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ABSTRACT: In this paper a new approach to the synthesis of coupling matrices for micro-

wave filters is presented. The new approach represents an advance on existing direct and

optimization methods for coupling matrix synthesis, in that it will exhaustively discover all

possible coupling matrix solutions for a network if more than one exists. This enables a

selection to be made of the set of coupling values, resonator frequency offsets, parasitic cou-

pling tolerance, etc. that will be best suited to the technology it is intended to realize the

microwave filter with. To demonstrate the use of the method, the case of the recently intro-

duced ‘‘extended box’’ coupling matrix configuration is taken. The extended box is a new

class of filter configuration adapted to the synthesis of asymmetric filtering characteristics

of any degree. For this configuration the number of solutions to the coupling matrix synthe-

sis problem appears to be high and offers therefore some flexibility that can be used during

the design phase. We illustrate this by carrying out the synthesis process of two asymmetric

filters of 8th and 10th degree. In the first example a ranking criterion is defined in anticipa-

tion of a dual mode realization and allows the selection of a ‘‘best’’ coupling matrix out of

16 possible ones. For the 10th degree filter a new technique of approximate synthesis is pre-

sented, yielding some simplifications of the practical realization of the filter as well as of its

computer aided tuning phase. VVC 2006 Wiley Periodicals, Inc. Int J RF and Microwave CAE 17: 4–12,

2007.

Keywords: coupling matrix; filter synthesis; bandpass filter; Groebner basis; inverted characteris-

tic; multiple solutions

I. INTRODUCTION

In Ref. 1, a synthesis method for the ‘‘Box Section’’

configuration for microwave filters is introduced.

Box sections are able to realize a single transmission

zero (TZ) each and have an important advantage that

no ‘‘diagonal’’ inter-resonator couplings are required

to realize the asymmetric zero, as would the equiva-

lent trisection. Also the frequency characteristics are

reversible by retuning the resonators alone [2],

retaining the same values and topology of the inter-

resonator couplings.

The first feature leads to particularly simple cou-

pling topologies, and is suitable for realization in the

very compact waveguide or dielectric dual-mode res-
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onator cavity, while the ability to reverse the charac-

teristics by retuning makes the box-filter useful for

diplexer applications, the same structure being usable

for the complementary characteristics of the two

channel filters.

Ref. 1 continued on to introduce the extended box

configuration for filter degrees N > 4, able to realize

a maximum of (N � 2)/2 (N even) or (N � 3)/2 (N
odd) symmetric or asymmetric TZs. Figure 1 gives

extended box networks of even degree 4 (basic box

section), 6, 8, and 10, showing the particularly simple

ladder network form of the extended box configura-

tion. In each case, the input and output are from op-

posite corners of the ladder network. The extended

box network also retains the property of giving lat-

eral inversion of the frequency characteristics by

retuning of the resonators alone.

The prototype coupling matrix for the extended

box network may be easily synthesized in the

folded or ‘‘arrow’’ forms. However, it appears that

there is no simple closed form equation or proce-

dure that may be used to transform the folded or

arrow coupling matrix to the extended box form. In

Ref. 1 a method is described which is essentially

the reverse of the general sequence that reduces

any coupling matrix to the folded form, for which

a regular sequence of rotation pivots and angles

does exist. Using this method means that some of

the rotation angles cannot be determined by calcu-

lation from the pretransform coupling matrix (as

can be done from the ‘‘forward’’ method) and so

they have to be determined by optimization. Other

methods (e.g. [3, 4]) are also known to produce a

solution.

Although most target coupling matrix configura-

tions (eg propagating in-line) have one or two unique

solutions, the extended box configuration is distinct

in having multiple solutions, all returning exactly the

same performance characteristics under analysis as

the original prototype folded or arrow configuration.

