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1 Changes for the second round (April 1st, 2019)

The goal of this part is to summarize the modifications done on GeMSS for the second round.

1.1 Large set of parameters

The parameters proposed for GeMSS in the first round were very conservative in term of security.
In [5], it was suggested to explore different parameters in order to improve efficiency. We address
this comment as follows.

• We added a new Section 9 to discuss the parameters.

• In Section 9.6, we present an exhaustive table including possible parameters and the corre-
sponding timings.

• In Section 9.5, we explore the use of sparse polynomials in GeMSS to improve the efficiency
of the signing process.

• We then suggest 3 sets of parameters for each security level with several trade-offs. This
includes the initial parameters of GeMSS proposed in the first round, and two new more
aggressive parameters (BlueGeMSS and RedGeMSS).

– RedGeMSS128 is 269 times faster than GeMSS128.

– BlueGeMSS128 is 7.08 times faster than GeMSS128.

• We design a family of possible values that depends on only one parameter n. We call this
family FGeMSS(n) (Section 9.4).

1.2 Further details on known attacks

The paper [2] was published at about the same time than the deadline for the first round. In
this revision, we further details [2] in Section 8 (Analysis of known attacks). We added two new
sub-sections (8.3.4 and 8.4.2) to explain the attacks from [2]. This attack permits to give more
insight on how to balance the number of modifiers. These attacks tend to confirm that taking the
same number of minus and same number of vinegar variables is a safe choice.

1.3 Implementation and Performance

Since the submission, we also drastically improved the keypair generation, the signing process as
well as the root finding. These are key steps for the efficiency of GeMSS. We have a paper accepted
at CHES on this topic [4, 1]. This paper presents also MQsoft, an efficient library which permits to
implement HFE-based multivariate schemes submitted to the NIST PQC process such as GeMSS,
Gui and DualModeMS. The library is implemented in C targeting Intel 64-bit processors and using
avx2 set instructions. MQsoft permits, in particular, to

• perform an efficient constant-time arithmetic in F2n .
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• to find the roots of a univariate polynomial in F2n [X]. We have specialized algorithms for
the HFE polynomials.

• to evaluate efficiently multivariate quadratic systems in F2 (in constant-time and in variable-
time).

• to implement the dual mode of Matsumoto-Imai based multivariate signature schemes (cf.
DualModeMS [3]).

Our new submitted implementations are more secure against timing attacks.

• We have removed NTL1 in the optimized and additional implementations. We have added a
constant-time implementation of the inverse in F2n (which replaces the use of NTL).

• During the keypair generation, the determinant and the inversion of matrices in Mn(F2) are
achieved in constant-time. In particular, we have implemented a constant-time Gaussian
elimination. Now, the keypair generation is immune against timing attacks.

• During the signing process, the Frobenius map is achieved in constant-time. We assume the
degree of the current polynomial in F2n [X] is D − 1 and its square has a degree 2D − 2. In
particular, we compute the square of the zero coefficients.

Our practical sizes are shorter.

• We have added an algorithm to pack and unpack the bits of the signature. Now, the theoretical
size is the same than the practice size.

• When the public-key has 324 equations, we have added ”an hybrid representation” [4] which
permits to have a practice size similar to the theoretical size. The practical size of the 320
first equations is exactly the theoretical size. The 4 last equations are stored one by one, and
are unpacked.

Several algorithms are improved:

• The computation of the components of F is faster. When v = 0, the old complexity was
O(n2 log2(D)2) multiplications in F2n . The new complexity is O(n log2(D)(n + log2(D)))
multiplications in F2[X] and O(n(n+ log2(D))) modular reductions.

• When n is large compared to D, we compute the Frobenius map by using multi-squaring
tables.

Our implementations use only the ranbombytes function for the random generation. In particular,
we have modified the equal-degree factorization algorithm from NTL, for using ranbombytes.

