
Lecture 2-13-1
Polynomial systems, computer algebra and
applications

Gröbner bases and Buchberger’s algorithm

Jean-Charles Faugère1 Vincent Neiger2 Mohab Safey El Din2

1Inria and CryptoNext Security

2Sorbonne University, CNRS



Warm-up

During the last course, we have introduced and studied:

• polynomial ideals and solution sets to polynomial systems over
algebraically closed fields (algebraic varieties);

• topical algorithmic problems: rewriting into triangular systems,
membership ideal problem (recall the weak Hilbert’s Nullstellensatz),
and many others;

• notions of dimension and degree for algebraic sets;

• monomial orderings;

• definition of Gröbner bases.

… all of this being motivated by important applications in engineering
sciences and post-quantum cryptology

We need algorithms

1



Warm-up

During the last course, we have introduced and studied:

• polynomial ideals and solution sets to polynomial systems over
algebraically closed fields (algebraic varieties);

• topical algorithmic problems: rewriting into triangular systems,
membership ideal problem (recall the weak Hilbert’s Nullstellensatz),
and many others;

• notions of dimension and degree for algebraic sets;

• monomial orderings;

• definition of Gröbner bases.

… all of this being motivated by important applications in engineering
sciences and post-quantum cryptology

We need algorithms

1



Warm-up

During the last course, we have introduced and studied:

• polynomial ideals and solution sets to polynomial systems over
algebraically closed fields (algebraic varieties);

• topical algorithmic problems: rewriting into triangular systems,
membership ideal problem (recall the weak Hilbert’s Nullstellensatz),
and many others;

• notions of dimension and degree for algebraic sets;

• monomial orderings;

• definition of Gröbner bases.

… all of this being motivated by important applications in engineering
sciences and post-quantum cryptology

We need algorithms

1



Warm-up

During the last course, we have introduced and studied:

• polynomial ideals and solution sets to polynomial systems over
algebraically closed fields (algebraic varieties);

• topical algorithmic problems: rewriting into triangular systems,
membership ideal problem (recall the weak Hilbert’s Nullstellensatz),
and many others;

• notions of dimension and degree for algebraic sets;

• monomial orderings;

• definition of Gröbner bases.

… all of this being motivated by important applications in engineering
sciences and post-quantum cryptology

We need algorithms

1



Warm-up

During the last course, we have introduced and studied:

• polynomial ideals and solution sets to polynomial systems over
algebraically closed fields (algebraic varieties);

• topical algorithmic problems: rewriting into triangular systems,
membership ideal problem (recall the weak Hilbert’s Nullstellensatz),
and many others;

• notions of dimension and degree for algebraic sets;

• monomial orderings;

• definition of Gröbner bases.

… all of this being motivated by important applications in engineering
sciences and post-quantum cryptology

We need algorithms

1



Warm-up

During the last course, we have introduced and studied:

• polynomial ideals and solution sets to polynomial systems over
algebraically closed fields (algebraic varieties);

• topical algorithmic problems: rewriting into triangular systems,
membership ideal problem (recall the weak Hilbert’s Nullstellensatz),
and many others;

• notions of dimension and degree for algebraic sets;

• monomial orderings;

• definition of Gröbner bases.

… all of this being motivated by important applications in engineering
sciences and post-quantum cryptology

We need algorithms

1



Gröbner bases – Definition

Let K be a field, R = K[x1, . . . , xn] and ≺ an admissible monomial ordering
over R.

Definition
Let I ⊂ R be an ideal. One says that G ⊂ R is a Gröbner basis for (I ,≺)
if the following conditions hold:

• G is finite;

• G ⊂ I ;

• 〈LM≺(g) | g ∈ G〉 = 〈LM(f ) | f ∈ I 〉.

Why is this definition so useful?

How to compute Gröbner bases?

2



Gröbner bases – Definition

Let K be a field, R = K[x1, . . . , xn] and ≺ an admissible monomial ordering
over R.

Definition
Let I ⊂ R be an ideal. One says that G ⊂ R is a Gröbner basis for (I ,≺)
if the following conditions hold:

• G is finite;

• G ⊂ I ;

• 〈LM≺(g) | g ∈ G〉 = 〈LM(f ) | f ∈ I 〉.

Why is this definition so useful?

How to compute Gröbner bases?

2



Gröbner bases – Definition

Let K be a field, R = K[x1, . . . , xn] and ≺ an admissible monomial ordering
over R.

Definition
Let I ⊂ R be an ideal. One says that G ⊂ R is a Gröbner basis for (I ,≺)
if the following conditions hold:

• G is finite;

• G ⊂ I ;

• 〈LM≺(g) | g ∈ G〉 = 〈LM(f ) | f ∈ I 〉.

Why is this definition so useful?

How to compute Gröbner bases?

2



Reductions of a polynomial
modulo a polynomial family
Definitions, properties and algorithms



Reduction (division) notion

Let K be a field, R = K[x1, . . . , xn] and ≺ an admissible monomial ordering
over R.

Consider f and f1, . . . , fs in R ; Decide f ∈ 〈f1, . . . , fs〉?

We can try to mimick the Euclide’s algorithm.

f = q1f1 + · · ·+ qsfs + r such that r , qi ∈ R with

LM≺(r) /∈ 〈LM≺(f1), . . . , LM≺(fs)〉

• note that r = 0 =⇒ f ∈ 〈f1, . . . , fs〉
• note that f − r ∈ 〈f1, . . . , fs〉

3



Reduction (division) notion

Let K be a field, R = K[x1, . . . , xn] and ≺ an admissible monomial ordering
over R.

Consider f and f1, . . . , fs in R ; Decide f ∈ 〈f1, . . . , fs〉?

We can try to mimick the Euclide’s algorithm.

f = q1f1 + · · ·+ qsfs + r such that r , qi ∈ R with

LM≺(r) /∈ 〈LM≺(f1), . . . , LM≺(fs)〉

• note that r = 0 =⇒ f ∈ 〈f1, . . . , fs〉
• note that f − r ∈ 〈f1, . . . , fs〉

3



Reduction (division) notion

Let K be a field, R = K[x1, . . . , xn] and ≺ an admissible monomial ordering
over R.

Consider f and f1, . . . , fs in R ; Decide f ∈ 〈f1, . . . , fs〉?

We can try to mimick the Euclide’s algorithm.

f = q1f1 + · · ·+ qsfs + r such that r , qi ∈ R with

LM≺(r) /∈ 〈LM≺(f1), . . . , LM≺(fs)〉

• note that r = 0 =⇒ f ∈ 〈f1, . . . , fs〉
• note that f − r ∈ 〈f1, . . . , fs〉

3



Reduction (division) notion

Let K be a field, R = K[x1, . . . , xn] and ≺ an admissible monomial ordering
over R.

Consider f and f1, . . . , fs in R ; Decide f ∈ 〈f1, . . . , fs〉?

We can try to mimick the Euclide’s algorithm.

f = q1f1 + · · ·+ qsfs + r such that r , qi ∈ R with

LM≺(r) /∈ 〈LM≺(f1), . . . , LM≺(fs)〉

• note that r = 0 =⇒ f ∈ 〈f1, . . . , fs〉
• note that f − r ∈ 〈f1, . . . , fs〉

3



A first example

Take f = x1x32 + x21x
2
2 + x31 , f1 = x1x2 and f2 = x21 + x22

LMgrevlex(f ) = x21x
2
2 LMgrevlex(f1) = x1x2 LMgrevlex(f2) = x21

* r = f − (x1x2 + x22 )f1 − x1f2 + x2f1 = 0

But we could have done:

* r = f − x22 f2 − x22 f1 = −x42 + x31

• non canonical output
(order of the computations)

• non fully reduced

4



A first example

Take f = x1x32 + x21x
2
2 + x31 , f1 = x1x2 and f2 = x21 + x22

LMgrevlex(f ) = x21x
2
2 LMgrevlex(f1) = x1x2 LMgrevlex(f2) = x21

* r = f − (x1x2 + x22 )f1 − x1f2 + x2f1 = 0

But we could have done:

* r = f − x22 f2 − x22 f1 = −x42 + x31

• non canonical output
(order of the computations)

• non fully reduced

4



A first example

Take f = x1x32 + x21x
2
2 + x31 , f1 = x1x2 and f2 = x21 + x22

LMgrevlex(f ) = x21x
2
2 LMgrevlex(f1) = x1x2 LMgrevlex(f2) = x21

* r = f − (x1x2 + x22 )f1 − x1f2 + x2f1 = 0

But we could have done:

* r = f − x22 f2 − x22 f1 = −x42 + x31

• non canonical output
(order of the computations)

• non fully reduced

4



A first example

Take f = x1x32 + x21x
2
2 + x31 , f1 = x1x2 and f2 = x21 + x22

LMgrevlex(f ) = x21x
2
2 LMgrevlex(f1) = x1x2 LMgrevlex(f2) = x21

* r = f − (x1x2 + x22 )f1 − x1f2 + x2f1 = 0

But we could have done:

* r = f − x22 f2 − x22 f1 = −x42 + x31

• non canonical output
(order of the computations)

• non fully reduced

4



A first example

Take f = x1x32 + x21x
2
2 + x31 , f1 = x1x2 and f2 = x21 + x22

LMgrevlex(f ) = x21x
2
2 LMgrevlex(f1) = x1x2 LMgrevlex(f2) = x21

* r = f − (x1x2 + x22 )f1 − x1f2 + x2f1 = 0

But we could have done:

* r = f − x22 f2 − x22 f1 = −x42 + x31

• non canonical output
(order of the computations)

• non fully reduced

4

•

•
LT≺(f1)

LT≺(f2) m ∈ Monomials(r)



A first example

Take f = x1x32 + x21x
2
2 + x31 , f1 = x1x2 and f2 = x21 + x22

LMgrevlex(f ) = x21x
2
2 LMgrevlex(f1) = x1x2 LMgrevlex(f2) = x21

* r = f − (x1x2 + x22 )f1 − x1f2 + x2f1 = 0

But we could have done:

* r = f − x22 f2 − x22 f1 = −x42 + x31

• non canonical output
(order of the computations)

• non fully reduced

4

•

•

• •

LT≺(r)

LT≺(f1)
LT≺(f2) m ∈ Monomials(r)



Full reduction

Let K be a field, R = K[x1, . . . , xn] and ≺ an admissible monomial ordering
over R.

Consider f and f1, . . . , fs in R ; Decide f ∈ 〈f1, . . . , fs〉?

For g ∈ R, denote by Monomials(g) the monomial support of g.

f = q1f1 + · · ·+ qsfs + r such that r , qi ∈ R with

∀m ∈ Monomials(r), m /∈ 〈LM≺(f1), . . . , LM≺(fs)〉

• note that r = 0 =⇒ f ∈ 〈f1, . . . , fs〉
• note that f − r ∈ 〈f1, . . . , fs〉

5



Full reduction

Let K be a field, R = K[x1, . . . , xn] and ≺ an admissible monomial ordering
over R.

Consider f and f1, . . . , fs in R ; Decide f ∈ 〈f1, . . . , fs〉?

For g ∈ R, denote by Monomials(g) the monomial support of g.

f = q1f1 + · · ·+ qsfs + r such that r , qi ∈ R with

∀m ∈ Monomials(r), m /∈ 〈LM≺(f1), . . . , LM≺(fs)〉

• note that r = 0 =⇒ f ∈ 〈f1, . . . , fs〉
• note that f − r ∈ 〈f1, . . . , fs〉

5



Full reduction

Let K be a field, R = K[x1, . . . , xn] and ≺ an admissible monomial ordering
over R.

Consider f and f1, . . . , fs in R ; Decide f ∈ 〈f1, . . . , fs〉?

For g ∈ R, denote by Monomials(g) the monomial support of g.

f = q1f1 + · · ·+ qsfs + r such that r , qi ∈ R with

∀m ∈ Monomials(r), m /∈ 〈LM≺(f1), . . . , LM≺(fs)〉

• note that r = 0 =⇒ f ∈ 〈f1, . . . , fs〉
• note that f − r ∈ 〈f1, . . . , fs〉

5



Full reduction

Let K be a field, R = K[x1, . . . , xn] and ≺ an admissible monomial ordering
over R.

Consider f and f1, . . . , fs in R ; Decide f ∈ 〈f1, . . . , fs〉?

For g ∈ R, denote by Monomials(g) the monomial support of g.

f = q1f1 + · · ·+ qsfs + r such that r , qi ∈ R with

∀m ∈ Monomials(r), m /∈ 〈LM≺(f1), . . . , LM≺(fs)〉

• note that r = 0 =⇒ f ∈ 〈f1, . . . , fs〉
• note that f − r ∈ 〈f1, . . . , fs〉

5



Example (I)

Take f = x1x32 + x21x
2
2 + x31 , f1 = x1x2 and f2 = x21 + x22

LMgrevlex(f ) = x21x
2
2 LMgrevlex(f1) = x1x2 LMgrevlex(f2) = x21

* r = f − x22 f2 − x22 f1 = −x42 + x31

Pushing further the reduction, we obtain

* r = f − x22 f2 − x22 f1 −x1f2 + x2f1 = −x42

6



Example (I)

Take f = x1x32 + x21x
2
2 + x31 , f1 = x1x2 and f2 = x21 + x22

LMgrevlex(f ) = x21x
2
2 LMgrevlex(f1) = x1x2 LMgrevlex(f2) = x21

* r = f − x22 f2 − x22 f1 = −x42 + x31

Pushing further the reduction, we obtain

* r = f − x22 f2 − x22 f1 −x1f2 + x2f1 = −x42

6



Example (II)

Take f = x1x22 + 1, f1 = x1x2 + 1 and f2 = x2 + 1.

