Lecture 2-13-1 Polynomial systems, computer algebra and applications

Gröbner bases and Buchberger's algorithm

Jean-Charles Faugère¹ Vincent Neiger² Mohab Safey El Din²

¹Inria and CryptoNext Security

²Sorbonne University, CNRS

During the last course, we have introduced and studied:

• polynomial ideals and solution sets to polynomial systems over algebraically closed fields (algebraic varieties);

During the last course, we have introduced and studied:

- polynomial ideals and solution sets to polynomial systems over algebraically closed fields (algebraic varieties);
- topical algorithmic problems: rewriting into triangular systems, membership ideal problem (recall the weak Hilbert's Nullstellensatz), and many others;

During the last course, we have introduced and studied:

- polynomial ideals and solution sets to polynomial systems over algebraically closed fields (algebraic varieties);
- topical algorithmic problems: rewriting into triangular systems, membership ideal problem (recall the weak Hilbert's Nullstellensatz), and many others;
- notions of dimension and degree for algebraic sets;

During the last course, we have introduced and studied:

- polynomial ideals and solution sets to polynomial systems over algebraically closed fields (algebraic varieties);
- topical algorithmic problems: rewriting into triangular systems, membership ideal problem (recall the weak Hilbert's Nullstellensatz), and many others;
- notions of dimension and degree for algebraic sets;
- monomial orderings;

During the last course, we have introduced and studied:

- polynomial ideals and solution sets to polynomial systems over algebraically closed fields (algebraic varieties);
- topical algorithmic problems: rewriting into triangular systems, membership ideal problem (recall the weak Hilbert's Nullstellensatz), and many others;
- notions of dimension and degree for algebraic sets;
- monomial orderings;
- definition of Gröbner bases.

... all of this being motivated by important applications in engineering sciences and post-quantum cryptology

During the last course, we have introduced and studied:

- polynomial ideals and solution sets to polynomial systems over algebraically closed fields (algebraic varieties);
- topical algorithmic problems: rewriting into triangular systems, membership ideal problem (recall the weak Hilbert's Nullstellensatz), and many others;
- notions of dimension and degree for algebraic sets;
- monomial orderings;
- definition of Gröbner bases.

... all of this being motivated by important applications in engineering sciences and post-quantum cryptology We need algorithms

Definition

Let $I \subset R$ be an ideal. One says that $G \subset R$ is a Gröbner basis for (I, \prec) if the following conditions hold:

- *G* is finite;
- $G \subset I;$

•
$$\langle \mathsf{LM}_{\prec}(g) \mid g \in G \rangle = \langle \mathsf{LM}(f) \mid f \in I \rangle.$$

Definition

Let $I \subset R$ be an ideal. One says that $G \subset R$ is a Gröbner basis for (I, \prec) if the following conditions hold:

- *G* is finite;
- $G \subset I;$

•
$$\langle \mathsf{LM}_{\prec}(g) \mid g \in G \rangle = \langle \mathsf{LM}(f) \mid f \in I \rangle.$$

Why is this definition so useful?

Definition

Let $I \subset R$ be an ideal. One says that $G \subset R$ is a Gröbner basis for (I, \prec) if the following conditions hold:

- *G* is finite;
- $G \subset I;$
- $\langle \mathsf{LM}_{\prec}(g) \mid g \in G \rangle = \langle \mathsf{LM}(f) \mid f \in I \rangle.$

Why is this definition so useful?

How to compute Gröbner bases?

Reductions of a polynomial modulo a polynomial family

Definitions, properties and algorithms

Reduction (division) notion

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \dots, x_n]$ and \prec an admissible monomial ordering over R.

Consider f and f_1, \ldots, f_s in R

 $\Rightarrow \quad \textbf{Decide } f \in \langle f_1, \dots, f_s \rangle \textbf{?}$

We can try to mimick the Euclide's algorithm.

 \sim

Consider f and f_1, \ldots, f_s in R

$$\Rightarrow \quad \textbf{Decide } f \in \langle f_1, \dots, f_s \rangle \textbf{?}$$

We can try to mimick the Euclide's algorithm.

$$f = q_1 f_1 + \dots + q_s f_s + r$$
 such that $r, q_i \in R$ with
 $\mathsf{LM}_{\prec}(r) \notin \langle \mathsf{LM}_{\prec}(f_1), \dots, \mathsf{LM}_{\prec}(f_s)
angle$

 \sim

Consider f and f_1, \ldots, f_s in R

$$\Rightarrow \quad \textbf{Decide } f \in \langle f_1, \dots, f_s \rangle \textbf{?}$$

We can try to mimick the Euclide's algorithm.

$$f = q_1 f_1 + \dots + q_s f_s + r$$
 such that $r, q_i \in R$ with
 $\mathsf{LM}_{\prec}(r) \notin \langle \mathsf{LM}_{\prec}(f_1), \dots, \mathsf{LM}_{\prec}(f_s) \rangle$

- note that $r = 0 \Longrightarrow f \in \langle f_1, \dots, f_s \rangle$
- note that $f r \in \langle f_1, \ldots, f_s \rangle$

Take
$$f = x_1 x_2^3 + x_1^2 x_2^2 + x_1^3$$
, $f_1 = x_1 x_2$ and $f_2 = x_1^2 + x_2^2$
 $LM_{grevlex}(f) = x_1^2 x_2^2$
 $LM_{grevlex}(f_1) = x_1 x_2$
 $LM_{grevlex}(f_2) = x_1^2$

Take
$$f = x_1 x_2^3 + x_1^2 x_2^2 + x_1^3$$
, $f_1 = x_1 x_2$ and $f_2 = x_1^2 + x_2^2$
 $\boxed{\mathsf{LM}_{grevlex}(f) = x_1^2 x_2^2}$
 $\boxed{\mathsf{LM}_{grevlex}(f_1) = x_1 x_2}$
 $\boxed{\mathsf{LM}_{grevlex}(f_2) = x_1^2}$

•
$$r = f - (x_1 x_2 + x_2^2) f_1 - x_1 f_2 + x_2 f_1 = 0$$

Take
$$f = x_1 x_2^3 + x_1^2 x_2^2 + x_1^3$$
, $f_1 = x_1 x_2$ and $f_2 = x_1^2 + x_2^2$
 $LM_{grevlex}(f) = x_1^2 x_2^2$
 $LM_{grevlex}(f_1) = x_1 x_2$
 $LM_{grevlex}(f_2) = x_1^2$

•
$$r = f - (x_1 x_2 + x_2^2) f_1 - x_1 f_2 + x_2 f_1 = 0$$

But we could have done:

•
$$r = f - x_2^2 f_2 - x_2^2 f_1 = \boxed{-x_2^4} + x_1^3$$

Take
$$f = x_1 x_2^3 + x_1^2 x_2^2 + x_1^3$$
, $f_1 = x_1 x_2$ and $f_2 = x_1^2 + x_2^2$
 $\mathsf{LM}_{grevlex}(f) = x_1^2 x_2^2$
 $\mathsf{LM}_{grevlex}(f_1) = x_1 x_2$
 $\mathsf{LM}_{grevlex}(f_2) = x_1^2$

•
$$r = f - (x_1 x_2 + x_2^2) f_1 - x_1 f_2 + x_2 f_1 = 0$$

But we could have done:

•
$$r = f - x_2^2 f_2 - x_2^2 f_1 = \boxed{-x_2^4} + x_1^3$$

- non canonical output (order of the computations)
- non fully reduced

Take
$$f = x_1 x_2^3 + x_1^2 x_2^2 + x_1^3$$
, $f_1 = x_1 x_2$ and $f_2 = x_1^2 + x_2^2$
 $\mathsf{LM}_{grevlex}(f) = x_1^2 x_2^2$
 $\mathsf{LM}_{grevlex}(f_1) = x_1 x_2$
 $\mathsf{LM}_{grevlex}(f_2) = x_1^2$

•
$$r = f - (x_1 x_2 + x_2^2) f_1 - x_1 f_2 + x_2 f_1 = 0$$

But we could have done:

•
$$r = f - x_2^2 f_2 - x_2^2 f_1 = \boxed{-x_2^4} + x_1^3$$

- non canonical output (order of the computations)
- non fully reduced

Take
$$f = x_1 x_2^3 + x_1^2 x_2^2 + x_1^3$$
, $f_1 = x_1 x_2$ and $f_2 = x_1^2 + x_2^2$
 $\mathsf{LM}_{grevlex}(f) = x_1^2 x_2^2$
 $\mathsf{LM}_{grevlex}(f_1) = x_1 x_2$
 $\mathsf{LM}_{grevlex}(f_2) = x_1^2$

•
$$r = f - (x_1 x_2 + x_2^2) f_1 - x_1 f_2 + x_2 f_1 = 0$$

But we could have done: • $r = f - x_2^2 f_2 - x_2^2 f_1 = \boxed{-x_2^4} + x_1^3$ • non canonical output

- (order of the computations)
- non fully reduced

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \dots, x_n]$ and \prec an admissible monomial ordering over R.

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \dots, x_n]$ and \prec an admissible monomial ordering over R.

Consider f and f_1, \ldots, f_s in R

$$\rightarrow \quad \textbf{Decide } f \in \langle f_1, \dots, f_s \rangle \textbf{?}$$

For $g \in R$, denote by Monomials(g) the monomial support of g.

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \dots, x_n]$ and \prec an admissible monomial ordering over R.

Consider f and f_1, \ldots, f_s in R

$$\rightarrow \quad \textbf{Decide } f \in \langle f_1, \dots, f_s \rangle \textbf{?}$$

For $g \in R$, denote by Monomials(g) the monomial support of g.

 $f = q_1 f_1 + \dots + q_s f_s + r \text{ such that } r, q_i \in R \text{ with}$ $\forall m \in \text{Monomials}(r), \quad m \notin \langle \text{LM}_{\prec}(f_1), \dots, \text{LM}_{\prec}(f_s) \rangle$

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \dots, x_n]$ and \prec an admissible monomial ordering over R.

Consider f and f_1, \ldots, f_s in R

$$\rightsquigarrow \quad \textbf{Decide } f \in \langle f_1, \ldots, f_s \rangle \textbf{?}$$

For $g \in R$, denote by Monomials(g) the monomial support of g.