The solutions converged upon by existing optimiza-

tion methods tend to be dependent upon the starting

values given to the coupling values or rotation

angles, and it can never be guaranteed that all possi-

ble solutions have been found. In Ref. 2 an approach

based on computer algebra was outlined that allows

to compute all the solutions for a given coupling ma-

trix topology, including those with complex values

(which of course are discarded from the solutions

considered for the realization of the hardware). In

this paper we detail the latter procedure as well as a

modification in the choice of the set of algebraic

equations to solve that leads to an important

improvement of the algorithm’s efficiency in prac-

tice.

Having a range of solutions enables a choice to be

made of the coupling value set most suited to the

technology it is intended to realize the filter with.

Considerations influencing the choice include ease of

the design of the coupling elements, minimization of

parasitic couplings, or resonator frequency offsets.

Some of the coupling matrix solutions may contain

coupling elements with values small enough to be

ignored without damage to the overall electrical per-

formance of the filter, and so simplifying the manu-

facture and tuning processes.

In the following section we describe the multi-

solution synthesis method, applicable to the extended

box network and others that support multiple solu-

tions. Finally we apply our procedure to the synthesis

of filtering characteristics of degree 8 and 10. We

demonstrate how the ability to choose among several

coupling matrices simplifies the practical realization

of the filter in dual-mode waveguide or dielectric res-

onator cavities. In particular an approximate synthe-

sis technique based on a post-processing optimiza-

tion step is presented and improves the approach in

Ref. 2.

Figure 1. Coupling and routing diagrams for extended

box section networks: (a) 4th degree (basic box section),

(b) 6th degree, (c) 8th degree, and (d) 10th degree.
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II. GENERAL FRAMEWORK FOR THE
COUPLING MATRIX SYNTHESIS
PROBLEM

In this section we work with a fixed coupling topol-

ogy, that is we are given a set of independent non-

zero couplings associated to a low pass prototype of

some filter with N resonators. Starting with numerical

values for the couplings (coupling matrix M) and the

input/output (i/o) loads (R1, R2) one can easily com-

pute the admittance matrix using following formula:

YðsÞ ¼ CðsI � jMÞ�1Ct ¼
X1
k¼0

CjkMkCt

skþ1
ð1Þ

with

C ¼
ffiffiffiffiffi
R1

p
. . . 0 . . . 0

0 . . . 0 . . .
ffiffiffiffiffiffi
RN

p
� �

The coupling matrix synthesis problem is actually

about inverting the latter procedure: given an admit-

tance matrix we want to find values for the i/o loads

and couplings that realize it. To formalize this we

give a name to the mapping that builds the admit-

tance matrix from the free electrical parameters and

we define

T : p ¼ ð ffiffiffiffiffi
R1

p
;

ffiffiffiffiffiffi
RN

p
. . .Mi;jÞ !
ðCCt; . . .CMkCt; . . .CM2N�1CtÞ

The above definition is justified by the fact that the

admittance matrix is entirely determined by the first

2N coefficients of its power expansion at infinity [5].

Now suppose that each of the electrical parameters

move around in the complex plane: what about the

corresponding set of admittance matrices? The latter

can be identified with the image by T of Cr (C is here

the field of complex numbers) where r is the number

of free electrical parameters. We call this set V (¼T(Cr))

and refer to it as the set of admissible admittance mat-

rices with respect to the coupling topology.

In this setting the coupling matrix synthesis prob-

lem is the following: given an element w in V com-

pute the solution set of

TðpÞ ¼ w ð2Þ

Now from the definition of T it follows that eq. (2) is

a nonlinear polynomial system with r unknowns,

namely, the square roots of the i/o loads and the free

couplings of the topology. From the polynomial

structure of the latter system we can deduce follow-

ing mathematical properties (we will take them here

for granted):

� Equation (2) has a finite number of solutions

for all generic w in V (generic means for

almost all w in V) if and only if the differen-

tial of T is generically of rank r. In this case

we will say that the coupling topology is non-

redundant.

� The number of complex solutions of the eq. (2)

is generically constant with regard to w in V.
Because of the sign symmetries this number is a

multiple of 2N and can therefore be written as

m2N. The number m is the number of complex

solutions up to sign symmetries and we will call

it the ‘‘reduced order’’ of the coupling geometry.

