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Preface

The two fields of Geometric Modeling and Algebraic Geometry, though closely related,
are traditionally represented by two almost disjoint scientific communities. Both fields
deal with objects defined by algebraic equations, but the objects are studied in differ-
ent ways. While algebraic geometry has developed impressive results for understanding
the theoretical nature of these objects, geometric modeling focuses on practical appli-
cations of virtual shapes defined by algebraic equations. Recently, however, interaction
between the two fields has stimulated new research. For instance, algorithms for solving
intersection problems have benefited from contributions from the algebraic side.

The workshop series on Algebraic Geometry and Geometric Modeling (Vilnius
20021, Nice 20042) and on Computational Methods for Algebraic Spline Surfaces (Ke-
fermarkt 20033, Oslo 2005) have provided a forum for the interaction between the two
fields.

The present volume presents papers from the 2005 Compass workshop, which was
aligned with the final review of the European project GAIA II, entitled Intersection
algorithms for geometry based IT-applications using approximate algebraic methods
(IST 2001-35512)4.

In his invited survey paper, Dokken describes the background, the methods, the
results and the achievements of the GAIA project on intersection and implicitization.
This project aimed at combining knowledge from Computer Aided Geometric Design,
classical algebraic geometry and real symbolic computing to improve intersection al-
gorithms for Computer Aided Design systems. It has produced more than 50 scientific
publications and several software toolkits, which are now partly available under the
GNU GPL license.

The remaining contributions to this volume can roughly be organized in two groups,
which also correspond to the two main activities within the GAIA project. On the one
hand, about half of the papers are devoted to the classification of special algebraic sur-
faces, with particular emphasis on intersections and singularities. On the other hand,
several authors report on algorithms for geometric computing – which rely on results
from real algebraic geometry – for solving problems such as surface–surface intersec-
tion, parameterization, etc.

The first group of contributions consists of the following:
Aries, Briand and Brochou analyze some covariants related to Steiner surfaces,

which are the generic case of a quadratically parameterizable quartic surface, frequently
used in geometric modeling. More precisely, they exhibit a collection of covariants as-
sociated to projective quadratic parameterizations of surfaces with respect to the actions
of linear reparameterizations and linear transformations of the target space. Along with

1 R. Goldman and R. Krasauskas, Topics in Algebraic Geometry and Geometric Modeling, Con-
temporary Mathematics, American Mathematical Society 2003.

2 M. Elkadi, B. Mourrain and R. Piene, Algebraic Geometry and Geometric Modeling, Springer
2006.

3 T. Dokken and B. Jüttler, Computational Methods for Algebraic Spline Surfaces, Springer
2005.

4 http://www.sintef.no/IST GAIA
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the covariants, the authors provide simple geometric interpretations. The results are
then used to generate explicit equations and inequalities defining the orbits of projec-
tive quadratic parameterizations of quartic surfaces.

Johansen, Løberg and Piene study properties of monoid hypersurfaces – irreducible
hypersurfaces of degree d with a singular point of multiplicity d − 1. Due to the avail-
ability of a rational parameterization, these surfaces are of potential interest in computer
aided geometric design. The main results include a description of the possible real forms
of the singularities on a monoid surface other than the (d−1)-uple point. The results are
applied to the classification of singularities on quartic monoid surfaces, complementing
earlier work on the subject.

Another paper, authored by Breske, Labs and van Straten, is devoted to real line
arrangements and surfaces with many real nodes. It is shown that Chmutov’s construc-
tion for surfaces with many singularities can be modified so as to give surfaces with
only real singularities. The results show that all known lower bounds for the number of
nodes can be attained with only real singularities. The paper concludes with an appli-
cation of the theory of real line arrangements which shows that the arrangements used
in the paper are asymptotically the best possible ones for the purpose of constructing
surfaces with many nodes. This proves a special case of a conjecture of Chmutov.

In their paper, Krasauskas and Zube discuss canal surfaces which are generated
as the envelopes of quadratic families of spheres. These surfaces generalize the class
of Dupin cyclides, but they are more flexible as blending surfaces between natural
quadrics. The authors provide a classification from the point of view of Laguerre ge-
ometry and study rational parameterizations of minimal degree, Bézier representations,
and implicit equations.

Lê and Galligo present the classification of surfaces of bidegree (1,2) over the field
of complex numbers. In particular, the authors study the loci defining self-intersections
and singular points in the parameter domain of the surface.

On the other hand, the following papers can be associated with the scond group,
which is devoted to algorithmic aspects:

Beck and Schicho discuss the parameterization of planar rational curves over op-
timal field extensions, by exploiting the Newton polygon. Their method generates a
parameterization in a field extension of degree one or two.

Ridges and umbilics of surfaces are among the objects studied in classical differen-
tial geometry, and they are of some interest for characterizing and analyzing the shape of
a surface. In the case of polynomial parametric surfaces, these special curves are stud-
ied in the paper by Cazals et al. In particular, the authors describe an algorithm which
generates a certified approximation of the ridges. In order to illustrate the efficiency, the
authors report on experiments where the algorithm is applied to Bézier surface patches.

