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1 Introduction

sparkling GeMSS spring up from the night sky
a dazzling splendor to ever beautify

sequined glories that verily eye smack
sparkling GeMSS spring up from night sky

studding the vast backdrop of black

The purpose of this document is to present GeMSS : a Great Multivariate Short Signature. As sug-
gested by its name, GeMSS is a multivariate-based [52, 67, 27, 10, 63, 60] signature scheme producing
small signatures. It has a fast verification process, and a medium/large public-key. GeMSS is in
direct lineage from QUARTZ [59] and borrows some design rationale of the Gui multivariate signature
scheme [28]. The former schemes are built from the Hidden Field Equations cryptosystem (HFE) [57,
published in 1996] by using the so-called minus and vinegar modifiers, i.e. HFEv- [49]. It is fair to
say that HFE, and its variants, are the most studied schemes in multivariate cryptography. QUARTZ
produces signatures of 128 bits for a security level of 80 bits and was submitted to the Nessie Ecrypt
competition [54] for public-key signatures. In contrast to many multivariate schemes, no practical
attack has been reported against QUARTZ. This is remarkable knowing the intense activity in the
cryptanalysis of multivariate schemes, e.g. [56, 50, 34, 38, 47, 46, 29, 41, 27, 10, 14, 9, 60, 65, 26].
The best known attack remains [38] that serves as a reference to set the parameters for GeMSS.

GeMSS is a faster variant of QUARTZ that incorporates the latest results in multivariate cryptography
to reach higher security levels than QUARTZ whilst improving efficiency.

Acknowledgement. GeMSS has been prepared with the support of the French Programme
d’Investissement d’Avenir under national project RISQ1 P141580. For the second round, this
work was also financially supported by the French Ministère des armées - Direction Générale de
l’Armement.

2 General algorithm specification (part of 2.B.1)

2.1 Parameter space

The main parameters involved in GeMSS are:

• D, a positive integer that is the degree of a secret polynomial. D is such that D = 2i for
i ≥ 0, or D = 2i + 2j for i 6= j, and i, j ≥ 0,

• K, the output size in bits of the hash function,

• λ, the security level of GeMSS,

• m, number of equations in the public-key,

• nb ite > 0, number of iterations in the verification and signature processes,

1https://risq.fr/?page_id=31&lang=en
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• n, the degree of a field extension of F2,

• v, the number of vinegar variables,

• ∆, the number of minus (the number of equations in the public-key is such that is m = n−∆).

In Section 3, we specify precisely these parameters to achieve a security level λ ∈ {128, 192, 256}.

2.2 Secret-key and public-key

The public-key in GeMSS is a set p1, . . . , pm ∈ F2[x1, . . . , xn+v] of m quadratic equations in n + v
variables. These equations are derived from a multivariate polynomial F ∈ F2n [X, v1, . . . , vv] with
a specific form – as described in (1) – such that generating a signature is essentially equivalent to
find the roots of F .

Secret-key. It is composed by a couple of invertible matrices (S,T) ∈ GLn+v (F2) × GLn (F2)
and a polynomial F ∈ F2n [X, v1, . . . , vv] with the following structure:∑

06j<i<n
2i+2j6D

Ai,j X
2i+2j +

∑
06i<n
2i6D

βi(v1, . . . , vv)X
2i + γ(v1, . . . , vv), (1)

where Ai,j ∈ F2n ,∀i, j, 0 6 j < i < n, each βi : Fv2 → F2n is linear and γ(v1, . . . , vv) : Fv2 → F2n is
quadratic. The variables v1, . . . , vv are called the vinegar variables. We shall say that a polynomial
F ∈ F2n [X, v1, . . . , vv] with the form of (1) has a HFEv-shape.

Remark 1. The particularity of a polynomial F (X, v1, . . . , vv) with HFEv-shape is that for any spe-
cialization of the vinegar variables the polynomial F becomes a HFE polynomial [57], i.e. univariate
polynomial of the following form:∑

06j<i<n
2i+2j6D

Ai,j X
2i+2j +

∑
06i<n
2i6D

BiX
2i + C ∈ F2n [X], (2)

with Ai,j , Bi, C ∈ F2n , ∀i, j, 0 6 j < i < n.

By abuse of notation, we will call degree of F the (max) degree of its corresponding HFE polynomials,
i.e. D.

The special structure of (1) is chosen such that its multivariate representation over the base field
F2 is composed by quadratic polynomials in F2[x1, . . . , xn+v]. This is due to the special exponents
chosen in X that have all a binary decomposition of Hamming weight at most 2.

Let (θ1, . . . , θn) ∈ (F2n)n be a basis of F2n over F2. We set ϕ : E =
∑n

k=1 ek · θk ∈ F2n −→ ϕ(E) =
(e1, . . . , en) ∈ Fn2 .

We can now define a set of multivariate polynomials f = (f1, . . . , fn) ∈ F2[x1, . . . , xn+v]
n derived

from a HFEv polynomial F ∈ F2n [X, v1, . . . , vv] by:

F

(
n∑
k=1

θkxk, v1, . . . , vv

)
=
∑n

k=1 θkfk . (3)
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To ease notations, we now identify the vinegar variables (v1, . . . , vv) = (xn+1, . . . , xn+v). Also, we
shall say that the polynomials f1, . . . , fn ∈ F2[x1, . . . , xn+v] are the components of F over F2.

Public-key. It is given by a set of m quadratic square-free non-linear polynomials in n + v
variables over F2. That is, the public-key is p = (p1, . . . , pm) ∈ F2[x1, . . . , xn+v]

m. It is obtained
from the secret-key by taking the first m = n−∆ polynomials of:(

f1

(
(x1, . . . , xn+v)S

)
, . . . , fn

(
(x1, . . . , xn+v)S

))
T, (4)

and reducing it modulo the field equations, i.e. modulo 〈x2
1 − x1, . . . , x

2
n+v − xn+v〉. We denote

these polynomials by p = (p1, . . . , pm) ∈ F2[x1, . . . , xn+v]
m.

We summarize the public-key/secret-key generation in Algorithm (1). It takes the security param-
eter λ as input. As discussed in Section 8, the security level of GeMSS will be a function of D,n, v
and m. In Section 3 and in Section 9, we specify precisely these parameters. Section 3 presents
some parameters in order to achieve a security level λ ∈ {128, 192, 256}. In section 9, we specify
some others possible parameters.

Algorithm 1 PK/SK generation in GeMSS

1: procedure GeMSS.KeyGen(1λ)
2: Randomly sample (S,T) ∈ GLn+v (F2)×GLn (F2) . This step is further detailed in

Section 2.6.1.
3: Randomly sample F ∈ F2n [X, v1, . . . , vv] with HFEv-shape of degree D . This step is

further detailed in Section 2.6.2.
4: sk← (F,S,T) ∈ F2n [X, v1, . . . , vv]×GLn+v (F2)×GLn (F2)
5: Compute f = (f1, . . . , fn) ∈ F2[x1, . . . , xn+v]

n such that:

F

(
n∑
k=1

θkxk, v1, . . . , vv

)
=

n∑
k=1

θkfk

. See Section 2.6.3 for details on Step 5.
6: Compute (p1, . . . , pn) =(

f1

(
(x1, . . . , xn+v)S

)
, . . . , fn

(
(x1, . . . , xn+v)S

))
T mod 〈x2

1−x1, . . . , x
2
n+v−xn+v〉 ∈ F2[x1, . . . , xn+v]

n

7: pk← p = (p1, . . . , pm) ∈ F2[x1, . . . , xn+v]
m . Take the first m = n−∆ polynomials

computed in Step 6
8: return (sk, pk)
9: end procedure

2.3 Signing process

The main step of the signature process requires to solve:

p1(x1, . . . , xn+v)− d1 = 0, . . . , pm(x1, . . . , xn+v)− dm = 0. (5)
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for d = (d1, . . . , dm) ∈ Fm2 .

To do so, we randomly sample r = (r1, . . . , rn−m) ∈ Fn−m2 and append it to d. This gives d′ =
(d, r) ∈ Fn2 . We then compute D′ = ϕ−1(d′ × T−1) ∈ F2n and try to find a root (Z, z1, . . . , zv) ∈
F2n × Fv2 of the multivariate equation:

F (Z, z1, . . . , zv)−D′ = 0.

To solve this equation, we take advantage of the special HFEv-shape. That is, we randomly sample
v ∈ Fv2 and consider the univariate polynomial F (X,v) ∈ F2n [X]. This yields a HFE polynomial
according to Remark 1. We then find the roots of the univariate equation:

F (X,v)−D′ = 0.

If there is a root Z ∈ F2n , we return (ϕ(Z),v)× S−1 ∈ Fn+v
2 .

A core part of the signature generation is to compute the roots of FD′(X) = F (X,v)−D′. To do
so, we use the Berlekamp algorithm as described in [66, Algorithm 14.15].

Algorithm 2 Algorithm for finding the roots of a univariate polynomial

function FindRoots(FD′ ∈ F2n [X])
Xn ← X2n −X mod FD′ . This step is further detailed in Section 5.6.3
G← gcd(FD′ , Xn)
if degree(G) > 0 then

Roots ← List of all roots of G, computed by the equal-degree factorization algorithm
described in [66, Section 14.3]

return (degree(G),Roots)
end if
return (degree(G), ∅)

end function

The complexity of Algorithm 2 is given by the following general result:

Theorem 1 (Corollary 14.16 from [66]). Let Fq be a finite field, and Mq(D) be the number of
operations in Fq to multiply two polynomials of degree ≤ D. Given f ∈ Fq[x] of degree D, we can
find all the roots of f over Fq using an expected number of

O
(

Mq(D) log(D) log(Dq)
)

or Õ
(
D log(q)

)
operations in Fq.

For q = 2n, we get that finding all the roots of a polynomial of degree D can be done in (expected)
quasi-linear time, i.e.:

Õ(nD). (6)

We can now present the inversion function (Algorithm 3):

Remark 2. We sample a root at Step 12 always in the same way. First, we sort the elements of
Roots in ascending order. We then compute SHA3(D′), and take the first 64 bits H64 of this hash.
We view H64 as an integer, and finally return the (H64 mod #Roots)-th element in Roots.
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Algorithm 3 Inversion in GeMSS

1: function GeMSS.Invp(d ∈ Fm2 , sk = (F,S,T) ∈ F2n [X, v1, . . . , vv]×GLn+v (F2)×GLn (F2))
2: repeat
3: r ∈R Fn−m2 . The notation ∈R stands for randomly sampling.
4: d′ ← (d, r) ∈ Fn2
5: D′ ← ϕ−1(d′ ×T−1) ∈ F2n

6: v ∈R Fv2
7: FD′(X)← F (X,v)−D′
8: (·,Roots)← FindRoots(FD′)
9: until Roots 6= ∅

10: Z ∈R Roots
11: return (ϕ(Z),v)× S−1 ∈ Fn+v

2

12: end function

Let d ∈ Fm2 and s← Invp

(
d, sk = (F,S,T)

)
∈ Fn+v

2 . By construction, we have:

p(s) = d,where p in the public-key associated to sk.

Thus, s ∈ Fn+v
2 could be directly used as a signature for the corresponding digest d ∈ Fm2 . In the

case of GeMSS,m is small enough to make the cost of simple birthday-paradox attack against the
hash function more efficient that all possible attacks (as those listed in Section 8). This problem
was already identified in QUARTZ and Gui [59, 22, 24, 62] who proposed to handle this issue by using
the so-called Feistel-Patarin scheme.

The basic principle of the Feistel-Patarin scheme is to roughly iterate Algorithm 3 several times.
The number of iterations is a parameter nb ite that will be discussed in Section 6.1. We will see
that we can choose nb ite = 4 as in QUARTZ [59, 22, 24].

Algorithm 4 Signing process in GeMSS

1: procedure GeMSS.Sign(M ∈ {0, 1}∗, sk ∈ F2n [X, v1, . . . , vv] × GLn+v (F2) ×
GLn (F2) ,GeMSS.Invp)

2: H← SHA3(M)
3: S0 ← 0 ∈ Fm2
4: for i from 1 to nb ite do
5: Di ← first m bits of H
6: (Si,Xi)← GeMSS.Invp(Di ⊕ Si−1) . Si ∈ Fm2 and Xi ∈ Fn+v−m

2 , ⊕ is the
component-wise XOR

7: H← SHA3(H)
8: end for
9: return (Snb ite,Xnb ite, . . . ,X1) . This is of size
m+ nb ite(n+ v −m) = m+ nb ite(∆ + v) bits

10: end procedure

2.4 Verification process

The verification process corresponding to Algorithm 4 is given in Algorithm 5.
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Algorithm 5 Verification process in GeMSS

1: procedure GeMSS.Verif(M ∈ {0, 1}∗, nb ite > 0, sm ∈ Fm+nb ite(n+v−m)
2 , pk = p ∈

F2[x1, . . . , xn+v]
m)

2: H← SHA3(M)
3: (Snb ite,Xnb ite, . . . ,X1)← sm
4: for i from 1 to nb ite do
5: Di ← first m bits of H
6: H← SHA3(H)
7: end for
8: for i from nb ite− 1 to 0 do
9: Si ← p(Si+1,Xi+1)⊕Di+1

10: end for
11: return VALID if S0 = 0 and INVALID otherwise.
12: end procedure

2.5 Data Representation

2.5.1 Compressed secret-key

The size of the secret-key can be drastically reduced. For that, we expand the secret-key from a
random seed. This is classical and implies to consider a new attack: the exhaustive research of the
seed. Thus, we set the size of the seed to λ bits to reach a λ-bit security level. This change increases
the cost of the signing process, since the secret-key has to be generated for each operation. However,
the expansion of the seed is negligible compared to the cost of the root finding. The timings are not
really impacted by this modification (just slightly for RedGeMSS which has a fast signing process).

The use of a seed is controlled with the ENABLED SEED SK macro (set to 1 by default) from
config HFE.h. When enabled, the seed is expanded with SHAKE.

2.5.2 Data structure for F2[x1, . . . , xn+v]
m

The first idea is to see m equations of F2[x1, . . . , xn+v] as one element in F2m [x1, . . . , xn+v]. The
second idea is to use quadratic forms. Let x = (x1, . . . , xn+v), C ∈ F2m and Q,Q′ ∈ Mn+v(F2m),
then a quadratic non-linear square-free polynomial in F2m [x1, . . . , xn+v] can be written as

C + xQ′xt.

The coefficient Q′i,j corresponds to the term xixj in the polynomial. Since x2
i = xi, the linear term

can be stored on the diagonal of Q′.

