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Abstract
In this short report we present an efficient attack of theC∗ cryptosystem

based on fast algorithms for computing Grbner basis. The attack consists
in computing a Grbner basis of the public key. The efficiency of this attack
depends strongly on the choice of the algorithm for computing the Grbner
basis: it was was possible to break the crypto-challenge 11 in only 3 hours
and 11 minutes of CPU time (PC Pentium 2.8 Ghz Xeon) by using the algo-
rithm F5 implemented in C. We recommend to increase the value ofn ≥ 26.

1 Description

1.1 TheC∗ crypto system

Let q = 2m, D = 4, K is the finite field GF(q) andL =GF(2n m) an extension
field of K.

π(x) = xd, d =
∑

k<D

qrk r0 < r1 < · · · < rD−1 < n

Proposition 1 π(x) is bijective onK if and only if gcd(d, qn − 1) = 1

The private key consists of two bijectiveK-affine mappingsS andT on L,
each represented by a non-singularn × n matrix overK and a vector inKn. The
encryption is defined as

E(x) = S(π(T (x))), x ∈ L.

Knowing S andT allows to decrypt, since one-to-one affine mappings and
power functions can easily be inverted. The public key is themulti-variate repre-
sentation ofE(x) onKn, leading to a collection ofn polynomials (of total degree
4):

(Pub) Ei(x0, . . . , xn) i = 0, . . . , (n − 1)
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1.2 Challenge 11

The challenge 11 is a particular instance of theC∗ cryptosystem:m = 5 and
n = 16 and one has to solve the following algebraic system

(S) Ei(x0, . . . , xn) = Qi, i = 0, . . . , (n − 1)

whereQi is explicitly given:(Q0, . . . , Qn−1) = (w2 +1, w2 +1, w3 +w, w4 +
w3 + w2, w2 + 1, w4 + w3 + w + 1, w3 + w, w3 + w2 + w, 1, w4, w3 + w2 + w +
1, w2 + w + 1, w4 + w2 + w + 1, w4 + w3 + 1, w, w4 + w3 + w2 + w + 1) ∈ Kn

andEi is a polynomial of degree4 in x0, . . . , xn−1 and coefficients inK. To
“break” the challenge we have to compute

VK = {(xi) ∈ Kn |Ei(x) = Qi}

Proposition 2 VK is of dimension0 and degree1.

Proof From the proposition 1.�

2 Gröbner bases attack

2.1 Solutions in the ground field

If K̄ is the algebraic closure ofK then a Gröbner basis computation ofS gives a
description of

VK̄ = {(xi) ∈ K̄n |Ei(x) = Qi}
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Experimental Fact 1

m n degree(VK̄) degree(VK)
5 8 32 1
5 9 76 1
5 10 88 1
5 11 4 1
5 12 112 1
5 13 628 1
5 14 568 1
5 15 5324 1
5 16 6208 1
6 8 32 1
6 10 88 1
6 14 568 1

We deduce from the previous experiments that computing directly the Gröbner
basis ofS contains parasite solutions.

2.2 First attack

To force the solutions to be inK we can add the “field equations”xq
i = xi but

sinceq = 32 this is useless in this case. The other solutions is to give a value to
one (or several) variable:

Algorithm 1st attack
for i from 0 to m − 2 do

Substitutexn = wi in S
ComputeGi a Gröbner basis of this system
if Gi 6= {1}

Add the field equationsxq
j = xj to Gi

ComputeG′

i a Gröbner basis of this system
This is the solution of the algebraic system.

Of course all the computations can be computed in parallel ofdifferent com-
puters. In our case, we used theF4 algorithm we found a solution forn = 20:

x1 = w27, x0 = w16, x2 = w18, x3 = w17, x4 = w25, x8 = w16, x9 =
w22, x10 = w28, x11 = w12, x15 = w20, x14 = w18, x13 = w16, x12 = w11, x5 =
w4, x7 = w29, x6 = w29
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It takes about3 hours of CPU (Intel Pentium Xeon 2.8 Ghz) to compute the
Gröbner basisGi. Thus the total sequential time is32 × 3 = 96 hours of compu-
tation and3 hours of parallel CPU time.