1http://www.shoup.net/ntl/
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2 New changes for the second round (April 15, 2020)

The goal of this part is to summarize the modifications done on GeMSS after the beginning of the
second round. We have decreased the size of the keys. For the secret-key, it is now generated from
a small secret seed (Section 2.1). For the public-key, we have improved the implementation to reach
the theoretical size. We introduce a so-called ”hybrid representation” [4], which allows to keep an
efficient evaluation (Section 2.3). The changes in our implementation are enumerated in Section
2.4. In particular, the old KATs files are no longer valid since we have changed the keys format.

2.1 Secret-key generated from a seed and new sizes

We have drastically reduced the size of the secret-key. For that, we expand the secret-key from a
random seed. This is classical and implies to consider a new attack: the exhaustive research of the
seed. Thus, we set the size of the seed to λ bits to reach a λ-bit security level. This change increases
the cost of the signing process, since the secret-key has to be generated for each operation. However,
the expansion of the seed is negligible compared to the cost of the root finding. The timings are not
really impacted by this modification (just slightly for RedGeMSS which has a fast signing process).

The use of a seed is controlled with the ENABLED SEED SK macro (set to 1 by default) from
config HFE.h. When enabled, the seed is expanded with SHAKE.

In Table 1, we provide the updated sizes of the public-key, secret-key and signature. From now on,
the implementation optimizes the sizes. The theoretical and practical sizes are the same. Since the
secret-key is generated from a seed, the secret-key is very small: just several hundreds of bits. In
contrast, the decompressed secret-key size is between 10 and 80 KB. For the public-key, we have
decreased the practical size. This part will be further explained in Section 2.3. We save 18% for
λ = 128, 5% for λ = 192 and 0.2% for λ = 256 (the latter was already optimized since the beginning
of the second round).

scheme (λ,D, n,∆, v,nb ite) |pk| (KB) |sk| (B) sign (B)

GeMSS128 (128, 513, 174, 12, 12, 4) 352.188 16 32.25

BlueGeMSS128 (128, 129, 175, 13, 14, 4) 363.609 16 33.75

RedGeMSS128 (128, 17, 177, 15, 15, 4) 375.21225 16 35.25

GeMSS192 (192, 513, 265, 22, 20, 4) 1237.9635 24 51.375

BlueGeMSS192 (192, 129, 265, 22, 23, 4) 1264.116375 24 52.875

RedGeMSS192 (192, 17, 266, 23, 25, 4) 1290.542625 24 54.375

GeMSS256 (256, 513, 354, 30, 33, 4) 3040.6995 32 72

BlueGeMSS256 (256, 129, 358, 34, 32, 4) 3087.963 32 73.5

RedGeMSS256 (256, 17, 358, 34, 35, 4) 3135.591 32 75

Table 1: Memory cost. 1 KB is 1000 bytes.
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2.2 Time

The following measurements were realized under the same conditions as at the beginning of the
second round, excepted for the compilation of the reference implementation. The latter was com-
piled with gcc -O2 -msse2 -msse3 -mssse3 -msse4.1 -mpclmul. The SIMD is enabled only to
inline the (potential) vector multiplication functions from the gf2x library2. The reference imple-
mentation does not exploit these instructions sets. The used machines (LaptopS, ServerH) have
not changed and are described in the specification.

2.2.1 Reference implementation

For the second round, we had removed the use of NTL in the optimized and additional implemen-
tations (Section 1.3). This allowed to remove the use of C++ in the implementation. The code
is easier to use, more portable and more standalone. In our new implementation, we have also
removed NTL from the reference implementation. However, the performance of the multiplication
in F2[x] is crucial for GeMSS. The latter was performed by NTL. So, we propose to switch to the
gf2x library, which is specialized in multiplication in F2[x].

These choices explain the new performances summarized in Table 2. The verifying process is more
than 100 times faster, whereas the keypair generation is 13 times faster. The performance of
the signing process depends on D. Indeed, NTL uses classical modular reductions when D = 17,
whereas fast modular reductions are used for D = 129 and D = 513. The fast modular reduction
is slower than the classical method when the input is a sparse HFE polynomial. So, we conclude
that the vector arithmetic from NTL is faster than the vector multiplication from gf2x coupled to
our reference arithmetic (without vector instructions).

scheme (λ,D, n,∆, v,nb ite) key gen. (MC) sign (MC) verify (KC)