To minimize the size, Q′ can be transformed into a upper triangular matrix Q. By construction,
Q′i,j and Q′j,i are the coefficients of the same term xixj (i 6= j). The matrix Q is such that:

Qi,j =


Q′i,j if i = j

Q′i,j + Q′j,i if i < j

0 else.

10



2.6 Implementation

We detail here some of the choices done for implementing GeMSS.

2.6.1 Generating invertible matrices

Algorithm 1 requires, at Step 2, to generate a pair of invertible matrices (S,T) ∈ GLn+v (F2) ×
GLn (F2). This problem was already discussed for QUARTZ [59] who presented two (natural) methods
to generate invertible matrices. The first one (“Trial and error”) sample random matrices until one
is invertible. The second one, that has be chosen in QUARTZ, uses the so-called LU decomposition.
This method has the advantage to directly return an invertible matrix. It is as follows.

• Generate a square random lower triangular L and upper triangular U matrices over F2, both
with ones on the diagonal (to have a non-zero determinant).

• Return L× U .

It is known that this method is slightly biased. A small part of the invertible matrices can not
be generated with this method. For a square matrix of size n, the number of invertible triangular

matrices is 2
∑n−1

i=0 i = 2
n2−n

2 . So, the number of matrices that can be generated with the LU method

is 2n
2

2n . This don’t reduce the search space on the secret matrices sufficiently to impact the security
of GeMSS.

In the code, we have implemented both generation methods. The implementation gives the pos-
sibility to switch the method with the macro GEN_INVERTIBLE_MATRIX_LU, which is in the file
sign_keypairHFE.c. It is initialized to 1 by default.

The matrices (S,T) ∈ GLn+v (F2) × GLn (F2) are in fact only used during the generation of the
public-key. After, we are only using the inverse of these matrices. So, S−1 and T−1 are computed
during the generation and are stored in the secret-key.

2.6.2 Generating HFEv polynomials

Algorithm 1 requires, at Step 3, to generate a polynomial F ∈ F2n [X, v1, . . . , vv] with HFEv-shape
of degree D. The polynomial F can be seen as a polynomial in X whose coefficients are in
F2n [v1, . . . , vv]. We store and randomly generate the non-zero exponents of F .

The polynomial F is chosen monic and so the leading coefficient is not stored. This choice makes
easier the root finding part (Algorithm 2).

2.6.3 Generating the components of a HFEv polynomial

We detail here how to obtain the multivariate polynomials f = (f1, . . . , fn) ∈ (F2[x1, . . . , xn+v])
n

from a HFEv polynomial F ∈ F2n [X, v1, . . . , vv] such that
∑n

k=1 θkfk. The principle is to symbol-
ically compute F (

∑n
k=1 θkxk, v1, . . . , vv) ∈ F2n [x1, . . . , xn+v]. In the implementation, the basis
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(θ1, . . . , θn) ∈ (F2n)n is the canonical basis of F2n .

The polynomial F can be seen as a polynomial in X whose coefficients are in F2n [v1, . . . , vv]. We
first consider terms of the form X2i . Clearly, (

∑n
i=k θkxk)

2i = (
∑n

k=1 θ
2i

k xk). We then get linear

terms involved in the f1, . . . , fn. It is the same idea for a term of the form X2i+2j . We get the
quadratic terms in the fk’s by X2iX2j = (

∑n
k=1 θ

2i

k xk)× (
∑n

k=1 θ
2j

k xk).

Since the beginning of the second round, this method is only used for the reference implementation.
For the other implementations, we use the method described in [40, Section 4.1].

2.6.4 Generation of the public-key pk = p ∈ F2[x1, . . . , xn+v]
m

According to Section 2.5.2, f is stored as C + xQxt ∈ F2n [x1, . . . , xn+v]. We first compute(
f1 ((x1, . . . , xn+v) S) , . . . , fn ((x1, . . . , xn+v) S)

)
(Step 6, Algorithm 1) with our representation.

To do so, we just replace x by x S. The linear change of variables by S can be represented as:

C + xQ′xt ∈ F2n [x1, . . . , xn+v]

with Q′ = SQSt.

We then symmetrize the matrix Q′ as in Section 2.5.2 to get an upper triangular matrix Q′′.

To obtain the public-key, we now need to perform linear combinations with the matrix T. With
our representation, this is equivalent to apply T to each coefficient to obtain the public-key in the
form:

Cpk + (xQpkx
t),

with Cpk ∈ F2m and Qpk ∈Mn+v(F2m).

In this form, the evaluation of the public-key is reduced to a matrix-vector and vector-vector
products in F2m . However, the practice use of this representation is not optimal in memory when
m is not a multiple of 8. So, we must pack the bits of the public-key.

2.6.5 Packed representation of the public-key

The proposed implementation for the second round does not reached the theoretical size of the
public-key. We solve this problem in our new implementation. We use a public-key format allowing
to pack the bits of the public-key, while maintaining a fast use during the verifying process. On
one hand, we save up to 18% of the public-key size. On the other hand, the verifying process is
slightly slower (up to 31%). This change does not impact the security.

This format is based on the so-called ”hybrid representation” [40]. Let m = 8 × k + r be the
Euclidean division of m by 8. We store the 8k first equations with the monomial representation,
then we store the r last equations one by one. This process is illustrated by Figure 1. Firstly, we
pack the coefficients of the 8k first equations monomial by monomial. This corresponds to take the
vertical rectangles from left to right, then to take coefficients from up to down. Secondly, we pack
the coefficients of each of the r last equations. This corresponds to take the horizontal rectangles
from up to down, then to take coefficients from left to right.
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Figure 1: Example of hybrid represention of a multivariate quadratic system with 10 equations and

3 variables. Each row corresponds to one equation, and the c(k) and p
(k)
i,j are in F2.

Our aim is to decrease the cost to unpack the bits of the public-key during the verifying process.
With our format, a big part of the public-key uses the monomial representation. At the beginning of
the second round, this representation was used to store the m equations (instead of 8k equations).
So, the evaluation of the 8k first equations is performed as efficiently as before. They do not
require to be unpacked. This implies that only the r last equations generate an additional cost,
which is slight (r ≤ 7 is small compared to 8k). These equations can be evaluated packed, but
when nb ite > 1, to unpack them permits to accelerate the evaluation (which is repeated nb ite
times).

Implementation details

An important point in our implementation is the memory alignment. All used data has to be
aligned on bytes. This permits to have more simple and more efficient implementations. In the
previous implementation, we used a zero padding when necessary. However, this implied that the
theoretical size was not reached.

Firstly, the 8k first equations are stored without loss. Since for each monomial, 8k coefficients in
F2 are packed, we obtain that k bytes are required to store them. So, we do not require padding
to align data on bytes. The monomials are stored in the graded lexicographic order (as on Figure
1). Secondly, the r last equations are stored in the graded reverse lexicographic order (as on Figure

1). Each equation requires to store N = (n+v)(n+v+1)
2 elements of F2. The alignement of the
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equations requires to use a zero padding when N is not multiple of 8. In this case, the padding
size is Np = 8− (N mod 8) bits. We solve this problem by using the (r − 1)Np last bits of the last
equation to fill the paddings of the (r− 1) other equations. In particular, we take these last bits by
pack of Np, and the `-th pack is used to fill the padding of the (8k + `)-th equation. For example,

on Figure 1, the 9-th equation contains 7 coefficients. So, with our process, we would remove p
(10)
3,3

from the 10-th equation to store it just after p
(9)
3,3. Thus, the 9-th equation would be aligned on 8

bits.

3 List of parameter sets (part of 2.B.1)

Following the analysis of Section 8, we propose several parameters for 128, 192 and 256 bits of clas-
sical security. Namely, we propose three sets of parameters : GeMSS, BlueGeMSS and RedGeMSS.
GeMSS corresponds to the same parameters than those proposed for the first round. This choice
is conservative in term of security. As advised in [55], we also explore more aggressive choice of
parameters. This leads to more efficient schemes BlueGeMSS and RedGeMSS (especially, regarding
the signing timings). The parameters are extracted from Section 8.6 where we propose a rather
exhaustive choice of possible parameters and trade-offs between public-key size, signature size and
efficiency (we use the methodology proposed in 8.6 to derive all the parameters).

3.1 Parameter sets for a security of 2128

For RedGeMSS128, we choose nb ite = 4, ∆ = 15, v = 15 and m = 162. This gives n = 177, n+v =
192, D = 17, λ = 128 and K = 256. In the reference implementation, the extension field is defined
as F2n = F2[X]

Xn+X8+1
.

This gives a public-key of 375.21 KBytes, a signature of 282 bits, a time to sign of 2.33 MC and
141 KC to verify (Section 9.6).

For BlueGeMSS128, we choose nb ite = 4, ∆ = 13, v = 14 and m = 162. This gives n = 175, n+v =
189, D = 129, λ = 128 and K = 256. In the reference implementation, the extension field is defined
as F2n = F2[X]

Xn+X16+1
.

This gives a public-key of 363.61 KBytes, a signature of 270 bits, a time to sign of 81.3 MC and
136 KC to verify (Section 9.6).

For GeMSS128, we choose nb ite = 4, ∆ = 12, v = 12 and m = 162. This gives n = 174, n+v = 186,
D = 513, λ = 128 and K = 256. In the reference implementation, the extension field is defined as
F2n = F2[X]

Xn+X13+1
.

This gives a public-key of 352.19 KBytes, a signature of 258 bits, a time to sign of 531 MC and 106
KC to verify (Section 9.6).

We summarize the parameters in the table below.
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scheme (λ,D, n,∆, v, nb ite) key gen. (MC) sign (MC) verify (KC) |pk| (KB) |sk| (bits) sign (bits)

GeMSS128 (128, 513, 174, 12, 12, 4) 38.7 531 106 352.19 128 258

BlueGeMSS128 (128, 129, 175, 13, 14, 4) 39.2 81.3 136 363.61 128 270

RedGeMSS128 (128, 17, 177, 15, 15, 4) 39.5 2.33 141 375.21 128 282

3.2 Parameter sets for a security of 2192

For RedGeMSS192, we choose nb ite = 4, ∆ = 23, v = 25 and m = 243. This gives n = 266, n+v =
291, D = 17, λ = 192 and K = 384. In the reference implementation, the extension field is defined
as F2n = F2[X]

Xn+X47+1
.

This gives a public-key of 1290.54 KBytes, a signature of 435 bits, a time to sign of 5.97 MC and
334 KC to verify (Section 9.6).

For BlueGeMSS192, we choose nb ite = 4, ∆ = 22, v = 23 and m = 243. This gives n = 265, n+v =
288, D = 129, λ = 192 and K = 384. In the reference implementation, the extension field is defined
as F2n = F2[X]

Xn+X42+1
.

This gives a public-key of 1264.12 KBytes, a signature of 423 bits, a time to sign of 252 MC and
325 KC to verify (Section 9.6).

For GeMSS192, we choose nb ite = 4,∆ = 22, v = 20 and m = 243. This gives n = 265, n+v = 285,
D = 513, λ = 192 and K = 384. In the reference implementation, the extension field is defined as
F2n = F2[X]

Xn+X42+1
.

This gives a public-key of 1237.96 KBytes, a signature of 411 bits and a time to sign of 1800 MC
and 304 KC to verify (Section 9.6).

We summarize the parameters in the table below.

scheme (λ,D, n,∆, v, nb ite) key gen. (MC) sign (MC) verify (KC) |pk| (KB) |sk| (bits) sign (bits)

GeMSS192 (192, 513, 265, 22, 20, 4) 175 1800 304 1237.96 192 411

BlueGeMSS192 (192, 129, 265, 22, 23, 4) 174 252 325 1264.12 192 423

RedGeMSS192 (192, 17, 266, 23, 25, 4) 173 5.97 334 1290.54 192 435

3.3 Parameter sets for a security of 2256

For RedGeMSS256, we choose nb ite = 4, ∆ = 34, v = 35 and m = 324. This gives n = 358, n+v =
393, D = 17, λ = 256 and K = 512. In the reference implementation, the extension field is defined
as F2n = F2[X]

Xn+X57+1
.

This gives a public-key of 3135.59 KBytes, a signature of 600 bits, a time to sign of 9.82 MC and
704 KC to verify (Section 9.6).

For BlueGeMSS256, we choose nb ite = 4, ∆ = 34, v = 32 and m = 324. This gives n = 358, n+v =
390, D = 129, λ = 256 and K = 512. In the reference implementation, the extension field is defined
as F2n = F2[X]

Xn+X57+1
.

This gives a public-key of 3087.96 KBytes, a signature of 588 bits, a time to sign of 399 MC and
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684 KC to verify (Section 9.6).

For GeMSS256, we choose nb ite = 4,∆ = 30, v = 33 and m = 324. This gives n = 354, n+v = 387,
D = 513, λ = 256 and K = 512. In the reference implementation, the extension field is defined as
F2n = F2[X]

Xn+X99+1
.

This gives a public-key of 3040.70 KBytes, a signature of 576 bits, a time to sign of 3020 MC and
678 KC to verify (Section 9.6).

We summarize the parameters in the table below.

scheme (λ,D, n,∆, v, nb ite) key gen. (MC) sign (MC) verify (KC) |pk| (KB) |sk| (bits) sign (bits)

GeMSS256 (256, 513, 354, 30, 33, 4) 530 3020 678 3040.70 256 576

BlueGeMSS256 (256, 129, 358, 34, 32, 4) 530 399 684 3087.96 256 588

RedGeMSS256 (256, 17, 358, 34, 35, 4) 534 9.82 704 3135.59 256 600

4 Design rationale (part of 2.B.1)

A multivariate scheme. The first design rational of GeMSS is to construct a signature scheme
producing short signatures. It is well known that multivariate cryptography [67, 10, 27] provides
the schemes with the smallest signatures among all post-quantum schemes. Multivariate-based
signature schemes are even competitive with ECC-based, pre-quantum, signature schemes (see, for
example [11, 53]). This explains the choice of a multivariate cryptosystem for GeMSS.

A HFE-based scheme. HFE [57] is probably the most popular multivariate cryptosystem. Its
security has been extensively studied since more than 20 years. The complexity of the best known
attacks against HFE are all exponential in O

(
log2(D)

)
, where D is the degree of the secret univariate

polynomial. When D is too small, then HFE can be broken, e.g. [50, 38, 9]. In contrast, solving
HFE is NP-Hard when D = O(2n) [50]. However, the complexity of the signature generation – that
requires finding the roots of a univariate polynomial – is quasi-linear in D (Theorem 1). All in all,
there is essentially one parameter, the degree D of the univariate secret polynomial, which governs
the security and efficiency of HFE. The design challenge in HFE is to find a proper trade-off between
efficiency and security.