2.3 New attack

We use a different strategy: compute the Gröbner basis of the whole systemS
using theF5 algorithm; in a second step (the fastest part of the computation) we
select the solutions inKn. The computation can be carried out on a single PC
(2.8 Ghz) with 2Go bytes of memory and it takes 11473.78 sec tocompute the
Gröbner basis; the number of solution is 6208 inK̄n and the size of the Gröbner
basis is 266 Mbytes.

3 Complexity of the attack

It takes about3 hours of CPU (Intel Pentium Xeon 2.8 Ghz) to compute the
Gröbner basis. For the challenge 1/HFE the total CPU is about 48 hours (Alpha
DS25 1 Ghz).

However to compare more precisely this is interesting to compare two param-
eters:

• The number of arithmetical operations.

• The maximal degree occurring in the computation of the Gröbner bases.

3.1 Number of operations

The total number of operations (XOR with 64 bits words) to break HFE challenge
1 is about244.46.

The total number of operations (multiplication if GF(32)) to breakC∗ chal-
lenge 11 is about241.2 in less that 3 hours 11 mins.

3.2 Maximal degree

The maximal degree occurring in the computation of a Grbner basis is a very
important since
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• It is an estimate of the non randomness of an algebraic system. The regular-
ity D of a generic system is given by the Macaulay bound and in our case
we should have:1 +

∑n

i=1
(di − 1) = 3n + 1

• It gives a (rough) estimate of the complexity of the Grbner basis computa-

tion: O

((

n + D

n

)ω)

whereNω is the cost of the multiplication of two

N × N matrices.

d 16 17 33 96 128 129 257 384 512 513
Max degree 3 4 4 4 4 5 5 5 5 6

Maximal degree for HFE,d = 2i + 2j GF(2)

From the previous table we see that whend (degree of the univariate polyno-
mial) is fixed the corresponding HFE can be solved in polynomial time (see also
the paper Faugère/Joux Crypto 2003).

n 8 9 10 11 12 13 14 15 16
Max degree 6 7 7 6 6 6 8 8 8

Nb of ∗ 220.7 222.4 223.8 224.8 226.1 229.1 231.5 237.9 241.2

Maximal degree forC∗, d = 1 + q + q5 + q7, q = 25 = 32
New attack usingF5
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Complexity of the attack (log)
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n 8 10 12 13 14 15 16 18
Max degree 6 6 6 6 7 7 7 7 or 8

Nb of ∗ (parallel) 220.7 223.8 226.1 229.2 230.0 237.8

Nb of ∗ (sequent) 225.7 228.8 231.1 234.2 235.0 242.8

Maximal degree forC∗, d = 1 + q + q5 + q7, q = 25 = 32,
Specialise one variable.

First attack usingF4

Remark 1 Note that forn = 18, gcd(d, qn − 1) = 19. The test has been done by
specialising 2 and 3 variables.

We see from the previous table thatC∗ perhapscan be solved in polynomial
time whend is fixed since the maximal degree occurring in the computation does
not depends onn. Of course a mathematical proof is needed.
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Experimental Fact 2 The complexity does not depend onm > 2 the size of the
finite field GF(2m)1

Proof This is the the result of experiments form = 3, 4, 5, 6, 7. Form = 2 it is
necessary to add the field equationsx4

i −xi and the Gröbner computations behave
differently.�

4 Conclusion

If we extrapolate the previous results we found:

Complexity of the attack (log)
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The CryptoChallenge 11 can be broken easily241.1 (about 3 hours )
To improve the security ofC∗ it seems that

Increase the size ofK = GF (2m) is useless
Increase the valuen ≥ 26 (?) can lead to a
much more difficult algebraic system.