LMlex(f ) = x1x22 LMlex(f1) = x1x2 LMlex(f2) = x2

ß f − x2f1 + f2 = 2

Note that we can deduce that 〈f , f1, f2〉 = 〈1〉

7



Example (III)

Take f = x21x2 + x1x22 + x22 , f1 = x1x2 + 1 and f2 = x22 − 1.

LMlex(f ) = x21x2 LMlex(f1) = x1x2 LMlex(f2) = x22

r1 = f − (x1 + x2)f1 = x1 + x22 + x2.

r = r1 − f2 = x1 + x2 + 1.

8



Example (III)

Take f = x21x2 + x1x22 + x22 , f1 = x1x2 + 1 and f2 = x22 − 1.

LMlex(f ) = x21x2 LMlex(f1) = x1x2 LMlex(f2) = x22

r1 = f − (x1 + x2)f1 = x1 + x22 + x2.

r = r1 − f2 = x1 + x2 + 1.

8



Example (III)

Take f = x21x2 + x1x22 + x22 , f1 = x1x2 + 1 and f2 = x22 − 1.

LMlex(f ) = x21x2 LMlex(f1) = x1x2 LMlex(f2) = x22

r1 = f − (x1 + x2)f1 = x1 + x22 + x2.

r = r1 − f2 = x1 + x2 + 1.

8



Reduction algorithm Reduction

Input: • f , f1, . . . , fs in R

• ≺ an admissible monomial order over R
Output: r ∈ R such that LT≺(r) /∈ 〈LT≺(f1), . . . , LT≺(fs)〉 and f −r ∈

〈f1, . . . , fs〉

1. If f = 0 then return f

2. r ← f

3. boo← true

4. while boo = true

4.1 boo← false
4.2 for 1 ≤ i ≤ s do

4.2.1 if LM≺(fi) divides LM≺(r) then
• r ← r − LT≺(r)

LT≺(fi)
fi

• boo← true

5. return r

3 Termination

* because ≺ is admissible

3 Correction

* loop invariant

9



Reduction algorithm Reduction

Input: • f , f1, . . . , fs in R

• ≺ an admissible monomial order over R
Output: r ∈ R such that LT≺(r) /∈ 〈LT≺(f1), . . . , LT≺(fs)〉 and f −r ∈

〈f1, . . . , fs〉

1. If f = 0 then return f

2. r ← f

3. boo← true

4. while boo = true

4.1 boo← false
4.2 for 1 ≤ i ≤ s do

4.2.1 if LM≺(fi) divides LM≺(r) then
• r ← r − LT≺(r)

LT≺(fi)
fi

• boo← true

5. return r

3 Termination

* because ≺ is admissible

3 Correction

* loop invariant

9



Reduction algorithm Reduction

Input: • f , f1, . . . , fs in R

• ≺ an admissible monomial order over R
Output: r ∈ R such that LT≺(r) /∈ 〈LT≺(f1), . . . , LT≺(fs)〉 and f −r ∈

〈f1, . . . , fs〉

1. If f = 0 then return f

2. r ← f

3. boo← true

4. while boo = true

4.1 boo← false
4.2 for 1 ≤ i ≤ s do

4.2.1 if LM≺(fi) divides LM≺(r) then
• r ← r − LT≺(r)

LT≺(fi)
fi

• boo← true

5. return r

3 Termination

* because ≺ is admissible

3 Correction

* loop invariant

9



Reduction algorithm Reduction

Input: • f , f1, . . . , fs in R

• ≺ an admissible monomial order over R
Output: r ∈ R such that LT≺(r) /∈ 〈LT≺(f1), . . . , LT≺(fs)〉 and f −r ∈

〈f1, . . . , fs〉

1. If f = 0 then return f

2. r ← f

3. boo← true

4. while boo = true

4.1 boo← false
4.2 for 1 ≤ i ≤ s do

4.2.1 if LM≺(fi) divides LM≺(r) then
• r ← r − LT≺(r)

LT≺(fi)
fi

• boo← true

5. return r

3 Termination

* because ≺ is admissible

3 Correction

* loop invariant

9



Reduction algorithm Reduction

Input: • f , f1, . . . , fs in R

• ≺ an admissible monomial order over R
Output: r ∈ R such that LT≺(r) /∈ 〈LT≺(f1), . . . , LT≺(fs)〉 and f −r ∈

〈f1, . . . , fs〉

1. If f = 0 then return f

2. r ← f

3. boo← true

4. while boo = true

4.1 boo← false
4.2 for 1 ≤ i ≤ s do

4.2.1 if LM≺(fi) divides LM≺(r) then
• r ← r − LT≺(r)

LT≺(fi)
fi

• boo← true

5. return r

3 Termination

* because ≺ is admissible

3 Correction

* loop invariant

9



Reduction algorithm Reduction

Input: • f , f1, . . . , fs in R

• ≺ an admissible monomial order over R
Output: r ∈ R such that LT≺(r) /∈ 〈LT≺(f1), . . . , LT≺(fs)〉 and f −r ∈

〈f1, . . . , fs〉

1. If f = 0 then return f

2. r ← f

3. boo← true

4. while boo = true

4.1 boo← false
4.2 for 1 ≤ i ≤ s do

4.2.1 if LM≺(fi) divides LM≺(r) then
• r ← r − LT≺(r)

LT≺(fi)
fi

• boo← true

5. return r

3 Termination

* because ≺ is admissible

3 Correction

* loop invariant

9



Reduction algorithm

We reuse the above notation.

There exist (g1, . . . , gk) ⊂ {f1, . . . , fs}k and monomials m1, . . . ,mk such
that

• f − r = m1g1 + · · ·+mkgk
• LM≺(mkgk) ≺ LM≺(mk−1gk−1) ≺ · · · ≺ LM≺(m1g1) � LM≺(f )

The map f 7→ Reduction(f , [f1, . . . , fs]) is linear and its kernel lies in
〈f1, . . . , fs〉.

Consequence.
One can rephrase Reduction with linear algebra operations. Let us do it…

10



Reduction algorithm

We reuse the above notation.

There exist (g1, . . . , gk) ⊂ {f1, . . . , fs}k and monomials m1, . . . ,mk such
that

• f − r = m1g1 + · · ·+mkgk
• LM≺(mkgk) ≺ LM≺(mk−1gk−1) ≺ · · · ≺ LM≺(m1g1) � LM≺(f )

The map f 7→ Reduction(f , [f1, . . . , fs]) is linear and its kernel lies in
〈f1, . . . , fs〉.

Consequence.
One can rephrase Reduction with linear algebra operations. Let us do it…

10



Reduction algorithm

We reuse the above notation.

There exist (g1, . . . , gk) ⊂ {f1, . . . , fs}k and monomials m1, . . . ,mk such
that

• f − r = m1g1 + · · ·+mkgk
• LM≺(mkgk) ≺ LM≺(mk−1gk−1) ≺ · · · ≺ LM≺(m1g1) � LM≺(f )

The map f 7→ Reduction(f , [f1, . . . , fs]) is linear and its kernel lies in
〈f1, . . . , fs〉.

Consequence.
One can rephrase Reduction with linear algebra operations.

Let us do it…

10



Reduction algorithm

We reuse the above notation.

There exist (g1, . . . , gk) ⊂ {f1, . . . , fs}k and monomials m1, . . . ,mk such
that

• f − r = m1g1 + · · ·+mkgk
• LM≺(mkgk) ≺ LM≺(mk−1gk−1) ≺ · · · ≺ LM≺(m1g1) � LM≺(f )

The map f 7→ Reduction(f , [f1, . . . , fs]) is linear and its kernel lies in
〈f1, . . . , fs〉.

Consequence.
One can rephrase Reduction with linear algebra operations. Let us do it…

10



Full reduction algorithm FullReduction

Input: • h and f = (f1, . . . , fs) in R

• ≺ an admissible monomial order over R
Output: r ∈ R such that for any m ∈ Monomials(r) m /∈

〈LT≺(f1), . . . , LT≺(fs)〉 and f − r ∈ 〈f1, . . . , fs〉

1. If h = 0 then return h

2. r ← 0

3. g ← h

4. while g 6= 0

4.1 g ← Reduction(g, f ,≺)
4.2 if g 6= 0

• r ← r + LT≺(g)
• g ← g − LT≺(g)

5. return r

3 Termination

* because ≺ is admissible

3 Correction

* loop invariant

11



Full reduction algorithm FullReduction

Input: • h and f = (f1, . . . , fs) in R

• ≺ an admissible monomial order over R
Output: r ∈ R such that for any m ∈ Monomials(r) m /∈

〈LT≺(f1), . . . , LT≺(fs)〉 and f − r ∈ 〈f1, . . . , fs〉

1. If h = 0 then return h

2. r ← 0

3. g ← h

4. while g 6= 0

4.1 g ← Reduction(g, f ,≺)
4.2 if g 6= 0

• r ← r + LT≺(g)
• g ← g − LT≺(g)

5. return r

3 Termination

* because ≺ is admissible

3 Correction

* loop invariant

11



Full reduction algorithm FullReduction

Input: • h and f = (f1, . . . , fs) in R

• ≺ an admissible monomial order over R
Output: r ∈ R such that for any m ∈ Monomials(r) m /∈

〈LT≺(f1), . . . , LT≺(fs)〉 and f − r ∈ 〈f1, . . . , fs〉

1. If h = 0 then return h

2. r ← 0

3. g ← h

4. while g 6= 0

4.1 g ← Reduction(g, f ,≺)
4.2 if g 6= 0

• r ← r + LT≺(g)
• g ← g − LT≺(g)

5. return r

3 Termination

* because ≺ is admissible

3 Correction

* loop invariant

11



Full reduction algorithm FullReduction

Input: • h and f = (f1, . . . , fs) in R

• ≺ an admissible monomial order over R
Output: r ∈ R such that for any m ∈ Monomials(r) m /∈

〈LT≺(f1), . . . , LT≺(fs)〉 and f − r ∈ 〈f1, . . . , fs〉

1. If h = 0 then return h

2. r ← 0

3. g ← h

4. while g 6= 0

4.1 g ← Reduction(g, f ,≺)
4.2 if g 6= 0

• r ← r + LT≺(g)
• g ← g − LT≺(g)

5. return r

3 Termination

* because ≺ is admissible

3 Correction

* loop invariant

11



Full reduction algorithm FullReduction

Input: • h and f = (f1, . . . , fs) in R

• ≺ an admissible monomial order over R
Output: r ∈ R such that for any m ∈ Monomials(r) m /∈

〈LT≺(f1), . . . , LT≺(fs)〉 and f − r ∈ 〈f1, . . . , fs〉

1. If h = 0 then return h

2. r ← 0

3. g ← h

4. while g 6= 0

4.1 g ← Reduction(g, f ,≺)
4.2 if g 6= 0

• r ← r + LT≺(g)
• g ← g − LT≺(g)

5. return r

3 Termination

* because ≺ is admissible

3 Correction

* loop invariant

11



Full reduction algorithm FullReduction

Input: • h and f = (f1, . . . , fs) in R

• ≺ an admissible monomial order over R
Output: r ∈ R such that for any m ∈ Monomials(r) m /∈

〈LT≺(f1), . . . , LT≺(fs)〉 and f − r ∈ 〈f1, . . . , fs〉

1. If h = 0 then return h

2. r ← 0

3. g ← h

4. while g 6= 0

4.1 g ← Reduction(g, f ,≺)
4.2 if g 6= 0

• r ← r + LT≺(g)
• g ← g − LT≺(g)

5. return r

3 Termination

* because ≺ is admissible

3 Correction

* loop invariant

11



Full reduction algorithm

We reuse the above notation.

Let r = FullReduction(f , f ,≺).
Then Monomials(r) ∩ 〈LT≺(f1), . . . , LT≺(fs)〉 = ∅.

The map f 7→ FullReduction(f , [f1, . . . , fs]) is linear and its kernel lies
in 〈f1, . . . , fs〉.

Consequence.
One can again rephrase Reduction with linear algebra operations.

Let us do it and emphasize the difference…

12



Full reduction algorithm

We reuse the above notation.

Let r = FullReduction(f , f ,≺).
Then Monomials(r) ∩ 〈LT≺(f1), . . . , LT≺(fs)〉 = ∅.

The map f 7→ FullReduction(f , [f1, . . . , fs]) is linear and its kernel lies
in 〈f1, . . . , fs〉.

Consequence.
One can again rephrase Reduction with linear algebra operations.

Let us do it and emphasize the difference…

12



Full reduction algorithm

We reuse the above notation.

Let r = FullReduction(f , f ,≺).
Then Monomials(r) ∩ 〈LT≺(f1), . . . , LT≺(fs)〉 = ∅.

The map f 7→ FullReduction(f , [f1, . . . , fs]) is linear and its kernel lies
in 〈f1, . . . , fs〉.

Consequence.
One can again rephrase Reduction with linear algebra operations.

Let us do it and emphasize the difference…

12



Full reduction algorithm

We reuse the above notation.

Let r = FullReduction(f , f ,≺).
Then Monomials(r) ∩ 〈LT≺(f1), . . . , LT≺(fs)〉 = ∅.

The map f 7→ FullReduction(f , [f1, . . . , fs]) is linear and its kernel lies
in 〈f1, . . . , fs〉.

Consequence.
One can again rephrase Reduction with linear algebra operations.

Let us do it and emphasize the difference…

12



Back to Hilbert’s basis theorem

Let K be a field and R = K[x1, . . . , xn].

Refined statement of Hilbert’s basis theorem
Let I ⊂ R be an ideal. There exists a finite set g1 . . . , gs in R such that

• I = 〈g1, . . . , gs〉
• LM≺(I ) = 〈LM≺(f ) | f ∈ I 〉 = 〈LM≺(gi) | 1 ≤ i ≤ s〉

Proof. Easy case is I = 〈0〉. We assume now I 6= 〈0〉.