 $f = q_1 f_1 + \dots + q_s f_s + r \text{ such that } r, q_i \in R \text{ with}$ $\forall m \in \text{Monomials}(r), \quad m \notin \langle \mathsf{LM}_{\prec}(f_1), \dots, \mathsf{LM}_{\prec}(f_s) \rangle$

- note that $r = 0 \Longrightarrow f \in \langle f_1, \dots, f_s \rangle$
- note that $f r \in \langle f_1, \ldots, f_s \rangle$

Take
$$f = x_1 x_2^3 + x_1^2 x_2^2 + x_1^3$$
, $f_1 = x_1 x_2$ and $f_2 = x_1^2 + x_2^2$
 $LM_{grevlex}(f) = x_1^2 x_2^2$
 $LM_{grevlex}(f_1) = x_1 x_2$
 $LM_{grevlex}(f_2) = x_1^2$

•
$$r = f - x_2^2 f_2 - x_2^2 f_1 = -x_2^4 + x_1^3$$

Take
$$f = x_1 x_2^3 + x_1^2 x_2^2 + x_1^3$$
, $f_1 = x_1 x_2$ and $f_2 = x_1^2 + x_2^2$
 $LM_{grevlex}(f) = x_1^2 x_2^2$
 $LM_{grevlex}(f_1) = x_1 x_2$
 $LM_{grevlex}(f_2) = x_1^2$

•
$$r = f - x_2^2 f_2 - x_2^2 f_1 = -x_2^4 + x_1^3$$

Pushing further the reduction, we obtain

•
$$r = f - x_2^2 f_2 - x_2^2 f_1 - x_1 f_2 + x_2 f_1 = -x_2^4$$

Take
$$f = x_1 x_2^2 + 1$$
, $f_1 = x_1 x_2 + 1$ and $f_2 = x_2 + 1$.

$$\boxed{\mathsf{LM}_{lex}(f) = x_1 x_2^2} \qquad \boxed{\mathsf{LM}_{lex}(f_1) = x_1 x_2} \qquad \boxed{\mathsf{LM}_{lex}(f_2) = x_2}$$

$$\implies f - x_2 f_1 + f_2 = 2$$
Note that we can deduce that $\langle f, f_1, f_2 \rangle = \langle 1 \rangle$

Take
$$f = x_1^2 x_2 + x_1 x_2^2 + x_2^2$$
, $f_1 = x_1 x_2 + 1$ and $f_2 = x_2^2 - 1$.
 $\boxed{\mathsf{LM}_{lex}(f) = x_1^2 x_2}$
 $\boxed{\mathsf{LM}_{lex}(f_1) = x_1 x_2}$
 $\boxed{\mathsf{LM}_{lex}(f_2) = x_2^2}$

Take
$$f = x_1^2 x_2 + x_1 x_2^2 + x_2^2$$
, $f_1 = x_1 x_2 + 1$ and $f_2 = x_2^2 - 1$.
 $\boxed{\mathsf{LM}_{lex}(f) = x_1^2 x_2}$
 $\boxed{\mathsf{LM}_{lex}(f_1) = x_1 x_2}$
 $\boxed{\mathsf{LM}_{lex}(f_2) = x_2^2}$

$$r_1 = f - (x_1 + x_2)f_1 = x_1 + x_2^2 + x_2.$$

Take
$$f = x_1^2 x_2 + x_1 x_2^2 + x_2^2$$
, $f_1 = x_1 x_2 + 1$ and $f_2 = x_2^2 - 1$.
 $LM_{lex}(f) = x_1^2 x_2$
 $LM_{lex}(f_1) = x_1 x_2$
 $LM_{lex}(f_2) = x_2^2$

$$r_1 = f - (x_1 + x_2)f_1 = x_1 + x_2^2 + x_2.$$

$$r = r_1 - f_2 = x_1 + x_2 + 1.$$

INPUT: • f, f_1, \ldots, f_s in R

• \prec an admissible monomial order over *R*

Output: $r \in R$ such that $LT_{\prec}(r) \notin (LT_{\prec}(f_1), \dots, LT_{\prec}(f_s))$ and $f - r \in \langle f_1, \dots, f_s \rangle$

INPUT: •
$$f, f_1, \ldots, f_s$$
 in R

• \prec an admissible monomial order over *R*

Output: $r \in R$ such that $LT_{\prec}(r) \notin \langle LT_{\prec}(f_1), \dots, LT_{\prec}(f_s) \rangle$ and $f - r \in \langle f_1, \dots, f_s \rangle$

- 1. If f = 0 then return f
- 2. $r \leftarrow f$

INPUT: •
$$f, f_1, \ldots, f_s$$
 in R

• \prec an admissible monomial order over *R*

Output: $r \in R$ such that $LT_{\prec}(r) \notin \langle LT_{\prec}(f_1), \dots, LT_{\prec}(f_s) \rangle$ and $f - r \in \langle f_1, \dots, f_s \rangle$

- 1. If f = 0 then return f
- 2. $r \leftarrow f$
- 3. boo \leftarrow true
- 4. while boo = true

4.1 boo
$$\leftarrow$$
 false
4.2 for $1 \le i \le s$ do
4.2.1 if $LM_{\prec}(f_i)$ divides $LM_{\prec}(r)$ then
• $r \leftarrow r - \frac{LT_{\prec}(r)}{LT_{\prec}(f_i)}f_i$
• boo \leftarrow true

INPUT: •
$$f, f_1, \ldots, f_s$$
 in R

• \prec an admissible monomial order over *R*

Output: $r \in R$ such that $LT_{\prec}(r) \notin \langle LT_{\prec}(f_1), \dots, LT_{\prec}(f_s) \rangle$ and $f - r \in \langle f_1, \dots, f_s \rangle$

- 1. If f = 0 then return f
- 2. $r \leftarrow f$
- 3. boo \leftarrow true
- 4. while boo = true

4.1 boo
$$\leftarrow$$
 false
4.2 for $1 \le i \le s$ do
4.2.1 if $LM_{\prec}(f_i)$ divides $LM_{\prec}(r)$ then
• $r \leftarrow r - \frac{LT_{\prec}(r)}{LT_{\prec}(f_i)}f_i$
• boo \leftarrow true

5. return r

INPUT: •
$$f, f_1, \ldots, f_s$$
 in R

• \prec an admissible monomial order over *R*

Output: $r \in R$ such that $LT_{\prec}(r) \notin \langle LT_{\prec}(f_1), \dots, LT_{\prec}(f_s) \rangle$ and $f - r \in \langle f_1, \dots, f_s \rangle$

- 1. If f = 0 then return f
- 2. $r \leftarrow f$
- 3. boo $\leftarrow true$
- 4. while boo = true
 - 4.1 boo \leftarrow false 4.2 for $1 \le i \le s$ do 4.2.1 if $LM_{\prec}(f_i)$ divides $LM_{\prec}(r)$ then • $r \leftarrow r - \frac{LT_{\prec}(r)}{LT_{\prec}(f_i)}f_i$ • boo \leftarrow true

5. return r

Reduction algorithm REDUCTION

INPUT: •
$$f, f_1, \ldots, f_s$$
 in R

• \prec an admissible monomial order over *R*

Output: $r \in R$ such that $LT_{\prec}(r) \notin \langle LT_{\prec}(f_1), \dots, LT_{\prec}(f_s) \rangle$ and $f - r \in \langle f_1, \dots, f_s \rangle$

- 1. If f = 0 then return f
- 2. $r \leftarrow f$
- 3. boo \leftarrow true
- 4. while boo = true
 - 4.1 boo \leftarrow false 4.2 for $1 \le i \le s$ do 4.2.1 if $LM_{\prec}(f_i)$ divides $LM_{\prec}(r)$ then • $r \leftarrow r - \frac{LT_{\prec}(r)}{LT_{\prec}(f_i)}f_i$ • boo \leftarrow true

5. return r

We reuse the above notation.

There exist $(g_1, \ldots, g_k) \subset \{f_1, \ldots, f_s\}^k$ and monomials m_1, \ldots, m_k such that • $f - r = m_1 g_1 + \cdots + m_k g_k$

•
$$\mathsf{LM}_{\prec}(m_k g_k) \prec \mathsf{LM}_{\prec}(m_{k-1} g_{k-1}) \prec \cdots \prec \mathsf{LM}_{\prec}(m_1 g_1) \preceq \mathsf{LM}_{\prec}(f)$$

We reuse the above notation.

There exist $(g_1,\ldots,g_k)\subset \{f_1,\ldots,f_s\}^k$ and monomials m_1,\ldots,m_k such that

•
$$f-r=m_1g_1+\cdots+m_kg_k$$

•
$$\mathsf{LM}_{\prec}(m_k g_k) \prec \mathsf{LM}_{\prec}(m_{k-1} g_{k-1}) \prec \cdots \prec \mathsf{LM}_{\prec}(m_1 g_1) \preceq \mathsf{LM}_{\prec}(f)$$

The map $f \mapsto \text{Reduction}(f, [f_1, \dots, f_s])$ is linear and its kernel lies in $\langle f_1, \dots, f_s \rangle$.

We reuse the above notation.

There exist $(g_1,\ldots,g_k)\subset \{f_1,\ldots,f_s\}^k$ and monomials m_1,\ldots,m_k such that

•
$$f-r=m_1g_1+\cdots+m_kg_k$$

•
$$\mathsf{LM}_{\prec}(m_k g_k) \prec \mathsf{LM}_{\prec}(m_{k-1} g_{k-1}) \prec \cdots \prec \mathsf{LM}_{\prec}(m_1 g_1) \preceq \mathsf{LM}_{\prec}(f)$$

The map $f \mapsto \text{Reduction}(f, [f_1, \dots, f_s])$ is linear and its kernel lies in $\langle f_1, \dots, f_s \rangle$.

Consequence.

One can rephrase REDUCTION with linear algebra operations.

We reuse the above notation.

There exist $(g_1,\ldots,g_k)\subset \{f_1,\ldots,f_s\}^k$ and monomials m_1,\ldots,m_k such that

•
$$f-r=m_1g_1+\cdots+m_kg_k$$

•
$$\mathsf{LM}_{\prec}(m_k g_k) \prec \mathsf{LM}_{\prec}(m_{k-1} g_{k-1}) \prec \cdots \prec \mathsf{LM}_{\prec}(m_1 g_1) \preceq \mathsf{LM}_{\prec}(f)$$

The map $f \mapsto \text{Reduction}(f, [f_1, \dots, f_s])$ is linear and its kernel lies in $\langle f_1, \dots, f_s \rangle$.

Consequence.

One can rephrase REDUCTION with linear algebra operations. Let us do it...

INPUT: •
$$h$$
 and $f = (f_1, \ldots, f_s)$ in R

• \prec an admissible monomial order over *R*

INPUT: •
$$h$$
 and $f = (f_1, \ldots, f_s)$ in R

• \prec an admissible monomial order over *R*

- 1. If h = 0 then return h
- 2. $r \leftarrow 0$
- 3. $g \leftarrow h$

INPUT: •
$$h$$
 and $f = (f_1, \ldots, f_s)$ in R

• \prec an admissible monomial order over *R*

- 1. If h = 0 then return h
- 2. $r \leftarrow 0$
- 3. $g \leftarrow h$
- 4. while $g \neq 0$
 - 4.1 $g \leftarrow \text{Reduction}(g, f, \prec)$ 4.2 if $g \neq 0$ • $r \leftarrow r + \text{LT}_{\prec}(g)$ • $g \leftarrow g - \text{LT}_{\prec}(g)$

INPUT: •
$$h$$
 and $f = (f_1, \ldots, f_s)$ in R

• \prec an admissible monomial order over *R*

- 1. If h = 0 then return h
- 2. $r \leftarrow 0$
- 3. $g \leftarrow h$
- 4. while $g \neq 0$
 - 4.1 $g \leftarrow \text{Reduction}(g, f, \prec)$ 4.2 if $g \neq 0$ • $r \leftarrow r + \text{LT}_{\prec}(g)$ • $g \leftarrow g - \text{LT}_{\prec}(g)$
- 5. return r

INPUT: •
$$h \text{ and } f = (f_1, \dots, f_s) \text{ in } R$$

• \prec an admissible monomial order over R
OUTPUT: $r \in R$ such that for any $m \in \text{Monomials}(r)$ $m \notin (LT_{\prec}(f_1), \dots, LT_{\prec}(f_s))$ and $f - r \in \langle f_1, \dots, f_s \rangle$
1. If $h = 0$ then return h
2. $r \leftarrow 0$
3. $g \leftarrow h$
4. while $g \neq 0$
4.1 $g \leftarrow \text{REDUCTION}(g, f, \prec)$
4.2 if $g \neq 0$
• $r \leftarrow r + LT_{\prec}(g)$
• $g \leftarrow g - LT_{\prec}(g)$

5. return r

INPUT: •
$$h \text{ and } f = (f_1, \dots, f_s) \text{ in } R$$

• \prec an admissible monomial order over R
OUTPUT: $r \in R$ such that for any $m \in \text{Monomials}(r)$ $m \notin (LT_{\prec}(f_1), \dots, LT_{\prec}(f_s))$ and $f - r \in \langle f_1, \dots, f_s \rangle$
1. If $h = 0$ then return h
2. $r \leftarrow 0$
3. $g \leftarrow h$
4. while $g \neq 0$
4.1 $g \leftarrow \text{REDUCTION}(g, f, \prec)$
4.2 if $g \neq 0$
• $r \leftarrow r + LT_{\prec}(g)$
• $g \leftarrow g - LT_{\prec}(g)$

5. return r

Let $r = \text{FullReduction}(f, f, \prec)$. Then Monomials $(r) \cap \langle \text{LT}_{\prec}(f_1), \dots, \text{LT}_{\prec}(f_s) \rangle = \emptyset$.