Despite a substantial amount of real computer simulations,major uncertain-
tiesremain.

1In fact the complexity depends onm but slightly.
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Multi-variate Public Key Schemes: Biquadratic C∗

Public key cryptosystems based on multi-variate polynomials are studied since
the eighties. One of them, called C∗, survived for some years, while most were
broken in a very short time after being proposed. C∗ was introduced in 1988
by Imai and Matsumoto, and it was broken in 1994. But this is not the end of
the story. The C∗ design, suitably modified, still provides interesting objects
for cryptographic investigations. In the sequel we shall explain why.

Definition of C∗

As basic public parameters of C∗, a finite field K = GF(2m), an extension field
L = GF(2nm) of K, and a bijective power function

π(x) = xd, d = 1 + qr, (q := 2m)

are chosen. L is identified with Kn. Recall that xd is bijective on L if and only
if gcd(d, qn − 1) = 1.

The private key consists of two bijective K-affine mappings S and T on L, each
represented by a non-singular n × n matrix over K and a vector in Kn. The
encryption is defined as

E(x) = S(π(T (x))), x ∈ L.
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Knowing S and T allows to decrypt, since one-to-one affine mappings and
power functions can easily be inverted. The public key is the multi-variate
representation of E(x) on Kn, leading to a collection of n quadratic polynomials

Ei(x0, ..., xn−1), i < n,

over K with variables xk (k < n). The idea of C∗ is that S and T are hidden
in the coefficients of these multi-variate polynomials.

In fact it remains an open challenge to recover the private key (S, T ) from the
public key, i.e. the (Ei)i<n.

Breaking C∗

Independently Dobbertin (1994, unpublished) [1] and Patarin (1995) [4] found
the same “linearization” attack. It does not find the private key but a kind of
substitute, such that each encryption comes down to solving a linear equational
system over K with n unknowns:

The inversion of E(x) can be reduced to a linear problem. To confirm this
we can assume w.l.o.g. for a moment that S and T are the identity mappings.
Suppose a = x1+qr

, then

axq2r
+ aqr

x = 0, (1)

is a K-linear equation over L for each given a ∈ L. It is a routine matter to
show that the K-rank of (1) is n− gcd(r, n) for non-zero a.

Without knowing S and T we can derive the general pattern of the n linear
equations over K underlying the corresponding affine modification of (1) by
computing the vector space

K = {λ(x) ∈ L[x] : λi(x), i < n, and
∑

i<n λi(x)Ei(x) are affine}, (2)

where the λi and Ei are considered as multi-variate polynomials. The compu-
tation of K is a linear problem. Choosing a base of K we can decrypt. Suppose
that Q = E(P ) is given and P has to be found. Then for each λ ∈ K we get an
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affine equation∑
i<n

λi(x0, ..., xn−1)Ei(x0, ..., xn−1) =
∑
i<n

Qiλi(x0, ..., xn−1),

which is satisfied by x = P . It turns out that usually decryption with K is
faster than decryption with the private key!

Stronger modifications of C∗

As a modification of C∗, which avoids the described devastating weakness of the
original system, Patarin proposed HFE (Hidden Fields Equations) cryptosys-
tems [5], where the power function π is replaced by a low degree polynomial

p(x) =
∑

k

ak xqrk+qsk

over L. The form of p implies that the representation of p on Kn leads again
to quadratic multi-variate polynomials. However, the replacement of π by an
in general non-bijective p causes a lot of difficulties. It makes decryption (or
signing if HFE is used for digital signatures) rather complicated. To determine
all P with E(P ) = Q, one has to compute all zeros of p(x)+c with c = S−1(Q).
Moreover, to identify the proper P it is necessary to mark E(P ) with a hash
value of P . This effort means paying a high prize for trying to make C∗ secure.
– We note that there is a zoo of HFE variants [5]. We consider here only the
basic version.

In 2002 HFE was broken for 80 bit block size by Faugère [3] in the most difficult
case K = GF(2) (HFE Challenge 1, see [5]). He used powerful elimination
techniques for multi-variate equational systems.