Chau et al. report on several symbolic-numeric techniques for analyzing and com-
puting the intersections and self-intersections of biquadratic tensor product Bézier sur-
face patches. In particular, they explore how far one can go by solely using techniques
from symbolic computing, in order to avoid potential robustness problems.

Cube decompositions by eigenvectors of quadratic multivariate splines are analyzed
by Ivrissimtzis and Seidel. The results are related to subdivision algorithms, such as the
tensor extension of the Doo–Sabin subdivision scheme.
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A subdivision method for analyzing the topology of implicitly defined curves in
two – and three – dimensional space are studied by Liang, Mourrain and Pavone. The
method produces a graph which is isotopic to the curve. The authors also report on
implementation aspects and on experiments with planar curves, such as ridge curves or
self intersection curves of parameterized surfaces, and on silhouette curves of implicitly
defined surfaces.

The final paper of this volume, by Shalaby and Jüttler, describes techniques for
the approximate implicitization of space curves and of surfaces of revolution. Both
problems can be reduced to the planar situation. Special attention is paid to the problem
of unwanted branches and singular points in the region of interest.

The editors are indebted to the reviewers of these proceedings, whose comments
have helped greatly to identify the manuscripts suitable for publication, and for im-
proving many of them substantially. Special thanks go to Ms. Bayer for compiling the
LATEX sources into a single coherent manuscript.

Oslo and Linz, Bert Jüttler
October 2006 Ragni Piene
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Frédéric Cazals†, Jean-Charles Faugére�, Marc Pouget�, and Fabrice Rouillier†

†INRIA Sophia-Antipolis, Geometrica project,
2004 route des Lucioles, BP 93,

F-06902 Sophia-Antipolis, FRANCE.
Frederic.Cazals@sophia.inria.fr

Marc.Pouget@gmail.com
�INRIA Rocquencourt and

Universit Pierre et Marie Curie-Paris6, UMR 7606, LIP6, Salsa project,
Domaine de Voluceau, BP 105,

F-78153 Le Chesnay Cedex, FRANCE.
Jean-Charles.Faugere@inria.fr
Fabrice.Rouillier@inria.fr

Abstract. Given a smooth surface, a blue (red) ridge is a curve such that at each
of its point, the maximum (minimum) principal curvature has an extremum along
its curvature line. As curves of extremal curvature, ridges are relevant in a number
of applications including surface segmentation, analysis, registration, matching.
In spite of these interests, given a smooth surface, no algorithm reporting a cer-
tified approximation of its ridges was known so far, even for restricted classes of
generic surfaces.
This paper partly fills this gap by developing the first algorithm for polynomial
parametric surfaces —a class of surfaces ubiquitous in CAGD. The algorithm
consists of two stages. First, a polynomial bivariate implicit characterization of
ridges P = 0 is computed using an implicitization theorem for ridges of a para-
metric surface. Second, the singular structure of P = 0 is exploited, and the
approximation problem is reduced to solving zero dimensional systems using
Rational Univariate Representations. An experimental section illustrates the effi-
ciency of the algorithm on Bézier patches.

1 Introduction

1.1 Ridges

Originating with the parabolic lines drawn by Felix Klein on the Apollo of Belvedere
[10], curves on surfaces have been a natural way to apprehend the aesthetics of shapes
[12]. Aside these artistic concerns, applications such as surface segmentation, analy-
sis, registration or matching [11, 16] are concerned with the curves of extremal curva-
ture of a surface, which are its so-called ridges. (We note in passing that interestingly,
(selected) ridges are also central in the analysis of Delaunay based surface meshing
algorithms [1].)

A comprehensive literature on ridges exists –see [11, 17, 18], and we just intro-
duce the basic notions so as to discuss our contributions. Consider a smooth embedded
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surface whose principal curvatures are denoted k1 and k2 with k1 ≥ k2. Away from
umbilical points —where k1 = k2, principal directions of curvature are well defined,
and we denote them d1 and d2. In local coordinates, we denote 〈, 〉 the inner product in-
duced by the ambient Euclidean space, and the gradients of the principal curvatures are
denoted dk1 and dk2. Ridges can be defined as follows —see Fig. 1 for an illustration :

Definition 1. A non umbilical point is called

– a blue ridge point if the extremality coefficient b0 = 〈dk1, d1〉 vanishes, i.e. b0 = 0.

– a red ridge point if the extremality coefficient b3 = 〈dk2, d2〉 vanishes, i.e. b3 = 0.

As the principal curvatures are not differentiable at umbilics, note that the extremality
coefficients are not defined at such points. Notice also the sign of the extremality coef-
ficients is not defined, as each principal direction can be oriented by two opposite unit
vectors. Apart from umbilics, special points on ridges are purple points –they actually
correspond to intersections between red and a blue ridges. The calculation of ridges
poses difficulties of three kinds.

Topological difficulties. Ridges of a smooth surface feature self-intersections at um-
bilics —more precisely at so-called 3-ridges umbilics— and purple points. From a
topological viewpoint, reporting a certified approximation of ridges therefore requires
reporting these singular points.

Numerical difficulties. As ridges are characterized by derivatives of principal curva-
tures, reporting them requires evaluating third order differential quantities. Estimating
such derivatives depends upon the particular type of surface processed —implicitly de-
fined, parameterized, discretized by a mesh, but is numerically a demanding task.