GeMSS128 (128, 513, 174, 12, 12, 4) 145 / ×13 2730 / ×2.5 211 / ×140

BlueGeMSS128 (128, 129, 175, 13, 14, 4) 118 / ×13 530 / ×1.46 228 / ×130

RedGeMSS128 (128, 17, 177, 15, 15, 4) 91.1 / ×13 52 / ×0.34 239 / ×110

GeMSS192 (192, 513, 265, 22, 20, 4) 619 / ×13 6510 / ×2.3 585 / ×150

BlueGeMSS192 (192, 129, 265, 22, 23, 4) 520 / ×13 1290 / ×0.99 592 / ×150

RedGeMSS192 (192, 17, 266, 23, 25, 4) 423 / ×14 126 / ×0.22 627 / ×120

GeMSS256 (256, 513, 354, 30, 33, 4) 1660 / ×12 10500 / ×2.4 1160 / ×150

BlueGeMSS256 (256, 129, 358, 34, 32, 4) 1510 / ×13 2080 / ×0.79 1190 / ×150

RedGeMSS256 (256, 17, 358, 34, 35, 4) 1310 / ×14 203 / ×0.18 1190 / ×120

Table 2: Performance of the reference implementation, followed by the speed-up between the new
and the previous implementation. We use a Skylake processor (LaptopS). MC (resp. KC) stands

for Mega (resp. Kilo) Cycles. The results have three significant digits. For example, 145 / ×13

means a performance of 145 MC with the new code, and a performance of 145 × 13 = 1880 MC
with the old code.

2http://gf2x.gforge.inria.fr/
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2.2.2 Optimized (Haswell) implementation

Since the original submission of the second round, the verifying process is between 3 and 10%
slower. This is due to the fact that the public-key is stored with a packed representation. The
signing process is up to 43% faster, since we have adapted the multiplication and squaring in F2[x]
for the Haswell processors. This counterbalances the slight cost of the secret-key decompression.
The new arithmetic in F2[x] improves slightly the keypair generation.

scheme (λ,D, n,∆, v,nb ite) key gen. (MC) sign (MC) verify (KC)

GeMSS128 (128, 513, 174, 12, 12, 4) 51.6 / ×1.01 1240 / ×0.98 163 / ×0.92

BlueGeMSS128 (128, 129, 175, 13, 14, 4) 52.1 / ×1.02 198 / ×1.02 170 / ×0.93

RedGeMSS128 (128, 17, 177, 15, 15, 4) 52.4 / ×1.06 5.72 / ×0.97 178 / ×0.91

GeMSS192 (192, 513, 265, 22, 20, 4) 270 / ×1.01 3320 / ×1.08 459 / ×0.96

BlueGeMSS192 (192, 129, 265, 22, 23, 4) 268 / ×1.07 481 / ×1.09 468 / ×0.94

RedGeMSS192 (192, 17, 266, 23, 25, 4) 264 / ×1.03 13.7 / ×1.01 474 / ×0.96

GeMSS256 (256, 513, 354, 30, 33, 4) 814 / ×1.04 5380 / ×1.32 973 / ×0.97

BlueGeMSS256 (256, 129, 358, 34, 32, 4) 810 / ×1.08 733 / ×1.43 989 / ×0.97

RedGeMSS256 (256, 17, 358, 34, 35, 4) 805 / ×1.07 22.1 / ×1.17 1010 / ×0.97

Table 3: Performance of the optimized implementation, followed by the speed-up between the new
and the previous implementation. We use a Haswell processor (ServerH). MC (resp. KC) stands

for Mega (resp. Kilo) Cycles. The results have three significant digits. For example, 163 / ×0.92

means a performance of 163 KC with the new code, and a performance of 163 × 0.92 = 150 KC
with the old code.

2.2.3 Additional (Skylake) implementation

The additional and the optimized implementations are based on the same implementation. We
have only set the macro PROC_SKYLAKE to 1, whereas in the optimized implementation, we set
the macro PROC_HASWELL to 1. This macro impacts mainly the multiplication in F2n . Since the
original submission of the second round, the verifying process is between 11 and 16% slower,
for the same reason as before. The signing process is up to 17% slower, since the secret-key
must be decompressed. The keypair generation is slightly slower because the secret-key must be
decompressed and the public-key must be packed. Finally, the performance is not really impacted
by our new updates, whereas keys size is smaller.