Another modification of C∗ was studied in [1] (unpublished). Here the exponent
d = 1 + qr is replaced by

d =
∑
k<D

qrk , r0 < r1 < ... < rD−1 < n, (3)

for some fixed D > 2, were r0 = 0 can be assumed without loss of generality.
Note that the degree of the associated Ei is D. Hence for practical applications
the restriction D = 3 or D = 4 makes sense, since otherwise the size of the Ei

becomes too large.
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The challenge

CryptoChallenge 11. A biquadratic variant of the C∗ scheme with m = 4,
n = 25 and

d = 1 + q + q3 + q12 (q = 16)

is considered. Some private key (S, T ) is chosen. Thus an asymmetric cryp-
tosystem is defined, which operates on 100 bit blocks.

The encryption Q of an 100 bit block P is given. Decrypt Q based on the know-
ledge of the public key, i.e. the multi-variate polynomials Ei(x0, ..., x24), i < 25,
over K = GF(24). This means that one has to compute P by solving the system
of the biquadratic equations Ei(x0, ..., x24) = Qi, i < 25, over K. (See below
for the further technical specification of this challenge.)

HFE vs. biquadratic C∗

We emphasize that we do not propose to apply biquadratic C∗ with the param-
eters in CC11 in practice. The parameters are chosen at the edge, implying
the risk of being broken. The intention of this challenge is

• to stimulate research on solving systems of multi-variate equations and

• to compare the cryptographic strength of a biquadratic C∗ and a HFE
system of the same block size. (In a broader field of investigations also
cubic C∗ variants should be studied.)

The most obvious advantage of biquadratic C∗ is that

• decryption (signing) remains as simple as for the original C∗.

For C∗ system of degree D we have the formula

block size: nm bit,
public key length:

(
n+D

D

)
nm bit,

private key length: 2 mn(n + 1) bit.

Up to the specification of a low degree polynomial, we have the same parameters
for (quadratic) C∗ and HFE.
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For the system in CryptoChallenge 11 we have

block size: 100 bit,
public key length: 290 kb,
private key length: 5,200 bit.

For practical applications such relatively long public keys are usually not a
serious problem. However, the private key should be short, since it has to be
stored and used in a secure environment, often with limited resources (smart
cards).

For a counterpart to the biquadratic C∗ version in CC11, the HFE system with
m = 1 and n = 100, we have

block size: 100 bit,
public key length: 63 kb,
private key length: 20,200 bit.

It would be interesting to compare the cryptographic strength of the latter HFE
system with the system in CC11.

Weak exponents

In this section we cite results from [1]. (Proofs can be found in [2].) We shall
refer to the following generalization of (2) for d =

∑
k<D qrk , r0 < r1 < ... <

rD−1 < n, and arbitrary degree r:

K(r)(d) = {λ(x) ∈ L[x] : deg(λi(x)) ≤ r (i < n), deg
(∑

i<n λi(x)Ei(x)
)
≤ r},

Theorem 1 For any exponent d we have

dimK K(D−1)(d) ≥
(

D

2

)
n.

In general we have K(r)(d) = 0 for r < D − 1. Otherwise we call d weak, since
then we get a C∗ variant which has certain weaknesses against elimination
attacks using Gröbner base techniques. But for all exponents d Theorem 1
implies that starting with the given equations of degree D, increasing the degree
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of derived equations up to 2D − 1 we have a “degeneration effect” and can get
equations of degree D − 1, independent of K. (The special structure of C∗ for
arbitrary degree D allows to compute the latter degree D−1 equations a priori
simply by computing K(D−1). This works precisely as described before in the
case D = 2 for the breaking of classical C∗.)