Orientation difficulties. As observed above, the signs of the b0 and b3 depend upon the
particular orientations of the principal directions picked. But as a global coherent non
vanishing orientation of the principal directions cannot be found in the neighborhoods
of umbilics, tracking the zero crossings of b0 and b3 faces a major difficulty. For the
particular case of surfaces represented by meshes, the so-called Acute rule can be used
[4], but computing meshes compliant with the requirements imposed by the acute rule is
an open problem. For surfaces represented implicitly or parametrically, one can resort to
the Gaussian extremality Eg = b0b3, which eradicates the sign problems, but prevents
from reporting the red and blue ridges separately.
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Fig. 1. Umbilics, ridges, and principal blue foliation on the ellipsoid for normals pointing outward

1.2 Previous work

Given the previous difficulties, no algorithm reporting ridges in a certified fashion had
been developed until this work. Most contributions deal with sampled surfaces known
through a mesh, and a complete review of these contributions can be found in [4]. In
the following, we focus on contributions related to parametric surfaces.

Reporting umbilics. Umbilics of a surface are always traversed by ridges, so that re-
porting ridges faithfully requires reporting umbilics. To do so, Morris [13] minimizes
the function k1 − k2, which vanishes exactly at umbilics. Meakawa et al. [15] define a
polynomial system whose roots are the umbilics. This system is solved with the rounded
interval arithmetic projected polyhedron method. This algorithm uses specific proper-
ties of the Bernstein basis of polynomials and interval arithmetic. The domain is re-
cursively subdivided and a set of boxes containing the umbilics is output, but neither
existence nor uniqueness of an umbilic in a box is guaranteed.

Reporting ridges. The only method dedicated to parametric surfaces we are aware of
is that of Morris [13, 14]. The parametric domain is triangulated and zero crossings
are sought on edges. Local orientation of the principal directions are needed but only
provided with a heuristic. This enables to detect crossings assuming (i)there is at most
one such crossing on an edge (ii)the orientation of the principal directions is correct. As
this simple algorithm fails near umbilics, these points are located first and crossings are
found on a circle around the umbilic.

Equation of the ridge curve. Ridges can be characterized either as extrema of princi-
pal curvatures along their curvature lines as in definition 1, or by analyzing the contact
between the surface and spheres [11]. For parametric surfaces, this later approach al-
lows a global characterization of ridges [18, Chapter 11] as a 1 dimensional smooth
sub-manifold in a 7 dimensional space. But this characterization is not amenable to
algorithmic developments.

Shifting from this seven-dimensional space to the parametric space, the theory of
algebraic invariants has been used to derive the equation of the ridge curve as the zero
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set of an invariant function [8]. The ensuing strategy consists of defining invariants
as functions of the fundamental forms and their derivatives. The equation of ridges is
given in this setting. If one further specializes this equation for a surface given by a
parameterization, the result matches, up to a constant factor, our implicit encoding P =
0 [3]. The point of view of our approach is to work from the beginning on a parametrized
surface. The definition of ridges involves principal curvatures and principal directions of
curvature which are independent of the given parametrization, but we explicit all these
invariants wrt the parametrization and its derivatives. Hence, for polynomial parametric
surfaces, we end with a polynomial with integer coefficients whose variables are the
partial derivatives of the parametrization up to the third order. This polynomial is the
same for any other parametrization.

Reporting the topology of an algebraic curve. In the case of a polynomial parametric
surface, we recast the problem of approximating ridges into the field of algebraic ge-
ometry. We recall that the standard tool to compute a graph encoding the topology of a
2-D or 3-D curve is the Cylindrical Algebraic Decomposition (CAD) [7, 9].

1.3 Contributions and paper overview

Let Φ(u, v) be a smooth parameterized surface over a domain D ⊂ R 2. We wish to
report a certified approximation of its ridges, which subsumes a solution for all the
difficulties enumerated in section 1.1.

The first step in providing a certified approximation of the ridges of Φ consists
of computing an implicit equation P = 0 encoding these ridges. The derivation of
this equation is presented in the companion paper [3], which also contains a detailed
discussion of our implicit encoding of ridges wrt previous work.

The equation P = 0 being taken for granted, the contribution developed in this
paper is to exploit as far as possible the geometry of P encoded in P = 0, so as to de-
velop the first algorithm able to compute the ridges topology of a polynomial parametric
surface. Our algorithm avoids the main difficulties of CAD methods: (i) singular and
critical points are sequentially computed directly in 2D; (ii) no generic assumption is
required, i.e. several critical or singular points may have the same horizontal projection;
(iii) no computation with algebraic numbers is involved. Because algorithms based on
the Cylindrical Algebraic Decomposition are not effective for our high degree curves
such as P = 0, our algorithm is to the best of our knowledge the only one able to certify
properties of the curve P = 0.

The paper is organized as follows. The implicit equations for ridges and its singu-
larities are recalled in section 2. The algorithm to compute the topology of the ridge
curve is described in section 3. Section 4 provides illustrations on two Bézier surfaces.