Variants of HFE. A fundamental element in the design of secure signature schemes based on
HFE is the introduction of perturbations. These creates many variants of the scheme. Classical
perturbations include the minus modifier (HFE-,[57]) and the vinegar modifier (HFEv, [49, 59]).
Typically, QUARTZ is a HFEv- signature scheme where D = 129, q = 2, n = 103, 4 vinegar variables
and 3 equations removed. The resistance, up to know, of QUARTZ against all known attacks illustrates
that minus and vinegar variants permit to indeed strengthen the security of a HFE-based signature.
A nude HFE, i.e. without any perturbation, with D = 129 and n = 103 would be insecure whilst
no practical attack against QUARTZ has been reported in the literature. The best known attack is
[38] that serves as a reference to set the parameters for GeMSS. Besides, [26] gave new insights on
how to choose the vinegar and minus modifiers.
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QUARTZ has the reputation to be solid but with a rather slow signature generation process. The
authors of [59] reported a signature generation process taking about a minute. Today, the same
parameters will take less than one hundred milliseconds. This is partly due to the technological
progresses on the speed of processors. In fact, it is mostly due to a deeper understanding on
algorithms finding the roots of univariate polynomials. This is further detailed in [40, 66].

Large set of parameters. We propose a general methodology to derive parameters. This per-
mits to derive a large selection of parameters with various trade-offs between sizes and efficiency.

5 Detailed performance analysis (2.B.2)

5.1 Experimental Platform

Computer Processor Frequency Max freq. Architecture

LaptopS Intel(R) Core(TM) i7-6600U CPU 2.60 GHz 3.40 GHz Skylake

ServerH Intel(R) Xeon(R) CPU E3-1275 v3 3.50 GHz 3.90 GHz Haswell

Table 1: Processors.

Computer OS RAM L1d L1i L2 L3

LaptopS Ubuntu 16.04.5 LTS 32 GB 32 KB 32 KB 256 KB 4096 KB
ServerH CentOS Linux 7 (Core) 8192 KB

Table 2: OS and Memory.

The measurements used one core of the CPU, and the reference implementation was compiled with
gcc -O2 -msse2 -msse3 -mssse3 -msse4.1 -mpclmul. The SIMD is enabled only to inline the
(potential) vector multiplication functions from the gf2x library2. The reference implementation
does not exploit these instructions sets. For the optimized and additional implementations, the
code was compiled with gcc -O4 -mavx2 -mpclmul -mpopcnt -funroll-loops. Turbo Boost
and Enhanced Intel Speedstep Technology are disabled to have more accurate measurements

5.2 Third-party open source library

For all implementations, we have used the SHA-3 and SHAKE functions from the Extended Keccak

Code Package3. The HFE-based schemes require to use arithmetic in F2n [X]. In particular, the
multiplication in F2n is the most critical operation. In the optimized and the additional imple-
mentations, we have implemented this operation by using the intel PCLMULQDQ intrinsic instruction.
This instruction computes the product of two binary polynomials such that their degree is strictly
less than 64. In the reference implementation, we use the fast multiplications of binary polynomials

2http://gf2x.gforge.inria.fr/
3https://keccak.team/

17

http://gf2x.gforge.inria.fr/
https://keccak.team/


implemented in the gf2x library. In all implementations, the use of the gf2x library can be enabled
(or disabled) by setting to 1 (or 0) the ENABLED GF2X macro from arch.h.

5.3 Time

The following measurements are for sign. For signature, it signs/verifies a document of 32 bytes.
For the measures, it runs a number of tests such that the global used time is greater than 1 second,
and the global time is divided by the number of tests. For the signature, the lower bound of the
number of tests is 256. The times of the signing process are unstable, since it depends on the
probability to find a root of a univariate polynomial. So, we have taken a large number of signature.

5.3.1 Reference implementation

For the second round, we had removed the use of NTL in the optimized and additional implemen-
tations. This allowed to remove the use of C++ in the implementation. The code is easier to use,
more portable and more standalone. In our new implementation, we have also removed NTL from
the reference implementation. However, the performance of the multiplication in F2[x] is crucial
for GeMSS. The latter was performed by NTL. So, we propose to switch to the gf2x library, which
is specialized in multiplication in F2[x].

These choices explain the new performances summarized in Table 3. The verifying process is more
than 100 times faster, whereas the keypair generation is 13 times faster. The performance of
the signing process depends on D. Indeed, NTL uses classical modular reductions when D = 17,
whereas fast modular reductions are used for D = 129 and D = 513. The fast modular reduction
is slower than the classical method when the input is a sparse HFE polynomial. So, we conclude
that the vector arithmetic from NTL is faster than the vector multiplication from gf2x coupled to
our reference arithmetic (without vector instructions).

scheme (λ,D, n,∆, v,nb ite) key gen. (MC) sign (MC) verify (KC)

GeMSS128 (128, 513, 174, 12, 12, 4) 145 / ×13 2730 / ×2.5 211 / ×140

BlueGeMSS128 (128, 129, 175, 13, 14, 4) 118 / ×13 530 / ×1.46 228 / ×130

RedGeMSS128 (128, 17, 177, 15, 15, 4) 91.1 / ×13 52 / ×0.34 239 / ×110

GeMSS192 (192, 513, 265, 22, 20, 4) 619 / ×13 6510 / ×2.3 585 / ×150

BlueGeMSS192 (192, 129, 265, 22, 23, 4) 520 / ×13 1290 / ×0.99 592 / ×150

RedGeMSS192 (192, 17, 266, 23, 25, 4) 423 / ×14 126 / ×0.22 627 / ×120

GeMSS256 (256, 513, 354, 30, 33, 4) 1660 / ×12 10500 / ×2.4 1160 / ×150

BlueGeMSS256 (256, 129, 358, 34, 32, 4) 1510 / ×13 2080 / ×0.79 1190 / ×150

RedGeMSS256 (256, 17, 358, 34, 35, 4) 1310 / ×14 203 / ×0.18 1190 / ×120

Table 3: Performance of the reference implementation, followed by the speed-up between the new
and the previous implementation. We use a Skylake processor (LaptopS). MC (resp. KC) stands

for Mega (resp. Kilo) Cycles. The results have three significant digits. For example, 145 / ×13

means a performance of 145 MC with the new code, and a performance of 145 × 13 = 1880 MC
with the old code.
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5.3.2 Optimized (Haswell) implementation

Since the original submission of the second round, the verifying process is between 3 and 10%
slower. This is due to the fact that the public-key is stored with a packed representation. The
signing process is up to 43% faster, since we have adapted the multiplication and squaring in F2[x]
for the Haswell processors. This counterbalances the slight cost of the secret-key decompression.
The new arithmetic in F2[x] improves slightly the keypair generation.

scheme (λ,D, n,∆, v,nb ite) key gen. (MC) sign (MC) verify (KC)

GeMSS128 (128, 513, 174, 12, 12, 4) 51.6 / ×1.01 1240 / ×0.98 163 / ×0.92

BlueGeMSS128 (128, 129, 175, 13, 14, 4) 52.1 / ×1.02 198 / ×1.02 170 / ×0.93

RedGeMSS128 (128, 17, 177, 15, 15, 4) 52.4 / ×1.06 5.72 / ×0.97 178 / ×0.91

GeMSS192 (192, 513, 265, 22, 20, 4) 270 / ×1.01 3320 / ×1.08 459 / ×0.96

BlueGeMSS192 (192, 129, 265, 22, 23, 4) 268 / ×1.07 481 / ×1.09 468 / ×0.94

RedGeMSS192 (192, 17, 266, 23, 25, 4) 264 / ×1.03 13.7 / ×1.01 474 / ×0.96

GeMSS256 (256, 513, 354, 30, 33, 4) 814 / ×1.04 5380 / ×1.32 973 / ×0.97

BlueGeMSS256 (256, 129, 358, 34, 32, 4) 810 / ×1.08 733 / ×1.43 989 / ×0.97

RedGeMSS256 (256, 17, 358, 34, 35, 4) 805 / ×1.07 22.1 / ×1.17 1010 / ×0.97

Table 4: Performance of the optimized implementation, followed by the speed-up between the new
and the previous implementation. We use a Haswell processor (ServerH). MC (resp. KC) stands

for Mega (resp. Kilo) Cycles. The results have three significant digits. For example, 163 / ×0.92

means a performance of 163 KC with the new code, and a performance of 163 × 0.92 = 150 KC
with the old code.

5.3.3 Additional (Skylake) implementation

The additional and the optimized implementations are based on the same implementation. We
have only set the macro PROC_SKYLAKE to 1, whereas in the optimized implementation, we set
the macro PROC_HASWELL to 1. This macro impacts mainly the multiplication in F2n . Since the
original submission of the second round, the verifying process is between 11 and 16% slower,
for the same reason as before. The signing process is up to 17% slower, since the secret-key
must be decompressed. The keypair generation is slightly slower because the secret-key must be
decompressed and the public-key must be packed. Finally, the performance is not really impacted
by our new updates, whereas keys size is smaller.
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scheme (λ,D, n,∆, v,nb ite) key gen. (MC) sign (MC) verify (KC)

GeMSS128 (128, 513, 174, 12, 12, 4) 52.6 / ×0.97 1040 / ×0.9 164 / ×0.89

BlueGeMSS128 (128, 129, 175, 13, 14, 4) 53.8 / ×0.97 164 / ×0.97 176 / ×0.88

RedGeMSS128 (128, 17, 177, 15, 15, 4) 54.3 / ×0.98 5.24 / ×0.88 185 / ×0.86

GeMSS192 (192, 513, 265, 22, 20, 4) 275 / ×0.96 2960 / ×0.98 501 / ×0.87

BlueGeMSS192 (192, 129, 265, 22, 23, 4) 278 / ×0.96 448 / ×0.96 512 / ×0.86

RedGeMSS192 (192, 17, 266, 23, 25, 4) 277 / ×0.96 13.1 / ×0.9 518 / ×0.87

GeMSS256 (256, 513, 354, 30, 33, 4) 916 / ×0.95 4940 / ×0.98 1120 / ×0.91

BlueGeMSS256 (256, 129, 358, 34, 32, 4) 923 / ×0.96 653 / ×1.06 1140 / ×0.89

RedGeMSS256 (256, 17, 358, 34, 35, 4) 921 / ×0.97 21.4 / ×0.86 1170 / ×0.9

Table 5: Performance of the additional implementation, followed by the speed-up between the new
and the previous implementation. We use a Skylake processor (LaptopS). MC (resp. KC) stands

for Mega (resp. Kilo) Cycles. The results have three significant digits. For example, 164 / ×0.89

means a performance of 164 KC with the new code, and a performance of 164 × 0.89 = 146 KC
with the old code.

5.3.4 MQsoft

MQsoft [40, 1] is a new efficient library in C for HFE-based schemes such as GeMSS, Gui and
DualModeMS. In [40], we have improved the complexity of several fundamental building blocks for
such schemes and improved the protection against timing attacks. This gives the best implemen-
tation of the GeMSS family. We give here the times with the latest version of MQsoft [40] that
uses sse2, ssse3 and the avx2 instructions sets to be faster. Since the original submission of the
second round, the verifying process is between 17 and 31% slower, for the same reason as before.
The signing process is between 20 and 41% faster, thanks to some optimizations. The keypair
generation is not impacted.

scheme (λ,D, n,∆, v,nb ite) key gen. (MC) sign (MC) verify (KC)

GeMSS128 (128, 513, 174, 12, 12, 4) 38.7 / ×0.99 531 / ×1.41 106 / ×0.77

BlueGeMSS128 (128, 129, 175, 13, 14, 4) 39.2 / ×1.00 81.3 / ×1.3 136 / ×0.82

RedGeMSS128 (128, 17, 177, 15, 15, 4) 39.5 / ×0.99 2.33 / ×1.2 141 / ×0.77

GeMSS192 (192, 513, 265, 22, 20, 4) 175 / ×1.00 1800 / ×1.29 304 / ×0.79

BlueGeMSS192 (192, 129, 265, 22, 23, 4) 174 / ×0.99 252 / ×1.31 325 / ×0.78

RedGeMSS192 (192, 17, 266, 23, 25, 4) 173 / ×0.99 5.97 / ×1.4 334 / ×0.76

GeMSS256 (256, 513, 354, 30, 33, 4) 530 / ×1.00 3020 / ×1.21 678 / ×0.83

BlueGeMSS256 (256, 129, 358, 34, 32, 4) 530 / ×1.00 399 / ×1.37 684 / ×0.85

RedGeMSS256 (256, 17, 358, 34, 35, 4) 534 / ×0.98 9.82 / ×1.31 704 / ×0.84

Table 6: Performance of MQsoft, followed by the speed-up between the new and the previous im-
plementation. We use a Skylake processor (LaptopS). MC (resp. KC) stands for Mega (resp. Kilo)

Cycles. The results have three significant digits. For example, 106 / ×0.77 means a performance

of 106 KC with the new code, and a performance of 106× 0.77 = 82 KC with the old code.
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5.4 Space

In Table 7, we provide the updated sizes of the public-key, secret-key and signature. From now
on, the implementation optimizes the sizes. The theoretical and practical sizes are the same. Since
the secret-key is generated from a seed (Section 2.5.1), the secret-key is very small: just several
hundreds of bits. In contrast, the decompressed secret-key size is between 10 and 80 KB. For the
public-key, we have decreased the practical size (Section 2.6.5). We save 18% for λ = 128, 5% for
λ = 192 and 0.2% for λ = 256 (the latter was already optimized since the beginning of the second
round).

scheme (λ,D, n,∆, v,nb ite) |pk| (KB) |sk| (B) sign (B)

GeMSS128 (128, 513, 174, 12, 12, 4) 352.188 16 32.25

BlueGeMSS128 (128, 129, 175, 13, 14, 4) 363.609 16 33.75

RedGeMSS128 (128, 17, 177, 15, 15, 4) 375.21225 16 35.25

GeMSS192 (192, 513, 265, 22, 20, 4) 1237.9635 24 51.375

BlueGeMSS192 (192, 129, 265, 22, 23, 4) 1264.116375 24 52.875

RedGeMSS192 (192, 17, 266, 23, 25, 4) 1290.542625 24 54.375

GeMSS256 (256, 513, 354, 30, 33, 4) 3040.6995 32 72

BlueGeMSS256 (256, 129, 358, 34, 32, 4) 3087.963 32 73.5

RedGeMSS256 (256, 17, 358, 34, 35, 4) 3135.591 32 75

Table 7: Memory cost. 1 KB is 1000 bytes.