Remarks: The nonredundancy property ensures

that a coupling geometry is not over-parameterized,

which would yield a continuum of solutions to our

synthesis problem. We illustrate this with the 6th

degree topology of Figure 2.

� If no diagonal couplings are present (as suggested

by the gray dots in Fig. 2), the topology is redun-

dant, i.e. the synthesis problem admits an infinite

number of solutions.

� If, for example, the coupling (1,4) is removed,

the topology becomes nonredundant and is

adapted to a 6-2 symmetric filtering character-

istic. In this case the resulting coupling topol-

ogy is the so called arrow form for which the

coupling matrix synthesis problem is known to

have only one solution. The reduced order of

the latter topology is therefore 1.

� Finally, if diagonal couplings are allowed, the

topology becomes nonredundant, and is

actually the 6th degree extended box topology

of Figure 1 and is adapted to a 6-2 asymmetric

filtering characteristic. We will see in the fol-

lowing section that its reduced order is 8.

The use of the adjective ‘‘generic’’ in the latter

statements is necessary for their mathematical cor-

Figure 2. Redundant topology.
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rectness. In fact properties concerning parameterized

algebraic systems are often true for all possible val-

ues of the parameters but an exceptional set. An

example of this is given by following polynomial:

pðxÞ ¼ ax2 þ 1:

The latter polynomial has two distinct roots for

almost all complex values of the parameter a: the

exceptional parameter set where the latter property

does not hold is characterized by the equation a ¼ 0

and is very ‘‘thin’’ (or non-generic) as a subset of the

complex plan.

The constructive nature of our framework for the

synthesis problem depends strongly on our ability to

invert numerically the mapping T, i.e. compute the

solution set of eq. (2). In the next section we briefly

explain how this can be done using Groebner basis

computations.

III. GROEBNER BASIS

As an example of the use of Groebner basis, suppose

we are given the following system:

x2 þ 2xyþ 1 ¼ 0 ðaÞ
x2 þ 3xyþ yþ 1 ¼ 0 ðbÞ

�

By combining equations we get the following poly-

nomial consequences:

ðbÞ � ðaÞ: xyþ yþ 1 ¼ 0 ðcÞ
ðcÞx� ðbÞy: 3xy2 � yx� xþ y2 þ 2y ¼ 0 ðdÞ
ðdÞ � ðcÞy: �yx� x� 2y2 � y ¼ 0 ðeÞ
ðeÞ þ ðcÞ: �x� 2y2 þ 1 ¼ 0 ðfÞ
ðfÞyþ ðcÞ: �2y3 þ 2yþ 1 ¼ 0 ðgÞ

Note that eq. (g) is a univariate polynomial in the

unknown y. Solving the latter numerically yields the

following 3-digit approximations for y: {–0.56 þ
0.25j, �0.56 �0.25j, 1.19} and from eq. (f) we get

the corresponding values for x ¼ {0.42 �0.61j,
0.42 þ 0.61j, �1.84}. Now we can verify that the lat-

ter three pairs of values for (x,y) are also solutions of

eqs. (a) and (b) and therefore the only three solutions

of our original system. Equations (f) and (g) are what

is called a Groebner basis [6] of our original system

and allows us to reduce the resolution of a multivari-

ate polynomial system to the one of a polynomial in

a single unknown.

The technique that we have presented is a simple

example is called ‘‘elimination’’ and can be thought

as the nonlinear version of the classical Gaussian

elimination technique for linear systems. The fact

that the process of variables elimination by means of

combinations of equations always ends up with a poly-

nomial in a single variable is equivalent to the prop-

erty that the original system has only isolated solu-

tions [7]. In the case of our synthesis problem this is

ensured by the nonredundancy of the considered cou-

pling topology.

In practice, computing a Groebner basis can be

computationally very costly: the number of necessary

combinations of equations can be very large and

strongly grows with the total number of variables of

the system. Therefore, the use of specialized algo-

rithms and their effective software implementation is

strongly recommended. In this work we have used

the tool Fgb [8].