1.4 Notations

Ridges and umbilics. At any non umbilical point of the surface, the maximal (minimal)
principal curvature is denoted k1 (k2), and its associated direction d1 (d2). Anything
related to the maximal (minimal) curvature is qualified blue (red), for example we shall
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speak of the blue curvature for k1 or the red direction for d2. Since we shall make
precise statements about ridges, it should be recalled that, according to definition 1,
umbilics are not ridge points.

Differential calculus. For a bivariate function f(u, v), the partial derivatives are de-

noted with indices, for example fuuv = ∂3f
∂2u∂v . The gradient of f is denoted f1 or df =

(fu, fv). The quadratic form induced by the second derivatives is denoted f 2(u, v) =
fuuu2+2fuvuv+fvvv

2. The discriminant of this form is denoted δ(f2) = f2
uv−fuufvv.

The cubic form induced by the third derivatives in denoted f 3(u, v) = fuuuu3 +
3fuuvu

2v + 3fuvvuv2 + fvvvv3. The discriminant of this form is denoted δ(f3) =
4(fuuufuvv − f2

uuv)(fuuvfvvv − f2
uvv)− (fuuufvvv − fuuvfuvv)2.

Let f be a real bivariate polynomial and F the real algebraic curve defined by f . A
point (u, v) ∈ C2 is called

– a singular point of F if f(u, v) = 0, fu(u, v) = 0 and fv(u, v) = 0;
– a critical point of F if f(u, v) = 0, fu(u, v) = 0 and fv(u, v) �= 0 (such a point

has an horizontal tangent, we call it critical because if one fixes the v coordinate,
then the restricted function is critical wrt the u coordinate, this notion will be useful
in section 3);

– a regular point of F if f(u, v) = 0 and it is neither singular nor critical.

If the domain D of study is a subset of R2, one calls fiber a cross section of this
domain at a given ordinate or abscissa.

Misc. The inner product of two vectors x, y is denoted 〈x, y 〉.

2 Relevant equations for ridges and its singularities

This section briefly recalls the equations defining the ridge curve and its singularities,
see [3]. Let Φ be the parameterization of class C k for k ≥ 4. Denote I and II the
matrices of the first and second fundamental form of the surface in the basis (Φ u, Φv)
of the tangent space. In order for normals and curvatures to be well defined, we assume
the surface is regular i.e. det(I) �= 0.

The principal directions di and principal curvatures k1 ≥ k2 are the eigenvectors
and eigenvalues of the matrix W = I−1II . The following equation defines coefficients
A, B, C and D as polynomials wrt the derivative of the parameterization Φ up to the
second order (

A B
C D

)
= W (det I)3/2. (1)

As a general rule, in the following calculations, we will be interested in deriving quan-
tities which are polynomials wrt the derivatives of the parameterization. These calcu-
lations are based on quantities (principal curvatures and directions) which are indepen-
dent of a given parameterization, hence the derived formula are valid for any parame-
terization.
Umbilics are characterized by the equation p2 = 0, with p2 = (k1 − k2)2(det I)3.
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We then define two vector fields v1 and w1 orienting the principal direction field d1

v1 = (−2B, A−D −√
p2)

w1 = (A−D +
√

p2, 2C).

Derivatives of the principal direction k1 wrt these two vector fields define a, a′, b, b′ by
the equations:

a
√

p2+b =
√

p2(det I)5/2〈 dk1, v1 〉 ; a′√p2+b′ =
√

p2(det I)5/2〈 dk1, w1 〉. (2)

The following definition is a technical tool to state the next theorem in a simple
way. The function Signridge introduced here will be used to classify ridge colors. Es-
sentially, this function describes all the possible sign configurations for ab and a ′b′ at a
ridge point.

Definition 2. The function Signridge takes the values

-1 if

{
ab < 0
a′b′ ≤ 0

or

{
ab ≤ 0
a′b′ < 0

,

+1 if

{
ab > 0
a′b′ ≥ 0

or

{
ab ≥ 0
a′b′ > 0

,

0 if ab = a′b′ = 0.

Theorem 3. The set of blue ridges union the set of red ridges union the set of umbilics
has equation P = 0 where P = (a2p2 − b2)/B is a polynomial wrt A, B, C, D,det I
as well as their first derivatives and hence is a polynomial wrt the derivatives of the
parameterization up to the third order. For a point of this set P , one has:

– If p2 = 0, the point is an umbilic.
– If p2 �= 0 then:

• if Signridge = −1 then the point is a blue ridge point,
• if Signridge = +1 then the point is a red ridge point,
• if Signridge = 0 then the point is a purple point.

In addition, the classification of an umbilic as 1-ridge or 3-ridges from P 3 goes as
follows:

– If P3 is elliptic, that is the discriminant of P3 is positive (δ(P3) > 0), then the
umbilic is a 3-ridge umbilic and the 3 tangent lines to the ridges at the umbilic are
distinct.

– If P3 is hyperbolic (δ(P3) < 0) then the umbilic is a 1-ridge umbilic.