Let $r = \text{FullReduction}(f, f, \prec)$. Then Monomials $(r) \cap \langle \text{LT}_{\prec}(f_1), \dots, \text{LT}_{\prec}(f_s) \rangle = \emptyset$.

The map $f \mapsto \text{FULLREDUCTION}(f, [f_1, \dots, f_s])$ is linear and its kernel lies in $\langle f_1, \dots, f_s \rangle$.

Let $r = \text{FullReduction}(f, f, \prec)$. Then Monomials $(r) \cap \langle \text{LT}_{\prec}(f_1), \dots, \text{LT}_{\prec}(f_s) \rangle = \emptyset$.

The map $f \mapsto \text{FULLREDUCTION}(f, [f_1, \dots, f_s])$ is linear and its kernel lies in $\langle f_1, \dots, f_s \rangle$.

Consequence.

One can again rephrase REDUCTION with linear algebra operations.

Let $r = \text{FullReduction}(f, f, \prec)$. Then Monomials $(r) \cap \langle \text{LT}_{\prec}(f_1), \dots, \text{LT}_{\prec}(f_s) \rangle = \emptyset$.

The map $f \mapsto \text{FULLREDUCTION}(f, [f_1, \dots, f_s])$ is linear and its kernel lies in $\langle f_1, \dots, f_s \rangle$.

Consequence.

One can again rephrase REDUCTION with linear algebra operations.

Let us do it and emphasize the difference...

Let \mathbb{K} be a field and $R = \mathbb{K}[x_1, \ldots, x_n]$.

Refined statement of Hilbert's basis theorem

Let $I \subset R$ be an ideal. There exists a finite set $g_1 \dots, g_s$ in R such that

•
$$I = \langle g_1, \ldots, g_s \rangle$$

• $LM_{\prec}(I) = \langle LM_{\prec}(f) \mid f \in I \rangle = \langle LM_{\prec}(g_i) \mid 1 \le i \le s \rangle$

Let \mathbb{K} be a field and $R = \mathbb{K}[x_1, \ldots, x_n]$.

Refined statement of Hilbert's basis theorem

Let $I \subset R$ be an ideal. There exists a finite set $g_1 \dots, g_s$ in R such that

•
$$I = \langle g_1, \ldots, g_s \rangle$$

•
$$LM_{\prec}(I) = \langle LM_{\prec}(f) \mid f \in I \rangle = \langle LM_{\prec}(g_i) \mid 1 \le i \le s \rangle$$

Proof. Easy case is $I = \langle 0 \rangle$. We assume now $I \neq \langle 0 \rangle$.

Let \mathbb{K} be a field and $R = \mathbb{K}[x_1, \ldots, x_n]$.

Refined statement of Hilbert's basis theorem

Let $I \subset R$ be an ideal. There exists a finite set $g_1 \dots, g_s$ in R such that

•
$$I = \langle g_1, \ldots, g_s \rangle$$

• $LM_{\prec}(I) = \langle LM_{\prec}(f) \mid f \in I \rangle = \langle LM_{\prec}(g_i) \mid 1 \le i \le s \rangle$

Proof. Easy case is $I = \langle 0 \rangle$. We assume now $I \neq \langle 0 \rangle$.

• Dickson's lemma \Rightarrow $\exists (g_1, \dots, g_s) \subset I$ such that $\mathsf{LM}_{\prec}(I) = \langle \mathsf{LM}_{\prec}(g_1), \dots, \mathsf{LM}_{\prec}(g_s) \rangle$

Let \mathbb{K} be a field and $R = \mathbb{K}[x_1, \ldots, x_n]$.

Refined statement of Hilbert's basis theorem

Let $I \subset R$ be an ideal. There exists a finite set $g_1 \dots, g_s$ in R such that

•
$$I = \langle g_1, \ldots, g_s \rangle$$

• $LM_{\prec}(I) = \langle LM_{\prec}(f) \mid f \in I \rangle = \langle LM_{\prec}(g_i) \mid 1 \le i \le s \rangle$

Proof. Easy case is $I = \langle 0 \rangle$. We assume now $I \neq \langle 0 \rangle$.

- Dickson's lemma $\Rightarrow \exists (g_1, \dots, g_s) \subset I$ such that $\mathsf{LM}_{\prec}(I) = \langle \mathsf{LM}_{\prec}(g_1), \dots, \mathsf{LM}_{\prec}(g_s) \rangle$
- consider $r = \text{Reduction}(f, [g_1, \dots, g_s], \prec)$ for some $f \in I$.

Let \mathbb{K} be a field and $R = \mathbb{K}[x_1, \ldots, x_n]$.

Refined statement of Hilbert's basis theorem

Let $I \subset R$ be an ideal. There exists a finite set $g_1 \dots, g_s$ in R such that

•
$$I = \langle g_1, \ldots, g_s \rangle$$

• $LM_{\prec}(I) = \langle LM_{\prec}(f) \mid f \in I \rangle = \langle LM_{\prec}(g_i) \mid 1 \le i \le s \rangle$

Proof. Easy case is $I = \langle 0 \rangle$. We assume now $I \neq \langle 0 \rangle$.

- Dickson's lemma \Rightarrow $\exists (g_1, \dots, g_s) \subset I$ such that $\mathsf{LM}_{\prec}(I) = \langle \mathsf{LM}_{\prec}(g_1), \dots, \mathsf{LM}_{\prec}(g_s) \rangle$
- consider $r = \text{Reduction}(f, [g_1, \dots, g_s], \prec)$ for some $f \in I$.
- r = 0 \checkmark else conclude that $LM_{\prec}(r) \in \langle LM_{\prec}(I) \rangle$ \checkmark contradiction

Let \mathbb{K} be a field and $R = \mathbb{K}[x_1, \ldots, x_n]$.

Refined statement of Hilbert's basis theorem

Let $I \subset R$ be an ideal. There exists a finite set $g_1 \dots, g_s$ in R such that

•
$$I = \langle g_1, \ldots, g_s \rangle$$

• $LM_{\prec}(I) = \langle LM_{\prec}(f) \mid f \in I \rangle = \langle LM_{\prec}(g_i) \mid 1 \le i \le s \rangle$

Proof. Easy case is $I = \langle 0 \rangle$. We assume now $I \neq \langle 0 \rangle$.

- Dickson's lemma \Rightarrow $\exists (g_1, \dots, g_s) \subset I$ such that $\mathsf{LM}_{\prec}(I) = \langle \mathsf{LM}_{\prec}(g_1), \dots, \mathsf{LM}_{\prec}(g_s) \rangle$
- consider $r = \text{Reduction}(f, [g_1, \dots, g_s], \prec)$ for some $f \in I$.
- r = 0 \checkmark else conclude that $LM_{\prec}(r) \in \langle LM_{\prec}(I) \rangle$ \checkmark contradiction

Good news. Gröbner bases do exist!

Let \mathbb{K} be a field and $R = \mathbb{K}[x_1, \ldots, x_n]$.

Refined statement of Hilbert's basis theorem

Let $I \subset R$ be an ideal. There exists a finite set $g_1 \dots, g_s$ in R such that

•
$$I = \langle g_1, \ldots, g_s \rangle$$

• $LM_{\prec}(I) = \langle LM_{\prec}(f) \mid f \in I \rangle = \langle LM_{\prec}(g_i) \mid 1 \le i \le s \rangle$

Proof. Easy case is $I = \langle 0 \rangle$. We assume now $I \neq \langle 0 \rangle$.

- Dickson's lemma \Rightarrow $\exists (g_1, \dots, g_s) \subset I$ such that $\mathsf{LM}_{\prec}(I) = \langle \mathsf{LM}_{\prec}(g_1), \dots, \mathsf{LM}_{\prec}(g_s) \rangle$
- consider $r = \text{Reduction}(f, [g_1, \dots, g_s], \prec)$ for some $f \in I$.
- r = 0 \checkmark else conclude that $LM_{\prec}(r) \in \langle LM_{\prec}(I) \rangle$ \checkmark contradiction

Good news. Gröbner bases do exist!

... but this proof is not constructive

Characterizations and first properties of Gröbner bases

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \dots, x_n]$ and \prec an admissible monomial ordering over R.

Let $I \subset R$ be an ideal and $G = (g_1, \ldots, g_s) \subset R$ be a Gröbner basis for (I, \prec) . Take $f \in R$. There exists a unique $r \in R$ such that:

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \dots, x_n]$ and \prec an admissible monomial ordering over R.

Let $I \subset R$ be an ideal and $G = (g_1, \ldots, g_s) \subset R$ be a Gröbner basis for (I, \prec) . Take $f \in R$. There exists a unique $r \in R$ such that:

- No term of *r* is divisible by any of LM_≺(g₁),..., LM_≺(g_s);
- There exists $g \in I$ such that f = g + r.

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \dots, x_n]$ and \prec an admissible monomial ordering over R.

Let $I \subset R$ be an ideal and $G = (g_1, \ldots, g_s) \subset R$ be a Gröbner basis for (I, \prec) . Take $f \in R$. There exists a unique $r \in R$ such that:

- No term of *r* is divisible by any of LM_≺(g₁),..., LM_≺(g_s);
- There exists $g \in I$ such that f = g + r.

Also, $r = FULLREDUCTION(f, G, \prec)$ (whatever the choice of ordering of the polynomials in G).

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \dots, x_n]$ and \prec an admissible monomial ordering over R.

Let $I \subset R$ be an ideal and $G = (g_1, \ldots, g_s) \subset R$ be a Gröbner basis for (I, \prec) . Take $f \in R$. There exists a unique $r \in R$ such that:

- No term of *r* is divisible by any of LM_≺(g₁),..., LM_≺(g_s);
- There exists $g \in I$ such that f = g + r.

Also, $r = \text{FULLREDUCTION}(f, G, \prec)$ (whatever the choice of ordering of the polynomials in *G*). It is called the normal form of *f* modulo *G*.

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \dots, x_n]$ and \prec an admissible monomial ordering over R.

Let $I \subset R$ be an ideal and $G = (g_1, \ldots, g_s) \subset R$ be a Gröbner basis for (I, \prec) . Take $f \in R$. There exists a unique $r \in R$ such that:

- No term of *r* is divisible by any of LM_≺(g₁),..., LM_≺(g_s);
- There exists $g \in I$ such that f = g + r.

Also, $r = \text{FULLREDUCTION}(f, G, \prec)$ (whatever the choice of ordering of the polynomials in *G*). It is called the normal form of *f* modulo *G*.

r=0 if and only if $f\in I=\langle G\rangle$

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \dots, x_n]$ and \prec an admissible monomial ordering over R.