Table I summarizes the reduced order and the

number of real solutions observed for a particular fil-

tering characteristic for each of the extended box net-

works of Figure 1. The synthesis method is not lim-

ited to the case of extended box topologies: Table I

also mentions the case of a 10th degree topology (see

Fig. 3) adapted to 10-8 symmetric characteristics.

TABLE I. Reduced Order and Observed Number of

Real Solutions

Topology

Max. No.

of TZs

Reduced

Order

Observed

No. of Real

Solutions

Figure 1(a) 1 2 2

Figure 1(b) 2 8 6

Figure 1(c) 3 48 16

Figure 1(d) 4 384 36, 58

Figure 3 8 3 1

Figure 3. Coupling topology adapted to 10-8 symmetric

characteristics.

Figure 4. Academic example of a 5th degree coupling

topology adapted to 5-2 asymmetric characteristics.

Coupling Matrix Synthesis Problem Application 7
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The reduced order of the latter is equal to 3 and is

therefore much smaller than the reduced order of 384

of its 10th degree extended box analogue. This is

something we observed empirically by testing our

method on various networks: topologies adapted to

asymmetric characteristics seem to have a much

higher reduced order than those adapted to symmet-

ric ones.

Although the reduced order depends only on the

coupling geometry, the number of real solutions

depends on the prototype characteristic the network

is realizing (position of TZs, return loss, etc. . .) and
is, by definition, bounded from above by the reduced

order. One can even construct some coupling topolo-

gies and some filtering characteristics for which the

synthesis problem admits only complex solutions. An

academic example of this is given by the topology of

Figure 4 and the filtering characteristic, the canonical

coupling matrix in arrow form of which is given on

Figure 5. In this latter case the reduced order of the

coupling topology is 2 but both solutions to the syn-

thesis problem are complex and equal to the matrix

of Figure 6 and to its conjugate.

IV. PRACTICAL IMPLEMENTATION
OF THE SYNTHESIS PROCEDURE
AND EXAMPLES

A. 8th Degree Extended Box Filter

As an application we will consider the synthesis of

an 8th degree filter in extended box configuration

(see Fig. 1c). Using a computer algebra system (e.g.

Maple), we check that this topology is nonredundant

and from the application of the minimum path rule

we conclude that the set of admissible admittances

consists of rational reciprocal matrices of degree 8

with at most 3 TZs. Using classical quasi-elliptic

synthesis techniques an 8th degree filtering character-

istic is designed with a 23 dB return loss and three

prescribed TZs, producing one rejection lobe level of

40 dB on the lower side and two at 40 dB on the

upper side (see Fig. 7a).

Now computing the 2N first terms of the power

expansion of the admittance matrix yields the left

hand term of eq. (2) which in turn could be solved

using Groebner basis computations. At this point it is

important to mention that the complexity of the

Groebner basis computations of a system increases

with its total number of complex solutions. The natu-

ral sign symmetries of the system derived from

Figure 5. Canonical coupling matrix in arrow form of a

5-2 filtering function, admitting only complex coupling

matrices when using the topology of Figure 4.

Figure 6. Complex solution to the synthesis problem

with coupling topology of Figure 4 and coupling matrix

in canonical arrow form of Figure 5.

Figure 7. (a) Original and (b) inverted rejection and

return loss performance of an 8-3 asymmetric characteris-

tic in extended box configuration.

Figure 8. ‘‘N � N’’ coupling matrices for an 8-3 asym-

metric prototype: (a) extended box configuration, (b) ‘‘cul-

de-sac’’ configuration. R1 ¼ RN ¼ 1.0878.
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eq. (2) tend to artificially increase the latter (total

number of solutions ¼ m2N) and may dramatically

increase the computation time of the corresponding

Groebner basis. Before continuing on with the syn-

thesis we therefore explain how a rewriting of eq. (2)

allows us to get rid of these unwanted sign symme-

tries.