2.1 Polynomial surfaces

A fundamental class of surface used in Computer Aided Geometric Design consists of
polynomial surfaces like Bézier and splines. We first observe that if Φ is a polynomial,
all its derivatives are also polynomials. Thus in the polynomial case the equation of
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ridges, which is a polynomial wrt to these derivatives, is algebraic. Hence the set of
all ridges and umbilics is globally described by an algebraic curve. Notice that the
parameterization can be general, in which case Φ(u, v) = (x(u, v), y(u, v), z(u, v)), or
can be a height function Φ(u, v) = (u, v, z(u, v)).

As a corollary of Thm. 3, one can give upper bounds for the total degree of the
polynomial P wrt that of the parameterization. Distinguishing the cases where Φ is a
general parameterization or a height function (that is Φ(u, v) = (u, v, h(u, v))) with
h(u, v) and denoting d the total degree of Φ, P has total degree 33d− 40 or 15d− 22
for a height function.

In the more general case where the parameterization is given by rational fractions
of polynomials, P is a rational function of the surface parameters too. The denominator
of P codes the points where the surface is not defined and away from these points, the
numerator codes the ridges and umbilics.

3 Certified topological approximation

In this section, we circumvent the difficulties of the Cylindrical Algebraic Decomposi-
tion (CAD) and develop a certified algorithm to compute the topology of P . Consider
a parameterized surface Φ(u, v), the parameterization being polynomial with rational
coefficients. Let P be the curve encoding the ridges of Φ(u, v). We aim at studying P
on the compact box domainD = [a, b]× [c, d].

Given a real algebraic curve, the standard way to approximate it consists of resorting
to the CAD. Running the CAD requires computing singular points and critical points of
the curve —points with a horizontal tangent. Theoretically, these points are defined by
zero-dimensional systems. Practically, because of the high degree of the polynomials
involved, the calculations may not go through. Replacing the bottlenecks of the CAD
by a resolution method adapted to the singular structure of P , we develop an algorithm
producing a graph G embedded in the domain D, which is isotopic to the curve P of
ridges in D. Key points are that:

1. no generic assumption is required, i.e. several critical or singular points may have
the same horizontal projection;

2. no computation with algebraic numbers is involved.

3.1 Algebraic tools

Two algebraic methods are ubiquitously called by our algorithm: univariate root iso-
lation and rational univariate representation. We briefly present these tools and give
references for the interested reader.

Univariate root isolation. This tool enables to isolate roots of univariate polynomi-
als whose coefficients are rational numbers, by means of intervals with rational bounds.
The method uses the Descartes rule and is fully explained in [20].

Rational univariate representation [19]. The Rational Univariate Representation
is, with the end-user point of view, the simplest way for representing symbolically the
roots of a zero-dimensional system without loosing information (multiplicities or real
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roots) since one can get all the information on the roots of the system by solving uni-
variate polynomials.

Given a zero-dimensional system

I =< p1, . . . , ps >

where the pi ∈ Q[X1, . . . , Xn], a Rational Univariate Representation of V(I), has the
following shape:

ft(T ) = 0, X1 =
gt,X1(T )
gt,1(T )

, . . . , Xn =
gt,Xn(T )
gt,1(T )

,

where ft, gt,1, gt,X1 , . . . , gt,Xn ∈ Q[T ] (T is a new variable). It is uniquely defined
w.r.t. a given polynomial t which separates V (I) (injective on V (I)), the polynomial f t

being necessarily the characteristic polynomial of m t in Q[X1, . . . , Xn]/I . The RUR
defines a one-to-one map between the roots of I and those of f t preserving the multi-
plicities and the real roots :

V(I)(∩R) ≈ V(ft)(∩R)
α = (α1, . . . , αn) → t(α)

(gt,X1 (t(α))

gt,1(t(α)) , . . . ,
gt,Xn (t(α))
gt,1(t(α)) ) ← t(α)

The RUR also enables efficient evaluation of the sign of polynomials at the roots of a
system.

3.2 Assumptions on the ridge curve and study points

According to the structure of the singularities of the ridge curve recalled in section 2,
the only assumption made is that the surface admits generic ridges in the sense that real
singularities of P satisfy the following conditions:

– Real singularities of P are of multiplicity at most 3.
– Real singularities of multiplicity 2 are called purple points. They satisfy the system

Sp = {a = b = a′ = b′ = 0, δ(P2) > 0, p2 �= 0}. In addition, this implies that
two real branches of P are passing through a purple point.

– Real singularities of multiplicity 3 are called umbilics and they satisfy the system
Su = {p2 = 0} = {p2 = 0, P = 0, Pu = 0, Pv = 0}. In addition, if δ(P3) denote
the discriminant of the cubic of the third derivatives of P at an umbilic, one has:
• if δ(P3) > 0, then the umbilic is called a 3-ridge umbilic and three real

branches of P are passing through the umbilic with three distinct tangents;
• if δ(P3) < 0, then the umbilic is called a 1-ridge umbilic and one real branch

of P is passing through the umbilic.

As we shall see in section 3.5, these conditions are checked during the processing of
the algorithm.