Let $I \subset R$ be an ideal and $G = (g_1, \ldots, g_s) \subset R$ be a Gröbner basis for (I, \prec) . Take $f \in R$. There exists a unique $r \in R$ such that:

- No term of *r* is divisible by any of LM_≺(g₁),..., LM_≺(g_s);
- There exists $g \in I$ such that f = g + r.

Also, $r = \text{FULLREDUCTION}(f, G, \prec)$ (whatever the choice of ordering of the polynomials in *G*). It is called the normal form of *f* modulo *G*.

r = 0 if and only if $f \in I = \langle G \rangle$

Gröbner bases with the full reduction algorithm solve the ideal membership problem

• Recall that the kernel of the map

```
NF_{\prec}: f \mapsto FullReduction(f, G, \prec)
```

is $\langle G \rangle$. The function NF_{\prec}(., G) is a projection on a linear subspace which is normal to $\langle G \rangle$.

• Recall that the kernel of the map

```
NF_{\prec}: f \mapsto FullReduction(f, G, \prec)
```

is $\langle G \rangle$. The function NF_{\prec}(., G) is a projection on a linear subspace which is normal to $\langle G \rangle$.

The function NF_≺(., G) returns a canonical representative of the quotient ring ^R/_{⟨G⟩}.
 Equivalence relation: f ~ g ⇐⇒ f - g ∈ ⟨G⟩

• Recall that the kernel of the map

```
NF_{\prec}: f \mapsto FullReduction(f, G, \prec)
```

is $\langle G \rangle$. The function NF_<(., G) is a projection on a linear subspace which is normal to $\langle G \rangle$.

The function NF_≺(., G) returns a canonical representative of the quotient ring ^R/_{⟨G⟩}.
 Equivalence relation: f ~ g ⇔ f - g ∈ ⟨G⟩
 Example. Consider G = ⟨x₁² - 1, x₂² - 2⟩.
 Is it a Gröbner basis for ≺_{grevlex}?
 Equivalence classes of ^R/_{⟨G⟩}?

• Recall that the kernel of the map

```
NF_{\prec}: f \mapsto FullReduction(f, G, \prec)
```

is $\langle G \rangle$. The function NF_<(., G) is a projection on a linear subspace which is normal to $\langle G \rangle$.

The function NF_≺(., G) returns a canonical representative of the quotient ring ^R/_{⟨G⟩}.
 Equivalence relation: f ~ g ⇔ f - g ∈ ⟨G⟩
 Example. Consider G = ⟨x₁² - 1, x₂² - 2⟩.
 Is it a Gröbner basis for ≺_{grevlex}?
 Equivalence classes of ^R/_{⟨G⟩}?

This will be developed further.

Characterizations of Gröbner bases

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \dots, x_n]$ and \prec an admissible monomial ordering over R.

Warm-up - S-polynomials Let f and g be in $R - \{0\}$. Let $\lambda = \operatorname{lcm}_{\prec}(f, g)$. We define the S-polynomial of (f, g) w.r.t. \prec as $\operatorname{spol}_{\prec}(f, g) = \frac{\lambda}{\operatorname{LT}_{\prec}(f)}f - \frac{\lambda}{\operatorname{LT}_{\prec}(g)}g$

Characterizations of Gröbner bases

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \dots, x_n]$ and \prec an admissible monomial ordering over R.

Warm-up – S-polynomials

Let f and g be in $R - \{0\}$. Let $\lambda = \operatorname{lcm}_{\prec}(f, g)$. We define the S-polynomial of (f, g) w.r.t. \prec as

$$\operatorname{spol}_{\prec}(f,g) = \frac{\lambda}{\operatorname{LT}_{\prec}(f)}f - \frac{\lambda}{\operatorname{LT}_{\prec}(g)}g$$

Buchberger's criterion

Let $I \subset R$ be an ideal and $G = (g_1, \ldots, g_s) \subset R$ be such that $I = \langle G \rangle$ (G is a basis for I).

It holds that G is a Gröbner basis for (I,\prec) if and only if

for all $1 \le i, j \le s$, $NF_{\prec}(spol_{\prec}(g_i, g_j))$ is identically zero.

 Provides an algorithm which on input ≺ and G decides whether G is a Gröbner basis for (⟨G⟩, ≺);

- Provides an algorithm which on input ≺ and G decides whether G is a Gröbner basis for (⟨G⟩, ≺);
 - This algorithm always computes 0 in case *G* is a Gröbner basis;
 - When *G* is **not** a Gröbner basis,

 $NF_{\prec}(spol(g_i, g_j), G)$ is still interesting.

- Provides an algorithm which on input \prec and G decides whether G is a Gröbner basis for $(\langle G \rangle, \prec)$;
 - This algorithm always computes 0 in case G is a Gröbner basis;
 - When G is not a Gröbner basis.

 $NF_{\prec}(spol(g_i, g_i), G)$ is still interesting.

We reuse the above notation. It holds that

 $g=\mathsf{NF}_\prec(\mathsf{spol}(g_i,g_j),G)\in\langle G\rangle.$ When it is not zero $\mathsf{LM}_\prec(g)\notin\langle\mathsf{LM}_\prec(G)\rangle.$

Idea.

Consider all pairs (g, g') in the current basis $G \longrightarrow Pairs(G)$

INPUT: • $f = (f_1, \ldots, f_s)$ in R

• \prec an admissible monomial order over *R* Output: A Gröbner basis for $(\langle f \rangle, \prec)$.

1. $G \leftarrow f$ 2. $G' \leftarrow \emptyset$

INPUT: • $f = (f_1, \ldots, f_s)$ in R

• \prec an admissible monomial order over *R* OUTPUT: A Gröbner basis for $(\langle f \rangle, \prec)$.

- 1. $G \leftarrow f$
- 2. $G' \leftarrow \emptyset$
- 3. while $G' \neq G$ do
 - 3.1 $\mathscr{P} \leftarrow \text{Pairs}(G)$ 3.2 $G' \leftarrow G$ 3.3 for all $(g, g') \in \mathscr{P}$ do

INPUT: • $f = (f_1, \ldots, f_s)$ in R

• \prec an admissible monomial order over *R* OUTPUT: A Gröbner basis for $(\langle f \rangle, \prec)$.

- 1. $G \leftarrow f$
- 2. $G' \leftarrow \emptyset$
- 3. while $G' \neq G$ do
 - 3.1 $\mathscr{P} \leftarrow \mathsf{Pairs}(G)$
 - 3.2 $G' \leftarrow G$
 - 3.3 for all $(g,g') \in \mathscr{P}$ do
 - $r \leftarrow \text{FullReduction}(\text{spol}_{\prec}(g,g'),G')$

INPUT: • $f = (f_1, \ldots, f_s)$ in R

• \prec an admissible monomial order over *R* OUTPUT: A Gröbner basis for $(\langle f \rangle, \prec)$.

- 1. $G \leftarrow f$
- 2. $G' \leftarrow \emptyset$
- 3. while $G' \neq G$ do
 - 3.1 $\mathscr{P} \leftarrow \mathsf{Pairs}(G)$
 - 3.2 $G' \leftarrow G$
 - 3.3 for all $(g,g') \in \mathscr{P}$ do
 - $r \leftarrow \mathsf{FullReduction}(\mathsf{spol}_{\prec}(g,g'),G')$
 - if $r \neq 0$ then
 - $G \leftarrow G \cup \{r\}$
- 4. return G

• Prove that $G \subset \langle f \rangle$ at each step.

• Prove that $G \subset \langle f \rangle$ at each step.

• Prove that whenever it terminates, it returns a Gröbner basis for $(\langle f \rangle, \prec)$. Buchberger's criterion.

• Prove that $G \subset \langle f \rangle$ at each step.

- Prove that whenever it terminates, it returns a Gröbner basis for $(\langle f \rangle, \prec)$. Buchberger's criterion.
- Prove that $\langle \mathsf{LM}_{\prec}(G') \rangle \subset \langle \mathsf{LM}_{\prec}(G) \rangle$

• Prove that $G \subset \langle f \rangle$ at each step.

- Prove that whenever it terminates, it returns a Gröbner basis for $(\langle f \rangle, \prec)$. Buchberger's criterion.
- Prove that $\langle \mathsf{LM}_{\prec}(G') \rangle \subset \langle \mathsf{LM}_{\prec}(G) \rangle$
- Use the theorem on ascending chain of ideals.

 \blacksquare Choice of the pairs $(g,g') \rightsquigarrow \mathsf{A}$ selection strategy is required

- \blacksquare Choice of the pairs $(g,g') \leadsto \mathsf{A}$ selection strategy is required
 - A commonly used strategy is by refining with the degree of the lcm_≺(g, g') but *we need more.*

- \blacksquare Choice of the pairs $(g,g') \leadsto$ A selection strategy is required
 - A commonly used strategy is by refining with the degree of the $lcm_{\prec}(g,g')$ but *we need more*.

There has been a whole industry on identifying a "good" strategy Giovini, Mora, Niesi, Robbiano, Traverso'91

- \blacksquare Choice of the pairs $(g,g') \leadsto \mathsf{A}$ selection strategy is required
 - A commonly used strategy is by refining with the degree of the lcm_≺(g, g') but we need more. There has been a whole industry on identifying a "good" strategy Giovini, Mora, Niesi, Robbiano, Traverso'91
- Most of reductions in Buchberger's algorithm compute 0 (!)

- \blacksquare Choice of the pairs $(g,g') \leadsto \mathsf{A}$ selection strategy is required
 - A commonly used strategy is by refining with the degree of the lcm_≺(g, g') but we need more. There has been a whole industry on identifying a "good" strategy Giovini, Mora, Niesi, Robbiano, Traverso'91
- Most of reductions in Buchberger's algorithm compute 0 (!)
 - These are useless computations

- \blacksquare Choice of the pairs $(g,g') \leadsto$ A selection strategy is required
 - A commonly used strategy is by refining with the degree of the lcm_≺(g, g') but we need more.
 There has been a whole industry on identifying a "good" strategy
 Giovini, Mora, Niesi, Robbiano, Traverso'91

Most of reductions in Buchberger's algorithm compute 0 (!)

- These are **useless** computations
- Prove that when some pair reduces to 0, it will always further reduce to 0 → rewrite the algorithm.

- \blacksquare Choice of the pairs $(g,g') \leadsto$ A selection strategy is required
 - A commonly used strategy is by refining with the degree of the lcm_≺(g, g') but we need more.
 There has been a whole industry on identifying a "good" strategy
 Giovini, Mora, Niesi, Robbiano, Traverso'91

Most of reductions in Buchberger's algorithm compute 0 (!)

- These are useless computations
- Prove that when some pair reduces to 0, it will always further reduce to 0 → rewrite the algorithm.
- Note that once the selection strategy is fixed, one can remember which pairs reduce to 0

Useful for multi-modular computations (Gröbner bases over \mathbb{Q}).

- \blacksquare Choice of the pairs $(g,g') \leadsto$ A selection strategy is required
 - A commonly used strategy is by refining with the degree of the lcm_≺(g, g') but we need more.
 There has been a whole industry on identifying a "good" strategy
 Giovini, Mora, Niesi, Robbiano, Traverso'91

Most of reductions in Buchberger's algorithm compute 0 (!)

- These are useless computations
- Prove that when some pair reduces to 0, it will always further reduce to 0 → rewrite the algorithm.
- Note that once the selection strategy is fixed, one can remember which pairs reduce to 0

Useful for multi-modular computations (Gröbner bases over \mathbb{Q}).

Modern algorithms (F4/F5) bring new efficient solutions to these issues

Take $f_1 = x_1^3 - 2x_1x_2$ and $f_2 = x_1^2x_2 - 2x_2^2 + x_1$ and $\prec_{grevlex}$.