An alternative to eq. (2) to invert the mapping T is

to use an algebraic version of the approach presented

in Ref. 9 that is based on similarity transforms. If M
is a coupling matrix in canonical form realizing the

admittance matrix, then eq. (2) is ‘‘equivalent’’ to the

following matrix equation where the unknown is a

similarity transform P.

P ¼
1 . . . 0 . . . 0

..

.
H ..

.

0 . . . 0 . . . 1

0
B@

1
CA ðaÞ

HtH ¼ Id ðbÞ
8ði; jÞ 2 I ðPtMPÞi;j ¼ 0 ðcÞ

ð3Þ

In the latter, I is the set of indices corresponding to

the couplings that must be zero in the target topology

(in our example I ¼ {[(1,3), (1,5), (1,6). . . . . . .}). If P
is a solution of eq. (3); it is readily seen that all the

similarity transforms that are obtained from P by

inverting some of the columns vectors of the subma-

trix H are also solutions of eq. (3). To break these

symmetries the ‘‘trick’’ is to slightly modify eq. (3b).

We denote by hi the ith column vector of H. Some of

the equations of eq. (3b) indicate that the vectors hi
are unitary with regard to the Euclidean norm. We

replace these normalizing equations by

utihi ¼ 1 ð4Þ

where ui is a randomly-chosen vector. We call eq.

(30) the resulting system. It can be verified that for a

generic choice of the ui’s, all the solutions of eq. (3)

that are equivalent up to sign changes of their column

vectors correspond to a single solution of eq. (30).
More precisely to every set of solutions of eq. (3) of

the form

H ¼ ð6h1;6h2 � � �6hi � � �Þ ð5Þ

there corresponds a unique solution G ¼ (g1� � �gi� � �)
of eq. (30) where the column vectors gi are given by

Figure 9. 10-2-2 asymmetric characteristic: (a) rejection and return loss (b) group delay.

Figure 10. Coupling matrix of the 10-2-2 characteristic of Figure 9 with the extended box to-

pology and a ‘‘small’’ M45 coupling, R1 ¼ RN ¼ 1.04326.

Coupling Matrix Synthesis Problem Application 9
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gi ¼ hi
utihi

ð6Þ

With regard to the Groebner basis computation sys-

tem, eq. (30) has shown to be much more tractable

than the algebraic system derived from eq. (2).

Getting back to our 8th degree example, we com-

pute M the associated coupling matrix in arrow form

and set up eq. (30). The latter is an algebraic system

of linear and quadratic equations in the entries of H.
The computation of its Groebner basis leads to the

following result:

� The reduced order of the topology is 48.

� For this particular filtering characteristic, 16 of

the 48 solutions are real-valued.

Only the real solutions have a physical interpreta-

tion and are therefore of practical interest.

The criterion used to choose the best coupling ma-

trix out of the 16 realizable ones will depend on the

hardware implementation of the filter. Having in

mind a realization with dual mode cavities, we

choose to select solutions where the asymmetry

between the two ‘‘arms’’ of each cross-iris is maxi-

mized in order to minimize parasitic couplings. The

best ratios between couplings of the relevant pairs

(M14, M23), (M36, M45), and (M57, M68) are found for

the solution shown in Figure 8a, where each cross-

iris has one of its coupling values at least five times

larger than the other one.

Figure 8b illustrates that sometimes solutions

emerge which have very small values for certain cou-

plings (M12 and M78 in this case), which may be

safely omitted for the implementation without damag-

ing the final response of the network. In this case a

quasi cul-de-sac network is produced, similar to the

8-3 example given in Ref. 1. In fact one can show that

with some renumbering, the cul-de-sac network of

Ref. 1 is a sub-topology of the extended box where

the couplingsM12 andM78 are set to zero. The cul-de-

sac topology is more restrictive than the extended box

one in the sense that it is only adapted for the synthe-

sis of auto-reciprocal characteristics, such that S11 ¼
S22 holds. However, our current filtering characteris-

tic is, up to numerical errors, auto-reciprocal and this

explains why in this example a quasi cul-de-sac net-

work is found among all possible coupling matrices.