Given this structure of singular points, the algorithm successively isolate umbil-
ics, purple points and critical points. As a system defining one set of these points also
includes the points of the previous system, we use a localization method to simplify
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the calculations. The points reported at each stage are characterized as roots of a zero-
dimensional system —a system with a finite number of complex solutions, together
with the number of half-branches of the curve connected to each point. In addition,
points on the border of the domain of study need a special care. This setting leads to the
definition of study points:

Definition 4. Study points are points in D which are

– real singularities of P , that is Ss = Su ∪ Sp , with Su = S1R ∪ S3R and
• S1R = {p2 = P = Pu = Pv = 0, δ(P3) < 0}
• S3R = {p2 = P = Pu = Pv = 0, δ(P3) > 0}
• Sp = {a = b = a′ = b′ = 0, δ(P2) > 0, p2 �= 0}

= {a = b = a′ = b′ = 0, δ(P2) > 0} \ Su

– real critical points of P in the v-direction (i.e. points with a horizontal tangent
which are not singularities of P) defined by the system
Sc = {P = Pu = 0, Pv �= 0};

– intersections of P with the left and right sides of the box D satisfying the system
Sb = {P (a, v) = 0, v ∈ [c, d]}∪ {P (b, v) = 0, v ∈ [c, d]}. Such a point may also
be critical or singular.

3.3 Output specification

Definition 5. Let G be a graph whose vertices are points of D and edges are non-
intersecting straight line-segments between vertices. Let the topology on G be induced
by that of D. We say that G is a topological approximation of the ridge curve P on the
domainD if G is ambient isotopic to P ∩ D in D.

More formally, there exists a function F : D × [0, 1] −→ D such that:

– F is continuous;
– ∀t ∈ [0, 1], Ft = F (., t) is an homeomorphism of D onto itself;
– F0 = IdD and F1(P ∩ D) = G.

Note that homeomorphic approximation is weaker and our algorithm actually gives
isotopy. In addition, our construction allows to identify singularities of P to a subset of
vertices of G while controlling the error on the geometric positions. We can also color
edges of G with the color of the ridge curve it is isotopic to. Once this topological sketch
is given, one can easily compute a more accurate geometrical picture.

3.4 Method outline

Taking the square free part of P , we can assume P is square free. We can also assume
P has no part which is a horizontal segment —parallel to the u-axis. Otherwise this
means that a whole horizontal line is a component of P . In other words, the content
of P wrt u is a polynomial in v and we can study this factor separately and divide P
by this factor. Eventually, to get the whole topology of the curve, one has to merge the
components.

Our algorithms consists of the following five stages:
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1. Isolating study points. Study point are isolated in 2D with rational univariate rep-
resentations (RUR). Study points within a common fiber are identified.

2. Regularization of the study boxes. We know the number of branches of the curve
going through each study point. The boxes of study points are reduced so as to be
able to define the number of branches coming from the bottom and from the top.

3. Computing regular points in study fibers. In each fiber of a study point, the u-
coordinates of intersection points with P other than study points are computed.

4. Adding intermediate rational fibers. Add rational fibers between study points
fibers and isolate the u-coordinates of intersection points with P .

5. Performing connections. This information is enough to perform the connections.
Consider the cylinder between two consecutive fibers, the number of branches con-
nected from above the lower fiber is the same than the number of branches con-
nected from below the higher fiber. Hence there is only one way to perform con-
nections with non-intersecting straight segments.

3.5 Step 1. Isolating study points

The method to identify these study points is to compute a RUR of the system defining
them. More precisely, we sequentially solve the following systems:

1. The system Su from which the sets S1R and S3R are distinguished by evaluating
the sign of δ(P3).

2. The system Sp for purple points.
3. The system Sc for critical points.
4. The system Sb for border points, that is intersections of P with the left and right

sides of the boxD. Solving this system together with one of the previous identifies
border points which are also singular or critical.

Selecting only points belonging to D reduces to adding inequalities to the systems
and is well managed by the RUR. According to [19], solving such systems is equivalent
to solving zero-dimensional systems without inequalities when the number of inequa-
tions remains small compared to the number of variables. The RUR of the study points
provides a way to compute a box around each study point q i which is a product of two
intervals [u1

i ; u
2
i ]× [v1

i ; v2
i ]. The intervals can be as small as desired.

Until now, we only have separate information on the different systems. In order to
identify study points having the same v-coordinate, we need to cross this information.
First we compute isolation intervals for all the v-coordinates of all the study points
together, denote I this list of intervals. If two study points with the same v-coordinate
are solutions of two different systems, the gcd of polynomials enable to identify them:

– Initialize the list I with all the isolation intervals of all the v-coordinates of the
different systems.

– Let A and B be the square free polynomials defining the v-coordinates of two
different systems, and IA, IB the lists of isolation intervals of their roots. Let C =
gcd(A, B) and IC the list of isolation intervals of its roots. One can refine the
elements of IC until they intersect only one element of IA and one element of IB .
Then replace these two intervals in I by the single interval which is the intersection
of the three intervals. Do the same for every pair of systems.
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– I then contains intervals defining different real numbers in one-to-one correspon-
dence with the v-coordinates of the study points. It remains to refine these intervals
until they are all disjoint.