Take
$$f_1 = \boxed{x_1^3} - 2x_1x_2$$
 and $f_2 = \boxed{x_1^2x_2} - 2x_2^2 + x_1$ and $\prec_{grevlex}$.

Take
$$f_1 = \boxed{x_1^3} - 2x_1x_2$$
 and $f_2 = \boxed{x_1^2x_2} - 2x_2^2 + x_1$ and $\prec_{grevlex}$

Take
$$f_1 = \boxed{x_1^3} - 2x_1x_2$$
 and $f_2 = \boxed{x_1^2x_2} - 2x_2^2 + x_1$ and $\prec_{grevlex}$

Take
$$f_1 = \boxed{x_1^3} - 2x_1x_2$$
 and $f_2 = \boxed{x_1^2x_2} - 2x_2^2 + x_1$ and $\prec_{grevlex}$.

$$\boxed{G = (f_1, f_2)} \rightsquigarrow S_{grevlex}(f_1, f_2) = -x_1^2, \text{ note that } x_1^2 \notin \langle x_1^3, x_1^2x_2 \rangle$$

$$\bullet f_3 = \mathsf{NF}_{grevlex}(\mathsf{spol}_{grevlex}(f_1, f_2), G) = -x_1^2$$

$$\boxed{G = (f_1, f_2, f_3)}$$

Take
$$f_1 = \begin{bmatrix} x_1^3 \\ 1 \end{bmatrix} - 2x_1x_2$$
 and $f_2 = \begin{bmatrix} x_1^2x_2 \\ -2x_2^2 + x_1 \text{ and } \prec_{grevlex}$.
 $G = (f_1, f_2) \longrightarrow S_{grevlex}(f_1, f_2) = -x_1^2$, note that $x_1^2 \notin \langle x_1^3, x_1^2x_2 \rangle$
• $f_3 = \mathsf{NF}_{grevlex}(\mathsf{spol}_{grevlex}(f_1, f_2), G) = -x_1^2$
 $G = (f_1, f_2, f_3)$

Take
$$f_1 = \begin{bmatrix} x_1^3 \\ 1 \end{bmatrix} - 2x_1x_2$$
 and $f_2 = \begin{bmatrix} x_1^2x_2 \\ 1 \end{bmatrix} - 2x_2^2 + x_1$ and $\prec_{grevlex}$.
 $\boxed{G = (f_1, f_2)} \rightsquigarrow S_{grevlex}(f_1, f_2) = -x_1^2$, note that $x_1^2 \notin \langle x_1^3, x_1^2x_2 \rangle$
 $\checkmark f_3 = \operatorname{NF}_{grevlex}(\operatorname{spol}_{grevlex}(f_1, f_2), G) = -x_1^2$
 $\boxed{G = (f_1, f_2, f_3)}$
 $\rightsquigarrow \operatorname{spol}_{grevlex}(f_1, f_3) = -x_1x_2$
 $\checkmark f_4 = \operatorname{NF}_{grevlex}(\operatorname{spol}_{grevlex}(f_1, f_3), G) = -x_1x_2$
with $x_1x_2 \notin \langle x_1^3, x_1^2x_2, x_1^2 \rangle$
 $\rightsquigarrow \operatorname{spol}_{grevlex}(f_2, f_3) = -2x_2^2 + x_1$
 $\checkmark f_5 = \operatorname{NF}_{grevlex}(\operatorname{spol}_{grevlex}(f_2, f_3), G) = -2x_2^2 + x_1$
 $\boxed{G = (f_1, f_2, f_3, f_4, f_5)}$

If remains to investigate $(f_1, f_4), (f_2, f_4), (f_3, f_4), (f_1, f_5), \dots$

If remains to investigate $(f_1, f_4), (f_2, f_4), (f_3, f_4), (f_1, f_5), \dots$

 $\sim \operatorname{spol}_{\operatorname{grevlex}}(f_1,f_4) = x_2 f_4 \qquad \qquad \bullet \operatorname{NF}_{\operatorname{grevlex}}(\operatorname{spol}_{\operatorname{grevlex}}(f_1,f_4),G) = 0$

If remains to investigate $(f_1, f_4), (f_2, f_4), (f_3, f_4), (f_1, f_5), \dots$

 $\rightarrow \operatorname{spol}_{grevlex}(f_1, f_4) = x_2 f_4$ $\rightarrow \operatorname{spol}_{grevlex}(f_2, f_4) = f_5$

- $\mathsf{NF}_{grevlex}(\mathsf{spol}_{grevlex}(f_1, f_4), G) = 0$
- $\mathsf{NF}_{grevlex}(\mathsf{spol}_{grevlex}(f_2, f_4), G) = 0$

If remains to investigate $(f_1, f_4), (f_2, f_4), (f_3, f_4), (f_1, f_5), \dots$

 $\rightsquigarrow \operatorname{spol}_{grevlex}(f_1, f_4) = x_2 f_4$

$$\rightsquigarrow \operatorname{spol}_{grevlex}(f_2, f_4) = f_5$$

$$\rightsquigarrow \operatorname{spol}_{grevlex}(f_3, f_4) = 0$$

- $\mathsf{NF}_{grevlex}(\mathsf{spol}_{grevlex}(f_1, f_4), G) = 0$
- $NF_{grevlex}(spol_{grevlex}(f_2, f_4), G) = 0$

•
$$\mathsf{NF}_{grevlex}(\mathsf{spol}_{grevlex}(f_3, f_4), G) = 0$$

If remains to investigate $(f_1, f_4), (f_2, f_4), (f_3, f_4), (f_1, f_5), \dots$

 $\rightsquigarrow \operatorname{spol}_{grevlex}(f_1, f_4) = x_2 f_4$

$$\rightsquigarrow \operatorname{spol}_{grevlex}(f_2, f_4) = f_5$$

$$\rightsquigarrow \mathsf{spol}_{\mathit{grevlex}}(\mathit{f}_3, \mathit{f}_4) = 0$$

$$\rightsquigarrow \operatorname{\mathsf{spol}}_{\operatorname{grevlex}}(f_1, f_5) = -\frac{1}{2}x_1f_3 + x_2f_4$$

- $\mathsf{NF}_{grevlex}(\mathsf{spol}_{grevlex}(f_1, f_4), G) = 0$
- $\mathsf{NF}_{grevlex}(\mathsf{spol}_{grevlex}(f_2, f_4), G) = 0$
- $\mathsf{NF}_{grevlex}(\mathsf{spol}_{grevlex}(f_3, f_4), G) = 0$

•
$$\mathsf{NF}_{grevlex}(\mathsf{spol}_{grevlex}(f_1, f_5), G) = 0$$

If remains to investigate $(f_1, f_4), (f_2, f_4), (f_3, f_4), (f_1, f_5), \dots$

$$\sim \operatorname{spol}_{grevlex}(f_1, f_4) = x_2 f_4 \qquad \qquad \bullet \operatorname{NF}_{grevlex}(\operatorname{spol}_{grevlex}(f_1, f_4), G) = 0 \sim \operatorname{spol}_{grevlex}(f_2, f_4) = f_5 \qquad \qquad \bullet \operatorname{NF}_{grevlex}(\operatorname{spol}_{grevlex}(f_2, f_4), G) = 0 \sim \operatorname{spol}_{grevlex}(f_3, f_4) = 0 \qquad \qquad \bullet \operatorname{NF}_{grevlex}(\operatorname{spol}_{grevlex}(f_3, f_4), G) = 0 \sim \operatorname{spol}_{grevlex}(f_1, f_5) = -\frac{1}{2}x_1 f_3 + x_2 f_4 \qquad \bullet \operatorname{NF}_{grevlex}(\operatorname{spol}_{grevlex}(f_1, f_5), G) = 0 \operatorname{And} \operatorname{so} \operatorname{on...} \operatorname{All} S-\operatorname{polynomials} \operatorname{reduce} \operatorname{to} 0.$$

22

 $G = (f_1, f_2, f_3, f_4)$

If remains to investigate $(f_1, f_4), (f_2, f_4), (f_3, f_4), (f_1, f_5), \dots$

$$\sim \operatorname{spol}_{grevlex}(f_1, f_4) = x_2 f_4 \qquad \qquad \bullet \operatorname{NF}_{grevlex}(\operatorname{spol}_{grevlex}(f_1, f_4), G) = 0 \sim \operatorname{spol}_{grevlex}(f_2, f_4) = f_5 \qquad \qquad \bullet \operatorname{NF}_{grevlex}(\operatorname{spol}_{grevlex}(f_2, f_4), G) = 0 \sim \operatorname{spol}_{grevlex}(f_3, f_4) = 0 \qquad \qquad \bullet \operatorname{NF}_{grevlex}(\operatorname{spol}_{grevlex}(f_3, f_4), G) = 0 \sim \operatorname{spol}_{grevlex}(f_1, f_5) = -\frac{1}{2}x_1 f_3 + x_2 f_4 \qquad \bullet \operatorname{NF}_{grevlex}(\operatorname{spol}_{grevlex}(f_1, f_5), G) = 0 \operatorname{And} \operatorname{so} \operatorname{on} \quad \operatorname{All} \operatorname{Spolynomials} reduce to 0$$

And so on... All 5-polynomials reduce to 0.

We can conclude that G is a Gröbner basis for $(\langle f_1, f_2 \rangle, \prec_{grevlex})$

$$G = \begin{cases} x_1^3 - 2x_1x_2 \\ x_1^2x_2 - 2x_2^2 + x_1 \\ f_3 = -x_1^2, & f_4 = -x_1x_2 \\ f_5 = -2x_2^2 + x_1 \end{cases}$$

$$G = \begin{cases} x_1^3 - 2x_1x_2 &= -x_1f_3 + 2f_3 \\ x_1^2x_2 - 2x_2^2 + x_1 & \\ f_3 = -x_1^2 & f_4 = -x_1x_2 \\ f_5 = -2x_2^2 + x_1 & \end{cases}$$

$$G = \begin{cases} x_1^3 - 2x_1x_2 &= -x_1f_3 + 2f_4\\ x_1^2x_2 - 2x_2^2 + x_1 &= -x_2f_4 + f_5\\ f_3 &= -x_1^2, & f_4 = -x_1x_2\\ f_5 &= -2x_2^2 + x_1 \end{cases}$$

$$G = \begin{cases} x_1^3 - 2x_1x_2 = -x_1f_3 + 2f_4 \\ x_1^2x_2 - 2x_2^2 + x_1 = -x_2f_4 + f_5 \\ f_3 = -x_1^2, & f_4 = -x_1x_2 \\ f_5 = -2x_2^2 + x_1 \end{cases} \implies \text{redundant elements...}$$

$$G = \begin{cases} x_1^3 - 2x_1x_2 = -x_1f_3 + 2f_4 \\ x_1^2x_2 - 2x_2^2 + x_1 = -x_2f_4 + f_5 \\ f_3 = -x_1^2, & f_4 = -x_1x_2 \\ f_5 = -2x_2^2 + x_1 \end{cases} \implies \text{redundant elements...}$$

Minimal Gröbner bases

Let G be a Gröbner basis for (I, \prec) . One says that G is a minimal Gröbner basis if for all $f \in G$:

•
$$LC_{\prec}(f) = 1;$$

•
$$\mathsf{LM}_{\prec}(f) \notin \langle \mathsf{LM}_{\prec}(G \setminus \{f\}) \rangle.$$

$$G = \begin{cases} x_1^3 - 2x_1x_2 = -x_1f_3 + 2f_4\\ x_1^2x_2 - 2x_2^2 + x_1 = -x_2f_4 + f_5\\ f_3 = -x_1^2, & f_4 = -x_1x_2\\ f_5 = -2x_2^2 + x_1 \end{cases} \implies \text{redundant elements...}$$

Let G be a Gröbner basis for (I, \prec) . One says that G is a minimal Gröbner basis if for all $f \in G$:

•
$$LC_{\prec}(f) = 1;$$

•
$$\mathsf{LM}_{\prec}(f) \notin \langle \mathsf{LM}_{\prec}(G \setminus \{f\}) \rangle.$$

Reduced Gröbner bases

Let G be a Gröbner basis for $(I,\prec).$ One says that G is a reduced Gröbner basis if for all $f\in G$:

- $LC_{\prec}(f) = 1;$
- no monomial of f lies in $\langle LM_{\prec}(G \setminus \{f\}) \rangle$.