Finally it is shown that only the resonators need to

be retuned in order to obtain an inverted characteris-

tic. Figure 7b shows the rejection and return loss

obtained from the coupling matrices of Figure 8

when the signs of their diagonal elements Mi,i are

changed (see Ref. 4 for details).

B. 10th Degree Extended Box Filter and
Approximate Synthesis Technique

We consider the synthesis of a 10th degree filter in

the extended box topology of Figure 1d. Using our

procedure we check that this topology is nonredun-

dant and that it is adapted to asymmetric characteris-

tics with up to 4 TZs. A filtering characteristics

is designed with a 23 dB return loss, 2 TZs at

þj1.10929 and þj1.19518 to give two 50 dB rejec-

tion lobes on the upper side and 2 more complex

zeros at 60.75877 � j0.13761 for group delay equal-

ization purposes (see Fig. 9).

The corresponding coupling matrix in arrow form

is determined and the computation of a Groebner ba-

sis of system (2) yields the following:

� The reduced order of the topology is 384.

� For our specific filtering characteristic 36 real

and therefore realizable solutions are found.

Figure 11. Coupling matrix of the 10-2-2 characteristic of Figure 9 with a simplified topology,

(i.e. M45 ¼ 0), R1 ¼ 1.0969, RN ¼ 1.0963.

Figure 12. Simplified 10th degree topology.
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When realized with dual mode cavities this topol-

ogy requires four cross- irises. Our aim is to demon-

strate how our exhaustive approach may allow the

‘‘replacement’’ of a cross-iris by an iris with a single

arm as well as to simplify the future computer-aided

tuning process of the filter.

Among all the possible coupling matrices the

one with the smallest coupling corresponding to an

iris is selected, which leads to the matrix of Figure

10 where M45 is equal to �0.001. Setting M45 to

zero yields a small but undesirable variation of the

return loss as well as of the upper-band rejection

lobes. The remaining couplings are therefore re-

tuned, thanks to an optimization step that minimizes

the discrepancy between the original response and

the one obtained by imposing that M45 be zero

(see Fig. 11 for the resulting coupling matrix). A

quasi perfect fit is obtained between the two

responses: the least square error between the two

return losses on the normalized broadband [�3,3]

equals 8.83 � 10�5 (on the Bode plot there is visu-

ally no difference).

Finally the simplified coupling topology of Figure

12 is considered as a new topology in its own right.

Using our procedure its reduced order is found to be

equal to 2 and a second equivalent coupling matrix

with the same coupling topology is computed (see

Fig. 13). With regard to the ‘‘iris asymmetry crite-

rion’’ of the last section the latter matrix is the best

one.

Note that besides the removal of a cross-iris we

have also lowered the reduced order of our target to-

pology from 384 to 2. This is important if one wants

to use a computer-aided tuning process [10] that typi-

cally identifies a coupling matrix from measured

data. In the cases of topologies with multiple solu-

tions, such a tool will return a set of equivalent cou-

pling matrices and leave to the user the ‘‘expert’’ task

of choosing the ‘‘right’’ one. This can be done by

using some extra information concerning the physical

device, like for example an a priori estimation of the

coupling value realizable by some irises. Neverthe-

less, the latter task is of course much easier to carry

out with a short list of equivalent coupling matrices

than with a huge one.

V. CONCLUSION

In this paper, a new method for the synthesis of the

full range of coupling matrices for networks that sup-

port multiple solutions is presented. This procedure

yields an exhaustive list of all the solutions to the

synthesis problem. Based on the latter, an approxi-

mate synthesis technique is derived which allows the

reduction of the constructional complexity of high-

degree asymmetric filters in dual-mode technologies.

In addition it has been shown that a knowledge of

which solutions are possible is important when

reconstructing the coupling matrix from measured

data, during development or computer-aided tuning

(CAT) processes.

A software called Dedale-HF and dedicated to the

presented exhaustive synthesis technique has recently

been released and is accessible under: http://www.

sop.inria.fr/apics/Dedale
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