6



scheme (λ,D, n,∆, v,nb ite) key gen. (MC) sign (MC) verify (KC)

GeMSS128 (128, 513, 174, 12, 12, 4) 52.6 / ×0.97 1040 / ×0.9 164 / ×0.89

BlueGeMSS128 (128, 129, 175, 13, 14, 4) 53.8 / ×0.97 164 / ×0.97 176 / ×0.88

RedGeMSS128 (128, 17, 177, 15, 15, 4) 54.3 / ×0.98 5.24 / ×0.88 185 / ×0.86

GeMSS192 (192, 513, 265, 22, 20, 4) 275 / ×0.96 2960 / ×0.98 501 / ×0.87

BlueGeMSS192 (192, 129, 265, 22, 23, 4) 278 / ×0.96 448 / ×0.96 512 / ×0.86

RedGeMSS192 (192, 17, 266, 23, 25, 4) 277 / ×0.96 13.1 / ×0.9 518 / ×0.87

GeMSS256 (256, 513, 354, 30, 33, 4) 916 / ×0.95 4940 / ×0.98 1120 / ×0.91

BlueGeMSS256 (256, 129, 358, 34, 32, 4) 923 / ×0.96 653 / ×1.06 1140 / ×0.89

RedGeMSS256 (256, 17, 358, 34, 35, 4) 921 / ×0.97 21.4 / ×0.86 1170 / ×0.9

Table 4: Performance of the additional implementation, followed by the speed-up between the new
and the previous implementation. We use a Skylake processor (LaptopS). MC (resp. KC) stands

for Mega (resp. Kilo) Cycles. The results have three significant digits. For example, 164 / ×0.89

means a performance of 164 KC with the new code, and a performance of 164 × 0.89 = 146 KC
with the old code.

2.2.4 MQsoft

We give here the times with the latest version of MQsoft [4] that uses sse2, ssse3 and the avx2

instructions sets to be faster. Since the original submission of the second round, the verifying
process is between 17 and 31% slower, for the same reason as before. The signing process is
between 20 and 41% faster, thanks to some optimizations. The keypair generation is not impacted.

scheme (λ,D, n,∆, v,nb ite) key gen. (MC) sign (MC) verify (KC)

GeMSS128 (128, 513, 174, 12, 12, 4) 38.7 / ×0.99 531 / ×1.41 106 / ×0.77

BlueGeMSS128 (128, 129, 175, 13, 14, 4) 39.2 / ×1.00 81.3 / ×1.3 136 / ×0.82

RedGeMSS128 (128, 17, 177, 15, 15, 4) 39.5 / ×0.99 2.33 / ×1.2 141 / ×0.77

GeMSS192 (192, 513, 265, 22, 20, 4) 175 / ×1.00 1800 / ×1.29 304 / ×0.79

BlueGeMSS192 (192, 129, 265, 22, 23, 4) 174 / ×0.99 252 / ×1.31 325 / ×0.78

RedGeMSS192 (192, 17, 266, 23, 25, 4) 173 / ×0.99 5.97 / ×1.4 334 / ×0.76

GeMSS256 (256, 513, 354, 30, 33, 4) 530 / ×1.00 3020 / ×1.21 678 / ×0.83

BlueGeMSS256 (256, 129, 358, 34, 32, 4) 530 / ×1.00 399 / ×1.37 684 / ×0.85

RedGeMSS256 (256, 17, 358, 34, 35, 4) 534 / ×0.98 9.82 / ×1.31 704 / ×0.84

Table 5: Performance of MQsoft, followed by the speed-up between the new and the previous im-
plementation. We use a Skylake processor (LaptopS). MC (resp. KC) stands for Mega (resp. Kilo)

Cycles. The results have three significant digits. For example, 106 / ×0.77 means a performance

of 106 KC with the new code, and a performance of 106× 0.77 = 82 KC with the old code.