Theorem 2 An exponent d is weak if there are k, `, u, v < D such that k 6= `,
u 6= v, (k, `) 6= (u, v) and

rk − r` = ru − rv mod n. (4)

For D = 4 it is obvious that this implies n ≥ 13, since otherwise all exponents
are weak. (In fact there are precisely 12 pairs (k, `) with k 6= ` in {0, 1, 2, 3}2,
and therefore the mapping (k, `) 7→ rk − r` mod n into {1, 2, ..., n − 1} must
have collisions for n ≤ 12.) We anticipate that the converse of Theorem 2 is
also valid.

The weakness becomes extremal if d is a geometric series:

Theorem 3 For exponents of the form d = 1 + qr + q2r + ... + q(D−1)r we have

dimK K(1)(d) ≥ n.

In this case the previously described “linearization” attack applies, including
the breaking of the original C∗ for D = 2. If n = 18 then this concerns for
instance

d = 1 + q4 + q11,

because d = 1 + q11 + q22 mod (q18 − 1).

Another remarkable special case of weak exponents occurs if condition (4) is
satisfied for (u, v) = (`, k), which means, assuming ` < k w.l.o.g., that n is even
and

rk − r` = n/2.

In this case the private key can be recovered from the public key. As an example,
if n = 16 then d = 1 + q + q5 + q9, i.e.

{r0, r1, r2, r3} = {0, 1, 5, 9},
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generates such a weak system, since r3 − r1 = 8. The private key (up to
equivalence, to be precise) could be found within a few days on a PC if we
would have chosen that exponent in the above challenge.

A proper choice of the exponent d is very important and non-trivial. Our choice
of d in CC11 is

{r0, r1, r2, r3} = {0, 1, 3, 12}.

Here no equality of the form (4) occurs.

Detailed technical specification

The 25 biquadratic public polynomials Ei(x0, ..., x24) (i < 25) with coefficients
xk (k < 25) in K are contained in the file Public-Key-C11.dat. It can be down-
loaded from the web site http://www.mystery-twister.com of the Mystery

Twister competition.)

• The base field K = GF(24) identified with GF(2)4 via the basis

a3, a2, a, 1,

where a is a zero of the primitive polynomial x4 + x + 1.

• The extension field L = GF(2100) of K is identified with K25 via the basis

b24, b23, . . . , b, 1,

where b is a zero of the irreducible polynomial x25 + x + 1.

• According to the preceding specification we can identify

L = K25 = GF(2)100.

For the following Q =
∑

i<25 Qib
i ∈ L (resp. (Q24, ..., Q1, Q0) ∈ K25), the

unique P ∈ L with E(P ) = Q has to be computed:

Q0 = a14, Q5 = a13, Q10 = a11, Q15 = a7, Q20 = a12,

Q1 = 0, Q6 = a14, Q11 = a9, Q16 = a, Q21 = a11,

Q2 = a4, Q7 = a8, Q12 = a10, Q17 = a4, Q22 = a5,

Q3 = 1, Q8 = a7, Q13 = a3, Q18 = a9, Q23 = a2,

Q4 = a, Q9 = a6, Q14 = a2, Q19 = a13, Q24 = a15,
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Remark 1. The most efficient way to repair C∗ is to cancel some of the public
equations Ei(x). Concrete proposals in the NESSIE project are called SFLASH
(three versions are specified, see [5]).

Remark 2. A draft version of CC11 with parameters m = 5 and n = 16 was
broken by Dr. Faugère (private communication). It took him approximately 1/10

of the effort for his mentioned breaking of the HFE Challenge 1 with n = 80
and m = 1. (With parameters m = 4 and n = 20 it seems that biquadratic C∗

is stronger than HFE challenge 1.)

Acknowledgement. We would like to thank Dr. Faugère for making exper-
iments on biquadratic C∗. The results of these experiments were the base for
our choice of the parameters in CC11. (Nevertheless, of course only we are
responsible for this choice.)

How to submit the solution. Follow the hints on the Mystery Twister

web site.

Last date for submission. December 31, 2005

Prize. The first person, who submits the correct solution before the end of
the year 2005, will win a prize of 5000 €.
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