• Dickson’s lemma⇒
∃(g1, . . . , gs) ⊂ I such that LM≺(I ) = 〈LM≺(g1), . . . , LM≺(gs)〉

• consider r = Reduction(f , [g1, . . . , gs],≺) for some f ∈ I .
• r = 0 3else conclude that LM≺(r) ∈ 〈LM≺(I )〉 7contradiction

Good news. Gröbner bases do exist!
… but this proof is not constructive

13



Back to Hilbert’s basis theorem

Let K be a field and R = K[x1, . . . , xn].

Refined statement of Hilbert’s basis theorem
Let I ⊂ R be an ideal. There exists a finite set g1 . . . , gs in R such that

• I = 〈g1, . . . , gs〉
• LM≺(I ) = 〈LM≺(f ) | f ∈ I 〉 = 〈LM≺(gi) | 1 ≤ i ≤ s〉

Proof. Easy case is I = 〈0〉. We assume now I 6= 〈0〉.

• Dickson’s lemma⇒
∃(g1, . . . , gs) ⊂ I such that LM≺(I ) = 〈LM≺(g1), . . . , LM≺(gs)〉

• consider r = Reduction(f , [g1, . . . , gs],≺) for some f ∈ I .
• r = 0 3else conclude that LM≺(r) ∈ 〈LM≺(I )〉 7contradiction

Good news. Gröbner bases do exist!
… but this proof is not constructive

13



Back to Hilbert’s basis theorem

Let K be a field and R = K[x1, . . . , xn].

Refined statement of Hilbert’s basis theorem
Let I ⊂ R be an ideal. There exists a finite set g1 . . . , gs in R such that

• I = 〈g1, . . . , gs〉
• LM≺(I ) = 〈LM≺(f ) | f ∈ I 〉 = 〈LM≺(gi) | 1 ≤ i ≤ s〉

Proof. Easy case is I = 〈0〉. We assume now I 6= 〈0〉.

• Dickson’s lemma⇒
∃(g1, . . . , gs) ⊂ I such that LM≺(I ) = 〈LM≺(g1), . . . , LM≺(gs)〉

• consider r = Reduction(f , [g1, . . . , gs],≺) for some f ∈ I .
• r = 0 3else conclude that LM≺(r) ∈ 〈LM≺(I )〉 7contradiction

Good news. Gröbner bases do exist!
… but this proof is not constructive

13



Back to Hilbert’s basis theorem

Let K be a field and R = K[x1, . . . , xn].

Refined statement of Hilbert’s basis theorem
Let I ⊂ R be an ideal. There exists a finite set g1 . . . , gs in R such that

• I = 〈g1, . . . , gs〉
• LM≺(I ) = 〈LM≺(f ) | f ∈ I 〉 = 〈LM≺(gi) | 1 ≤ i ≤ s〉

Proof. Easy case is I = 〈0〉. We assume now I 6= 〈0〉.

• Dickson’s lemma⇒
∃(g1, . . . , gs) ⊂ I such that LM≺(I ) = 〈LM≺(g1), . . . , LM≺(gs)〉

• consider r = Reduction(f , [g1, . . . , gs],≺) for some f ∈ I .

• r = 0 3else conclude that LM≺(r) ∈ 〈LM≺(I )〉 7contradiction

Good news. Gröbner bases do exist!
… but this proof is not constructive

13



Back to Hilbert’s basis theorem

Let K be a field and R = K[x1, . . . , xn].

Refined statement of Hilbert’s basis theorem
Let I ⊂ R be an ideal. There exists a finite set g1 . . . , gs in R such that

• I = 〈g1, . . . , gs〉
• LM≺(I ) = 〈LM≺(f ) | f ∈ I 〉 = 〈LM≺(gi) | 1 ≤ i ≤ s〉

Proof. Easy case is I = 〈0〉. We assume now I 6= 〈0〉.

• Dickson’s lemma⇒
∃(g1, . . . , gs) ⊂ I such that LM≺(I ) = 〈LM≺(g1), . . . , LM≺(gs)〉

• consider r = Reduction(f , [g1, . . . , gs],≺) for some f ∈ I .
• r = 0 3else conclude that LM≺(r) ∈ 〈LM≺(I )〉 7contradiction

Good news. Gröbner bases do exist!
… but this proof is not constructive

13



Back to Hilbert’s basis theorem

Let K be a field and R = K[x1, . . . , xn].

Refined statement of Hilbert’s basis theorem
Let I ⊂ R be an ideal. There exists a finite set g1 . . . , gs in R such that

• I = 〈g1, . . . , gs〉
• LM≺(I ) = 〈LM≺(f ) | f ∈ I 〉 = 〈LM≺(gi) | 1 ≤ i ≤ s〉

Proof. Easy case is I = 〈0〉. We assume now I 6= 〈0〉.

• Dickson’s lemma⇒
∃(g1, . . . , gs) ⊂ I such that LM≺(I ) = 〈LM≺(g1), . . . , LM≺(gs)〉

• consider r = Reduction(f , [g1, . . . , gs],≺) for some f ∈ I .
• r = 0 3else conclude that LM≺(r) ∈ 〈LM≺(I )〉 7contradiction

Good news. Gröbner bases do exist!

… but this proof is not constructive

13



Back to Hilbert’s basis theorem

Let K be a field and R = K[x1, . . . , xn].

Refined statement of Hilbert’s basis theorem
Let I ⊂ R be an ideal. There exists a finite set g1 . . . , gs in R such that

• I = 〈g1, . . . , gs〉
• LM≺(I ) = 〈LM≺(f ) | f ∈ I 〉 = 〈LM≺(gi) | 1 ≤ i ≤ s〉

Proof. Easy case is I = 〈0〉. We assume now I 6= 〈0〉.

• Dickson’s lemma⇒
∃(g1, . . . , gs) ⊂ I such that LM≺(I ) = 〈LM≺(g1), . . . , LM≺(gs)〉

• consider r = Reduction(f , [g1, . . . , gs],≺) for some f ∈ I .
• r = 0 3else conclude that LM≺(r) ∈ 〈LM≺(I )〉 7contradiction

Good news. Gröbner bases do exist!
… but this proof is not constructive

13



Characterizations and first
properties of Gröbner bases



Normal forms

Let K be a field, R = K[x1, . . . , xn] and ≺ an admissible monomial ordering
over R.

Let I ⊂ R be an ideal and G = (g1, . . . , gs) ⊂ R be a Gröbner basis for
(I ,≺). Take f ∈ R. There exists a unique r ∈ R such that:

• No term of r is divisible by any of LM≺(g1), . . . , LM≺(gs);

• There exists g ∈ I such that f = g + r .

Also, r = FullReduction(f ,G,≺) (whatever the choice of ordering of
the polynomials in G).

It is called the normal form of f modulo G.

r = 0 if and only if f ∈ I = 〈G〉

Gröbner bases with the full reduction algorithm solve
the ideal membership problem

14



Normal forms

Let K be a field, R = K[x1, . . . , xn] and ≺ an admissible monomial ordering
over R.

Let I ⊂ R be an ideal and G = (g1, . . . , gs) ⊂ R be a Gröbner basis for
(I ,≺). Take f ∈ R. There exists a unique r ∈ R such that:

• No term of r is divisible by any of LM≺(g1), . . . , LM≺(gs);

• There exists g ∈ I such that f = g + r .

Also, r = FullReduction(f ,G,≺) (whatever the choice of ordering of
the polynomials in G).

It is called the normal form of f modulo G.

r = 0 if and only if f ∈ I = 〈G〉

Gröbner bases with the full reduction algorithm solve
the ideal membership problem

14



Normal forms

Let K be a field, R = K[x1, . . . , xn] and ≺ an admissible monomial ordering
over R.

Let I ⊂ R be an ideal and G = (g1, . . . , gs) ⊂ R be a Gröbner basis for
(I ,≺). Take f ∈ R. There exists a unique r ∈ R such that:

• No term of r is divisible by any of LM≺(g1), . . . , LM≺(gs);

• There exists g ∈ I such that f = g + r .

Also, r = FullReduction(f ,G,≺) (whatever the choice of ordering of
the polynomials in G).

It is called the normal form of f modulo G.

r = 0 if and only if f ∈ I = 〈G〉

Gröbner bases with the full reduction algorithm solve
the ideal membership problem

14



Normal forms

Let K be a field, R = K[x1, . . . , xn] and ≺ an admissible monomial ordering
over R.

Let I ⊂ R be an ideal and G = (g1, . . . , gs) ⊂ R be a Gröbner basis for
(I ,≺). Take f ∈ R. There exists a unique r ∈ R such that:

• No term of r is divisible by any of LM≺(g1), . . . , LM≺(gs);

• There exists g ∈ I such that f = g + r .

Also, r = FullReduction(f ,G,≺) (whatever the choice of ordering of
the polynomials in G). It is called the normal form of f modulo G.

r = 0 if and only if f ∈ I = 〈G〉

Gröbner bases with the full reduction algorithm solve
the ideal membership problem

14



Normal forms

Let K be a field, R = K[x1, . . . , xn] and ≺ an admissible monomial ordering
over R.

Let I ⊂ R be an ideal and G = (g1, . . . , gs) ⊂ R be a Gröbner basis for
(I ,≺). Take f ∈ R. There exists a unique r ∈ R such that:

• No term of r is divisible by any of LM≺(g1), . . . , LM≺(gs);

• There exists g ∈ I such that f = g + r .

Also, r = FullReduction(f ,G,≺) (whatever the choice of ordering of
the polynomials in G). It is called the normal form of f modulo G.

r = 0 if and only if f ∈ I = 〈G〉

Gröbner bases with the full reduction algorithm solve
the ideal membership problem

14



Normal forms

Let K be a field, R = K[x1, . . . , xn] and ≺ an admissible monomial ordering
over R.

Let I ⊂ R be an ideal and G = (g1, . . . , gs) ⊂ R be a Gröbner basis for
(I ,≺). Take f ∈ R. There exists a unique r ∈ R such that:

• No term of r is divisible by any of LM≺(g1), . . . , LM≺(gs);

• There exists g ∈ I such that f = g + r .

Also, r = FullReduction(f ,G,≺) (whatever the choice of ordering of
the polynomials in G). It is called the normal form of f modulo G.

r = 0 if and only if f ∈ I = 〈G〉

Gröbner bases with the full reduction algorithm solve
the ideal membership problem

14



Normal forms

• Recall that the kernel of the map

NF≺ : f 7→ FullReduction(f ,G,≺)

is 〈G〉. The function NF≺(.,G) is a projection on a linear subspace
which is normal to 〈G〉.

• The function NF≺(.,G) returns a canonical representative of the
quotient ring R

〈G〉 .
Equivalence relation: f ∼ g ⇐⇒ f − g ∈ 〈G〉
Example. Consider G = 〈x21 − 1, x22 − 2〉.

Is it a Gröbner basis for ≺grevlex?
Equivalence classes of R

〈G〉?
This will be developed further.

15



Normal forms

• Recall that the kernel of the map

NF≺ : f 7→ FullReduction(f ,G,≺)

is 〈G〉. The function NF≺(.,G) is a projection on a linear subspace
which is normal to 〈G〉.

• The function NF≺(.,G) returns a canonical representative of the
quotient ring R

〈G〉 .
Equivalence relation: f ∼ g ⇐⇒ f − g ∈ 〈G〉

Example. Consider G = 〈x21 − 1, x22 − 2〉.
Is it a Gröbner basis for ≺grevlex?

Equivalence classes of R
〈G〉?

This will be developed further.

15



Normal forms

• Recall that the kernel of the map

NF≺ : f 7→ FullReduction(f ,G,≺)

is 〈G〉. The function NF≺(.,G) is a projection on a linear subspace
which is normal to 〈G〉.

• The function NF≺(.,G) returns a canonical representative of the
quotient ring R

〈G〉 .
Equivalence relation: f ∼ g ⇐⇒ f − g ∈ 〈G〉
Example. Consider G = 〈x21 − 1, x22 − 2〉.

Is it a Gröbner basis for ≺grevlex?
Equivalence classes of R

〈G〉?

This will be developed further.

15



Normal forms

• Recall that the kernel of the map

NF≺ : f 7→ FullReduction(f ,G,≺)

is 〈G〉. The function NF≺(.,G) is a projection on a linear subspace
which is normal to 〈G〉.

• The function NF≺(.,G) returns a canonical representative of the
quotient ring R

〈G〉 .
Equivalence relation: f ∼ g ⇐⇒ f − g ∈ 〈G〉
Example. Consider G = 〈x21 − 1, x22 − 2〉.

Is it a Gröbner basis for ≺grevlex?
Equivalence classes of R

〈G〉?
This will be developed further.

15



Characterizations of Gröbner bases

Let K be a field, R = K[x1, . . . , xn] and ≺ an admissible monomial ordering
over R.

Warm-up – S-polynomials

Let f and g be in R − {0}. Let λ = lcm≺(f , g).
We define the S-polynomial of (f , g) w.r.t. ≺ as

spol≺(f , g) =
λ

LT≺(f )
f − λ

LT≺(g)
g

Buchberger’s criterion
Let I ⊂ R be an ideal and G = (g1, . . . , gs) ⊂ R be such that I = 〈G〉 (G
is a basis for I ).
It holds that G is a Gröbner basis for (I ,≺) if and only if

for all 1 ≤ i, j ≤ s, NF≺(spol≺(gi, gj)) is identically zero.

16



Characterizations of Gröbner bases

Let K be a field, R = K[x1, . . . , xn] and ≺ an admissible monomial ordering
over R.