Let *I* be an ideal of *R* which is not $\{0\}$. There exists a unique reduced Gröbner basis for (I, \prec) .

Let *I* be an ideal of *R* which is not $\{0\}$. There exists a unique reduced Gröbner basis for (I, \prec) .

• *G* reduced \Rightarrow *G* minimal \Rightarrow $\langle \mathsf{LM}_{\prec}(G) \rangle$ is unique

Let *I* be an ideal of *R* which is not $\{0\}$. There exists a unique reduced Gröbner basis for (I, \prec) .

- *G* reduced \Rightarrow *G* minimal \Rightarrow $\langle \mathsf{LM}_{\prec}(G) \rangle$ is unique
- Existence:

design an algorithm which makes a Gröbner basis reduced (!)

Let *I* be an ideal of *R* which is not $\{0\}$. There exists a unique reduced Gröbner basis for (I, \prec) .

- *G* reduced \Rightarrow *G* minimal \Rightarrow $\langle \mathsf{LM}_{\prec}(G) \rangle$ is unique
- Existence:

design an algorithm which makes a Gröbner basis reduced (!)

• Uniqueness: by contradiction + uniqueness of the normal form

Let *I* be an ideal of *R* which is not $\{0\}$. There exists a unique reduced Gröbner basis for (I, \prec) .

- *G* reduced \Rightarrow *G* minimal \Rightarrow $\langle \mathsf{LM}_{\prec}(G) \rangle$ is unique
- Existence:

design an algorithm which makes a Gröbner basis reduced (!)

• Uniqueness: by contradiction + uniqueness of the normal form

One can decide whether two ideals given by distinct generating sets are equal.

Properties of Gröbner bases

Goal. Represent projections of \mathbb{K} -algebraic sets.

Goal. Represent projections of $\mathbb{K}\text{-algebraic sets.}$

Remark. Let π_i be the canonical projection $(x_1, \ldots, x_n) \to (x_i, \ldots, x_n)$ and $V \subset \overline{\mathbb{K}}^n$ be a \mathbb{K} -algebraic set. It holds that $\pi_i(V)$ may **not** be a \mathbb{K} -algebraic set.

Goal. Represent projections of $\mathbb{K}\text{-algebraic sets.}$

Remark. Let π_i be the canonical projection $(x_1, \ldots, x_n) \to (x_i, \ldots, x_n)$ and $V \subset \overline{\mathbb{K}}^n$ be a \mathbb{K} -algebraic set. It holds that $\pi_i(V)$ may **not** be a \mathbb{K} -algebraic set. **Example.** $x_1x_2 - 1 = 0$.

Goal. Represent projections of $\mathbb{K}\text{-algebraic sets.}$

Remark. Let π_i be the canonical projection $(x_1, \ldots, x_n) \to (x_i, \ldots, x_n)$ and $V \subset \overline{\mathbb{K}}^n$ be a \mathbb{K} -algebraic set. It holds that $\pi_i(V)$ may **not** be a \mathbb{K} -algebraic set. **Example.** $x_1x_2 - 1 = 0$.

Locally closed algebraic sets

Let $W \subset \overline{\mathbb{K}}^n$. One says that W is a locally closed algebraic set if it is the intersection of a Zariski open set with an algebraic set (defined over \mathbb{K}).

Goal. Represent projections of $\mathbb{K}\text{-algebraic sets.}$

Remark. Let π_i be the canonical projection $(x_1, \ldots, x_n) \to (x_i, \ldots, x_n)$ and $V \subset \overline{\mathbb{K}}^n$ be a \mathbb{K} -algebraic set. It holds that $\pi_i(V)$ may **not** be a \mathbb{K} -algebraic set. **Example.** $x_1x_2 - 1 = 0$.

Locally closed algebraic sets

Let $W \subset \overline{\mathbb{K}}^n$. One says that W is a locally closed algebraic set if it is the intersection of a Zariski open set with an algebraic set (defined over \mathbb{K}).

Constructible sets

A constructible set is a finite union of locally closed sets.

Goal. Represent projections of $\mathbb{K}\text{-algebraic sets.}$

Remark. Let π_i be the canonical projection $(x_1, \ldots, x_n) \to (x_i, \ldots, x_n)$ and $V \subset \overline{\mathbb{K}}^n$ be a \mathbb{K} -algebraic set. It holds that $\pi_i(V)$ may **not** be a \mathbb{K} -algebraic set. **Example.** $x_1x_2 - 1 = 0$.

Locally closed algebraic sets

Let $W \subset \overline{\mathbb{K}}^n$. One says that W is a locally closed algebraic set if it is the intersection of a Zariski open set with an algebraic set (defined over \mathbb{K}).

Constructible sets

A constructible set is a finite union of locally closed sets.

Let $V \subset \overline{\mathbb{K}}^n$ be an algebraic set and π_i as above. Then, $\pi_i(V)$ is a constructible set.

Elimination orderingWe say that \prec is an elimination ordering, which eliminates (x_1, \ldots, x_i) if for all $f \in R - \{0\}$, $\mathsf{LM}_{\prec}(f) \in \mathbb{K}[x_{i+1}, \ldots, x_n] \Longrightarrow f \in \mathbb{K}[x_{i+1}, \ldots, x_n]$

Elimination orderingWe say that \prec is an elimination ordering, which eliminates (x_1, \ldots, x_i) if for all $f \in R - \{0\}$, $\mathsf{LM}_{\prec}(f) \in \mathbb{K}[x_{i+1}, \ldots, x_n] \Longrightarrow f \in \mathbb{K}[x_{i+1}, \ldots, x_n]$

• The lexicographical ordering is an elimination ordering;

Elimination orderingWe say that \prec is an elimination ordering, which eliminates (x_1, \ldots, x_i) if for all $f \in R - \{0\}$, $\mathsf{LM}_{\prec}(f) \in \mathbb{K}[x_{i+1}, \ldots, x_n] \Longrightarrow f \in \mathbb{K}[x_{i+1}, \ldots, x_n]$

- The lexicographical ordering is an elimination ordering;
- Consider ≺_{grevlex1} and ≺_{grevlex2}, two grevlex orderings over monomials of K[x₁,..., x_i] and K[x_{i+1},..., x_n]. The block ordering ≺ using these two grevlex orderings is an elimination ordering.

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \ldots, x_n]$ and \prec be a an admissible block monomial ordering which eliminates x_1, \ldots, x_i built with \prec_1 and \prec_2 .

Let π_i be the canonical projection $(x_1, \ldots, x_n) \rightarrow (x_i, \ldots, x_n)$.

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \dots, x_n]$ and \prec be a an admissible block monomial ordering which eliminates x_1, \dots, x_i built with \prec_1 and \prec_2 .

Let π_i be the canonical projection $(x_1, \ldots, x_n) \rightarrow (x_i, \ldots, x_n)$.

The elimination theorem

Let $I \subset R$ be an ideal and G be a Gröbner basis of (I, \prec) . Denote by I_i the ideal $I \cap \mathbb{K}[x_{i+1}, \ldots, x_n]$. Then $G_i = G \cap \mathbb{K}[x_{i+1}, \ldots, x_n]$ is a Gröbner basis for (I_i, \prec_2) . Besides, $V(G_i)$ equals the Zariski closure of $\pi_i(V(I))$.

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \ldots, x_n]$ and \prec be a an admissible block monomial ordering which eliminates x_1, \ldots, x_i built with \prec_1 and \prec_2 .

Let π_i be the canonical projection $(x_1, \ldots, x_n) \rightarrow (x_i, \ldots, x_n)$.

The elimination theorem

Let $I \subset R$ be an ideal and G be a Gröbner basis of (I, \prec) . Denote by I_i the ideal $I \cap \mathbb{K}[x_{i+1}, \ldots, x_n]$. Then $G_i = G \cap \mathbb{K}[x_{i+1}, \ldots, x_n]$ is a Gröbner basis for (I_i, \prec_2) . Besides, $V(G_i)$ equals the Zariski closure of $\pi_i(V(I))$.

Proof of the first statement.

• It suffices to prove that $\langle LM_{\prec_2}(G_i) \rangle = \langle LM_{\prec_2}(I_i) \rangle$.

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \dots, x_n]$ and \prec be a an admissible block monomial ordering which eliminates x_1, \dots, x_i built with \prec_1 and \prec_2 .

Let π_i be the canonical projection $(x_1, \ldots, x_n) \rightarrow (x_i, \ldots, x_n)$.

The elimination theorem

Let $I \subset R$ be an ideal and G be a Gröbner basis of (I, \prec) . Denote by I_i the ideal $I \cap \mathbb{K}[x_{i+1}, \ldots, x_n]$. Then $G_i = G \cap \mathbb{K}[x_{i+1}, \ldots, x_n]$ is a Gröbner basis for (I_i, \prec_2) . Besides, $V(G_i)$ equals the Zariski closure of $\pi_i(V(I))$.

Proof of the first statement.

- It suffices to prove that ⟨LM_{≺2}(G_i)⟩ = ⟨LM_{≺2}(I_i)⟩.
- Use the property of elimination orderings to prove that for f ∈ I_i, LM_{≺2}(f) is divisible by LM_{≺2}(g) for some g ∈ I_i.

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \dots, x_n]$ and \prec be a an admissible block monomial ordering which eliminates x_1, \dots, x_i built with \prec_1 and \prec_2 .

Let π_i be the canonical projection $(x_1, \ldots, x_n) \rightarrow (x_i, \ldots, x_n)$.

The elimination theorem

Let $I \subset R$ be an ideal and G be a Gröbner basis of (I, \prec) . Denote by I_i the ideal $I \cap \mathbb{K}[x_{i+1}, \ldots, x_n]$. Then $G_i = G \cap \mathbb{K}[x_{i+1}, \ldots, x_n]$ is a Gröbner basis for (I_i, \prec_2) . Besides, $V(G_i)$ equals the Zariski closure of $\pi_i(V(I))$.

Proof of the first statement.

- It suffices to prove that ⟨LM_{≺2}(G_i)⟩ = ⟨LM_{≺2}(I_i)⟩.
- Use the property of elimination orderings to prove that for f ∈ I_i, LM_{≺2}(f) is divisible by LM_{≺2}(g) for some g ∈ I_i.

See Cox, Little, O'Shea for a proof of the 2nd statement.

Consider the parametric curve $t \mapsto \left(\frac{2t}{1+2t^2}, \frac{1-3t^2}{1+t^2}\right)$ **Problem.** Compute the implicit equation f = 0 (for $f \in \mathbb{Q}[x, y]$)

Consider the parametric curve $t \mapsto \left(\frac{2t}{1+2t^2}, \frac{1-3t^2}{1+t^2}\right)$ **Problem.** Compute the implicit equation f = 0 (for $f \in \mathbb{Q}[x, y]$)

 \sim **Gröbner basis computation** for an elimination ordering $t \succ_{elim} x, y$

$$f = x^2 y^2 - 10x^2 y + 25x^2 + 4y^2 + 8y - 12$$

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \ldots, x_n]$.