2.3 Packed representation of the public-key

The proposed implementation for the second round does not reached the theoretical size of the
public-key. We solve this problem in our new implementation. We use a public-key format allowing

7



to pack the bits of the public-key, while maintaining a fast use during the verifying process. On
one hand, we save up to 18% of the public-key size. On the other hand, the verifying process is
slightly slower (up to 31%). This change does not impact the security.

This format is based on the so-called ”hybrid representation” [4]. Let m = 8 × k + r be the
Euclidean division of m by 8. We store the 8k first equations with the monomial representation,
then we store the r last equations one by one. This process is illustrated by Figure 1. Firstly, we
pack the coefficients of the 8k first equations monomial by monomial. This corresponds to take the
vertical rectangles from left to right, then to take coefficients from up to down. Secondly, we pack
the coefficients of each of the r last equations. This corresponds to take the horizontal rectangles
from up to down, then to take coefficients from left to right.
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Figure 1: Example of hybrid represention of a multivariate quadratic system with 10 equations and

3 variables. Each row corresponds to one equation, and the c(k) and p
(k)
i,j are in F2.

Our aim is to decrease the cost to unpack the bits of the public-key during the verifying process.
With our format, a big part of the public-key uses the monomial representation. At the beginning of
the second round, this representation was used to store the m equations (instead of 8k equations).
So, the evaluation of the 8k first equations is performed as efficiently as before. They do not
require to be unpacked. This implies that only the r last equations generate an additional cost,
which is slight (r ≤ 7 is small compared to 8k). These equations can be evaluated packed, but
when nb ite > 1, to unpack them permits to accelerate the evaluation (which is repeated nb ite
times).
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Implementation details

An important point in our implementation is the memory alignment. All used data has to be
aligned on bytes. This permits to have more simple and more efficient implementations. In the
previous implementation, we used a zero padding when necessary. However, this implied that the
theoretical size was not reached.

Firstly, the 8k first equations are stored without loss. Since for each monomial, 8k coefficients in
F2 are packed, we obtain that k bytes are required to store them. So, we do not require padding
to align data on bytes. The monomials are stored in the graded lexicographic order (as on Figure
1). Secondly, the r last equations are stored in the graded reverse lexicographic order (as on Figure

1). Each equation requires to store N = (n+v)(n+v+1)
2 elements of F2. The alignement of the

equations requires to use a zero padding when N is not multiple of 8. In this case, the padding
size is Np = 8− (N mod 8) bits. We solve this problem by using the (r − 1)Np last bits of the last
equation to fill the paddings of the (r− 1) other equations. In particular, we take these last bits by
pack of Np, and the `-th pack is used to fill the padding of the (8k + `)-th equation. For example,

on Figure 1, the 9-th equation contains 7 coefficients. So, with our process, we would remove p
(10)
3,3

from the 10-th equation to store it just after p
(9)
3,3. Thus, the 9-th equation would be aligned on 8

bits.

2.4 Improved implementation

Here is the list of updates in the implementation.

• The KATs files have been updated. The old KATs files are no longer valid.

• The multiplication and squaring in F2[x] are now adapted for the Haswell processors.

• A seed expander has been added to generate the secret-key.

• The output of the linear transformation by T is modified to obtain a public-key stored on
bytes instead of 64-bit words, during the keypair generation.

• The functions to pack, unpack and evaluate the public-key, when the latter is stored on bytes,
have been added.

• The equality and comparison tests are performed in constant-time when secret data is used.

• Constant-time sorts have been added.

• The Frobenius trace and map functions are performed in constant-time.

• All Intel intrinsics are used only in simd intel.h.

• The documentation of the functions has been extended and made clearer.

• The names have been made more explicit.

• Useless functions have been removed to decrease the code size.

• Reference implementations of functions have been added.
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• The reference implementation has been simplified. Our new reference implementation is based
on the optimized implementation, but by using the reference implementations added previ-
ously. Unlike the old implementation which used NTL with C++, this new implementation is in
C and NTL is not required anymore. Since the reference implementation of the multiplication
is F2[x] is slow, the use of the gf2x library is set to 1 (ENABLED GF2X macro from arch.h).
This accelerates the performances, but can also be disabled.
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