Second, we compare the intervals of I and those of the 2d boxes of the study points.
Let two study points qi and qj be represented by [u1

i ; u
2
i ]×[v1

i ; v2
i ] and [u1

j ; u
2
j ]×[v1

j ; v2
j ]

with [v1
i ; v2

i ] ∩ [v1
j ; v2

j ] �= ∅. One cannot, a priori, decide if these two points have the
same v-coordinate or if a refinement of the boxes will end with disjoint v-intervals. On
the other hand, with the list I , such a decision is straightforward. The boxes of the study
points are refined until each [v1

i ; v2
i ] intersects only one interval [w1

i ; w2
i ] of the list I .

Then two study points intersecting the same interval [w1
i ; w2

i ] are in the same fiber.

Finally, one can refine the u-coordinates of the study points with the same v coordi-
nate until they are represented with disjoint intervals since, thanks to localizations, all
the computed points are distinct.

Checking genericity conditions of section 3.2.

First, real singularities shall be the union of purple and umbilical points, this reduces
to compare the systems for singular points and for purple and umbilical points. Second,
showing that δ(P3) �= 0 for umbilics and δ(P2) > 0 for purple points reduces to sign
evaluation of polynomials at the roots of a system (see section 3.1).

u

v

αi

β2
i,1 u1

i,1 u2
i,1 β1

i,li β2
i,li

u1
i,mi

u2
i,mi

β1
i,1

n+
i,j

n−i,j

v1
i

v2
i

Number of
branches
above

Number of
branches
below

Fig. 2. Notations for a fiber involving several critical/singular points: u
1(2)
i,j are used for study

points, β
1(2)
i,j for simple points.
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u

v

αi+1

αi

δi

v2
i

v1
i

Fig. 3. Performing connections between the study point fiber αi and the intermediate fiber δi

3.6 Step 2. Regularization of the study boxes

At this stage, we have computed isolating boxes of all study points {q i,j, i = 1 . . . s, j =
1 . . .mi} : the v-coordinates α1, ..., αs are isolated by intervals [v1

i ; v2
i ], i = 1..s and

the u-coordinates of the mi study points in each fiber αi are isolated by intervals
[u1

i,j ; u
2
i,j], j = 1..mi.

We know the number of branches of the curve passing through each study point :
it is 6 for a 3-ridge umbilic, 4 for a purple and 2 for others. We want to compute the
number branches coming from the bottom and from the top. We first reduce the box
until the number of intersections between the curve and the border of the box matches
the known number of branches connected to the study point. Then the intersections
are obviously in one-to-one correspondence with the branches. Second, as in [21] for
example, we reduce the height of the box again if necessary so that intersections only
occur on the top or the bottom of the box.

Counting the number of intersections reduces to solve 4 univariate polynomials with
rational coefficients. Reducing a box means refining its representation with the RUR.

3.7 Step 3. Computing regular points in study fibers

We now compute the regular points in each fiber P (u, α i) = 0. Computing the reg-
ular points of each fiber is now equivalent to computing the roots of the polynomials
P (u, αi) outside the intervals representing the u-coordinates of the study points (which
contain all the multiple roots of P (u, αi)).

Denote [u1
i,j ; u

2
i,j], j = 1..mi the intervals representing the u-coordinates of the

study points on the fiber of αi and [v1
i , v2

i ] an interval containing (strictly) αi and no
other αj , j �= i. Substituting v by any rational value q ∈ [v1

i , v2
i ] in P (u, v) gives a

univariate polynomial with rational coefficients P (u, q). We then isolate the (simple)
roots of this polynomial P (u, q) on the domain [a, b] \ ∪mi

j=1[u
1
i,j ; u

2
i,j ] : the algorithm

returns intervals [β1
i,j ; β

2
i,j ], j = 1 . . . li representing these roots.
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To summarize the information up to this point : we have, along each fiber, a col-
lection of points si,j , i = 1 . . . s, j = 1, . . . , mi + li, which are either study points or
regular points of P . Each such point is isolated in a box i.e. a product of intervals and
comes with two integers (n+

i,j , n
−
i,j) denoting the number of branches in D connected

from above and from below.

3.8 Step 4. Adding intermediate rational fibers

Consider now an intermediate fiber, i.e. a fiber associated with v = δ i i = 1 . . . s − 1,
with δi a rational number in-between the intervals of isolation of two consecutive values
αi and αi+1. If the fibers v = c or v = d are not fibers of study points, then they are
added as fibers δ0 or δs.

Getting the structure of such fibers amounts to solving a univariate polynomial with
rational coefficients, which is done using the algorithm described in section 3.1. Thus,
each such fiber also comes with a collection of points, isolated in boxes, for which one
knows that n+

i,j = n−
i,j = 1.

3.9 Step 5. Performing connections

We thus obtain a full and certified description of the fibers: all the intersection points
with P and their number of branches connected. We know, by construction, that the
branches of P between fibers have empty intersection. The number of branches con-
nected from above a fiber is the same than the number of branches connected from
below the next fiber. Hence there is only one way to perform connections with non-
intersecting straight segments. More precisely, vertices of the graph are the centers of
isolation boxes, and edges are line-segments joining them.

Notice that using the intermediate fibers v = δi is compulsory if one wishes to get
a graph G isotopic to P . If not, whenever two branches have common starting points
and endpoints, the embedding of the graph G obtained is not valid since two arcs are
identified.