Let $I \subset R$ be an ideal and G be a Gröbner basis for (I, \prec_{lex}) . Then $G = T_n \cup T_{n-1} \cup \cdots \cup T_1$ with: • $T_i \subset \mathbb{K}[x_i, \dots, x_n];$

- $T_n \cup \cdots \cup T_i$ is a Gröbner basis for $(I \cap \mathbb{K}[x_i, \ldots, x_n], \prec_{lex});$
- $V(T_n \cup \cdots \cup T_i)$ is the Zariski closure of the projection of V(I) on the (x_i, \ldots, x_n) -space.

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \ldots, x_n]$.

Let $I \subset R$ be an ideal and G be a Gröbner basis for (I, \prec_{lex}) . Then $G = T_n \cup T_{n-1} \cup \cdots \cup T_1$ with:

- $T_i \subset \mathbb{K}[x_i, \ldots, x_n];$
- $T_n \cup \cdots \cup T_i$ is a Gröbner basis for $(I \cap \mathbb{K}[x_i, \ldots, x_n], \prec_{lex});$

 V(T_n ∪ · · · ∪ T_i) is the Zariski closure of the projection of V(I) on the (x_i, . . . , x_n)-space.

When V(I) is finite, I ∩ K[x_n] is not {0};
 → I ∩ K[x_i] is not {0} for all 1 ≤ i ≤ n.

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \ldots, x_n]$.

Let $I \subset R$ be an ideal and G be a Gröbner basis for (I, \prec_{lex}) . Then $G = T_n \cup T_{n-1} \cup \cdots \cup T_1$ with:

- $T_i \subset \mathbb{K}[x_i, \ldots, x_n];$
- $T_n \cup \cdots \cup T_i$ is a Gröbner basis for $(I \cap \mathbb{K}[x_i, \ldots, x_n], \prec_{lex});$

 V(T_n ∪ · · · ∪ T_i) is the Zariski closure of the projection of V(I) on the (x_i, . . . , x_n)-space.

• When V(I) is finite, $I \cap \mathbb{K}[x_n]$ is not $\{0\}$;

 $\blacksquare I \cap \mathbb{K}[x_i] \text{ is not } \{0\} \text{ for all } 1 \leq i \leq n.$

• Gröbner basis computed for lexicographical monomial orderings provide a triangular rewriting.

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \ldots, x_n]$.

Let $I \subset R$ be an ideal and G be a Gröbner basis for (I, \prec_{lex}) . Then $G = T_n \cup T_{n-1} \cup \cdots \cup T_1$ with:

- $T_i \subset \mathbb{K}[x_i, \ldots, x_n];$
- $T_n \cup \cdots \cup T_i$ is a Gröbner basis for $(I \cap \mathbb{K}[x_i, \ldots, x_n], \prec_{lex});$

 V(T_n ∪ · · · ∪ T_i) is the Zariski closure of the projection of V(I) on the (x_i, . . . , x_n)-space.

- When V(I) is finite, $I \cap \mathbb{K}[x_n]$ is not $\{0\}$;
 - $\blacksquare I \cap \mathbb{K}[x_i] \text{ is not } \{0\} \text{ for all } 1 \leq i \leq n.$
- Gröbner basis computed for lexicographical monomial orderings provide a triangular rewriting.

Comprehensive description of varieties through projections

Consequence

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \ldots, x_n]$.

Let $I \subset R$ be an ideal. The quotient ring $\frac{R}{I}$ is defined as the set of equivalence classes $f \sim g \Leftrightarrow f - g \in I$ (where + and \times are induced by polynomial addition an multiplication). It is also a \mathbb{K} -vector space.

Consequence

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \ldots, x_n]$.

Let $I \subset R$ be an ideal. The quotient ring $\frac{R}{I}$ is defined as the set of equivalence classes $f \sim g \Leftrightarrow f - g \in I$ (where + and \times are induced by polynomial addition an multiplication). It is also a \mathbb{K} -vector space.

Let $I \subset R$ be an ideal. Assume that V(I) is finite. Then the quotient ring is a finite dimensional K-vector space.

Consequence

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \ldots, x_n]$.

Let $I \subset R$ be an ideal. The quotient ring $\frac{R}{I}$ is defined as the set of equivalence classes $f \sim g \Leftrightarrow f - g \in I$ (where + and \times are induced by polynomial addition an multiplication). It is also a \mathbb{K} -vector space.

Let $I \subset R$ be an ideal. Assume that V(I) is finite. Then the quotient ring is a finite dimensional K-vector space.

When V(I) is finite and a Gröbner basis is known for (I, \prec) , we obtain unique representatives in $\frac{R}{I}$ (depending on the chosen basis).

Consequence

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \ldots, x_n]$.

Let $I \subset R$ be an ideal. The quotient ring $\frac{R}{I}$ is defined as the set of equivalence classes $f \sim g \Leftrightarrow f - g \in I$ (where + and \times are induced by polynomial addition an multiplication). It is also a \mathbb{K} -vector space.

Let $I \subset R$ be an ideal. Assume that V(I) is finite. Then the quotient ring is a finite dimensional K-vector space.

When V(I) is finite and a Gröbner basis is known for (I, \prec) , we obtain unique representatives in $\frac{R}{I}$ (depending on the chosen basis). Many algorithmic questions can then be rephrased as linear algebra problems / matrix operations.

Shape of Gröbner bases (graded ordering)

Let f be a homogeneous polynomial in R.

- if for $k \in \mathbb{N}$, x_n^k divides $LM_{grevlex}(f)$ then x_n^k divides f;
- if for all $1 \le j \le n$, $LM_{grevlex}(f)$ is divisible by x_j and $f \in \mathbb{K}[x_1, \ldots, x_j]$, then f is divisible by x_j .

Let f be a homogeneous polynomial in R.

- if for $k \in \mathbb{N}$, x_n^k divides $\mathsf{LM}_{grevlex}(f)$ then x_n^k divides f;
- if for all $1 \le j \le n$, $LM_{grevlex}(f)$ is divisible by x_j and $f \in \mathbb{K}[x_1, \ldots, x_j]$, then f is divisible by x_j .

Let $I \subset R$ be an ideal and $d = \min(\deg(f) \mid f \in I \setminus \{0\})$. Consider a Gröbner basis G for $(I, \prec_{grevlex})$.

It holds that

 $\operatorname{Span}\left(g\in G\mid \operatorname{deg}(G)=d\right)=\operatorname{Span}\left(f\in I\mid \operatorname{deg}(f)=d\right).$

Let f be a homogeneous polynomial in R.

- if for $k \in \mathbb{N}$, x_n^k divides $\mathsf{LM}_{grevlex}(f)$ then x_n^k divides f;
- if for all $1 \le j \le n$, $LM_{grevlex}(f)$ is divisible by x_j and $f \in \mathbb{K}[x_1, \ldots, x_j]$, then f is divisible by x_j .

Let $I \subset R$ be an ideal and $d = \min(\deg(f) \mid f \in I \setminus \{0\})$. Consider a Gröbner basis G for $(I, \prec_{grevlex})$.

It holds that

 $\mathrm{Span}\,(g\in G\mid \mathrm{deg}(G)=d)=\mathrm{Span}\,(f\in I\mid \mathrm{deg}(f)=d)\,.$

• This theorem holds for all graded orderings.

Let f be a homogeneous polynomial in R.

- if for $k \in \mathbb{N}$, x_n^k divides $\mathsf{LM}_{grevlex}(f)$ then x_n^k divides f;
- if for all $1 \le j \le n$, $LM_{grevlex}(f)$ is divisible by x_j and $f \in \mathbb{K}[x_1, \ldots, x_j]$, then f is divisible by x_j .

Let $I \subset R$ be an ideal and $d = \min(\deg(f) \mid f \in I \setminus \{0\})$. Consider a Gröbner basis G for $(I, \prec_{grevlex})$.

It holds that

 $\operatorname{Span}\left(g\in G\mid \operatorname{deg}(G)=d\right)=\operatorname{Span}\left(f\in I\mid \operatorname{deg}(f)=d\right).$

- This theorem holds for all graded orderings.
- *G* contains polynomials of the least possible degree in $I \setminus \{0\}$

$$d \mapsto \mathsf{HF}_{I}(d) = \sharp \{ \boldsymbol{\beta} \in \mathbb{N}^{n} \mid \deg(\boldsymbol{x}^{\boldsymbol{\beta}}) = d \text{ and } \boldsymbol{x}^{\boldsymbol{\beta}} \notin I \}.$$

$$d\mapsto \mathsf{HF}_I(d)=\sharp\{oldsymbol{eta}\in\mathbb{N}^n\mid \deg(oldsymbol{x}^{oldsymbol{eta}})=d ext{ and }oldsymbol{x}^{oldsymbol{eta}}\notin I\}.$$

The Hilbert series is $HS_I(t) = \sum_{d=0}^{\infty} HF_I(d)t^d$.

$$d\mapsto \mathsf{HF}_I(d)=\sharp\{oldsymbol{eta}\in\mathbb{N}^n\mid \deg(oldsymbol{x}^{oldsymbol{eta}})=d ext{ and }oldsymbol{x}^{oldsymbol{eta}}\notin I\}.$$

The Hilbert series is $HS_I(t) = \sum_{d=0}^{\infty} HF_I(d)t^d$.

Recall that $\frac{R}{I}$ is a \mathbb{K} -vector space.

There is a monomial basis for $\frac{R}{T}$.

$$d\mapsto \mathsf{HF}_I(d)=\sharp\{oldsymbol{eta}\in\mathbb{N}^n\mid \deg(oldsymbol{x}^{oldsymbol{eta}})=d ext{ and }oldsymbol{x}^{oldsymbol{eta}}\notin I\}.$$

The Hilbert series is $HS_I(t) = \sum_{d=0}^{\infty} HF_I(d)t^d$.

Recall that $\frac{R}{I}$ is a \mathbb{K} -vector space.

There is a monomial basis for $\frac{R}{T}$.

 $HF_I(d)$ counts the number of elements in this basis of degree *d*.

The Hilbert series is actually associated to $\frac{R}{T}$

We can now extend the definition to ideals in R.

Let I be in R.

Degree compliant monomial basis \mathscr{B} of $\frac{R}{I} \leftrightarrow$ Monomial basis \mathscr{B} of $\langle \mathsf{LM}_{grevlex}(I) \rangle$.

We can now extend the definition to ideals in R.

Let I be in R.

 $\begin{array}{l} \text{Degree compliant monomial basis } \mathscr{B} \text{ of } \frac{R}{I} \leftrightarrow \text{Monomial basis } \mathscr{B} \text{ of} \\ & \langle \mathsf{LM}_{grevlex}(I) \rangle. \end{array}$

$$\mathsf{HF}_{R/I}: d \mapsto \sharp \{ \boldsymbol{\beta} \in \mathscr{B} \mid \deg(\boldsymbol{\beta}) = d \}.$$

We can now extend the definition to ideals in R.

Let I be in R.

 $\begin{array}{l} \text{Degree compliant monomial basis } \mathscr{B} \text{ of } \frac{R}{I} \leftrightarrow \text{Monomial basis } \mathscr{B} \text{ of} \\ & \langle \mathsf{LM}_{grevlex}(I) \rangle. \end{array}$

$$\mathsf{HF}_{R/I}: d \mapsto \sharp \{ \boldsymbol{\beta} \in \mathscr{B} \mid \deg(\boldsymbol{\beta}) = d \}.$$

The Hilbert series is then defined as

$$\mathsf{HS}_{R/I}(t) = \sum_{d=0}^{\infty} \mathsf{HF}_{R/I}(d) t^d.$$

Let $I \subset R$ be an ideal. When V(I) is finite, $\frac{R}{I}$ is a finite dimensional \mathbb{K} -vector space.