5.5 How parameters affect performance

Signature generation is mainly affected by n and the degree D of the secret univariate polynomial.
According to Theorem 1, we can find the roots of F ∈ F2n [X] in Õ

(
nD

)
binary operations. So, n

and D are the main parameters which influence the efficiency. In Sec. 8, we will see how to choose
these parameters in function of the security parameter.

5.6 Optimizations

The optimized and additional implementations modify the order of computations to have the best
possible contiguity, and in this way avoids a maximum of miss in the cache. The implementation
avoids to store useless null coefficients (for example, for a triangular matrix), and every data are
stored in unidimensional tabular of words.

5.6.1 Improvement of the arithmetic in F2n

The multiplication in F2n is the most expensive part of GeMSS: the generation of the public-
key/secret-key requires O

(
n log2(D)(n + v + log2(D))

)
field multiplications, and the signature

requires Õ
(
nD

)
field multiplications.
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The additional implementation uses the schoolbook multiplication, whereas the optimized imple-
mentation uses the Karatsuba algorithm. Both use the mm clmulepi64 si128 intrinsic for the
basis case. This intrinsic calls the PCLMULQDQ instruction.

The squaring in F2n is important in the signature generation. Indeed, the computation of (X2n−X)
mod F (Algorithm 2) requires O(nD) squaring. The squaring consists just to interleave a zero bit
between each bit of the input. To do this, the additional implementation uses several times the
intrinsic mm clmulepi64 si128, which computes directly the squaring of a 64-bit element. The
optimized implementation uses mainly the VPSHUFB instruction from the AVX2 instructions sets.

5.6.2 Evaluation of the public-key

Before our new implementation proposed during the second round, the public-key was represented
in the form:

Cpk + xQpkx
t,

with Cpk ∈ F2m and Qpk ∈Mn+v(F2m).

The optimization is to set to zero the i-th row of Qpkv
t (a column vector) if the i-th component of

v is null. We avoid a dot product for each null coefficient.

With our new implementation, only the 8k first equations (instead of m) are stored with the
previous format (Section 2.6.5). Once unpacked, the r last equations are in the form:

C + xQxt,

with C ∈ F2 and Q ∈Mn+v(F2) a lower triangular matrix.

So, each equation can be evaluated with matrix-vector and vector-vector product in F2. The
previous optimization is also applied here.

5.6.3 Computation of the Frobenius map

To compute the roots of FD′ = F (X,v) − D′ (Algorithm 2) during the signature, the reference
implementation uses the FrobeniusMap function from NTL. To accelerate this function, the other
implementations use a C implementation of (X2n −X) mod FD′ , as this:

Algorithm 6 Algorithm for the Frobenius map

function Frobenius map(FD′ , n)
Choose a such that 2a < degree(FD′) but 2a+1 ≥ degree(FD′).
Xa ← X2a

for i from a+ 1 to n do
Xi ← (Xi−1)2 . Linearity of the Frobenius endomorphism
Xi ← Xi mod FD′ . We use the fact that FD′ is monic and sparse

end for
return Xn +X

end function
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The computation of the squaring is equivalent to compute the square of each coefficient, and
put a null coefficient between each coefficient. Since FD′ is monic, it is useless to multiply FD′

by the inverse of its leading coefficient to compute the modular reduction. The fact that FD′

is sparse avoids to load and read useless null coefficients, since just the useful coefficients are stored.

Note: during the second round, NTL has been removed from all implementations.

6 Expected strength (2.B.4) in general

We review in this part known results on the provable security of GeMSS. This includes the required
number of iterations in the Feistel-Patarin scheme (Section 6.1) as well as the security (Section 6.2)
in the sense of the existential unforgeability against adaptive chosen-message attack (EUF-CMA).

6.1 Number of iterations nb ite in Sign and Verif

We explain here how the number of iterations nb ite > 0 has to be chosen in Algorithms 4 and 5.
This follows from the analysis performed already in QUARTZ [59, 22].

Theorem 2 (adapted from [22]). The number of iterations nb ite has to be chosen such that

2m
nb ite

nb ite+1 ≥ 2λ.

We use this result to derive the number of iterations for all parameters of GeMSS.

6.2 EUF-CMA security

EUF-CMA security of HFEv-, over which GeMSS is designed, has been mainly investigated in [64].
The authors demonstrated that a minor, but costly, modification of GeMSS.Invp (Algorithm 3)
permits to achieve EUF-CMA security for GeMSS. In fact, the result of [64] applies more precisely
to a version of GeMSS.Invp where nb ite is equal to one. In this case, the EUF-CMA security of
(modified) GeMSS follows easily from [64].

We first formalize the security of GeMSS against chosen message attacks.

Definition 1 ([64]). The GeMSS signature scheme (GeMSS.KeyGen,GeMSS.Sign,GeMSS.Verif)
is
(
ε(λ), qs(λ), qh(λ), t(λ)

)
-secure if there is no forger A who takes as input a public-key

(·, pkGeMSS) ← GeMSS.KeyGen() and with at most qh(λ) queries to the random oracle, qs(λ)
queries to the signature oracle, then outputs a valid signature after t(λ) steps with a probability at
least ε(λ).

We want to provably reduce EUF-CMA security of GeMSS to the the hardness of inverting the
public-key of GeMSS. Formally:

Definition 2 ([64]). We shall say that the GeMSS function generator GeMSS.KeyGen is(
ε(λ), t(λ)

)
secure, if there is no inverting algorithm that takes pkGeMSS = pGeMSS generated via
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(·, pkGeMSS) ← GeMSS.KeyGen(1λ), a challenge d ∈R Fm2 , and finds a preimage s ∈R Fn+v
2 such

that
pGeMSS(s) = d.

after t(λ) steps with success probability at least ε(λ).

Following [64], we explain now how to modify GeMSS for proving EUF-CMA security. Recall that
D is degree of the secret polynomial with HFEv-shape in GeMSS. The main modification proposed
by [64] is roughly to repeat D times the inversion step described in Algorithm 3.

Let ` be the length of a random salt. The modified inversion process is given in Algorithm 7:

Algorithm 7 Modified inversion for GeMSS

1: procedure GeMSS.Inv∗p(d ∈ Fm2 , ` ∈ N, sk = (F,S,T) ∈ F2n [X, v1, . . . , vv] × GLn+v (F2) ×
GLn (F2))

2: v ∈R Fv2
3: repeat
4: salt ∈R {0, 1}`
5: r← first n−m bits of SHA3(d‖salt)
6: d′ ← (d, r) ∈ Fn2
7: D′ ← ϕ−1(d′ ×T−1) ∈ F2n

8: FD′(X)← F (X,v)−D′
9: (·,Roots)← FindRoots(FD′)

10: u ∈R {1, . . . , D}
11: until 1 ≤ u ≤ #Roots
12: Z ∈R Roots
13: return (ϕ(Z),v)× S−1 ∈ Fn+v

2

14: end procedure

Given Algorithm 7, we can define GeMSS.Sign∗ as the signature algorithm 4 instantiated with
GeMSS.Inv∗p and with nb ite = 1. Similarly, GeMSS.Verif∗ is the verification algorithm 5 where
nb ite = 1.

Theorem 3 ([64]). Let GeMSS∗ be the signature scheme defined by
(GeMSS.KeyGen,GeMSS.Sign∗,GeMSS.Verif∗). Thus, if the GeMSS function generator
GeMSS.KeyGen is

(
ε′, t′

)
secure, then GeMSS∗ is

(
ε, t, qH , qS

)
secure, with:

ε =
ε′(qH + qs + 1)

1− (qH + qs)qs2`
,

t =
t′ − (qH + qs + 1)

tGeMSS +O(1)

where tGeMSS is the time required to evaluate the public-key of GeMSS.

There are two differences between GeMSS and GeMSS∗. First, GeMSS.Inv∗p is more costly than
GeMSS.Invp. The expected number of calls to the root-finding step (Step 9) in GeMSS.Inv∗p is

1
1−1/eD ≈ 1.58×D. In GeMSS.Invp, the average number of calls to the root-finding step (Step 8)

is 1
1−1/e ≈ 1.58.

In GeMSS, we are typically considering D between 17 and 513. For efficiency reasons, we did not
incorporated this modification in our implementation.
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Remark 3. The threshold D in Step 10 corresponds to a bound on the number of roots of the
univariate polynomial F at Step 9. However, F has a HFE-shape (Remark 1) and has much less
roots than a random univariate polynomial of the same degree. Indeed, the roots of a HFE polynomial
correspond to the zeros of a system of n boolean equations in n variables (see (3)). In [42], the
authors studied the distribution of the number of zeroes of algebraic systems. In particular, a
random system of n equations in n variables has exactly s solutions with probability 1

e s! . Thus,
as also mentionned [64], the threshold D in Step 10 can be theoretically much decreased without
compromising the proof. The authors of [64] mentioned a value around ≈ 30 for the threshold.

The second difference between GeMSS and GeMSS∗ is on the number of iterations. The treatment
of [64] did not include the use of a Feistel-Patarin transform. It is an interesting open problem to
formally prove EUF-CMA security when nb ite > 0. This should probably follow from the use of
Theorem 2.

All in all, the provable security results mentioned up to know only require minor modifications of
the signature process without changing the underlying trapdoor. As a consequence, the security
of GeMSS has to be mainly studied with respect to the hardness of inverting the public-key. This
question is investigated in Section 8.

6.3 Signature failure

This analysis is essentially similar to the one performed for QUARTZ [59]. A failure can occurs in
GeMSS.Invp (Algorithm 3), at Step 8, if Roots = ∅ for all (r,v) ∈ Fn−m2 ×Fv2. The probability that
Roots is empty for a given (d,v) ∈ Fm2 ×Fv2 is 1/e [59, 42]. Thus, Algorithm 7 fails with probability
(1
e )2n+v−m

.

Finally, GeMSS.Invp is called GeMSS.Sign nb ite times. The probability of failure for GeMSS.Sign
is then:

1−

(
1−

(
1

e

)2n+v−m
)nb ite

.

7 Expected strength (2.B.4) for each parameter set

7.1 Parameter set sign/BlueGeMSS128

Category 1.

7.2 Parameter set sign/BlueGeMSS192

Category 3.

7.3 Parameter set sign/BlueGeMSS256

Category 5.
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7.4 Parameter set sign/GeMSS128

Category 1.

7.5 Parameter set sign/GeMSS192

Category 3.

7.6 Parameter set sign/GeMSS256

Category 5.

7.7 Parameter set sign/RedGeMSS128

Category 1.

7.8 Parameter set sign/RedGeMSS192

Category 3.

7.9 Parameter set sign/RedGeMSS256

Category 5.

8 Analysis of known attacks (2.B.5)

This part provides a summary of the main attacks against GeMSS. In Section 8.1, we consider
direct signature forgery attacks. This includes, in particular, the analysis of known quantum
attacks (Sections 8.1.2 and 8.3) and Gröbner basis attacks (Sections 8.1.2 and 8.3). In Section 8.4,
we consider key-recovery attacks.

In almost all cases, the attacks reduce to solving a particular system of non-linear equations derived
from the public polynomials.

8.1 Direct signature forgery attacks

The public-key of GeMSS is given by a set of non linear-equations p = (p1, . . . , pm) ∈
F2[x1, . . . , xn+v]

m. Given a digest (d1, . . . , dm) ∈ Fm2 , the problem of forging a signature is equiva-
lent to solve the following system of non-linear equations:

p1(x1, . . . , xn+v)− d1 = 0, . . . , pm(x1, . . . , xn+v)− dm = 0, x2
1 − x1, . . . , x

2
n+v − xn+v = 0. (7)
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Stated differently, the task is to invert GeMSS.Invp (Algorithm 3) without the knowledge of the
secret-key sk.

In our case, the system is under-defined, i.e. n + v > m. As a consequence, we can randomly
fix n + v −m variables r = (r1, . . . , rn+v−m) ∈ Fn+v−m

2 in (7) and try to solve for the remaining
variables. Note that this is similar to the (legitimate) signature process which requires to randomly
fix variables in GeMSS.Invp (Steps 3 and 6 of Algorithm 3).

Thus, the problem of forging a signature reduces to solve a system of m quadratic equations in m
variables over F2:

p1

(
x1, . . . , xm, r)− d1 = 0, . . . , pm

(
x1, . . . , xm, r)− dm = 0, x2

1 − x1, . . . , x
2
m − xm = 0. (8)

8.1.1 Exhaustive search

In [13], the authors describe a fast exhaustive search for solving systems of boolean quadratic
equations. They also provide a detailed cost analysis of their approach. To recover a solution of
(8), the approach from [13] requires:

4 log2(m) 2m binary operations.

For the parameters of GeMSS, we obtain for example:

m Fast exhaustive search ([13])

162 2166.87

243 2247.98

324 2329.98

We always take into account this attack to derive all the parameters proposed in this document
(typically, BlueGeMSS, RedGeMSS and the parameters of Section 9). The same remark holds for
all attacks described from now on.

8.1.2 Quantum exhaustive search

In [19], the authors proposed simple quantum algorithms for solving systems of quadratic boolean
equations. The principle of [19] is to perform a fast quantum exhaustive search by using Grover’s
algorithm. [19] demonstrated that we can solve a system of m − 1 binary quadratic equations in

n− 1 binary variables using m+ n+ 2 qubits and evaluating a circuit of 2n/2
(

2m(n2 + 2n) + 1

)
quantum gates. They also describe a variant using less qubits, i. e. 3 + n+ dlog2(m)e qubits, but

requiring to evaluate a larger circuit, i.e. with ≈ 2× 2n/2
(

2m(n2 + 2n) + 1

)
quantum gates.

We can now estimate is the cost for solving the system (8). For GeMSS, the quantum attacks from
[19] require for example :
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m #qbits #quantum gates

162 328 2104.56

162 173 ≈ 2105.56

243 490 2146.8

243 254 ≈ 2146.8

324 652 2188.54

324 336 ≈ 2189.54

8.2 Approximation algorithm

Recently, the authors of [51] proposed a new algorithm for solving systems of non linear equations
that is faster than a direct exhaustive search. The techniques from [51] allow for the approximation
of a non-linear system, as (8), by a single high-degree multivariate polynomial P with m′ < m
variables. The polynomial P is constructed such that it vanishes on the same zeroes as the original
non-linear system with high probability. We then perform an exhaustive search on P to recover,
with high probability, the zeroes of the non-linear system. This leads to an algorithm for solving
(8) whose asymptotic complexity is:

O∗
(
20.8765m

)
.

