (t) =?

• When I = 〈x1, . . . , xn〉, HSR/I (t) =?

34



Hilbert series (III)

Let I ⊂ R be an ideal. When V (I ) is finite, R
I is a finite dimensional

K-vector space.
Let G be a Gröbner basis for (I ,≺). For all 1 ≤ i ≤ n, there exists ki ∈ N
and g ∈ G such that xkii = LM≺(g).

When V (I ) is finite, HSR/I (t) is a polynomial. Its evaluation at 1 is the
degree of I , which coincides with dimension of R

I (as a K vector space).
When I is radical, it coincides with the cardinality of V (I ).

Some interesting Hilbert series.

• When I = 〈R〉, HSR/I (t) =?

• When I = 〈0〉, HSR/I (t) =?

• When I = 〈x1, . . . , xn〉, HSR/I (t) =?

34



Hilbert series (III)

Let I ⊂ R be an ideal. When V (I ) is finite, R
I is a finite dimensional

K-vector space.
Let G be a Gröbner basis for (I ,≺). For all 1 ≤ i ≤ n, there exists ki ∈ N
and g ∈ G such that xkii = LM≺(g).

When V (I ) is finite, HSR/I (t) is a polynomial. Its evaluation at 1 is the
degree of I , which coincides with dimension of R

I (as a K vector space).
When I is radical, it coincides with the cardinality of V (I ).

Some interesting Hilbert series.

• When I = 〈R〉, HSR/I (t) =?

• When I = 〈0〉, HSR/I (t) =?

• When I = 〈x1, . . . , xn〉, HSR/I (t) =?

34



The hunt of reductions to zero



A crucial activity

* The ratio of critical pairs which reduce to 0 tends to 1.

This is observed for all known monomial orderings.

ß 99% of the runtime is spent in computing 0 (!)

Some reductions to 0 arise naturally:

• fifj = fjfi yields a reduction to 0 ; Syzygies
• If there exists h ∈ R such that hfi ∈ 〈f1, . . . , fi−1〉 and

h /∈ 〈f1, . . . , fi−1〉 then a reduction to 0 will occur.
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Buchberger’s first criterion

Let K be a field, R = K[x1, . . . , xn] and ≺ be a an admissible monomial
ordering.

Product criterion (First Buchberger criterion)
Let G ⊂ R − {0} and g1, g2 in G. Assume that lcm≺(f , g) =

LM≺(f )LM≺(g). Then spol≺(f , g) reduces to 0 modulo G.

Proof. Assume f = LM≺(f ) + p, g = LM≺(g) + q. Write
spol≺(f , g) = pg − qf .
Observe that LM≺(spol(f , g)) = max≺(LM≺(pg), LM≺(qf ))

(using again lcm≺(f , g) = LM≺(f )LM≺(g)).
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Buchberger’s second criterion (I)

Standard representation.
Let G ⊂ R − {0} be a finite set. We say that f has a standard represen-
tation w.r.t. G,≺ if:

• f =
∑s

i=1 migi for some mi 6= 0 (and the gi’s are pairwise distinct)

• max≺(LM≺(migi), 1 ≤ i ≤ s) ≺ LM≺(f ).

A second characterization of Gröbner bases
Let G ⊂ R − {0} be a finite set. If for any f ∈ 〈G〉 with f 6= 0, f
has a standard representation w.r.t. G,≺ then G is a Gröbner basis for
(〈G〉,≺).
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Buchberger’s second criterion (II)

Chain criterion (Second Buchberger criterion)
Let f , g and h in R, and G ⊂ R − {0} finite. If
• LM≺(h) divides lcm(LM≺(f ), LM≺(g))

• and spol≺(f , h) and spol≺(g, h) both have a standard
representation w.r.t G

then spol≺(f , g) has a standard representation w.r.t G,≺.

ß spol≺(f , h) and spol≺(g, h) reduce to 0 modulo G, then spol≺(f , g) will
reduce to 0 modulo G
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Back to the example

We had G = (f1, f2, f3, f4) with

LM(f1) = x31 , LM(f2) = x21x2, LM(f3) = x21 , LM(f4) = x1x2, LM(f5) = x22

• (f3, f4) reduces to 0 and we know that (f3, f5) will reduce to 0.
ß (f4, f5) will reduce to 0 (look at the LM’s).

• The pair (f3, f5) can be discarded (but not too early);

• Can you discard more pairs ?

Gebauer/Möller’88
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Improved Buchberger

• f = (f1, . . . , fs) in R

• ≺ an admissible monomial order over R
Output: The reduced Gröbner basis for (〈f 〉,≺).

1. G ← f and m ← s

2. P ← ∅
3. while f 6= ∅

3.1 Choose f ∈ f , f \ {f }
3.2 (G,P)← Update(f ,G,P,≺)

4. while P 6= ∅
4.1 select (f , g) from P and P ←P \ {(f , g)}
4.2 fm+1 ← FullReduction(spol≺(f , g),G,≺)
4.3 if fm+1 6= 0 then

• m← m + 1
• (G,P)← Update(fm,G,P,≺)

5. return ReduceBasis(G,≺)
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The Update routine

1. P1 ← {(f , g) | g ∈ G}
2. P2 ← ∅ and P2 ← ∅
3. while P1 6= ∅

3.1 select (f , g) from P1 and P1 ←P1 \ {(f , g)}
3.2 if Criterion1(f , g) or NOT(Criterion2(f , g,P1 ∪P2))
3.3 3.3.1

3.3.2
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Change of orderings
The FGLM algorithm
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