Warm-up – S-polynomials

Let f and g be in R − {0}. Let λ = lcm≺(f , g).
We define the S-polynomial of (f , g) w.r.t. ≺ as

spol≺(f , g) =
λ

LT≺(f )
f − λ

LT≺(g)
g

Buchberger’s criterion
Let I ⊂ R be an ideal and G = (g1, . . . , gs) ⊂ R be such that I = 〈G〉 (G
is a basis for I ).
It holds that G is a Gröbner basis for (I ,≺) if and only if

for all 1 ≤ i, j ≤ s, NF≺(spol≺(gi, gj)) is identically zero.

16



Buchberger’s criterion

* Provides an algorithm which on input ≺ and G decides whether G is
a Gröbner basis for (〈G〉,≺);

• This algorithm always computes 0 in case G is a Gröbner basis;

• When G is not a Gröbner basis,
NF≺(spol(gi, gj),G) is still interesting.

We reuse the above notation. It holds that

g = NF≺(spol(gi, gj),G) ∈ 〈G〉.

When it is not zero LM≺(g) /∈ 〈LM≺(G)〉.

17



Buchberger’s criterion

* Provides an algorithm which on input ≺ and G decides whether G is
a Gröbner basis for (〈G〉,≺);

• This algorithm always computes 0 in case G is a Gröbner basis;

• When G is not a Gröbner basis,
NF≺(spol(gi, gj),G) is still interesting.

We reuse the above notation. It holds that

g = NF≺(spol(gi, gj),G) ∈ 〈G〉.

When it is not zero LM≺(g) /∈ 〈LM≺(G)〉.

17



Buchberger’s criterion

* Provides an algorithm which on input ≺ and G decides whether G is
a Gröbner basis for (〈G〉,≺);

• This algorithm always computes 0 in case G is a Gröbner basis;

• When G is not a Gröbner basis,
NF≺(spol(gi, gj),G) is still interesting.

We reuse the above notation. It holds that

g = NF≺(spol(gi, gj),G) ∈ 〈G〉.

When it is not zero LM≺(g) /∈ 〈LM≺(G)〉.

17



Buchberger’s algorithm



Buchberger’s algorithm

Idea. Consider all pairs (g, g′) in the current basis G ; Pairs(G)

Input: • f = (f1, . . . , fs) in R

• ≺ an admissible monomial order over R
Output: A Gröbner basis for (〈f 〉,≺).

1. G ← f

2. G′ ← ∅
3. while G′ 6= G do

3.1 P ← Pairs(G)
3.2 G′ ← G
3.3 for all (g, g′) ∈P do

• r ← FullReduction(spol≺(g, g′),G′)
• if r 6= 0 then
• G ← G ∪ {r}

4. return G

18



Buchberger’s algorithm

Input: • f = (f1, . . . , fs) in R

• ≺ an admissible monomial order over R
Output: A Gröbner basis for (〈f 〉,≺).

1. G ← f

2. G′ ← ∅

3. while G′ 6= G do

3.1 P ← Pairs(G)
3.2 G′ ← G
3.3 for all (g, g′) ∈P do

• r ← FullReduction(spol≺(g, g′),G′)
• if r 6= 0 then
• G ← G ∪ {r}

4. return G

18



Buchberger’s algorithm

Input: • f = (f1, . . . , fs) in R

• ≺ an admissible monomial order over R
Output: A Gröbner basis for (〈f 〉,≺).

1. G ← f

2. G′ ← ∅
3. while G′ 6= G do

3.1 P ← Pairs(G)
3.2 G′ ← G
3.3 for all (g, g′) ∈P do

• r ← FullReduction(spol≺(g, g′),G′)
• if r 6= 0 then
• G ← G ∪ {r}

4. return G

18



Buchberger’s algorithm

Input: • f = (f1, . . . , fs) in R

• ≺ an admissible monomial order over R
Output: A Gröbner basis for (〈f 〉,≺).

1. G ← f

2. G′ ← ∅
3. while G′ 6= G do

3.1 P ← Pairs(G)
3.2 G′ ← G
3.3 for all (g, g′) ∈P do

• r ← FullReduction(spol≺(g, g′),G′)

• if r 6= 0 then
• G ← G ∪ {r}

4. return G

18



Buchberger’s algorithm

Input: • f = (f1, . . . , fs) in R

• ≺ an admissible monomial order over R
Output: A Gröbner basis for (〈f 〉,≺).

1. G ← f

2. G′ ← ∅
3. while G′ 6= G do

3.1 P ← Pairs(G)
3.2 G′ ← G
3.3 for all (g, g′) ∈P do

• r ← FullReduction(spol≺(g, g′),G′)
• if r 6= 0 then
• G ← G ∪ {r}

4. return G

18



Buchberger’s algorithm

On input f ⊂ R and ≺, Buchberger(f ,≺) terminates and returns a
Gröbner basis for (〈f 〉,≺).

• Prove that G ⊂ 〈f 〉 at each step.

• Prove that whenever it terminates, it returns a Gröbner basis for
(〈f 〉,≺). Buchberger’s criterion.

• Prove that 〈LM≺(G′)〉 ⊂ 〈LM≺(G)〉
• Use the theorem on ascending chain of ideals.

19



Buchberger’s algorithm

On input f ⊂ R and ≺, Buchberger(f ,≺) terminates and returns a
Gröbner basis for (〈f 〉,≺).

• Prove that G ⊂ 〈f 〉 at each step.

• Prove that whenever it terminates, it returns a Gröbner basis for
(〈f 〉,≺). Buchberger’s criterion.

• Prove that 〈LM≺(G′)〉 ⊂ 〈LM≺(G)〉
• Use the theorem on ascending chain of ideals.

19



Buchberger’s algorithm

On input f ⊂ R and ≺, Buchberger(f ,≺) terminates and returns a
Gröbner basis for (〈f 〉,≺).

• Prove that G ⊂ 〈f 〉 at each step.

• Prove that whenever it terminates, it returns a Gröbner basis for
(〈f 〉,≺). Buchberger’s criterion.

• Prove that 〈LM≺(G′)〉 ⊂ 〈LM≺(G)〉
• Use the theorem on ascending chain of ideals.

19



Buchberger’s algorithm

On input f ⊂ R and ≺, Buchberger(f ,≺) terminates and returns a
Gröbner basis for (〈f 〉,≺).

• Prove that G ⊂ 〈f 〉 at each step.

• Prove that whenever it terminates, it returns a Gröbner basis for
(〈f 〉,≺). Buchberger’s criterion.

• Prove that 〈LM≺(G′)〉 ⊂ 〈LM≺(G)〉

• Use the theorem on ascending chain of ideals.

19



Buchberger’s algorithm

On input f ⊂ R and ≺, Buchberger(f ,≺) terminates and returns a
Gröbner basis for (〈f 〉,≺).

• Prove that G ⊂ 〈f 〉 at each step.

• Prove that whenever it terminates, it returns a Gröbner basis for
(〈f 〉,≺). Buchberger’s criterion.

• Prove that 〈LM≺(G′)〉 ⊂ 〈LM≺(G)〉
• Use the theorem on ascending chain of ideals.

19



Behaviour of Buchberger’s algorithm

* Choice of the pairs (g, g′); A selection strategy is required

• A commonly used strategy is by refining with the degree of the
lcm≺(g, g′) but we need more.
There has been a whole industry on identifying a “good” strategy

Giovini, Mora, Niesi, Robbiano, Traverso’91

* Most of reductions in Buchberger’s algorithm compute 0 (!)

• These are useless computations
• Prove that when some pair reduces to 0, it will always further reduce

to 0; rewrite the algorithm.
• Note that once the selection strategy is fixed, one can remember

which pairs reduce to 0
Useful for multi-modular computations (Gröbner bases over Q).

Modern algorithms (F4/F5) bring new efficient
solutions to these issues

20



Behaviour of Buchberger’s algorithm

* Choice of the pairs (g, g′); A selection strategy is required

• A commonly used strategy is by refining with the degree of the
lcm≺(g, g′) but we need more.

There has been a whole industry on identifying a “good” strategy
Giovini, Mora, Niesi, Robbiano, Traverso’91

* Most of reductions in Buchberger’s algorithm compute 0 (!)

• These are useless computations
• Prove that when some pair reduces to 0, it will always further reduce

to 0; rewrite the algorithm.
• Note that once the selection strategy is fixed, one can remember

which pairs reduce to 0
Useful for multi-modular computations (Gröbner bases over Q).

Modern algorithms (F4/F5) bring new efficient
solutions to these issues

20



Behaviour of Buchberger’s algorithm

* Choice of the pairs (g, g′); A selection strategy is required

• A commonly used strategy is by refining with the degree of the
lcm≺(g, g′) but we need more.
There has been a whole industry on identifying a “good” strategy

Giovini, Mora, Niesi, Robbiano, Traverso’91

* Most of reductions in Buchberger’s algorithm compute 0 (!)

• These are useless computations
• Prove that when some pair reduces to 0, it will always further reduce

to 0; rewrite the algorithm.
• Note that once the selection strategy is fixed, one can remember

which pairs reduce to 0
Useful for multi-modular computations (Gröbner bases over Q).

Modern algorithms (F4/F5) bring new efficient
solutions to these issues

20



Behaviour of Buchberger’s algorithm

* Choice of the pairs (g, g′); A selection strategy is required

• A commonly used strategy is by refining with the degree of the
lcm≺(g, g′) but we need more.
There has been a whole industry on identifying a “good” strategy

Giovini, Mora, Niesi, Robbiano, Traverso’91

* Most of reductions in Buchberger’s algorithm compute 0 (!)

• These are useless computations
• Prove that when some pair reduces to 0, it will always further reduce

to 0; rewrite the algorithm.
• Note that once the selection strategy is fixed, one can remember

which pairs reduce to 0
Useful for multi-modular computations (Gröbner bases over Q).

Modern algorithms (F4/F5) bring new efficient
solutions to these issues

20



Behaviour of Buchberger’s algorithm

* Choice of the pairs (g, g′); A selection strategy is required

• A commonly used strategy is by refining with the degree of the
lcm≺(g, g′) but we need more.
There has been a whole industry on identifying a “good” strategy

Giovini, Mora, Niesi, Robbiano, Traverso’91

* Most of reductions in Buchberger’s algorithm compute 0 (!)

• These are useless computations

• Prove that when some pair reduces to 0, it will always further reduce
to 0; rewrite the algorithm.

• Note that once the selection strategy is fixed, one can remember
which pairs reduce to 0

Useful for multi-modular computations (Gröbner bases over Q).

Modern algorithms (F4/F5) bring new efficient
solutions to these issues

20



Behaviour of Buchberger’s algorithm

* Choice of the pairs (g, g′); A selection strategy is required

• A commonly used strategy is by refining with the degree of the
lcm≺(g, g′) but we need more.
There has been a whole industry on identifying a “good” strategy

Giovini, Mora, Niesi, Robbiano, Traverso’91

* Most of reductions in Buchberger’s algorithm compute 0 (!)

• These are useless computations
• Prove that when some pair reduces to 0, it will always further reduce

to 0; rewrite the algorithm.

• Note that once the selection strategy is fixed, one can remember
which pairs reduce to 0

Useful for multi-modular computations (Gröbner bases over Q).

Modern algorithms (F4/F5) bring new efficient
solutions to these issues

20



Behaviour of Buchberger’s algorithm

* Choice of the pairs (g, g′); A selection strategy is required

• A commonly used strategy is by refining with the degree of the
lcm≺(g, g′) but we need more.
There has been a whole industry on identifying a “good” strategy

Giovini, Mora, Niesi, Robbiano, Traverso’91

* Most of reductions in Buchberger’s algorithm compute 0 (!)

• These are useless computations
• Prove that when some pair reduces to 0, it will always further reduce

to 0; rewrite the algorithm.
• Note that once the selection strategy is fixed, one can remember

which pairs reduce to 0
Useful for multi-modular computations (Gröbner bases over Q).

Modern algorithms (F4/F5) bring new efficient
solutions to these issues

20



Behaviour of Buchberger’s algorithm

* Choice of the pairs (g, g′); A selection strategy is required

• A commonly used strategy is by refining with the degree of the
lcm≺(g, g′) but we need more.
There has been a whole industry on identifying a “good” strategy

Giovini, Mora, Niesi, Robbiano, Traverso’91

* Most of reductions in Buchberger’s algorithm compute 0 (!)

• These are useless computations
• Prove that when some pair reduces to 0, it will always further reduce

to 0; rewrite the algorithm.
• Note that once the selection strategy is fixed, one can remember

which pairs reduce to 0
Useful for multi-modular computations (Gröbner bases over Q).

Modern algorithms (F4/F5) bring new efficient
solutions to these issues

20



Example (I)

Take f1 = x31 − 2x1x2 and f2 = x21x2 − 2x22 + x1 and ≺grevlex .

G = (f1, f2) ; Sgrevlex(f1, f2) = −x21 , note that x21 /∈ 〈x31 , x21x2〉

* f3 = NFgrevlex(spolgrevlex(f1, f2),G) = −x21

G = (f1, f2, f3)

; spolgrevlex(f1, f3) = −x1x2

* f4 = NFgrevlex(spolgrevlex(f1, f3),G) = −x1x2
with x1x2 /∈ 〈x31 , x21x2, x21 〉

; spolgrevlex(f2, f3) = −2x22 + x1

* f5 = NFgrevlex(spolgrevlex(f2, f3),G) = −2x22 + x1

G = (f1, f2, f3, f4, f5)

21

•

•

•

•

•



Example (I)

Take f1 = x31 − 2x1x2 and f2 = x21x2 − 2x22 + x1 and ≺grevlex .