The notation O∗ omits polynomial factors. Anyway, we will estimate the cost of this attack by the
lower bound 20.8765m.

For the parameters of GeMSS, we have then:

m Lower bound on the complexity of [51]

162 2141.99

243 2212.98

324 2283.98

8.3 Gröbner bases

To date, the best methods for solving non-linear equations, including the attack system (8), utilize
Gröbner bases [17, 16]. The historical method for computing such bases – known as Buchberger’s
algorithm – has been introduced by Buchberger in his PhD thesis [17, 16]. Many improvements on
Buchberger’s algorithm have been done leading – in particular – to more efficient algorithms such
as the F4 and F5 algorithms of J.-C. Faugère [32, 33]. The F4 algorithm, for example, is the default
algorithm for computing Gröbner bases in the computer algebra software Magma [12]. The F5
algorithm, which is available through the FGb [35] software4, provides today the state-of-the-art
method for computing Gröbner bases.

Besides F4 and F5, there is a large literature of algorithms computing Gröbner bases. We
mention for instance PolyBory [15] which is a general framework to compute Gröbner basis in
F2[x1, . . . , xn]/〈x2

i − xi〉1≤i≤n. It uses a specific data structure – dedicated to the Boolean ring
– for computing Gröbner basis on top of a tweaked Buchberger’s algorithm5. Another technique

4http://www-polsys.lip6.fr/~jcf/FGb/index.html
5http://polybori.sourceforge.net
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proposed in cryptography is the XL algorithm [23]. It is now clearly established that XL is a special
case of Gröbner basis algorithm [2]. More recently, a zoo of algorithms such as G2V [44], GVW [45],
. . ., flourished building on the core ideas of F4 and F5. This literature is vast and we refer to [31]
for a recent survey of these algorithms.

Despite this important algorithmic literature, if is fair to say that Magma and FGb remain the
references softwares for polynomial system solving over finite fields. We have intensively used
both softwares to perform practical experiments and support our methodology to derive secure
parameters (Section 8.3.3).

8.3.1 Asymptotically fast algorithms

BooleanSolve [7] is the fastest asymptotic algorithm for solving system of non-linear boolean
equations. BooleanSolve is a hybrid approach that combines exhaustive search and Gröbner bases
techniques. For a system with the same number of equations and variables (m), the deterministic
variant of BooleanSolve has complexity bounded by O(20.841m), while a Las-Vegas variant has
expected complexity

O(20.792·m).

It is mentioned in [7] that BooleanSolve is better than exhaustive search when m ≥ 200. This is
due to the fact that large constants are hidden in the big-O notation. As a conservative choice,
we lower bound here the cost of this attack by 20.792·m. We mention that [61] recently considered
a hybrid approach against HFEv-. The former result also indicates that our approach is indeed
conservative.

In Table 8, we report the security level of GeMSS against BooleanSolve (probabilistic version) for
the three security levels proposed.

m Lower bound on the cost of BooleanSolve (20.792·m)

162 2128.3

243 2192.45

324 2256.6

Table 8: Security of GeMSS against BooleanSolve.

In fact, we have used BooleanSolve as the reference approach to derive the minimal number m of
equation required in GeMSS.

QuantumBooleanSolve. In [37], the authors present a quantum version of BooleanSolve that
takes advantages of Grover’s quantum algorithm [48]. QuantumBooleanSolve is a Las-Vegas quan-
tum algorithm allowing to solve a system of m boolean equations in m variables. It uses O(n) qbits,
requires the evaluation of, on average, O(20.462m) quantum gates. This complexity is obtained under
certain algebraic assumptions.

In Table 9, we report the security level of GeMSS against QuantumBooleanSolve (probabilistic
version) for the three security levels proposed.
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m Lower bound on the # quantum gates for QuantumBooleanSolve (20.462·m)

162 274.84

243 2112.26

324 2149.68

Table 9: Security of GeMSS against QuantumBooleanSolve.

Note that [8] also proposed a new (Gröbner-based) quantum algorithm for solving quadratic equa-
tions with a complexity comparable to QuantumBooleanSolve (we refer to [37] for further details).

8.3.2 Practically fast algorithms

The direct attack described in [34, 38] provides reference tools for evaluating the security of HFE
and HFEv- against a direct message-recovery attack. This attack uses the F5 algorithm [33, 5] and
has a complexity of the following general form:

O
(
poly(m,n)ω·Dreg

)
, (9)

with 2 ≤ ω < 3 being the so-called linear algebra constant [66], i.e. the smallest constant ω, 2 ≤
ω < 3 such that two matrices of size N ×N over a field F can be multiplied in O(Nω) arithmetic
operations over F. The best current bound is ω < 2.3728639 [43]. In this part, we will always use
ω = 2 to evaluate the cost of Gröbner bases attacks.

The complexity (9) is exponential in the degree of regularity Dreg [3, 6, 4]. However, this degree of
regularity Dreg can be difficult to predict in general ; as difficult than computing a Gröbner basis.
Fortunately, there is a particular class of systems for which this degree can be computed efficiently
and explicitly : semi-regular sequences [3, 6, 4]. This notion is supposed to capture the behavior of
a random system of non-linear equations. In order to set the parameters for HFE and variants as
well than for performing meaningful experiments on the degree of regularity, we can assume that
no algebraic system has a degree of regularity higher than a semi-regular sequence.

In Table 10, we provide the degree of regularity of a semi-regular system of m boolean equations
in m variables for various values of m.

In the case of HFE, the degree of regularity for solving (8) has been experimentally shown to be
smaller than log2(D) [34, 38]. This behavior has been further demonstrated in [47, 30]. In particular,
[47] claims that the degree of regularity reached in HFE is asymptotically upper bounded by:

(2 + ε)(1−
√

3/4) ·min
(
m, log2(D)

)
, for all ε > 0. (10)

This bound is obtained by estimating the degree of regularity of a semi-regular system of 3dlog2(D)e
quadratic equations in 2dlog2(D)e variables. We emphasize that an asymptotic bound such as (10)
is not necessarily tight for specified values of the parameters. Thus, (10) can not be directly used
to derive actual parameters but still provide a meaningful asymptotic trend.

Indeed, the behavior of HFE algebraic systems is then much different from a semi-regular system
of m boolean equations in m variables where the degree of regularity increases linearly with m.
Roughly, Dreg grows as ≈ m/11.11 in the semi-regular case [3, 6, 4].
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m Dreg

3 ≤ m ≤ 8 3

9 ≤ m ≤ 15 4

16 ≤ m ≤ 23 5

24 ≤ m ≤ 31 6

32 ≤ m ≤ 40 7

41 ≤ m ≤ 48 8

49 ≤ m ≤ 57 9

58 ≤ m ≤ 66 10

154 ≤ m ≤ 163 20

234 ≤ m ≤ 243 28

316 ≤ m ≤ 325 36

Table 10: Degree of regularity of m semi-regular boolean equations in m variables.

We report below the degree of regularity DExp
reg observed in practice for HFE. These bounds are are

only meaningful for a sufficiently large m which is given in the first column. Indeed, as we already
explained, we can assume that the values from Tab. 10 are upper bounds on the degree of regularity
of any algebraic system of boolean equations.

Minimal m HFE(D) DExp
reg

> 3 3 ≤ D ≤ 16 3

> 9 17 ≤ D ≤ 128 4

> 16 129 ≤ D ≤ 512 5

> 24 513 ≤ D ≤ 4096 6

> 32 D ≥ 4097 7

Table 11: Degree of regularity in the case of HFE algebraic systems.

Following [38], we lower bound the complexity of F5 against HFE, i.e. for solving the attack system
(8). The principle is to only consider the cost of performing a row-echelon computation on a full
rank sub-matrix of the biggest matrix occurring in F5. At the degree of regularity, this sub-matrix
has

(
m
Dreg

)
columns and (at least)

(
m
Dreg

)
rows. Thus, we can bound the complexity of a Gröbner

basis computation against HFE by:

O

((
m

Dreg

)2
)
. (11)

This is a conservative estimate on the cost of solving (8). This represents the minimum computation
that has to be done in F5. We also assumed that the linear algebra constant ω is 2; the smallest
possible value.

Given a value of m, we can now deduce from (11) and Table 8, the (smallest) degree of regularity
required to achieve a certain security level. These values are given in Table 12.

From Table (11), we can see that no HFE has a degree of regularity sufficiently large to achieve a
reasonable level of security. To do so, we need to use modifiers of HFE for increasing the degree of
regularity.
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m minimal Dreg required Lower bound on the cost of a Gröbner basis as given in (11)

162 14 2131.16

243 20 2192.52

324 27 2260.86

Table 12: Smallest degree of regularity required.

In particular, the practical effect of the minus and vinegar modifiers have been considered in [34, 38].
This has been further investigated in [25, 28] who presented a theoretical upper bound on the degree
of regularity arising in HFEv-. Let R = blog2(D− 1)c+ 1, then the degree of regularity for HFEv- is
bounded from above by

R+ v + ∆− 1

2
+ 2, when R+ ∆ is odd, (12)

R+ v + ∆

2
+ 2, otherwise. (13)

We observe that degree of regularity seems to increase linearly with (n+ v −m). This is the sum
of the modifiers : number of equations removed plus vinegar variables.

Very recently, [61] derived an experimental lower bound on the degree of regularity in HFEv-. The
authors [61] obtained that the degree of regularity for HFEv- should be at least :⌈

R+ ∆ + v + 7

3

⌉
. (14)

8.3.3 Experimental results for HFEv-

The main question in the design of GeMSS is to quantify, as precisely as possible, the effect of the
modifiers on the degree of regularity. To do so, we performed experimental results on the behaviour
of a direct attack against HFEv-, i.e. computing a Gröbner basis of (8). We mention that similar
experiments were performed in [62].

We first consider v = 0, and denote by ∆ the number of equation removed, i.e. m = n − r.
According to the upper bounds (12) and (13), the degree of regularity should increase by 1 when
2 equations are removed.

We report the degree of regularity DExp
reg reached during a Gröbner basis computation of a system of

m = n−∆ equations in n−∆ variables coming from a HFE public-key generated from a univariate
polynomial in F2n [X] of degree D. We also reported the degree of regularity DTheo

reg of a semi-regular
system of the same size (as in Table (10)).

The experimental results on HFE-, no vinegar, are not completely conclusive. Whilst the degree of
regularity appears to increase, it seems difficult to predict its behavior in function of the number
of equations removed. This was also observed in [62] where the authors advised against using the
minus modifier alone. Thus, the minus modifier should not be used alone.

We now consider the opposite situation, i.e. no minus and we increase the number of vinegar
variables, i.e. HFEv.
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n ∆ n−∆ D DTheo
reg DExp

reg

32 0 32 4 7 3
33 1 32 4 7 3
34 2 32 4 7 3
35 3 32 4 7 4
36 4 32 4 7 4
37 5 32 4 7 4
38 6 32 4 7 4
39 7 32 4 7 4
40 8 32 4 7 5
41 9 32 4 7 5
42 10 32 4 7 5
43 11 32 4 7 5
44 12 32 4 7 5
45 13 32 4 7 5
46 14 32 4 7 6
47 15 32 4 7 6
48 16 32 4 7 6
49 17 32 4 7 6
49 18 32 4 7 6
50 19 32 4 7 6
51 20 32 4 7 6

n ∆ n−∆ D DTheo
reg DExp

reg

41 0 41 4 8 3
42 1 41 4 8 3
43 2 41 4 8 3

44 3 41 4 8 4
45 4 41 4 8 4
46 5 41 4 8 4
47 6 41 4 8 4
48 7 41 4 8 4

Table 13: HFE- with D = 4; 32 and 41 equations.

n ∆ n−∆ D DTheo
reg DExp

reg

32 0 32 17 7 4
33 1 32 17 7 4
34 2 32 17 7 4
35 3 32 17 7 5
36 4 32 17 7 5
37 5 32 17 7 6
38 6 32 17 7 6
39 7 32 17 7 6

n ∆ n−∆ D DTheo
reg DExp

reg

41 0 41 17 8 4
42 1 41 17 8 4
43 2 41 17 8 4

44 3 41 17 8 5
45 4 41 17 8 5

Table 14: HFE- with D = 17; 32 and 41 equations.

n v m = n− v D DTheo
reg DExp

reg

32 0 32 6 7 3

32 7 25 6 7 5
32 8 25 6 7 6
32 9 25 6 7 6
32 10 25 7 7 6

32 11 25 6 7 7
32 12 25 6 7 7

32 15 25 6 7 7

Table 15: HFEv, D = 6 and 32 variables.

The experimental results are more stable. In all cases, we need to add 3 vinegar variables to increase
the degree of regularity by 1.
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n v m = n− v D DTheo
reg DExp

reg

25 0 25 9 6 3

26 1 25 9 6 4
27 2 25 9 6 4
28 3 25 9 6 4

29 4 25 9 6 5
30 5 25 9 6 5
31 6 25 9 6 5

32 7 25 9 6 6

Table 16: HFEv, D = 9 and 25 variables.

n v m = n− v D DTheo
reg DExp

reg

25 0 25 16 6 3

26 1 25 16 6 4
27 2 25 16 6 4
28 3 25 16 6 4

29 4 25 16 6 5
30 5 25 16 6 5
31 6 25 16 6 5

32 7 25 16 6 6

n v m = n− v D DTheo
reg DExp

reg

32 0 32 16 7 3

33 1 32 16 7 4
34 2 32 16 7 4
35 3 32 16 7 4

36 4 32 16 7 5
37 5 32 16 7 5

Table 17: HFEv with D = 16; 25 and 32 equa-
tions.

We also performed experimental results with a combination of vinegar and minus. Similarly to
[62], we observed that the behaviour obtained seems similar for HFEv- with ∆ = 0 and v vinegar
variables than for a HFEv- with ∆ = v/2 and v/2 vinegar variables.

8.3.4 Distinguishing-based attack against HFEv-

The idea of the so-called hybrid attack discussed in Section 8.3.1 is to combine exhaustise search
with Gröbner bases. In [26], the authors propose an improved version of this hybrid attack that
takes into account the specific structure of a HFEv- public system.

From (14), we can observe that the degree of regularity increases linearly with the number of minus
or vinegar variables but logarithmically in the degree D. The strategy of [26] is to turn this remark
into a distinguisher. Vinegar variables have an impact on the degree of regularity and so on the
cost of a Gröbner basis computation.