The algorithm is illustrated on Fig. 3. In addition

– If a singular point box have width δ, then the distance between the singular point
and the vertex representing it is less than δ.

– One can compute the sign of the function Signridge (definition 2) for each regular
point of each intermediate fiber. This defines the color of the ridge branch it belongs
to. Then one can assign to each edge of the graph the color of its end point which
is on an intermediate fiber.

4 Illustration

We provide the topology of ridges for two Bézier surfaces defined over the domain
D = [0, 1]× [0, 1].
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The first surface has control points⎛⎜⎜⎜⎜⎝
[0, 0, 0] [1/4, 0, 0] [2/4, 0, 0] [3/4, 0, 0] [4/4, 0, 0]

[0, 1/4, 0] [1/4, 1/4, 1] [2/4, 1/4,−1] [3/4, 1/4,−1] [4/4, 1/4, 0]
[0, 2/4, 0] [1/4, 2/4,−1] [2/4, 2/4, 1] [3/4, 2/4, 1] [4/4, 2/4, 0]
[0, 3/4, 0] [1/4, 3/4, 1] [2/4, 3/4,−1] [3/4, 3/4, 1] [4/4, 3/4, 0]
[0, 4/4, 0] [1/4, 4/4, 0] [2/4, 4/4, 0] [3/4, 4/4, 0] [4/4, 4/4, 0]

⎞⎟⎟⎟⎟⎠
Alternatively, this surface can be expressed as the graph of the total degree 8 polynomial
h(u, v) for (u, v) ∈ [0, 1]2:

h(u, v) = 116u4v4 − 200u4v3 + 108u4v2 − 24u4v − 312u3v4 + 592u3v3 − 360u3v2

+ 80u3v + 252u2v4 − 504u2v3 + 324u2v2 − 72u2v − 56uv4 + 112uv3 − 72uv2 + 16uv.

The computation of the implicit curve has been performed using Maple 9.5 and re-
quires less than one minute (see [3]). It is a bivariate polynomial P (u, v) of total degree
84, of degree 43 in u, degree 43 in v with 1907 terms and coefficients with up to 53
digits. Figure 4 displays the topological approximation graph of the ridge curve in the
parametric domain D computed with the algorithm of section 3. There are 19 critical
points (black dots), 17 purple points (pink dots) and 8 umbilics, 3 of which are 3-ridge
(green) and 5 are 1-ridge (yellow).

We have computed the subsets Su, Sp and Sc by using the software FGB and RS
(http://fgbrs.lip6.fr). The RUR can be computed as shown in [19] or alterna-
tively, Gröbner basis can be computed first using [5] or [6]. We tested both methods and
the computation time for the biggest system Sc does not exceed 10 minutes with a Pen-
tium M 1.6 Ghz. The following table gives the main characteristics of these systems :

System # of roots ∈ C # of roots ∈ R # of real roots ∈ D
Su 160 16 8
Sp 749 47 17
Sc 1432 44 19

In order to have more insight of the geometric meaning of the ridge curve, the
surface and its ridges are displayed on Fig. 5. This plot is computed without topological
certification with the rs tci points function (from RS software, see also [2]) from
the polynomial P and then lifted on the surface.

The second surface is a bi-quadratic Bézier of equation

Φ (u, v) = [2/3 v + 2/3 uv − 1/3 u2v + 1/3 v2 − 2/3 v2u + 1/3 u2v2,

1/2 u + 1/2 u2 + uv − u2v − 1/2 v2u + 1/2 u2v2,

1 + 3 v2 − u − 4 v + 5 uv + u2v − 7/2 v2u − 5/2 u2v2]

The ridge curve has total degree 56 and partial degrees 33 with 1078 terms and co-
efficients with up to 15 digits. The computation of the biggest system of study points
Sc takes 4.5 minutes. On this example, study point boxes have to be refined up to a
size of less than 2−255 to compute the topology. The following table gives the main
characteristics of the study point systems :
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Fig. 4. Bi-quartic Bèzier example : isotopic approximation of the ridge curve with 3-ridge um-
bilics (green), 1-ridge umbilics (yellow), purple points (pink) and critical points (points with an
horizontal tangent displayed in black).

System # of roots ∈ C # of real roots ∈ D
Su 70 1
Sp 293 6
Sc 695 5

Figure 6 displays the topology of the ridges. In addition to study points, the regular
points of all fibers are displayed as small black dots.

5 Conclusion

For parametric algebraic surfaces, we developed an algorithm to report a topologically
certified approximation of the ridges. This algorithm is computationally demanding in
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Fig. 5. Plot of the bi-quartic Bèzier surface with ridges and umbilics (boxed in green)

terms of algebra. It is in a sense complementary to the heuristic one developed in a
companion paper [4], which is working directly on a triangulation of the surface, and
provide a fast way to report non certified results.

The method developed for the computation of the topology of the ridges can be
generalized for other algebraic curves. It gives an alternative to usual algorithms based
on the CAD provided one knows the geometry of curve branches at singularities.
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Fig. 6. Bi-quadratic Bèzier example : isotopic approximation of the ridge curve with the same
color coding as in Fig. 4, in addition small black dots are regular points of all fibers.
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