G = (f1, f2) ; Sgrevlex(f1, f2) = −x21 , note that x21 /∈ 〈x31 , x21x2〉

* f3 = NFgrevlex(spolgrevlex(f1, f2),G) = −x21

G = (f1, f2, f3)

; spolgrevlex(f1, f3) = −x1x2

* f4 = NFgrevlex(spolgrevlex(f1, f3),G) = −x1x2
with x1x2 /∈ 〈x31 , x21x2, x21 〉

; spolgrevlex(f2, f3) = −2x22 + x1

* f5 = NFgrevlex(spolgrevlex(f2, f3),G) = −2x22 + x1

G = (f1, f2, f3, f4, f5)

21

•

•

•

•

•



Example (I)

Take f1 = x31 − 2x1x2 and f2 = x21x2 − 2x22 + x1 and ≺grevlex .

G = (f1, f2) ; Sgrevlex(f1, f2) = −x21 , note that x21 /∈ 〈x31 , x21x2〉

* f3 = NFgrevlex(spolgrevlex(f1, f2),G) = −x21

G = (f1, f2, f3)

; spolgrevlex(f1, f3) = −x1x2

* f4 = NFgrevlex(spolgrevlex(f1, f3),G) = −x1x2
with x1x2 /∈ 〈x31 , x21x2, x21 〉

; spolgrevlex(f2, f3) = −2x22 + x1

* f5 = NFgrevlex(spolgrevlex(f2, f3),G) = −2x22 + x1

G = (f1, f2, f3, f4, f5)

21

•

•

•

•

•



Example (I)

Take f1 = x31 − 2x1x2 and f2 = x21x2 − 2x22 + x1 and ≺grevlex .

G = (f1, f2) ; Sgrevlex(f1, f2) = −x21 , note that x21 /∈ 〈x31 , x21x2〉

* f3 = NFgrevlex(spolgrevlex(f1, f2),G) = −x21

G = (f1, f2, f3)

; spolgrevlex(f1, f3) = −x1x2

* f4 = NFgrevlex(spolgrevlex(f1, f3),G) = −x1x2
with x1x2 /∈ 〈x31 , x21x2, x21 〉

; spolgrevlex(f2, f3) = −2x22 + x1

* f5 = NFgrevlex(spolgrevlex(f2, f3),G) = −2x22 + x1

G = (f1, f2, f3, f4, f5)

21

•

•

•

•

•



Example (I)

Take f1 = x31 − 2x1x2 and f2 = x21x2 − 2x22 + x1 and ≺grevlex .

G = (f1, f2) ; Sgrevlex(f1, f2) = −x21 , note that x21 /∈ 〈x31 , x21x2〉

* f3 = NFgrevlex(spolgrevlex(f1, f2),G) = −x21

G = (f1, f2, f3)

; spolgrevlex(f1, f3) = −x1x2

* f4 = NFgrevlex(spolgrevlex(f1, f3),G) = −x1x2
with x1x2 /∈ 〈x31 , x21x2, x21 〉

; spolgrevlex(f2, f3) = −2x22 + x1

* f5 = NFgrevlex(spolgrevlex(f2, f3),G) = −2x22 + x1

G = (f1, f2, f3, f4, f5)

21

•

•

•

•

•



Example (I)

Take f1 = x31 − 2x1x2 and f2 = x21x2 − 2x22 + x1 and ≺grevlex .

G = (f1, f2) ; Sgrevlex(f1, f2) = −x21 , note that x21 /∈ 〈x31 , x21x2〉

* f3 = NFgrevlex(spolgrevlex(f1, f2),G) = −x21

G = (f1, f2, f3)

; spolgrevlex(f1, f3) = −x1x2

* f4 = NFgrevlex(spolgrevlex(f1, f3),G) = −x1x2
with x1x2 /∈ 〈x31 , x21x2, x21 〉

; spolgrevlex(f2, f3) = −2x22 + x1

* f5 = NFgrevlex(spolgrevlex(f2, f3),G) = −2x22 + x1

G = (f1, f2, f3, f4, f5)

21

•

•

•

•

•



Example (I)

Take f1 = x31 − 2x1x2 and f2 = x21x2 − 2x22 + x1 and ≺grevlex .

G = (f1, f2) ; Sgrevlex(f1, f2) = −x21 , note that x21 /∈ 〈x31 , x21x2〉

* f3 = NFgrevlex(spolgrevlex(f1, f2),G) = −x21

G = (f1, f2, f3)

; spolgrevlex(f1, f3) = −x1x2

* f4 = NFgrevlex(spolgrevlex(f1, f3),G) = −x1x2
with x1x2 /∈ 〈x31 , x21x2, x21 〉

; spolgrevlex(f2, f3) = −2x22 + x1

* f5 = NFgrevlex(spolgrevlex(f2, f3),G) = −2x22 + x1

G = (f1, f2, f3, f4, f5)

21

•

•

•

•

•



Example (I)

Take f1 = x31 − 2x1x2 and f2 = x21x2 − 2x22 + x1 and ≺grevlex .

G = (f1, f2) ; Sgrevlex(f1, f2) = −x21 , note that x21 /∈ 〈x31 , x21x2〉

* f3 = NFgrevlex(spolgrevlex(f1, f2),G) = −x21

G = (f1, f2, f3)

; spolgrevlex(f1, f3) = −x1x2

* f4 = NFgrevlex(spolgrevlex(f1, f3),G) = −x1x2
with x1x2 /∈ 〈x31 , x21x2, x21 〉

; spolgrevlex(f2, f3) = −2x22 + x1

* f5 = NFgrevlex(spolgrevlex(f2, f3),G) = −2x22 + x1

G = (f1, f2, f3, f4, f5)

21

•

•

•

•

•



Example (I)

Take f1 = x31 − 2x1x2 and f2 = x21x2 − 2x22 + x1 and ≺grevlex .

G = (f1, f2) ; Sgrevlex(f1, f2) = −x21 , note that x21 /∈ 〈x31 , x21x2〉

* f3 = NFgrevlex(spolgrevlex(f1, f2),G) = −x21

G = (f1, f2, f3)

; spolgrevlex(f1, f3) = −x1x2

* f4 = NFgrevlex(spolgrevlex(f1, f3),G) = −x1x2
with x1x2 /∈ 〈x31 , x21x2, x21 〉

; spolgrevlex(f2, f3) = −2x22 + x1

* f5 = NFgrevlex(spolgrevlex(f2, f3),G) = −2x22 + x1

G = (f1, f2, f3, f4, f5)

21

•

•

•

•

•



Example (II)

G = (f1, f2, f3, f4)

If remains to investigate (f1, f4), (f2, f4), (f3, f4), (f1, f5), . . .

; spolgrevlex(f1, f4) = x2f4 * NFgrevlex(spolgrevlex(f1, f4),G) = 0

; spolgrevlex(f2, f4) = f5 * NFgrevlex(spolgrevlex(f2, f4),G) = 0

; spolgrevlex(f3, f4) = 0 * NFgrevlex(spolgrevlex(f3, f4),G) = 0

; spolgrevlex(f1, f5) = − 1
2x1f3 + x2f4 * NFgrevlex(spolgrevlex(f1, f5),G) = 0

And so on… All S-polynomials reduce to 0.

We can conclude that G is a Gröbner basis for (〈f1, f2〉,≺grevlex)

22



Example (II)

G = (f1, f2, f3, f4)

If remains to investigate (f1, f4), (f2, f4), (f3, f4), (f1, f5), . . .

; spolgrevlex(f1, f4) = x2f4 * NFgrevlex(spolgrevlex(f1, f4),G) = 0

; spolgrevlex(f2, f4) = f5 * NFgrevlex(spolgrevlex(f2, f4),G) = 0

; spolgrevlex(f3, f4) = 0 * NFgrevlex(spolgrevlex(f3, f4),G) = 0

; spolgrevlex(f1, f5) = − 1
2x1f3 + x2f4 * NFgrevlex(spolgrevlex(f1, f5),G) = 0

And so on… All S-polynomials reduce to 0.

We can conclude that G is a Gröbner basis for (〈f1, f2〉,≺grevlex)

22



Example (II)

G = (f1, f2, f3, f4)

If remains to investigate (f1, f4), (f2, f4), (f3, f4), (f1, f5), . . .

; spolgrevlex(f1, f4) = x2f4 * NFgrevlex(spolgrevlex(f1, f4),G) = 0

; spolgrevlex(f2, f4) = f5 * NFgrevlex(spolgrevlex(f2, f4),G) = 0

; spolgrevlex(f3, f4) = 0 * NFgrevlex(spolgrevlex(f3, f4),G) = 0

; spolgrevlex(f1, f5) = − 1
2x1f3 + x2f4 * NFgrevlex(spolgrevlex(f1, f5),G) = 0

And so on… All S-polynomials reduce to 0.

We can conclude that G is a Gröbner basis for (〈f1, f2〉,≺grevlex)

22



Example (II)

G = (f1, f2, f3, f4)

If remains to investigate (f1, f4), (f2, f4), (f3, f4), (f1, f5), . . .

; spolgrevlex(f1, f4) = x2f4 * NFgrevlex(spolgrevlex(f1, f4),G) = 0

; spolgrevlex(f2, f4) = f5 * NFgrevlex(spolgrevlex(f2, f4),G) = 0

; spolgrevlex(f3, f4) = 0 * NFgrevlex(spolgrevlex(f3, f4),G) = 0

; spolgrevlex(f1, f5) = − 1
2x1f3 + x2f4 * NFgrevlex(spolgrevlex(f1, f5),G) = 0

And so on… All S-polynomials reduce to 0.

We can conclude that G is a Gröbner basis for (〈f1, f2〉,≺grevlex)

22



Example (II)

G = (f1, f2, f3, f4)

If remains to investigate (f1, f4), (f2, f4), (f3, f4), (f1, f5), . . .

; spolgrevlex(f1, f4) = x2f4 * NFgrevlex(spolgrevlex(f1, f4),G) = 0

; spolgrevlex(f2, f4) = f5 * NFgrevlex(spolgrevlex(f2, f4),G) = 0

; spolgrevlex(f3, f4) = 0 * NFgrevlex(spolgrevlex(f3, f4),G) = 0

; spolgrevlex(f1, f5) = − 1
2x1f3 + x2f4 * NFgrevlex(spolgrevlex(f1, f5),G) = 0

And so on… All S-polynomials reduce to 0.

We can conclude that G is a Gröbner basis for (〈f1, f2〉,≺grevlex)

22



Example (II)

G = (f1, f2, f3, f4)

If remains to investigate (f1, f4), (f2, f4), (f3, f4), (f1, f5), . . .

; spolgrevlex(f1, f4) = x2f4 * NFgrevlex(spolgrevlex(f1, f4),G) = 0

; spolgrevlex(f2, f4) = f5 * NFgrevlex(spolgrevlex(f2, f4),G) = 0

; spolgrevlex(f3, f4) = 0 * NFgrevlex(spolgrevlex(f3, f4),G) = 0

; spolgrevlex(f1, f5) = − 1
2x1f3 + x2f4 * NFgrevlex(spolgrevlex(f1, f5),G) = 0

And so on… All S-polynomials reduce to 0.

We can conclude that G is a Gröbner basis for (〈f1, f2〉,≺grevlex)

22



Example (II)

G = (f1, f2, f3, f4)

If remains to investigate (f1, f4), (f2, f4), (f3, f4), (f1, f5), . . .

; spolgrevlex(f1, f4) = x2f4 * NFgrevlex(spolgrevlex(f1, f4),G) = 0

; spolgrevlex(f2, f4) = f5 * NFgrevlex(spolgrevlex(f2, f4),G) = 0

; spolgrevlex(f3, f4) = 0 * NFgrevlex(spolgrevlex(f3, f4),G) = 0

; spolgrevlex(f1, f5) = − 1
2x1f3 + x2f4 * NFgrevlex(spolgrevlex(f1, f5),G) = 0

And so on… All S-polynomials reduce to 0.

We can conclude that G is a Gröbner basis for (〈f1, f2〉,≺grevlex)

22



Uniqueness of Gröbner bases (I)

G =


x3
1 − 2x1x2
x2
1x2 − 2x2

2 + x1
f3 = −x2

1 , f4 = −x1x2
f5 = −2x2

2 + x1

Minimal Gröbner bases
LetG be aGröbner basis for (I ,≺). One says thatG is aminimal Gröbner
basis if for all f ∈ G:

• LC≺(f ) = 1;
• LM≺(f ) /∈ 〈LM≺(G \ {f })〉.

Reduced Gröbner bases
LetG be aGröbner basis for (I ,≺). One says thatG is a reducedGröbner
basis if for all f ∈ G:

• LC≺(f ) = 1;
• no monomial of f lies in 〈LM≺(G \ {f })〉.

23



Uniqueness of Gröbner bases (I)

G =


x3
1 − 2x1x2 = −x1f3 + 2f4
x2
1x2 − 2x2

2 + x1
f3 = −x2

1 , f4 = −x1x2
f5 = −2x2

2 + x1

Minimal Gröbner bases
LetG be aGröbner basis for (I ,≺). One says thatG is aminimal Gröbner
basis if for all f ∈ G:

• LC≺(f ) = 1;
• LM≺(f ) /∈ 〈LM≺(G \ {f })〉.

Reduced Gröbner bases
LetG be aGröbner basis for (I ,≺). One says thatG is a reducedGröbner
basis if for all f ∈ G:

• LC≺(f ) = 1;
• no monomial of f lies in 〈LM≺(G \ {f })〉.

23



Uniqueness of Gröbner bases (I)

G =


x3
1 − 2x1x2 = −x1f3 + 2f4
x2
1x2 − 2x2

2 + x1 = −x2f4 + f5
f3 = −x2

1 , f4 = −x1x2
f5 = −2x2

2 + x1

Minimal Gröbner bases
LetG be aGröbner basis for (I ,≺). One says thatG is aminimal Gröbner
basis if for all f ∈ G:

• LC≺(f ) = 1;
• LM≺(f ) /∈ 〈LM≺(G \ {f })〉.