More precisely, this attack reduces a HFEv- system to a HFE- system, by removing the vinegar
variables one by one. To do so, k linear equations are added to the key-recovery system (7). We
obtain a projected system p′. If a linear combination of these k equations is equivalent to remove
one vinegar variable, p′ will be easier to solve with a Gröbner basis algorithm. In particular, the
degree of regularity will decrease. This permits to detect the case where the k equations indeed
eliminate a vinegar variable. Once these k equations found, the linear combination which removes
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one vinegar variable can be computed, then added to the initial system. The new system will
be equivalent to the old system by removing one vinegar variable. By repeating this process, all
vinegar variables can be eliminated, and we obtain a HFE- system.

According to [26], the complexity of the distinguishing-based attack is

O

(
2n−k × 3

(
n+ v − k
Dreg

)2(n+ v − k
2

))
(15)

with a classical computer, and is

O

(
2

n−k
2 × 3

(
n+ v − k
Dreg

)2(n+ v − k
2

))
(16)

with a quantum computer.

However, the number of added equations k is upper bounded. Let k̄ be this value, when at most k̄
equations are added, the degree of regularity of a projected and unprojected system are the same
(when these equations do not remove one vinegar variable). When at least k̄ + 1 equations are
added, the distinguishing based attack fails because the projected system cannot be distinguished
anymore of a random system.

So, k̄ is estimated as following. We estimate d the degree of regularity of the projected system with
Equation (14). Then, we estimate the degree of regularity of a random system with m equations
and n′ variables with the smallest index i such as the term zi of G (Equation (17)) is zero or
negative.

G(z) =
(1 + z)n

′

(1 + z2)m
. (17)

We obtain k̄ by searching the larger value k such as d is less or equal to the degree of regularity of
a random system with n′ = n + v − k variables and m = n−∆ equations. When k equations are
added, k variables are removed.

In Table 18, we take the minimum values of m and D for each level of security of HFEv-, and for
∆ = v, we give the values of v which permits to achieve the security level against the distinguishing
based attack. We selected all our parameters taking into account the distinguishing-based attack.

(λ,m,D) Dreg (14) k̄ Distinguishing based attack (15)

(128, 162, 17) 7 102 v > 4

(192, 243, 17) 10 144 v > 8

(256, 324, 17) 12 193 v > 11

Table 18: Values of v which reaches the security level against the distinguishing-based attack.

8.4 Key-recovery attacks

We conclude this part by covering key-recovery attacks. This part discusses the so-called Kipnis-
Shamir attack [50] (Section 8.4.1) and differential attacks (Section 8.4.3).
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8.4.1 Kipnis-Shamir attack

In [50], A. Kipnis and A. Shamir demonstrated that key-recovery in HFE is essentially equivalent to
the problem of finding a low-rank linear combination of a set of m boolean matrices of size m×m.
This is a particular instance of the MinRank problem [18, 21].

We briefly review the principle of this attack for HFE. In the context of this attack, we can assume
w.l.o.g. that the HFE polynomial has a simpler form:∑

06j<i<n
2i+2j6D

Ai,j X
2i+2j ∈ F2n [X], with Ai,j ∈ F2n . (18)

We can then write (18) in a matrix form, that is:

XFXT

with X = (X,X2, X22 , . . . , X2n−1
) and F ∈ M(F2n)n×n is a symmetric matrix with zeroes on the

diagonal (i.e. skew-symmetric matrix). Since the degree of F is bounded by D, it is easy to see
that F has rank at most dlog2(D)e. This implies that there exists a linear combinations of rank
dlog2(D)e of the public matrices representing the public quadratic forms [9]. The secret-key can be
then recovered easily from a solution of MinRank [50, 9].

In [9], the authors evaluated the cost of the Kipnis-Shamir key-recovery attack with the best known
tools for solving the MinRank [36] instance that occurs in HFE. Following [9], the cost of the Kipnis-
Shamir attack against HFE can be estimated to:

O
(
nω(dlog2(D)e+1)

)
, with 2 ≤ ω ≤ 3 being the linear algebra constant

and where D is the degree of the secret univariate polynomial.

Until recently, it was not clear how to apply the key-recovery attack from [50, 9] to HFE- when
n − m ≥ 2. In [65], the authors explained how to extend MinRank-based key-recovery for all
parameters of HFE-. Their results can be summarized as follows. From key-recovery point of view,
HFE- with a secret univariate polynomial of degree D and n variables is equivalent to a HFE with
m variables with secret univariate polynomial of degree D × 2∆. Combining with [9], the cost of a
MinRank-based key-recovery attack against HFE− is then:

O
(
mω(dlog2(D)e+∆+1)

)
.

For MinRank-based key-recovery, the minus modifier has then a strong impact on the security.

In the case of HFEv, one can see that the rank of the corresponding matrix (see, for exemple [62])
will be increased by the number of vinegar variables. Combining with the previous result, the cost
of solving MinRank in the case of HFEv- is then:

O
(
nω(dlog2(D)e+v+∆+1)

)
, (19)

where D is the degree of the secret univariate polynomial.

For all the parameters proposed for scheme, assuming ω = 2, the cost (19) is always much bigger
than the cost of the best direct attack (Section 8.1).
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8.4.2 MinRank attacks with projections

In Section 8.4, we only described the first step – the MinRank – of a Kipnis-Shamir key-recovery
attack. Thus, the complexity 19 is a lower bound on the total cost of the Kipnis-Shamir key-
recovery attack. In [26], the authors provide the cost of the second step, finding an equivalent
secret-key, for such attack. According to [26], the cost of this second step is:

O

((
n+ v + r

∆ + v + r

)2(n−∆

2

)
+ (∆ + v + r + 1)3 2∆+r+1

)
. (20)

with r = dlog2(D)e.

The authors of [26] also propose a method to improve the MinRank step (Section 8.4). The idea is
very similar to the one described in Section 8.3.4. We try to eliminate vinegar variables to decrease
the degree of regularity with respect to a direct MinRank, and so the complexity (19). This attack,
called project-then-MinRank attack, has complexity:

O

((
n+ v + r − c
∆ + v + r − c

)2(n−∆

2

)
2c(r+∆+

√
n−∆)−(c+1

2 )

)
, 1 ≤ c ≤ v. (21)

This is also a lower on the cost a full-recovery. Indeed, we also need to add the cost of (20).

In Table 19, we consider the parameters used for RedGeMSS. For such familly, the degree is the
smallest (D = 17) and so the rank. Thanks to [26], we have now a rational to choose the number
of vinegar variables. In particular, this leads to choose ∆ and v to be equal.

Below, we computed the smallest values of v which permit to reach the three security levels in the
case of RedGeMSS.

(λ,m,D) project-then-MinRank (21)

(128, 162, 17) v > 3

(192, 243, 17) v > 6

(256, 324, 17) v > 8

Table 19: Values of v which reaches the security level (∆ = v).

8.4.3 Differential attack

We finally consider so-called differential attacks, introduced [29], are structural attacks that can
be used to attack multivariate cryptosystems. Differential attacks turned to be very efficient, e.g.
[29, 14] against SFLASH [58]; a popular multivariate-based signature based on the Matsumoto and
Imai [52].

HFE is the successor, and a generalization, of [52]. Up to know, differential attacks have not really
threatened the security of HFEv-. This is due to the fact the univariate polynomial used is much
more complex than in [52] variants such as SFLASH [58]. In [20], the authors proved that variants
of HFE, such as GeMSS, are immune against known differential attacks.
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8.5 Deriving number of variables for GeMSS

At this stage, we have a methodology for fixing the minimal number of equations m (Table 8).
We now need to derive the number of vinegar variables v and minus ∆ required to achieve the
degree of regularity corresponding to a given security level (Table 12). This is the most delicate
point. According to the experiments performed in Section 8.3.3, and the insight provided by the
key-recovery attacks (Section 8.4), we make the choice to balance v and ∆.

In addition, we need to fix the degree D of the HFEv polynomial. This will give the initial degree
of regularity for a nude HFE (Table 11). For GeMSS, we consider a secret univariate polynomial
of degree D = 513. This corresponds to a degree of regularity of 6 for a nude HFE, i.e. without
any modifier. From our experiments, we consider that 3 modifiers allow to increase the degree of
regularity by one. Idenpendently of this submission, the authors [61] also derived a similar rule; as
one can see from (14).

In Table 20, we then derive the number of modifiers required as v + ∆ = 3×Gap, with Gap being
the difference with the targeted degree of regularity minus the initial degree of regularity (6 here).
We consider the number of equations m and the targeted degree of regularity as in Table 12. The
third column of Table 20 gives the number of modifiers required. We present below the results for
GeMSS(a similar analysis can be easily done for BlueGeMSS and RedGeMSS).

m D Gap v + ∆

GeMSS128 162 513 14− 6 = 8 24

GeMSS192 243 513 20− 6 = 14 42

GeMSS256 324 513 27− 6 = 21 63

Table 20: Numbers of modifiers required in GeMSS.

8.6 A general method to derive secure parameters

We are now in position to provide a general methodology to derive secure parameters for GeMSS.
Following Section 8.3.1, the number of equations should be chosen such that:

m ≥ 1.26 · λ.

Thus, we can assume that m = α · λ with α ≥ 1.26.

From (11), the degree of regularity Dreg required for a given security level should verify:

O

((
m

Dreg

)2
)
≥ 2λ.

Using a loose approximation of the binomial and ignoring the coefficient in the big-O, we get that:

Dreg ≥
λ

log2(m2)
=

λ

2 log2(α · λ)
.

The last step requires to compute the number of vinegar variables required to reach Dreg. We first
need to have the initial degree of regularity. We can assume that this is a function of log2(D);
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as explained in Section 8.3.2. From table 11, we can interpolate an expression for the degree of
regularity DHFE

reg of a nude HFE:

DHFE
reg ≈ 2.03 + 0.36 log2(D).

The number of modifiers, using the experimental rule of Section 8.5, can be then approximated by:

∆ + v ≈ 3λ

log2(m2)
− 6.09− 1.08 log2(D) =

1.5λ

log2(α · λ)
− 6.09− 1.08 log2(D). (22)

Below, we computed this approximation for the parameters of GeMSS.

(λ,m,D) Approximation (22) of ∆ + v

(128, 162, 513) 10.35

(192, 243, 513) 20.53

(256, 324, 513) 30.23

This has to be compared with the exact values provided in Table 20. The difference is mainly
due to the loose approximation of the binomial for deriving (22). However, we can see that (22)
captures the global trend and can be used to derive others secure parameters.

We can see that there is two strategies to derive secure parameters. In GeMSS, the goal is to
minimize the size of the public-key. To do so, we are taking m = 1.26 · λ. From (22), we can see
that the number of modifiers decreases when D increases. We take the same number of vinegar
variables v and the same number of minus ∆. To minimize the total number of variables m, we have
then to increase the degree D of the univariate polynomial. However, the time to sign increases
with D.

The strategy differs if the goal is to have a faster signing process together with a shorter signature.
In this case, we have to take m bigger than 1.26 · λ. As a consequence, the number of iterations
nb ite can be decreased. We repeat then less the inversion process GeMSS.Invp in the signing
process (Algorithm 4). The verification will be also faster. From (22), we can see that maximizing
the number of modifiers makes possible to choose smaller D. However, this will increase the number
of vinegar variables v and so the total number of variables m.

9 A larger family of GeMSS parameters

In [55], NIST announced the second round candidates and also provided some recommendations
for the selected candidates. The goal of this part is to address the comments from [55] regarding
GeMSS. The parameters proposed for GeMSS in the first round were very conservative in term of
security. [55] suggests to explore different parameters in order to improve efficiency. We address
this comment as follows.

• In Section 9.6, we present an exhaustive table including possible parameters and the corre-
sponding timings.

• In Section 9.5, we explore the use of sparse polynomials in GeMSS to improve the efficiency
of the signing process.
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• We then suggest 3 sets of parameters for each security level with several trade-offs. This
includes the initial parameters of GeMSS proposed in the first round, and two new more
aggressive parameters (BlueGeMSS and RedGeMSS).

• We design a family of possible values that depends on only one parameter n. We call this
family FGeMSS(n).

9.1 Set 1 of parameters: GeMSS (see Section 3)

The first set, that we GeMSS family, was the parameters proposed for the first round.

scheme (λ,D, n,∆, v,nb ite) equations variables |pk| (KB) |sk| (bits) sign (bits)

GeMSS128 (128, 513, 174, 12, 12, 4) 162 186 352.19 128 258

GeMSS192 (192, 513, 265, 22, 20, 4) 243 285 1237.96 192 411

GeMSS256 (256, 513, 354, 30, 33, 4) 324 387 3040.70 256 576

Table 21: Summary of the parameters of GeMSS.

9.2 Set 2 of parameters: RedGeMSS

We call RedGeMSS the schemes described in Table 22. The public-key of RedGeMSS128 is
1.065 times larger than GeMSS128, the time to sign with RedGeMSS128 is 228 times faster than
GeMSS128. This is because we use a smaller D.

scheme (λ,D, n,∆, v,nb ite) equations variables |pk| (KB) |sk| (bits) sign (bits)

RedGeMSS128 (128, 17, 177, 15, 15, 4) 162 192 375.21 128 282

RedGeMSS192 (192, 17, 266, 23, 25, 4) 243 291 1290.54 192 435

RedGeMSS256 (256, 17, 358, 34, 35, 4) 324 393 3135.59 256 600

Table 22: Summary of the parameters of RedGeMSS.

9.3 Set 3 of parameters: BlueGeMSS

We call BlueGeMSS the schemes described in Table 23. The public-key of BlueGeMSS128 is
1.032 times larger than GeMSS128, the time to sign with BlueGeMSS128 is 6.53 times faster than
GeMSS128. This is because we use a smaller D.
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scheme (λ,D, n,∆, v,nb ite) equations variables |pk| (KB) |sk| (bits) sign (bits)

BlueGeMSS128 (128, 129, 175, 13, 14, 4) 162 189 363.61 128 270

BlueGeMSS192 (192, 129, 265, 22, 23, 4) 243 288 1264.12 192 423

BlueGeMSS256 (256, 129, 358, 34, 32, 4) 324 390 3087.96 256 588

Table 23: Summary of the parameters of BlueGeMSS.

9.4 FGeMSS(n) family

In multivariate schemes, we have many parameters that can be adjusted. This is an advantage
since, for example, for a given security we can decrease the time to sign if we increase the length of
the public-key, i.e. some interesting tradeoffs are possible. However, when a new cryptanalysis idea
is found, it is not always easy for a non multivariate specialist to see how to adjust the parameters
in order to maintain a given security level against the best known attacks. For example, when
RSA-512 was factored, it was natural to suggest to use a larger modulo and to look at what value
of n should be used from the best known attacks (instead of designing another scheme). But when
an attack on QUARTZ was published with a security expected [38] to be slightly smaller than 280 it
was not so easy to adjust the security parameters since we have here many possibilities. Therefore,
we see that it is sometime convenient to have a “dimension 1 ” family instead of a single point (like
QUARTZ) or a many dimension family (like the variants of HFE).