Let $I \subset R$ be an ideal. When V(I) is finite, $\frac{R}{I}$ is a finite dimensional \mathbb{K} -vector space. Let G be a Gröbner basis for (I, \prec) . For all $1 \leq i \leq n$, there exists $k_i \in \mathbb{N}$ and $g \in G$ such that $x_i^{k_i} = \mathsf{LM}_{\prec}(g)$.

Let $I \subset R$ be an ideal. When V(I) is finite, $\frac{R}{I}$ is a finite dimensional \mathbb{K} -vector space. Let G be a Gröbner basis for (I, \prec) . For all $1 \leq i \leq n$, there exists $k_i \in \mathbb{N}$ and $g \in G$ such that $x_i^{k_i} = \mathsf{LM}_{\prec}(g)$.

When V(I) is finite, $HS_{R/I}(t)$ is a polynomial. Its evaluation at 1 is the degree of I, which coincides with dimension of $\frac{R}{I}$ (as a \mathbb{K} vector space).

Let $I \subset R$ be an ideal. When V(I) is finite, $\frac{R}{I}$ is a finite dimensional \mathbb{K} -vector space. Let G be a Gröbner basis for (I, \prec) . For all $1 \leq i \leq n$, there exists $k_i \in \mathbb{N}$ and $g \in G$ such that $x_i^{k_i} = \mathsf{LM}_{\prec}(g)$.

When V(I) is finite, $HS_{R/I}(t)$ is a polynomial. Its evaluation at 1 is the degree of I, which coincides with dimension of $\frac{R}{I}$ (as a \mathbb{K} vector space). When I is radical, it coincides with the cardinality of V(I).

Let $I \subset R$ be an ideal. When V(I) is finite, $\frac{R}{I}$ is a finite dimensional \mathbb{K} -vector space. Let G be a Gröbner basis for (I, \prec) . For all $1 \leq i \leq n$, there exists $k_i \in \mathbb{N}$ and $g \in G$ such that $x_i^{k_i} = \mathsf{LM}_{\prec}(g)$.

When V(I) is finite, $HS_{R/I}(t)$ is a polynomial. Its evaluation at 1 is the degree of I, which coincides with dimension of $\frac{R}{I}$ (as a \mathbb{K} vector space). When I is radical, it coincides with the cardinality of V(I).

Some interesting Hilbert series.

- When $I = \langle R \rangle$, $HS_{R/I}(t) = ?$
- When $I = \langle 0 \rangle$, $HS_{R/I}(t) = ?$
- When $I = \langle x_1, \ldots, x_n \rangle$, $HS_{R/I}(t) = ?$

The hunt of reductions to zero

The ratio of critical pairs which reduce to 0 tends to 1.
 This is observed for all known monomial orderings.

→ 99% of the runtime is spent in computing 0 (!)

The ratio of critical pairs which reduce to 0 tends to 1.
 This is observed for all known monomial orderings.

 \implies 99% of the runtime is spent in computing 0 (!)

Some reductions to 0 arise naturally:

• $f_i f_j = f_j f_i$ yields a reduction to 0

 \rightsquigarrow Syzygies

• If there exists $h \in R$ such that $hf_i \in \langle f_1, \dots, f_{i-1} \rangle$ and $h \notin \langle f_1, \dots, f_{i-1} \rangle$ then a reduction to 0 will occur.

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \dots, x_n]$ and \prec be a an admissible monomial ordering.

Product criterion (First Buchberger criterion)

Let $G \subset R - \{0\}$ and g_1, g_2 in G. Assume that $\operatorname{lcm}_{\prec}(f, g) = \operatorname{LM}_{\prec}(f)\operatorname{LM}_{\prec}(g)$. Then $\operatorname{spol}_{\prec}(f, g)$ reduces to 0 modulo G.

Let \mathbb{K} be a field, $R = \mathbb{K}[x_1, \dots, x_n]$ and \prec be a an admissible monomial ordering.

Product criterion (First Buchberger criterion) Let $G \subset R - \{0\}$ and g_1, g_2 in G. Assume that $lcm_{\prec}(f, g) = LM_{\prec}(f)LM_{\prec}(g)$. Then spol $_{\prec}(f, g)$ reduces to 0 modulo G.

Proof. Assume $f = LM_{\prec}(f) + p$, $g = LM_{\prec}(g) + q$. Write $spol_{\prec}(f,g) = pg - qf$. Observe that $LM_{\prec}(spol(f,g)) = \max_{\prec}(LM_{\prec}(pg), LM_{\prec}(qf))$ (using again $lcm_{\prec}(f,g) = LM_{\prec}(f)LM_{\prec}(g)$).

Standard representation.

Let $G \subset R - \{0\}$ be a finite set. We say that f has a standard representation w.r.t. G, \prec if:

- $f = \sum_{i=1}^{s} m_i g_i$ for some $m_i \neq 0$ (and the g_i 's are pairwise distinct)
- $\max_{\prec}(\mathsf{LM}_{\prec}(m_i g_i), 1 \le i \le s) \prec \mathsf{LM}_{\prec}(f).$

Standard representation.

Let $G \subset R - \{0\}$ be a finite set. We say that f has a standard representation w.r.t. G, \prec if:

- $f = \sum_{i=1}^{s} m_i g_i$ for some $m_i \neq 0$ (and the g_i 's are pairwise distinct)
- $\max_{\prec}(\mathsf{LM}_{\prec}(m_ig_i), 1 \le i \le s) \prec \mathsf{LM}_{\prec}(f).$

A second characterization of Gröbner bases

Let $G \subset R - \{0\}$ be a finite set. If for any $f \in \langle G \rangle$ with $f \neq 0, f$ has a standard representation w.r.t. G, \prec then G is a Gröbner basis for $(\langle G \rangle, \prec)$.

Chain criterion (Second Buchberger criterion)

Let f, g and h in R, and $G \subset R - \{0\}$ finite. If

- $LM_{\prec}(h)$ divides $lcm(LM_{\prec}(f), LM_{\prec}(g))$
- and ${\rm spol}_\prec(f,h)$ and ${\rm spol}_\prec(g,h)$ both have a standard representation w.r.t G

then spol_{\prec}(f, g) has a standard representation w.r.t G, \prec .

Chain criterion (Second Buchberger criterion)

Let f, g and h in R, and $G \subset R - \{0\}$ finite. If

- $LM_{\prec}(h)$ divides $lcm(LM_{\prec}(f), LM_{\prec}(g))$
- and ${\rm spol}_\prec(f,h)$ and ${\rm spol}_\prec(g,h)$ both have a standard representation w.r.t G

then spol_{\prec}(f, g) has a standard representation w.r.t G, \prec .

⇒ spol_≺(f, h) and spol_≺(g, h) reduce to 0 modulo G, then spol_≺(f, g) will reduce to 0 modulo G

We had
$$G = (f_1, f_2, f_3, f_4)$$
 with
 $\mathsf{LM}(f_1) = x_1^3, \mathsf{LM}(f_2) = x_1^2 x_2, \mathsf{LM}(f_3) = x_1^2, \mathsf{LM}(f_4) = x_1 x_2, \mathsf{LM}(f_5) = x_2^2$

We had
$$G = (f_1, f_2, f_3, f_4)$$
 with
 $LM(f_1) = x_1^3, LM(f_2) = x_1^2 x_2, LM(f_3) = x_1^2, LM(f_4) = x_1 x_2, LM(f_5) = x_2^2$

(f₃, f₄) reduces to 0 and we know that (f₃, f₅) will reduce to 0.
 → (f₄, f₅) will reduce to 0 (look at the LM's).

We had $G = (f_1, f_2, f_3, f_4)$ with

 $\mathsf{LM}(f_1) = x_1^3, \mathsf{LM}(f_2) = x_1^2 x_2, \mathsf{LM}(f_3) = x_1^2, \mathsf{LM}(f_4) = x_1 x_2, \mathsf{LM}(f_5) = x_2^2$

- (f₃, f₄) reduces to 0 and we know that (f₃, f₅) will reduce to 0.
 → (f₄, f₅) will reduce to 0 (look at the LM's).
- The pair (f_3, f_5) can be discarded (but not too early);

We had $G = (f_1, f_2, f_3, f_4)$ with

 $\mathsf{LM}(f_1) = x_1^3, \mathsf{LM}(f_2) = x_1^2 x_2, \mathsf{LM}(f_3) = x_1^2, \mathsf{LM}(f_4) = x_1 x_2, \mathsf{LM}(f_5) = x_2^2$

- (f₃, f₄) reduces to 0 and we know that (f₃, f₅) will reduce to 0.
 → (f₄, f₅) will reduce to 0 (look at the LM's).
- The pair (f_3, f_5) can be discarded (but not too early);
- Can you discard more pairs ?

We had $G = (f_1, f_2, f_3, f_4)$ with

 $\mathsf{LM}(f_1) = x_1^3, \mathsf{LM}(f_2) = x_1^2 x_2, \mathsf{LM}(f_3) = x_1^2, \mathsf{LM}(f_4) = x_1 x_2, \mathsf{LM}(f_5) = x_2^2$

- (f₃, f₄) reduces to 0 and we know that (f₃, f₅) will reduce to 0.
 → (f₄, f₅) will reduce to 0 (look at the LM's).
- The pair (f_3, f_5) can be discarded (but not too early);
- Can you discard more pairs ?

Gebauer/Möller'88

Improved Buchberger

• $\boldsymbol{f} = (f_1, \ldots, f_s)$ in R

• \prec an admissible monomial order over *R* OUTPUT: The reduced Gröbner basis for $(\langle f \rangle, \prec)$.

- 1. $G \leftarrow f$ and $m \leftarrow s$ 2. $\mathscr{P} \leftarrow \emptyset$ 3. while $f \neq \emptyset$ 3.1 Choose $f \in f, f \setminus \{f\}$ 3.2 $(G, \mathscr{P}) \leftarrow \mathsf{UPDATE}(f, G, \mathscr{P}, \prec)$ 4. while $\mathscr{P} \neq \emptyset$ 4.1 select (f, g) from \mathscr{P} and $\mathscr{P} \leftarrow \mathscr{P} \setminus \{(f, g)\}$ 4.2 $f_{m+1} \leftarrow \mathsf{FULLREDUCTION}(\mathsf{spol}_{\prec}(f, g), G, \prec)$ 4.3 if $f_{m+1} \neq 0$ then
 - $m \leftarrow m + 1$
 - $(G, \mathscr{P}) \leftarrow \mathsf{Update}(f_m, G, \mathscr{P}, \prec)$
- 5. return ReduceBasis (G, \prec)

- 1. $\mathscr{P}_1 \leftarrow \{(f,g) \mid g \in G\}$
- 2. $\mathscr{P}_2 \leftarrow \emptyset$ and $\mathscr{P}_2 \leftarrow \emptyset$
- 3. while $\mathscr{P}_1 \neq \emptyset$
 - 3.1 select (f,g) from \mathscr{P}_1 and $\mathscr{P}_1 \leftarrow \mathscr{P}_1 \setminus \{(f,g)\}$
 - 3.2 if Criterion1(f, g) or NOT(Criterion2 $(f, g, \mathscr{P}_1 \cup \mathscr{P}_2))$
 - 3.3 3.3.1

3.3.2

Change of orderings

The FGLM algorithm