Reduced Gröbner bases
LetG be aGröbner basis for (I ,≺). One says thatG is a reducedGröbner
basis if for all f ∈ G:

• LC≺(f ) = 1;
• no monomial of f lies in 〈LM≺(G \ {f })〉.

23



Uniqueness of Gröbner bases (I)

G =


x3
1 − 2x1x2 = −x1f3 + 2f4
x2
1x2 − 2x2

2 + x1 = −x2f4 + f5
f3 = −x2

1 , f4 = −x1x2
f5 = −2x2

2 + x1

ß redundant elements…

Minimal Gröbner bases
LetG be aGröbner basis for (I ,≺). One says thatG is aminimal Gröbner
basis if for all f ∈ G:

• LC≺(f ) = 1;
• LM≺(f ) /∈ 〈LM≺(G \ {f })〉.

Reduced Gröbner bases
LetG be aGröbner basis for (I ,≺). One says thatG is a reducedGröbner
basis if for all f ∈ G:

• LC≺(f ) = 1;
• no monomial of f lies in 〈LM≺(G \ {f })〉.

23



Uniqueness of Gröbner bases (I)

G =


x3
1 − 2x1x2 = −x1f3 + 2f4
x2
1x2 − 2x2

2 + x1 = −x2f4 + f5
f3 = −x2

1 , f4 = −x1x2
f5 = −2x2

2 + x1

ß redundant elements…

Minimal Gröbner bases
LetG be aGröbner basis for (I ,≺). One says thatG is aminimal Gröbner
basis if for all f ∈ G:

• LC≺(f ) = 1;
• LM≺(f ) /∈ 〈LM≺(G \ {f })〉.

Reduced Gröbner bases
LetG be aGröbner basis for (I ,≺). One says thatG is a reducedGröbner
basis if for all f ∈ G:

• LC≺(f ) = 1;
• no monomial of f lies in 〈LM≺(G \ {f })〉.

23



Uniqueness of Gröbner bases (I)

G =


x3
1 − 2x1x2 = −x1f3 + 2f4
x2
1x2 − 2x2

2 + x1 = −x2f4 + f5
f3 = −x2

1 , f4 = −x1x2
f5 = −2x2

2 + x1

ß redundant elements…

Minimal Gröbner bases
LetG be aGröbner basis for (I ,≺). One says thatG is aminimal Gröbner
basis if for all f ∈ G:

• LC≺(f ) = 1;
• LM≺(f ) /∈ 〈LM≺(G \ {f })〉.

Reduced Gröbner bases
LetG be aGröbner basis for (I ,≺). One says thatG is a reducedGröbner
basis if for all f ∈ G:

• LC≺(f ) = 1;
• no monomial of f lies in 〈LM≺(G \ {f })〉.

23



Uniqueness of Gröbner bases (II)

Let K be a field, R = K[x1, . . . , xn] and ≺ be a an admissible monomial
ordering.

Let I be an ideal of R which is not {0}. There exists a unique reduced
Gröbner basis for (I ,≺).

• G reduced⇒ G minimal⇒ 〈LM≺(G)〉 is unique

• Existence:
design an algorithm which makes a Gröbner basis reduced (!)

• Uniqueness: by contradiction + uniqueness of the normal form

One can decide whether two ideals
given by distinct generating sets are equal.

24



Uniqueness of Gröbner bases (II)

Let K be a field, R = K[x1, . . . , xn] and ≺ be a an admissible monomial
ordering.

Let I be an ideal of R which is not {0}. There exists a unique reduced
Gröbner basis for (I ,≺).

• G reduced⇒ G minimal⇒ 〈LM≺(G)〉 is unique

• Existence:
design an algorithm which makes a Gröbner basis reduced (!)

• Uniqueness: by contradiction + uniqueness of the normal form

One can decide whether two ideals
given by distinct generating sets are equal.

24



Uniqueness of Gröbner bases (II)

Let K be a field, R = K[x1, . . . , xn] and ≺ be a an admissible monomial
ordering.

Let I be an ideal of R which is not {0}. There exists a unique reduced
Gröbner basis for (I ,≺).

• G reduced⇒ G minimal⇒ 〈LM≺(G)〉 is unique

• Existence:
design an algorithm which makes a Gröbner basis reduced (!)

• Uniqueness: by contradiction + uniqueness of the normal form

One can decide whether two ideals
given by distinct generating sets are equal.

24



Uniqueness of Gröbner bases (II)

Let K be a field, R = K[x1, . . . , xn] and ≺ be a an admissible monomial
ordering.

Let I be an ideal of R which is not {0}. There exists a unique reduced
Gröbner basis for (I ,≺).

• G reduced⇒ G minimal⇒ 〈LM≺(G)〉 is unique

• Existence:
design an algorithm which makes a Gröbner basis reduced (!)

• Uniqueness: by contradiction + uniqueness of the normal form

One can decide whether two ideals
given by distinct generating sets are equal.

24



Uniqueness of Gröbner bases (II)

Let K be a field, R = K[x1, . . . , xn] and ≺ be a an admissible monomial
ordering.

Let I be an ideal of R which is not {0}. There exists a unique reduced
Gröbner basis for (I ,≺).

• G reduced⇒ G minimal⇒ 〈LM≺(G)〉 is unique

• Existence:
design an algorithm which makes a Gröbner basis reduced (!)

• Uniqueness: by contradiction + uniqueness of the normal form

One can decide whether two ideals
given by distinct generating sets are equal.

24



Properties of Gröbner bases



The elimination theorem (I)

Goal. Represent projections of K-algebraic sets.

Remark. Let πi be the canonical projection (x1, . . . , xn)→ (xi, . . . , xn)
and V ⊂ Kn

be a K-algebraic set. It holds that πi(V ) may not be a
K-algebraic set. Example. x1x2 − 1 = 0.

Locally closed algebraic sets

LetW ⊂ Kn
. One says thatW is a locally closed algebraic set if it is the

intersection of a Zariski open set with an algebraic set (defined over K).

Constructible sets
A constructible set is a finite union of locally closed sets.

Let V ⊂ Kn
be an algebraic set and πi as above. Then, πi(V ) is a con-

structible set.

25



The elimination theorem (I)

Goal. Represent projections of K-algebraic sets.

Remark. Let πi be the canonical projection (x1, . . . , xn)→ (xi, . . . , xn)
and V ⊂ Kn

be a K-algebraic set. It holds that πi(V ) may not be a
K-algebraic set.

Example. x1x2 − 1 = 0.

Locally closed algebraic sets

LetW ⊂ Kn
. One says thatW is a locally closed algebraic set if it is the

intersection of a Zariski open set with an algebraic set (defined over K).

Constructible sets
A constructible set is a finite union of locally closed sets.

Let V ⊂ Kn
be an algebraic set and πi as above. Then, πi(V ) is a con-

structible set.

25



The elimination theorem (I)

Goal. Represent projections of K-algebraic sets.

Remark. Let πi be the canonical projection (x1, . . . , xn)→ (xi, . . . , xn)
and V ⊂ Kn

be a K-algebraic set. It holds that πi(V ) may not be a
K-algebraic set. Example. x1x2 − 1 = 0.

Locally closed algebraic sets

LetW ⊂ Kn
. One says thatW is a locally closed algebraic set if it is the

intersection of a Zariski open set with an algebraic set (defined over K).

Constructible sets
A constructible set is a finite union of locally closed sets.

Let V ⊂ Kn
be an algebraic set and πi as above. Then, πi(V ) is a con-

structible set.

25



The elimination theorem (I)

Goal. Represent projections of K-algebraic sets.

Remark. Let πi be the canonical projection (x1, . . . , xn)→ (xi, . . . , xn)
and V ⊂ Kn

be a K-algebraic set. It holds that πi(V ) may not be a
K-algebraic set. Example. x1x2 − 1 = 0.

Locally closed algebraic sets

LetW ⊂ Kn
. One says thatW is a locally closed algebraic set if it is the

intersection of a Zariski open set with an algebraic set (defined over K).

Constructible sets
A constructible set is a finite union of locally closed sets.

Let V ⊂ Kn
be an algebraic set and πi as above. Then, πi(V ) is a con-

structible set.

25



The elimination theorem (I)

Goal. Represent projections of K-algebraic sets.

Remark. Let πi be the canonical projection (x1, . . . , xn)→ (xi, . . . , xn)
and V ⊂ Kn

be a K-algebraic set. It holds that πi(V ) may not be a
K-algebraic set. Example. x1x2 − 1 = 0.

Locally closed algebraic sets

LetW ⊂ Kn
. One says thatW is a locally closed algebraic set if it is the

intersection of a Zariski open set with an algebraic set (defined over K).

Constructible sets
A constructible set is a finite union of locally closed sets.

Let V ⊂ Kn
be an algebraic set and πi as above. Then, πi(V ) is a con-

structible set.

25



The elimination theorem (I)

Goal. Represent projections of K-algebraic sets.

Remark. Let πi be the canonical projection (x1, . . . , xn)→ (xi, . . . , xn)
and V ⊂ Kn

be a K-algebraic set. It holds that πi(V ) may not be a
K-algebraic set. Example. x1x2 − 1 = 0.

Locally closed algebraic sets

LetW ⊂ Kn
. One says thatW is a locally closed algebraic set if it is the

intersection of a Zariski open set with an algebraic set (defined over K).

Constructible sets
A constructible set is a finite union of locally closed sets.

Let V ⊂ Kn
be an algebraic set and πi as above. Then, πi(V ) is a con-

structible set.

25



The elimination theorem (II)

Let K be a field, R = K[x1, . . . , xn] and ≺ be a an admissible monomial
ordering.

Elimination ordering

We say that ≺ is an elimination ordering, which eliminates (x1, . . . , xi)
if for all f ∈ R − {0},

LM≺(f ) ∈ K[xi+1, . . . , xn] =⇒ f ∈ K[xi+1, . . . , xn]

• The lexicographical ordering is an elimination ordering;

• Consider ≺grevlex1 and ≺grevlex2 , two grevlex orderings over monomials
of K[x1, . . . , xi] and K[xi+1, . . . , xn]. The block ordering ≺ using these
two grevlex orderings is an elimination ordering.

26



The elimination theorem (II)

Let K be a field, R = K[x1, . . . , xn] and ≺ be a an admissible monomial
ordering.

Elimination ordering

We say that ≺ is an elimination ordering, which eliminates (x1, . . . , xi)
if for all f ∈ R − {0},

LM≺(f ) ∈ K[xi+1, . . . , xn] =⇒ f ∈ K[xi+1, . . . , xn]

• The lexicographical ordering is an elimination ordering;

• Consider ≺grevlex1 and ≺grevlex2 , two grevlex orderings over monomials
of K[x1, . . . , xi] and K[xi+1, . . . , xn]. The block ordering ≺ using these
two grevlex orderings is an elimination ordering.

26



The elimination theorem (II)

Let K be a field, R = K[x1, . . . , xn] and ≺ be a an admissible monomial
ordering.

Elimination ordering

We say that ≺ is an elimination ordering, which eliminates (x1, . . . , xi)
if for all f ∈ R − {0},

LM≺(f ) ∈ K[xi+1, . . . , xn] =⇒ f ∈ K[xi+1, . . . , xn]

• The lexicographical ordering is an elimination ordering;

• Consider ≺grevlex1 and ≺grevlex2 , two grevlex orderings over monomials
of K[x1, . . . , xi] and K[xi+1, . . . , xn]. The block ordering ≺ using these
two grevlex orderings is an elimination ordering.

26



The elimination theorem (III)

Let K be a field, R = K[x1, . . . , xn] and ≺ be a an admissible block
monomial ordering which eliminates x1, . . . , xi built with ≺1 and ≺2.

Let πi be the canonical projection (x1, . . . , xn)→ (xi, . . . , xn).

The elimination theorem
Let I ⊂ R be an ideal and G be a Gröbner basis of (I ,≺). Denote by Ii
the ideal I ∩K[xi+1, . . . , xn].
Then Gi = G ∩ K[xi+1, . . . , xn] is a Gröbner basis for (Ii,≺2). Besides,
V (Gi) equals the Zariski closure of πi(V (I )).

Proof of the first statement.

• It suffices to prove that 〈LM≺2(Gi)〉 = 〈LM≺2(Ii)〉.
• Use the property of elimination orderings to prove that for f ∈ Ii ,

LM≺2(f ) is divisible by LM≺2(g) for some g ∈ Ii .

See Cox, Little, O’Shea for a proof of the 2nd statement.

27



The elimination theorem (III)

Let K be a field, R = K[x1, . . . , xn] and ≺ be a an admissible block
monomial ordering which eliminates x1, . . . , xi built with ≺1 and ≺2.

Let πi be the canonical projection (x1, . . . , xn)→ (xi, . . . , xn).

The elimination theorem
Let I ⊂ R be an ideal and G be a Gröbner basis of (I ,≺). Denote by Ii
the ideal I ∩K[xi+1, . . . , xn].
Then Gi = G ∩ K[xi+1, . . . , xn] is a Gröbner basis for (Ii,≺2). Besides,
V (Gi) equals the Zariski closure of πi(V (I )).

Proof of the first statement.

• It suffices to prove that 〈LM≺2(Gi)〉 = 〈LM≺2(Ii)〉.
• Use the property of elimination orderings to prove that for f ∈ Ii ,

LM≺2(f ) is divisible by LM≺2(g) for some g ∈ Ii .

See Cox, Little, O’Shea for a proof of the 2nd statement.

27



The elimination theorem (III)

Let K be a field, R = K[x1, . . . , xn] and ≺ be a an admissible block
monomial ordering which eliminates x1, . . . , xi built with ≺1 and ≺2.

Let πi be the canonical projection (x1, . . . , xn)→ (xi, . . . , xn).