We present here such “dimension 1 ” family, called FGeMSS(n). It is such that:

• nb ite = 1

• n is again m+ ∆

• ∆ + v = 21 + d0.11(n− 266)e,∆ =
⌊

∆+v
2

⌋
and v =

⌈
∆+v

2

⌉
• D is the maximum sum of two power of two smaller or equal to 129 + d4.2(n− 266)e.

The public-key is a system in F2 with n−∆ equations and n+ v variables.

For example, we obtain the following parameters.

scheme (λ,D, n,∆, v,nb ite) equations variables |pk| (KB) |sk| (bits) sign (bits)

FGeMSS(266) (128, 129, 266, 10, 11, 1) 256 277 1232.13 128 277

FGeMSS(402) (192, 640, 402, 18, 18, 1) 384 420 4243.73 192 420

FGeMSS(537) (256, 1152, 537, 25, 26, 1) 512 563 10161.09 256 563

Table 24: Parameters of FGeMSS.

It can be emphasized that FGeMSS can be nicely combined with DualModeMS [39]. DualModeMS
is a generic technique permitting to transform any Matsumoto-Imai based multivariate signature
scheme into a new scheme with much shorter public-key but larger signatures. In the case of
FGeMSS266, we will typically get a public-key of 512 bytes with a signature size of about 32 KB.
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9.5 SparseGeMSS

In this section, we introduce s, a new security parameter. We propose to remove s terms in the
HFEv polynomial to improve the efficiency of the signing process. When s is small, we think the
security is not impacted by this change, whereas we can obtain a factor at most two for the signing
process. This method is new and so a new analysis of security is required.

The improvement is based on the fact that during the computation of the Frobenius map, a (2D−2)-
degree square in F2n is computed, then is reduced modulo F . In binary fields, all odd degree terms
of a square are null, because of the linearity of the Frobenius endomorphism. Then, we remark
that the Euclidean division of B a square by a square implies that the quotient Q is a square. F is
not a square because it contains the terms X20 and X2i+1 for 0 < i ≤ blog2(D)c. However, the gap
between the odd degrees 2j + 1 and 2j+1 + 1 is 2j . This gap increases fastly when j increases. So, if
we take D = 2k + 2, then we remove the s largest odd degrees (s ≤ k), we obtain a HFE polynomial

F = F0 + X2k−s+2F1 with F0 a (2k−s + 1)-degree polynomial and F1 a (2k − 2k−s)-degree square.
By removing only one term (s = 1), the high half of F is square.

Now, we exploit the fact that F1 is a square. This implies Q = Q0 +X2k−s
Q1 with Q0 a (2k−s−1)-

degree polynomial and Q1 a (2k − 2k−s)-degree square. Moreover, the classical Euclidean division
algorithm is equivalent to compute the product of Q by F , then to add it to B. So, if Q1 is a
square, we avoid the half of the multiplications for this part of Q. The size of Q1 is (2k− 2k−s + 1),
so we avoid 2k−1 − b2k−s−1c multiplications in F2n .

When s = k, Q is a square and the speed-up is maximal. It is about 2k+1
2k−1+1

< 2. When s = k + 1,
F,Q and the remainder are squares. However, this value of s decreases the security. The D-degree
HFE polynomial F is equivalent to a D

2 -degree HFE polynomial (by taking Y = X2), so the degree
of regularity depends on D

2 . In this case, D could be multiplied by two, but this would remove the
factor 2 obtained with our strategy.

Degree of regularity. We have measured the DExp
reg observed in practice for HFE in function of s.

The results are summarized in Table 25. When s is small, the degree of regularity is not impacted.
For the largest value of s, the degree of regularity decrements. As soon as D is multiplied by two,
we have observed that the degree of regularity does not decrement anymore.

MinRank. The security of HFE against the Kipnis-Shamir attacks (Section 8.4.1) seems not to
be impacted by the parameter s. This implies to vanish the s last coefficients in the first column
of F. However, the first coefficient of F corresponds to X2 which has an even degree, so the rank
does not decrease. We remark also that the last row of F is not null, since the monic coefficient
corresponding to X2k+2 is present.

SparseGeMSS. With our trick, all previous families could become more efficient by using their
“sparse” version. To do this transformation, we increment D (when D is odd) and we set s = 3. In
this way, we avoid 43.75% of the multiplications (when D is odd) in the modular reduction by F .
When D 6= (2blog2(D)c+2) is even, the speed-up is different because our trick improves the modular

reduction when s = 0 (because Q = Q0 + X2blog2(D)c+2Q1 with Q1 a (D − 2blog2(D)c − 2)-degree

square, so we avoid D−2blog2(D)c−2
2 6= 0 multiplications in F2n). We take a small value of s to be
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Minimal m HFE(D) s DExp
reg

> 9 17 0 4

> 15 18 s 6 3 4
160 > m > 5 4 6 s 6 5 3

> 16 129 0 5

> 16 130 s 6 5 5
> 18 6 5
> 23 7 5

70 > m > 9 8 4

> 24 513 0 6

> 24 514 s 6 6 6
> 25 7 6

35 > m > 16 8 6 s 6 10 5

> 32 4097 0 7

> 32 4098 s 6 10 7
> 33 11 7

35 > m > 24 12 6 s 6 13 6

Table 25: Degree of regularity in the case of HFE algebraic systems, in function of s. The maximum
value of s is blog2(D)c+ 1.

F =


∗ 0 0 0 0
∗ ∗ 0 0 0
0 ∗ ∗ 0 0
0 ∗ ∗ ∗ 0
0 1 0 0 0


Figure 2: Example of matrix F ∈ M(F2n) for D = 18 and s = 3. The three removed coefficients
are in bold. Since the coefficients are in a binary field, the matrix is not symmetric.

secure, but enough large to obtain an interesting speed-up. The Frobenius map is the core of the
signing process, so this factor remains approximately the same for the signing process. However,
this method is not interesting for small degrees, because the Frobenius map can be computed more
fastly with multi-squaring tables (as in [62]). Experimentally, we keep the previous speed-up when
D ≥ 514, we lose a part when D = 130 and n > 196, and the method is completely useless when
D ≤ 34. For this reason, we give the possibility to use SparseGeMSS only for the degrees D strictly
greater than 127.

9.6 An exhaustive table for the choice of the parameters

We propose here a large number of security parameters. For different values of D and for nb ite
from 1 to 4, we take the smallest m such that (m,nb ite) respects Theorem 2. Then, we deduce
the number of modifiers, and so ∆ and v. Finally, when D > 127, we take s = 0 then s = 3 (as
described in Section 9.5). In Table 26, we give the performance of these parameters with our best
version of MQsoft [40, 1].
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For nb ite < 3, the number of equations is a multiple of 8. So, the public-key is naturally stored
with the packed representation (Section 2.6.5). This implies the theoretical size of the public-key
is reached without to decrease performances. For the other values of m, the performance of the
verifying process decreases when m mod 8 increases.

(λ,D, n,∆, v,nb ite, s) key gen. (MC) sign (MC) verify (KC) |pk| (KB) |sk| (B) sign (bits)

(128, 17, 268, 12, 12, 1, 0) 152 2.27 37.8 1260 16 280

(128, 17, 204, 12, 15, 2, 0) 61.3 2.17 54 578 16 246

(128, 17, 186, 15, 15, 3, 0) 45.5 2.01 94.7 434 16 261

(128,17,177,15,15,4,0) 39.5 2.33 141 375 16 282

(128, 33, 268, 12, 12, 1, 0) 155 6.43 38.4 1260 16 280

(128, 33, 204, 12, 15, 2, 0) 62.2 6.31 54 578 16 246

(128, 33, 186, 15, 15, 3, 0) 46.6 5.74 94.9 434 16 261

(128, 33, 177, 15, 15, 4, 0) 40.1 7.05 142 375 16 282

(128, 129, 266, 10, 11, 1, 0) 155 62.1 37.4 1230 16 277

(128, 130, 266, 10, 11, 1, 3) 155 40.3 38.1 1230 16 277

(128, 129, 204, 12, 12, 2, 0) 62.6 62.5 53.5 562 16 240

(128, 130, 204, 12, 12, 2, 3) 62.4 42.2 51.9 562 16 240

(128, 129, 185, 14, 13, 3, 0) 45.4 66.1 107 421 16 252

(128, 130, 185, 14, 13, 3, 3) 45 37.8 106 421 16 252

(128,129,175,13,14,4,0) 39.2 81.3 136 364 16 270

(128, 130, 175, 13, 14, 4, 3) 39.2 47 136 364 16 270

(128, 513, 265, 9, 9, 1, 0) 157 466 40.9 1210 16 274

(128, 514, 265, 9, 9, 1, 3) 156 258 37.7 1210 16 274

(128, 513, 202, 10, 11, 2, 0) 62.1 459 50 547 16 234

(128, 514, 202, 10, 11, 2, 3) 61.6 271 51.8 547 16 234

(128, 513, 183, 12, 12, 3, 0) 44.6 413 104 408 16 243

(128, 514, 183, 12, 12, 3, 3) 44.4 244 103 408 16 243

(128,513,174,12,12,4,0) 38.7 531 106 352 16 258

(128, 514, 174, 12, 12, 4, 3) 38.7 331 106 352 16 258
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(λ,D, n,∆, v,nb ite, s) key gen. (MC) sign (MC) verify (KC) |pk| (KB) |sk| (B) sign (bits)

(192, 17, 404, 20, 19, 1, 0) 807 5.87 125 4300 24 423

(192, 17, 310, 22, 23, 2, 0) 267 4.52 159 2000 24 378

(192, 17, 279, 23, 25, 3, 0) 192 5.06 199 1480 24 400

(192,17,266,23,25,4,0) 173 5.97 334 1290 24 435

(192, 33, 404, 20, 19, 1, 0) 813 16 124 4300 24 423

(192, 33, 310, 22, 23, 2, 0) 270 13 160 2000 24 378

(192, 33, 279, 23, 25, 3, 0) 197 17.5 201 1480 24 400

(192, 33, 266, 23, 25, 4, 0) 175 22.3 337 1290 24 435

(192, 129, 402, 18, 18, 1, 0) 808 145 123 4240 24 420

(192, 130, 402, 18, 18, 1, 3) 811 108 124 4240 24 420

(192, 640, 402, 18, 18, 1, 0) 833 1580 123 4240 24 420

(192, 640, 402, 18, 18, 1, 3) 829 964 125 4240 24 420

(192, 129, 308, 20, 22, 2, 0) 272 129 157 1970 24 372

(192, 130, 308, 20, 22, 2, 3) 271 84.7 159 1970 24 372

(192, 129, 278, 22, 23, 3, 0) 196 198 196 1450 24 391

(192, 130, 278, 22, 23, 3, 3) 197 136 191 1450 24 391

(192,129,265,22,23,4,0) 174 252 325 1260 24 423

(192, 130, 265, 22, 23, 4, 3) 174 162 323 1260 24 423

(192, 513, 399, 15, 18, 1, 0) 812 1110 121 4180 24 417

(192, 514, 399, 15, 18, 1, 3) 819 715 122 4180 24 417

(192, 513, 308, 20, 19, 2, 0) 273 943 154 1930 24 366

(192, 514, 308, 20, 19, 2, 3) 271 540 156 1930 24 366

(192, 513, 276, 20, 22, 3, 0) 198 1450 189 1430 24 382

(192, 514, 276, 20, 22, 3, 3) 197 824 189 1430 24 382

(192,513,265,22,20,4,0) 175 1800 304 1240 24 411

(192, 514, 265, 22, 20, 4, 3) 174 1050 305 1240 24 411
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(λ,D, n,∆, v,nb ite, s) key gen. (MC) sign (MC) verify (KC) |pk| (KB) |sk| (B) sign (bits)

(256, 17, 540, 28, 29, 1, 0) 2840 11.5 380 10400 32 569

(256, 17, 415, 31, 32, 2, 0) 968 8.6 387 4810 32 510

(256, 17, 375, 33, 33, 3, 0) 611 8.17 610 3570 32 540

(256,17,358,34,35,4,0) 534 9.82 704 3140 32 600

(256, 33, 540, 28, 29, 1, 0) 2860 31.2 381 10400 32 569

(256, 33, 415, 31, 32, 2, 0) 978 28 385 4810 32 510

(256, 33, 375, 33, 33, 3, 0) 611 28.2 624 3570 32 540

(256, 33, 358, 34, 35, 4, 0) 527 35.3 722 3140 32 600

(256, 129, 540, 28, 26, 1, 0) 2880 313 374 10300 32 566

(256, 130, 540, 28, 26, 1, 3) 2880 226 369 10300 32 566

(256, 129, 414, 30, 30, 2, 0) 973 302 375 4740 32 504

(256, 130, 414, 30, 30, 2, 3) 975 222 363 4740 32 504

(256, 129, 372, 30, 33, 3, 0) 606 328 582 3510 32 531

(256, 130, 372, 30, 33, 3, 3) 604 207 606 3510 32 531

(256,129,358,34,32,4,0) 530 399 684 3090 32 588

(256, 130, 358, 34, 32, 4, 3) 530 264 689 3090 32 588

(256, 513, 537, 25, 26, 1, 0) 2900 2510 372 10200 32 563

(256, 514, 537, 25, 26, 1, 3) 2900 1430 367 10200 32 563

(256, 1152, 537, 25, 26, 1, 0) 2920 7150 356 10200 32 563

(256, 1152, 537, 25, 26, 1, 3) 2920 4510 368 10200 32 563

(256, 513, 414, 30, 27, 2, 0) 974 2430 356 4680 32 498

(256, 514, 414, 30, 27, 2, 3) 976 1360 361 4680 32 498

(256, 513, 372, 30, 30, 3, 0) 611 2240 554 3460 32 522

(256, 514, 372, 30, 30, 3, 3) 609 1370 565 3460 32 522

(256,513,354,30,33,4,0) 530 3020 678 3040 32 576

(256, 514, 354, 30, 33, 4, 3) 527 1690 669 3040 32 576

Table 26: Performance of an exhaustive set of security parameters. We use a Skylake proces-
sor (LaptopS). The results have three significant digits. The parameters in bold correspond to
RedGeMSS, BlueGeMSS and GeMSS.