The elimination theorem
Let I ⊂ R be an ideal and G be a Gröbner basis of (I ,≺). Denote by Ii
the ideal I ∩K[xi+1, . . . , xn].
Then Gi = G ∩ K[xi+1, . . . , xn] is a Gröbner basis for (Ii,≺2). Besides,
V (Gi) equals the Zariski closure of πi(V (I )).

Proof of the first statement.

• It suffices to prove that 〈LM≺2(Gi)〉 = 〈LM≺2(Ii)〉.

• Use the property of elimination orderings to prove that for f ∈ Ii ,
LM≺2(f ) is divisible by LM≺2(g) for some g ∈ Ii .

See Cox, Little, O’Shea for a proof of the 2nd statement.

27



The elimination theorem (III)

Let K be a field, R = K[x1, . . . , xn] and ≺ be a an admissible block
monomial ordering which eliminates x1, . . . , xi built with ≺1 and ≺2.

Let πi be the canonical projection (x1, . . . , xn)→ (xi, . . . , xn).

The elimination theorem
Let I ⊂ R be an ideal and G be a Gröbner basis of (I ,≺). Denote by Ii
the ideal I ∩K[xi+1, . . . , xn].
Then Gi = G ∩ K[xi+1, . . . , xn] is a Gröbner basis for (Ii,≺2). Besides,
V (Gi) equals the Zariski closure of πi(V (I )).

Proof of the first statement.

• It suffices to prove that 〈LM≺2(Gi)〉 = 〈LM≺2(Ii)〉.
• Use the property of elimination orderings to prove that for f ∈ Ii ,

LM≺2(f ) is divisible by LM≺2(g) for some g ∈ Ii .

See Cox, Little, O’Shea for a proof of the 2nd statement.

27



The elimination theorem (III)

Let K be a field, R = K[x1, . . . , xn] and ≺ be a an admissible block
monomial ordering which eliminates x1, . . . , xi built with ≺1 and ≺2.

Let πi be the canonical projection (x1, . . . , xn)→ (xi, . . . , xn).

The elimination theorem
Let I ⊂ R be an ideal and G be a Gröbner basis of (I ,≺). Denote by Ii
the ideal I ∩K[xi+1, . . . , xn].
Then Gi = G ∩ K[xi+1, . . . , xn] is a Gröbner basis for (Ii,≺2). Besides,
V (Gi) equals the Zariski closure of πi(V (I )).

Proof of the first statement.

• It suffices to prove that 〈LM≺2(Gi)〉 = 〈LM≺2(Ii)〉.
• Use the property of elimination orderings to prove that for f ∈ Ii ,

LM≺2(f ) is divisible by LM≺2(g) for some g ∈ Ii .

See Cox, Little, O’Shea for a proof of the 2nd statement.

27



Application: implicitization

Consider the parametric curve

t 7→
(

2t
1+2t2 ,

1−3t2
1+t2

)
Problem. Compute the implicit equation
f = 0 (for f ∈ Q[x, y])

−2 −1 0 1 2

−3

−2

−1

0

1

; Gröbner basis computation for an elimination ordering t �elim x, y

f = x2y2 − 10x2y + 25x2 + 4y2 + 8y − 12

28



Application: implicitization

Consider the parametric curve

t 7→
(

2t
1+2t2 ,

1−3t2
1+t2

)
Problem. Compute the implicit equation
f = 0 (for f ∈ Q[x, y])

−2 −1 0 1 2

−3

−2

−1

0

1

; Gröbner basis computation for an elimination ordering t �elim x, y

f = x2y2 − 10x2y + 25x2 + 4y2 + 8y − 12

28



Shape of Gröbner bases (lex)

Let K be a field, R = K[x1, . . . , xn].

Let I ⊂ R be an ideal and G be a Gröbner basis for (I ,≺lex). Then
G = Tn ∪ Tn−1 ∪ · · · ∪ T1 with:

• Ti ⊂ K[xi, . . . , xn];

• Tn ∪ · · · ∪ Ti is a Gröbner basis for (I ∩K[xi, . . . , xn],≺lex);

• V (Tn ∪ · · · ∪ Ti) is the Zariski closure of the projection of V (I ) on
the (xi, . . . , xn)-space.

• When V (I ) is finite, I ∩K[xn] is not {0};
ß I ∩K[xi] is not {0} for all 1 ≤ i ≤ n.

• Gröbner basis computed for lexicographical monomial orderings
provide a triangular rewriting.
ß Comprehensive description of varieties through projections

29



Shape of Gröbner bases (lex)

Let K be a field, R = K[x1, . . . , xn].

Let I ⊂ R be an ideal and G be a Gröbner basis for (I ,≺lex). Then
G = Tn ∪ Tn−1 ∪ · · · ∪ T1 with:

• Ti ⊂ K[xi, . . . , xn];

• Tn ∪ · · · ∪ Ti is a Gröbner basis for (I ∩K[xi, . . . , xn],≺lex);

• V (Tn ∪ · · · ∪ Ti) is the Zariski closure of the projection of V (I ) on
the (xi, . . . , xn)-space.

• When V (I ) is finite, I ∩K[xn] is not {0};
ß I ∩K[xi] is not {0} for all 1 ≤ i ≤ n.

• Gröbner basis computed for lexicographical monomial orderings
provide a triangular rewriting.
ß Comprehensive description of varieties through projections

29



Shape of Gröbner bases (lex)

Let K be a field, R = K[x1, . . . , xn].

Let I ⊂ R be an ideal and G be a Gröbner basis for (I ,≺lex). Then
G = Tn ∪ Tn−1 ∪ · · · ∪ T1 with:

• Ti ⊂ K[xi, . . . , xn];

• Tn ∪ · · · ∪ Ti is a Gröbner basis for (I ∩K[xi, . . . , xn],≺lex);

• V (Tn ∪ · · · ∪ Ti) is the Zariski closure of the projection of V (I ) on
the (xi, . . . , xn)-space.

• When V (I ) is finite, I ∩K[xn] is not {0};
ß I ∩K[xi] is not {0} for all 1 ≤ i ≤ n.

• Gröbner basis computed for lexicographical monomial orderings
provide a triangular rewriting.

ß Comprehensive description of varieties through projections

29



Shape of Gröbner bases (lex)

Let K be a field, R = K[x1, . . . , xn].

Let I ⊂ R be an ideal and G be a Gröbner basis for (I ,≺lex). Then
G = Tn ∪ Tn−1 ∪ · · · ∪ T1 with:

• Ti ⊂ K[xi, . . . , xn];

• Tn ∪ · · · ∪ Ti is a Gröbner basis for (I ∩K[xi, . . . , xn],≺lex);

• V (Tn ∪ · · · ∪ Ti) is the Zariski closure of the projection of V (I ) on
the (xi, . . . , xn)-space.

• When V (I ) is finite, I ∩K[xn] is not {0};
ß I ∩K[xi] is not {0} for all 1 ≤ i ≤ n.

• Gröbner basis computed for lexicographical monomial orderings
provide a triangular rewriting.
ß Comprehensive description of varieties through projections

29



Consequence

Let K be a field, R = K[x1, . . . , xn].

Let I ⊂ R be an ideal. The quotient ring R
I is defined as the set of equiv-

alence classes f ∼ g ⇔ f − g ∈ I (where + and × are induced by
polynomial addition an multiplication). It is also a K-vector space.

Let I ⊂ R be an ideal. Assume that V (I ) is finite. Then the quotient ring
is a finite dimensional K-vector space.

When V (I ) is finite and a Gröbner basis is known for (I ,≺), we obtain
unique representatives in R

I (depending on the chosen basis). Many al-
gorithmic questions can then be rephrased as linear algebra problems /
matrix operations.

30



Consequence

Let K be a field, R = K[x1, . . . , xn].

Let I ⊂ R be an ideal. The quotient ring R
I is defined as the set of equiv-

alence classes f ∼ g ⇔ f − g ∈ I (where + and × are induced by
polynomial addition an multiplication). It is also a K-vector space.

Let I ⊂ R be an ideal. Assume that V (I ) is finite. Then the quotient ring
is a finite dimensional K-vector space.

When V (I ) is finite and a Gröbner basis is known for (I ,≺), we obtain
unique representatives in R

I (depending on the chosen basis). Many al-
gorithmic questions can then be rephrased as linear algebra problems /
matrix operations.

30



Consequence

Let K be a field, R = K[x1, . . . , xn].

Let I ⊂ R be an ideal. The quotient ring R
I is defined as the set of equiv-

alence classes f ∼ g ⇔ f − g ∈ I (where + and × are induced by
polynomial addition an multiplication). It is also a K-vector space.

Let I ⊂ R be an ideal. Assume that V (I ) is finite. Then the quotient ring
is a finite dimensional K-vector space.

When V (I ) is finite and a Gröbner basis is known for (I ,≺), we obtain
unique representatives in R

I (depending on the chosen basis).

Many al-
gorithmic questions can then be rephrased as linear algebra problems /
matrix operations.

30



Consequence

Let K be a field, R = K[x1, . . . , xn].

Let I ⊂ R be an ideal. The quotient ring R
I is defined as the set of equiv-

alence classes f ∼ g ⇔ f − g ∈ I (where + and × are induced by
polynomial addition an multiplication). It is also a K-vector space.

Let I ⊂ R be an ideal. Assume that V (I ) is finite. Then the quotient ring
is a finite dimensional K-vector space.

When V (I ) is finite and a Gröbner basis is known for (I ,≺), we obtain
unique representatives in R

I (depending on the chosen basis). Many al-
gorithmic questions can then be rephrased as linear algebra problems /
matrix operations.

30



Shape of Gröbner bases (graded ordering)

Let f be a homogeneous polynomial in R.

• if for k ∈ N, xkn divides LMgrevlex(f ) then xkn divides f ;

• if for all 1 ≤ j ≤ n, LMgrevlex(f ) is divisible by xj and
f ∈ K[x1, . . . , xj ], then f is divisible by xj .

Let I ⊂ R be an ideal and d = min(deg(f ) | f ∈ I \ {0}). Consider a
Gröbner basis G for (I ,≺grevlex).
It holds that

Span (g ∈ G | deg(G) = d) = Span (f ∈ I | deg(f ) = d) .

• This theorem holds for all graded orderings.

• G contains polynomials of the least possible degree in I \ {0}

31



Shape of Gröbner bases (graded ordering)

Let f be a homogeneous polynomial in R.

• if for k ∈ N, xkn divides LMgrevlex(f ) then xkn divides f ;

• if for all 1 ≤ j ≤ n, LMgrevlex(f ) is divisible by xj and
f ∈ K[x1, . . . , xj ], then f is divisible by xj .

Let I ⊂ R be an ideal and d = min(deg(f ) | f ∈ I \ {0}). Consider a
Gröbner basis G for (I ,≺grevlex).
It holds that

Span (g ∈ G | deg(G) = d) = Span (f ∈ I | deg(f ) = d) .

• This theorem holds for all graded orderings.

• G contains polynomials of the least possible degree in I \ {0}

31



Shape of Gröbner bases (graded ordering)

Let f be a homogeneous polynomial in R.

• if for k ∈ N, xkn divides LMgrevlex(f ) then xkn divides f ;

• if for all 1 ≤ j ≤ n, LMgrevlex(f ) is divisible by xj and
f ∈ K[x1, . . . , xj ], then f is divisible by xj .

Let I ⊂ R be an ideal and d = min(deg(f ) | f ∈ I \ {0}). Consider a
Gröbner basis G for (I ,≺grevlex).
It holds that

Span (g ∈ G | deg(G) = d) = Span (f ∈ I | deg(f ) = d) .

• This theorem holds for all graded orderings.

• G contains polynomials of the least possible degree in I \ {0}

31



Shape of Gröbner bases (graded ordering)

Let f be a homogeneous polynomial in R.

• if for k ∈ N, xkn divides LMgrevlex(f ) then xkn divides f ;

• if for all 1 ≤ j ≤ n, LMgrevlex(f ) is divisible by xj and
f ∈ K[x1, . . . , xj ], then f is divisible by xj .

Let I ⊂ R be an ideal and d = min(deg(f ) | f ∈ I \ {0}). Consider a
Gröbner basis G for (I ,≺grevlex).
It holds that

Span (g ∈ G | deg(G) = d) = Span (f ∈ I | deg(f ) = d) .

• This theorem holds for all graded orderings.

• G contains polynomials of the least possible degree in I \ {0}

31



Back to Hilbert series (I)

We had defined Hilbert series for monomial ideals. We define the Hilbert
function as follows:

d 7→ HFI (d) = ]{β ∈ Nn | deg(xβ) = d and xβ /∈ I}.

The Hilbert series is HSI (t) =
∑∞

d=0 HFI (d)td .

Recall that RI is a K-vector space.

There is a monomial basis for R
I .

HFI (d) counts the number of elements in this basis of degree d .

ß The Hilbert series is actually associated to R
I

32



Back to Hilbert series (I)

We had defined Hilbert series for monomial ideals. We define the Hilbert
function as follows:

d 7→ HFI (d) = ]{β ∈ Nn | deg(xβ) = d and xβ /∈ I}.

The Hilbert series is HSI (t) =
∑∞

d=0 HFI (d)td .

Recall that RI is a K-vector space.

There is a monomial basis for R
I .

HFI (d) counts the number of elements in this basis of degree d .

ß The Hilbert series is actually associated to R
I

32



Back to Hilbert series (I)

We had defined Hilbert series for monomial ideals. We define the Hilbert
function as follows:

d 7→ HFI (d) = ]{β ∈ Nn | deg(xβ) = d and xβ /∈ I}.

The Hilbert series is HSI (t) =
∑∞

d=0 HFI (d)td .

Recall that RI is a K-vector space.