10 Advantages and limitations (2.B.6)

Since the first scheme of Matsumoto and Imai [52] in 1988, almost 30 years ago, multivariate-based
cryptosystems have been extensively analysed in the literature. We have designed GeMSS using
this knowledge and derive a general methodology to derive parameters. We then proposed three
set of parameters: GeMSS, the more conservative, and BlueRed/RedGeMSS that are more efficient
(but also, more agressive in term of security). We also performed practical experiments using the
best known tools for computing Gröbner bases.

From a practical point of view, the main drawback of GeMSS is the size of the public-key. However,
we mention that the generation of a (public-key, secret-key) remains rather efficient in GeMSS. The
main advantages of GeMSS are the size of the signatures generated, about 2λ bits, and the fast
verification process.
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Appendix

A Space (April 1st, 2019 version)

Here are the size of the public-key, secret-key and signature, as submitted at the beginning of the
second round. The implementation did not optimize the size, so it explains the difference with
theoretical sizes. Only the size of the signature was optimized.

scheme (λ,D, n,∆, v,nb ite) |pk| (KB) |sk| (KB) sign (bits)

GeMSS128 (128, 513, 174, 12, 12, 4) 352.188 / 417.408 13.43775 / 14.520 258 / 258

BlueGeMSS128 (128, 129, 175, 13, 14, 4) 363.609 / 430.944 13.696375 / 14.664 270 / 270

RedGeMSS128 (128, 17, 177, 15, 15, 4) 375.21225 / 444.696 13.104 / 13.824 282 / 282

GeMSS192 (192, 513, 265, 22, 20, 4) 1237.9635 / 1304.192 34.069375 / 40.280 411 / 411

BlueGeMSS192 (192, 129, 265, 22, 23, 4) 1264.116375 /1331.744 35.377375 / 41.720 423 / 423

RedGeMSS192 (192, 17, 266, 23, 25, 4) 1290.542625 / 1359.584 34.791125 / 40.760 435 / 435

GeMSS256 (256, 513, 354, 30, 33, 4) 3040.6995 / 3046.848 75.892125 / 83.688 576 / 576

BlueGeMSS256 (256, 129, 358, 34, 32, 4) 3087.963 / 3094.200 71.4595 / 78.096 588 / 588

RedGeMSS256 (256, 17, 358, 34, 35, 4) 3135.591 / 3141.912 71.887375 / 78.408 600 / 600

Table 27: Memory cost, theoretical size / practical size. 1 KB is 1000 bytes.

B Time (April 1st, 2019 version)

Here are the performance measurements of the initial version submitted for the second round.

B.1 Reference implementation

scheme (λ,D, n,∆, v,nb ite) key gen. (GC) sign (MC) verify (MC)

GeMSS128 (128, 513, 174, 12, 12, 4) 1.88 6690 29.1

BlueGeMSS128 (128, 129, 175, 13, 14, 4) 1.51 774 30

RedGeMSS128 (128, 17, 177, 15, 15, 4) 1.21 17.6 26.8

GeMSS192 (192, 513, 265, 22, 20, 4) 7.92 15100 89

BlueGeMSS192 (192, 129, 265, 22, 23, 4) 6.72 1280 89

RedGeMSS192 (192, 17, 266, 23, 25, 4) 5.89 28 72.3

GeMSS256 (256, 513, 354, 30, 33, 4) 20.5 25300 172

BlueGeMSS256 (256, 129, 358, 34, 32, 4) 19.4 1640 184

RedGeMSS256 (256, 17, 358, 34, 35, 4) 17.7 37.3 146

Table 28: Performance of the reference implementation. We use a Skylake processor (LaptopS).
MC (resp. GC) stands for Mega (resp. Giga) Cycles. The results have three significant digits.
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B.2 Optimized (Haswell) implementation

scheme (λ,D, n,∆, v,nb ite) key gen. (MC) sign (MC) verify (KC)

GeMSS128 (128, 513, 174, 12, 12, 4) 51.9 1220 150

BlueGeMSS128 (128, 129, 175, 13, 14, 4) 52.9 202 158

RedGeMSS128 (128, 17, 177, 15, 15, 4) 55.3 5.57 162

GeMSS192 (192, 513, 265, 22, 20, 4) 273 3580 439

BlueGeMSS192 (192, 129, 265, 22, 23, 4) 287 526 442

RedGeMSS192 (192, 17, 266, 23, 25, 4) 273 13.9 455

GeMSS256 (256, 513, 354, 30, 33, 4) 844 7090 943

BlueGeMSS256 (256, 129, 358, 34, 32, 4) 874 1050 955

RedGeMSS256 (256, 17, 358, 34, 35, 4) 861 25.8 975

Table 29: Performance of the optimized implementation. We use a Haswell processor (ServerH).
MC (resp. KC) stands for Mega (resp. Kilo) Cycles. The results have three significant digits.

B.3 Additional (Skylake) implementation

scheme (λ,D, n,∆, v,nb ite) key gen. (MC) sign (MC) verify (KC)

GeMSS128 (128, 513, 174, 12, 12, 4) 50.8 941 146

BlueGeMSS128 (128, 129, 175, 13, 14, 4) 52.2 159 154

RedGeMSS128 (128, 17, 177, 15, 15, 4) 53 4.63 160

GeMSS192 (192, 513, 265, 22, 20, 4) 265 2890 436

BlueGeMSS192 (192, 129, 265, 22, 23, 4) 266 430 441

RedGeMSS192 (192, 17, 266, 23, 25, 4) 266 11.8 453

GeMSS256 (256, 513, 354, 30, 33, 4) 872 4830 1020

BlueGeMSS256 (256, 129, 358, 34, 32, 4) 889 691 1020

RedGeMSS256 (256, 17, 358, 34, 35, 4) 890 18.3 1050

Table 30: Performance of the additional implementation. We use a Skylake processor (LaptopS).
MC (resp. KC) stands for Mega (resp. Kilo) Cycles. The results have three significant digits.
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B.4 MQsoft

scheme (λ,D, n,∆, v,nb ite) key gen. (MC) sign (MC) verify (KC)

GeMSS128 (128, 513, 174, 12, 12, 4) 38.5 750 82

BlueGeMSS128 (128, 129, 175, 13, 14, 4) 39.3 106 111

RedGeMSS128 (128, 17, 177, 15, 15, 4) 39.2 2.79 109

GeMSS192 (192, 513, 265, 22, 20, 4) 175 2320 239

BlueGeMSS192 (192, 129, 265, 22, 23, 4) 172 331 252

RedGeMSS192 (192, 17, 266, 23, 25, 4) 171 8.38 255

GeMSS256 (256, 513, 354, 30, 33, 4) 532 3640 566

BlueGeMSS256 (256, 129, 358, 34, 32, 4) 529 545 583

RedGeMSS256 (256, 17, 358, 34, 35, 4) 523 12.9 588

Table 31: Performance of MQsoft. We use a Skylake processor (LaptopS). MC (resp. KC) stands
for Mega (resp. Kilo) Cycles. The results have three significant digits.
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C An exhaustive table for the choice of the parameters (April 1st,
2019 version)

(λ,D, n,∆, v,nb ite, s) key gen. (MC) sign (MC) verify (KC) |pk| (KB) |sk| (KB) sign (bits)

(128, 17, 268, 12, 12, 1, 0) 153 2.19 36.6 1260 23.8 280

(128, 17, 204, 12, 15, 2, 0) 58 2.65 49.6 578 16.5 246

(128, 17, 186, 15, 15, 3, 0) 45.6 2.43 67.5 434 14.2 261

(128,17,177,15,15,4,0) 39.2 2.79 109 375 13.1 282

(128, 33, 268, 12, 12, 1, 0) 155 7.28 36.4 1260 24.4 280

(128, 33, 204, 12, 15, 2, 0) 58.4 8.54 50.5 578 17 246

(128, 33, 186, 15, 15, 3, 0) 45.8 7.68 66.3 434 14.7 261

(128, 33, 177, 15, 15, 4, 0) 39.8 8.82 111 375 13.5 282

(128, 129, 266, 10, 11, 1, 0) 154 82.5 36.2 1230 24.6 277

(128, 130, 266, 10, 11, 1, 3) 155 47 36.3 1230 24.5 277

(128, 129, 204, 12, 12, 2, 0) 59.2 101 48.6 562 16.2 240

(128, 130, 204, 12, 12, 2, 3) 59.2 61.5 49.2 562 16.2 240

(128, 129, 185, 14, 13, 3, 0) 44.9 84 68.7 421 14.4 252

(128, 130, 185, 14, 13, 3, 3) 44.6 46.3 68.8 421 14.3 252

(128,129,175,13,14,4,0) 39.3 106 111 364 13.7 270

(128, 130, 175, 13, 14, 4, 3) 39.1 60.3 106 364 13.7 270

(128, 513, 265, 9, 9, 1, 0) 156 562 35.1 1210 24.2 274

(128, 514, 265, 9, 9, 1, 3) 155 323 34.8 1210 24.1 274

(128, 513, 202, 10, 11, 2, 0) 58.5 658 46.4 547 16.4 234

(128, 514, 202, 10, 11, 2, 3) 59 389 46.3 547 16.4 234

(128, 513, 183, 12, 12, 3, 0) 44.1 567 66.5 408 14.5 243

(128, 514, 183, 12, 12, 3, 3) 44.7 326 68.4 408 14.5 243

(128,513,174,12,12,4,0) 38.5 750 82 352 13.4 258

(128, 514, 174, 12, 12, 4, 3) 38.3 418 80.4 352 13.4 258
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(λ,D, n,∆, v,nb ite, s) key gen. (MC) sign (MC) verify (KC) |pk| (KB) |sk| (KB) sign (bits)

(192, 17, 404, 20, 19, 1, 0) 794 4.57 123 4300 57.8 423

(192, 17, 310, 22, 23, 2, 0) 267 5.12 154 2000 41.5 378

(192, 17, 279, 23, 25, 3, 0) 195 6.03 187 1480 37.4 400

(192,17,266,23,25,4,0) 171 8.38 255 1290 34.8 435

(192, 33, 404, 20, 19, 1, 0) 800 15.1 122 4300 59 423

(192, 33, 310, 22, 23, 2, 0) 271 16.3 155 2000 42.6 378

(192, 33, 279, 23, 25, 3, 0) 196 19.6 189 1480 38.4 400

(192, 33, 266, 23, 25, 4, 0) 174 27.2 255 1290 35.8 435

(192, 129, 402, 18, 18, 1, 0) 808 179 119 4240 59.6 420

(192, 130, 402, 18, 18, 1, 3) 813 115 119 4240 59.5 420

(192, 640, 402, 18, 18, 1, 0) 826 1620 120 4240 62.6 420

(192, 640, 402, 18, 18, 1, 3) 830 1100 120 4240 62.5 420

(192, 129, 308, 20, 22, 2, 0) 270 179 150 1970 43.1 372

(192, 130, 308, 20, 22, 2, 3) 269 117 151 1970 43.1 372

(192, 129, 278, 22, 23, 3, 0) 198 261 180 1450 38 391

(192, 130, 278, 22, 23, 3, 3) 196 157 182 1450 37.9 391

(192,129,265,22,23,4,0) 172 331 252 1260 35.4 423

(192, 130, 265, 22, 23, 4, 3) 173 202 249 1260 35.3 423

(192, 513, 399, 15, 18, 1, 0) 806 1280 117 4180 61.5 417

(192, 514, 399, 15, 18, 1, 3) 807 762 118 4180 61.4 417

(192, 513, 308, 20, 19, 2, 0) 272 1360 147 1930 41.7 366

(192, 514, 308, 20, 19, 2, 3) 273 721 146 1930 41.6 366

(192, 513, 276, 20, 22, 3, 0) 198 1840 181 1430 38.6 382

(192, 514, 276, 20, 22, 3, 3) 199 1070 180 1430 38.5 382

(192,513,265,22,20,4,0) 175 2320 239 1240 34.1 411

(192, 514, 265, 22, 20, 4, 3) 174 1260 233 1240 34 411
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(λ,D, n,∆, v,nb ite, s) key gen. (MC) sign (MC) verify (KC) |pk| (KB) |sk| (KB) sign (bits)

(256, 17, 540, 28, 29, 1, 0) 2720 8.33 385 10400 117 569

(256, 17, 415, 31, 32, 2, 0) 959 9.77 363 4810 82.8 510

(256, 17, 375, 33, 33, 3, 0) 588 9.16 483 3570 73 540

(256,17,358,34,35,4,0) 523 12.9 588 3140 71.9 600

(256, 33, 540, 28, 29, 1, 0) 2740 27 383 10400 119 569

(256, 33, 415, 31, 32, 2, 0) 974 30.1 375 4810 84.7 510

(256, 33, 375, 33, 33, 3, 0) 602 29.2 488 3570 74.8 540

(256, 33, 358, 34, 35, 4, 0) 528 42.1 590 3140 73.7 600

(256, 129, 540, 28, 26, 1, 0) 2770 317 384 10300 116 566

(256, 130, 540, 28, 26, 1, 3) 2760 228 375 10300 116 566

(256, 129, 414, 30, 30, 2, 0) 971 379 359 4740 84.1 504

(256, 130, 414, 30, 30, 2, 3) 972 242 361 4740 84 504

(256, 129, 372, 30, 33, 3, 0) 600 407 471 3510 77.6 531

(256, 130, 372, 30, 33, 3, 3) 603 252 474 3510 77.5 531

(256,129,358,34,32,4,0) 529 545 583 3090 71.5 588

(256, 130, 358, 34, 32, 4, 3) 527 325 566 3090 71.4 588

(256, 513, 537, 25, 26, 1, 0) 2780 2700 379 10200 120 563

(256, 514, 537, 25, 26, 1, 3) 2770 1460 374 10200 120 563

(256, 1152, 537, 25, 26, 1, 0) 2810 7360 374 10200 123 563

(256, 1152, 537, 25, 26, 1, 3) 2800 4260 368 10200 123 563

(256, 513, 414, 30, 27, 2, 0) 970 2770 344 4680 81.7 498

(256, 514, 414, 30, 27, 2, 3) 983 1540 344 4680 81.6 498

(256, 513, 372, 30, 30, 3, 0) 603 3130 464 3460 75.3 522

(256, 514, 372, 30, 30, 3, 3) 601 1610 477 3460 75.2 522

(256,513,354,30,33,4,0) 532 3640 566 3040 75.9 576

(256, 514, 354, 30, 33, 4, 3) 524 2040 580 3040 75.8 576

Table 32: Performance of an exhaustive set of security parameters. We use a Skylake proces-
sor (LaptopS). The results have three significant digits. The parameters in bold correspond to
RedGeMSS, BlueGeMSS and GeMSS.
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