There is a monomial basis for R
I .

HFI (d) counts the number of elements in this basis of degree d .

ß The Hilbert series is actually associated to R
I

32



Back to Hilbert series (I)

We had defined Hilbert series for monomial ideals. We define the Hilbert
function as follows:

d 7→ HFI (d) = ]{β ∈ Nn | deg(xβ) = d and xβ /∈ I}.

The Hilbert series is HSI (t) =
∑∞

d=0 HFI (d)td .

Recall that RI is a K-vector space.

There is a monomial basis for R
I .

HFI (d) counts the number of elements in this basis of degree d .

ß The Hilbert series is actually associated to R
I

32



Hilbert series (II)

We can now extend the definition to ideals in R.

Let I be in R.

Degree compliant monomial basis B of R
I ↔Monomial basis B of

〈LMgrevlex(I )〉.

HFR/I : d 7→ ]{β ∈ B | deg(β) = d}.

The Hilbert series is then defined as

HSR/I (t) =
∞∑
d=0

HFR/I (d)td .

33



Hilbert series (II)

We can now extend the definition to ideals in R.

Let I be in R.

Degree compliant monomial basis B of R
I ↔Monomial basis B of

〈LMgrevlex(I )〉.

HFR/I : d 7→ ]{β ∈ B | deg(β) = d}.

The Hilbert series is then defined as

HSR/I (t) =
∞∑
d=0

HFR/I (d)td .

33



Hilbert series (II)

We can now extend the definition to ideals in R.

Let I be in R.

Degree compliant monomial basis B of R
I ↔Monomial basis B of

〈LMgrevlex(I )〉.

HFR/I : d 7→ ]{β ∈ B | deg(β) = d}.

The Hilbert series is then defined as

HSR/I (t) =
∞∑
d=0

HFR/I (d)td .

33



Hilbert series (III)

Let I ⊂ R be an ideal. When V (I ) is finite, R
I is a finite dimensional

K-vector space.

Let G be a Gröbner basis for (I ,≺). For all 1 ≤ i ≤ n, there exists ki ∈ N
and g ∈ G such that xkii = LM≺(g).

When V (I ) is finite, HSR/I (t) is a polynomial. Its evaluation at 1 is the
degree of I , which coincides with dimension of R

I (as a K vector space).

When I is radical, it coincides with the cardinality of V (I ).

Some interesting Hilbert series.

• When I = 〈R〉, HSR/I (t) =?

• When I = 〈0〉, HSR/I (t) =?

• When I = 〈x1, . . . , xn〉, HSR/I (t) =?

34



Hilbert series (III)

Let I ⊂ R be an ideal. When V (I ) is finite, R
I is a finite dimensional

K-vector space.
Let G be a Gröbner basis for (I ,≺). For all 1 ≤ i ≤ n, there exists ki ∈ N
and g ∈ G such that xkii = LM≺(g).

When V (I ) is finite, HSR/I (t) is a polynomial. Its evaluation at 1 is the
degree of I , which coincides with dimension of R

I (as a K vector space).

When I is radical, it coincides with the cardinality of V (I ).

Some interesting Hilbert series.

• When I = 〈R〉, HSR/I (t) =?

• When I = 〈0〉, HSR/I (t) =?

• When I = 〈x1, . . . , xn〉, HSR/I (t) =?

34



Hilbert series (III)

Let I ⊂ R be an ideal. When V (I ) is finite, R
I is a finite dimensional

K-vector space.
Let G be a Gröbner basis for (I ,≺). For all 1 ≤ i ≤ n, there exists ki ∈ N
and g ∈ G such that xkii = LM≺(g).

When V (I ) is finite, HSR/I (t) is a polynomial. Its evaluation at 1 is the
degree of I , which coincides with dimension of R

I (as a K vector space).

When I is radical, it coincides with the cardinality of V (I ).

Some interesting Hilbert series.

• When I = 〈R〉, HSR/I (t) =?

• When I = 〈0〉, HSR/I (t) =?

• When I = 〈x1, . . . , xn〉, HSR/I (t) =?

34



Hilbert series (III)

Let I ⊂ R be an ideal. When V (I ) is finite, R
I is a finite dimensional

K-vector space.
Let G be a Gröbner basis for (I ,≺). For all 1 ≤ i ≤ n, there exists ki ∈ N
and g ∈ G such that xkii = LM≺(g).

When V (I ) is finite, HSR/I (t) is a polynomial. Its evaluation at 1 is the
degree of I , which coincides with dimension of R

I (as a K vector space).
When I is radical, it coincides with the cardinality of V (I ).

Some interesting Hilbert series.

• When I = 〈R〉, HSR/I (t) =?

• When I = 〈0〉, HSR/I (t) =?

• When I = 〈x1, . . . , xn〉, HSR/I (t) =?

34



Hilbert series (III)

Let I ⊂ R be an ideal. When V (I ) is finite, R
I is a finite dimensional

K-vector space.
Let G be a Gröbner basis for (I ,≺). For all 1 ≤ i ≤ n, there exists ki ∈ N
and g ∈ G such that xkii = LM≺(g).

When V (I ) is finite, HSR/I (t) is a polynomial. Its evaluation at 1 is the
degree of I , which coincides with dimension of R

I (as a K vector space).
When I is radical, it coincides with the cardinality of V (I ).

Some interesting Hilbert series.

• When I = 〈R〉, HSR/I (t) =?

• When I = 〈0〉, HSR/I (t) =?

• When I = 〈x1, . . . , xn〉, HSR/I (t) =?

34



The hunt of reductions to zero



A crucial activity

* The ratio of critical pairs which reduce to 0 tends to 1.

This is observed for all known monomial orderings.

ß 99% of the runtime is spent in computing 0 (!)

Some reductions to 0 arise naturally:

• fifj = fjfi yields a reduction to 0 ; Syzygies
• If there exists h ∈ R such that hfi ∈ 〈f1, . . . , fi−1〉 and

h /∈ 〈f1, . . . , fi−1〉 then a reduction to 0 will occur.

35



A crucial activity

* The ratio of critical pairs which reduce to 0 tends to 1.

This is observed for all known monomial orderings.

ß 99% of the runtime is spent in computing 0 (!)

Some reductions to 0 arise naturally:

• fifj = fjfi yields a reduction to 0 ; Syzygies
• If there exists h ∈ R such that hfi ∈ 〈f1, . . . , fi−1〉 and

h /∈ 〈f1, . . . , fi−1〉 then a reduction to 0 will occur.

35



Buchberger’s first criterion

Let K be a field, R = K[x1, . . . , xn] and ≺ be a an admissible monomial
ordering.

Product criterion (First Buchberger criterion)
Let G ⊂ R − {0} and g1, g2 in G. Assume that lcm≺(f , g) =

LM≺(f )LM≺(g). Then spol≺(f , g) reduces to 0 modulo G.

Proof. Assume f = LM≺(f ) + p, g = LM≺(g) + q. Write
spol≺(f , g) = pg − qf .
Observe that LM≺(spol(f , g)) = max≺(LM≺(pg), LM≺(qf ))

(using again lcm≺(f , g) = LM≺(f )LM≺(g)).

36



Buchberger’s first criterion

Let K be a field, R = K[x1, . . . , xn] and ≺ be a an admissible monomial
ordering.

Product criterion (First Buchberger criterion)
Let G ⊂ R − {0} and g1, g2 in G. Assume that lcm≺(f , g) =

LM≺(f )LM≺(g). Then spol≺(f , g) reduces to 0 modulo G.

Proof. Assume f = LM≺(f ) + p, g = LM≺(g) + q. Write
spol≺(f , g) = pg − qf .
Observe that LM≺(spol(f , g)) = max≺(LM≺(pg), LM≺(qf ))

(using again lcm≺(f , g) = LM≺(f )LM≺(g)).

36



Buchberger’s second criterion (I)

Standard representation.
Let G ⊂ R − {0} be a finite set. We say that f has a standard represen-
tation w.r.t. G,≺ if:

• f =
∑s

i=1 migi for some mi 6= 0 (and the gi’s are pairwise distinct)

• max≺(LM≺(migi), 1 ≤ i ≤ s) ≺ LM≺(f ).

A second characterization of Gröbner bases
Let G ⊂ R − {0} be a finite set. If for any f ∈ 〈G〉 with f 6= 0, f
has a standard representation w.r.t. G,≺ then G is a Gröbner basis for
(〈G〉,≺).

37



Buchberger’s second criterion (I)

Standard representation.
Let G ⊂ R − {0} be a finite set. We say that f has a standard represen-
tation w.r.t. G,≺ if:

• f =
∑s

i=1 migi for some mi 6= 0 (and the gi’s are pairwise distinct)

• max≺(LM≺(migi), 1 ≤ i ≤ s) ≺ LM≺(f ).

A second characterization of Gröbner bases
Let G ⊂ R − {0} be a finite set. If for any f ∈ 〈G〉 with f 6= 0, f
has a standard representation w.r.t. G,≺ then G is a Gröbner basis for
(〈G〉,≺).

37



Buchberger’s second criterion (II)

Chain criterion (Second Buchberger criterion)
Let f , g and h in R, and G ⊂ R − {0} finite. If
• LM≺(h) divides lcm(LM≺(f ), LM≺(g))

• and spol≺(f , h) and spol≺(g, h) both have a standard
representation w.r.t G

then spol≺(f , g) has a standard representation w.r.t G,≺.

ß spol≺(f , h) and spol≺(g, h) reduce to 0 modulo G, then spol≺(f , g) will
reduce to 0 modulo G

38



Buchberger’s second criterion (II)

Chain criterion (Second Buchberger criterion)
Let f , g and h in R, and G ⊂ R − {0} finite. If
• LM≺(h) divides lcm(LM≺(f ), LM≺(g))

• and spol≺(f , h) and spol≺(g, h) both have a standard
representation w.r.t G

then spol≺(f , g) has a standard representation w.r.t G,≺.

ß spol≺(f , h) and spol≺(g, h) reduce to 0 modulo G, then spol≺(f , g) will
reduce to 0 modulo G

38



Back to the example

We had G = (f1, f2, f3, f4) with

LM(f1) = x31 , LM(f2) = x21x2, LM(f3) = x21 , LM(f4) = x1x2, LM(f5) = x22

• (f3, f4) reduces to 0 and we know that (f3, f5) will reduce to 0.
ß (f4, f5) will reduce to 0 (look at the LM’s).

• The pair (f3, f5) can be discarded (but not too early);

• Can you discard more pairs ?

Gebauer/Möller’88

39



Back to the example

We had G = (f1, f2, f3, f4) with

LM(f1) = x31 , LM(f2) = x21x2, LM(f3) = x21 , LM(f4) = x1x2, LM(f5) = x22

• (f3, f4) reduces to 0 and we know that (f3, f5) will reduce to 0.
ß (f4, f5) will reduce to 0 (look at the LM’s).

• The pair (f3, f5) can be discarded (but not too early);

• Can you discard more pairs ?

Gebauer/Möller’88

39



Back to the example

We had G = (f1, f2, f3, f4) with

LM(f1) = x31 , LM(f2) = x21x2, LM(f3) = x21 , LM(f4) = x1x2, LM(f5) = x22

• (f3, f4) reduces to 0 and we know that (f3, f5) will reduce to 0.
ß (f4, f5) will reduce to 0 (look at the LM’s).

• The pair (f3, f5) can be discarded (but not too early);

• Can you discard more pairs ?

Gebauer/Möller’88

39



Back to the example

We had G = (f1, f2, f3, f4) with

LM(f1) = x31 , LM(f2) = x21x2, LM(f3) = x21 , LM(f4) = x1x2, LM(f5) = x22

• (f3, f4) reduces to 0 and we know that (f3, f5) will reduce to 0.
ß (f4, f5) will reduce to 0 (look at the LM’s).

• The pair (f3, f5) can be discarded (but not too early);

• Can you discard more pairs ?

Gebauer/Möller’88

39



Back to the example

We had G = (f1, f2, f3, f4) with

LM(f1) = x31 , LM(f2) = x21x2, LM(f3) = x21 , LM(f4) = x1x2, LM(f5) = x22

• (f3, f4) reduces to 0 and we know that (f3, f5) will reduce to 0.
ß (f4, f5) will reduce to 0 (look at the LM’s).

• The pair (f3, f5) can be discarded (but not too early);

• Can you discard more pairs ?

Gebauer/Möller’88

39



Improved Buchberger

• f = (f1, . . . , fs) in R

• ≺ an admissible monomial order over R
Output: The reduced Gröbner basis for (〈f 〉,≺).

1. G ← f and m ← s

2. P ← ∅
3. while f 6= ∅

3.1 Choose f ∈ f , f \ {f }
3.2 (G,P)← Update(f ,G,P,≺)

4. while P 6= ∅
4.1 select (f , g) from P and P ←P \ {(f , g)}
4.2 fm+1 ← FullReduction(spol≺(f , g),G,≺)
4.3 if fm+1 6= 0 then

• m← m + 1
• (G,P)← Update(fm,G,P,≺)

5. return ReduceBasis(G,≺)

40



The Update routine

1. P1 ← {(f , g) | g ∈ G}
2. P2 ← ∅ and P2 ← ∅
3. while P1 6= ∅

3.1 select (f , g) from P1 and P1 ←P1 \ {(f , g)}
3.2 if Criterion1(f , g) or NOT(Criterion2(f , g,P1 ∪P2))
3.3 3.3.1

3.3.2

41



Change of orderings
The FGLM algorithm



42


	Reductions of a polynomial modulo a polynomial family  Definitions, properties and algorithms
	Characterizations and first properties of Gröbner bases 
	Buchberger's algorithm 
	Properties of Gröbner bases 
	The hunt of reductions to zero 
	Change of orderings  The FGLM algorithm 

