
DualModeMS: A Dual Mode for Multivariate-based

Signature

20170918 draft

Principal submitter

This submission is from the following team, listed in alphabetical order:

• J.-C. Faugère, INRIA and Sorbonne Universities/UPMC Univ Paris 06
• L. Perret, Sorbonne Universities/UPMC Univ Paris 06 and INRIA
• J. Ryckeghem, Sorbonne Universities/UPMC Univ Paris 06 and INRIA

E-mail address: ludovic.perret@lip6.fr

Telephone : +33-1-44-27-88-35

Postal address:
Ludovic Perret
Université Pierre et Marie Curie
LIP6 - Équipe projet INRIA/UPMC POLSYS
Boite courier 169
4 place Jussieu
F-75252 Paris cedex 5, France

Auxiliary submitters: There are no auxiliary submitters. The principal submitter is the
team listed above.

Inventors/developers: The inventors/developers of this submission are the same as the
principal submitter. Relevant prior work is credited below where appropriate.

Owner: Same as submitter.

Signature: ×. See also printed version of “Statement by Each Submitter”.

Document generated with the help of pqskeleton version 20170923.

1

Contents

1 Introduction 5

2 General algorithm specification (part of 2.B.1) 5

2.1 Description of the inner layer – Specification of Inner.DualModeMS 5

2.1.1 Parameter space . 5

2.1.2 Secret-key and public-key . 6

2.1.3 Signing process . 8

2.1.4 Verification process . 9

2.2 The SBP technique, Description of the outer layer and Specification of
DualModeMS . 10

2.2.1 Overview . 10

2.2.2 Parameter space . 10

2.2.3 Secret-key and public-key . 11

2.2.4 Signing process . 12

2.2.5 Verification process . 13

2.3 Implementation . 14

2.3.1 Generating invertible matrices . 14

2.3.2 Generating HFEv polynomials . 14

2.3.3 Data structure for F2[x1, . . . , xn+v]
m 14

2.3.4 Generating the components of a HFEv polynomial 14

2.3.5 Generating the components of a HFEv polynomial 14

2.3.6 Generation of the public-key pk = p ∈ F2[x1, . . . , xn+v]
m 14

2.3.7 Generation of the Merle tree . 16

2.3.8 Computing the authenfication path 16

2.3.9 Verification of the authenfication path 16

3 List of parameter sets (part of 2.B.1) 16

3.1 Parameter set sign/DualModeMS128 . 16

3.2 Parameter set sign/DualModeMS192 . 16

2

3.3 Parameter set sign/DualModeMS256 . 16

4 Design rationale (part of 2.B.1) 17

5 Detailed performance analysis (2.B.2) 17

5.1 Description of platform . 17

5.2 Third-party open source library . 18

5.3 Time . 18

5.4 Space . 18

5.5 Optimizations . 18

6 Expected strength (2.B.4) in general 18

6.1 EUF-CMA security of Inner.DualModeMS . 19

6.2 EUF-CMA security of DualModeMS . 21

7 Expected strength (2.B.4) for each parameter set 22

7.1 Parameter set sign/DualModeMS128 . 22

7.2 Parameter set sign/DualModeMS192 . 22

7.3 Parameter set sign/DualModeMS256 . 22

8 Analysis of known attacks (2.B.5) 22

8.1 Direct signature forgery attacks . 22

8.1.1 Exhaustive search . 23

8.1.2 Quantum exhaustive search . 23

8.2 Approximation algorithm . 24

8.3 Gröbner bases . 24

8.3.1 Asymptotically fast algorithms . 25

8.3.2 Practically fast algorithms . 25

8.3.3 Experimental results for HFEv- . 28

8.4 Key-recovery attacks . 30

8.4.1 Kipnis-Shamir attack . 31

3

8.4.2 Differential attack . 32

8.5 AMQ . 32

8.6 Deriving number of variables for Inner.DualModeMS 32

9 Advantages and limitations (2.B.6) 33

References 33

4

1 Introduction

The purpose of this document is to present DualModeMS; a multivariate-based signature
scheme with a rather peculiar property. Its public-key is small whilst the signature is large.
This is in sharp contrast with traditionnal multivariate signature schemes [44, 57, 23, 8, 52,
49] based on the so-called Matsumoto and Imai (MI) construction [44], such as QUARTZ [48]
or Gui [24], that produce short signatures but have larger public-keys.

DualModeMS is based on the method proposed by A. Szepieniec, W. Beullens, and B. Pre-
neel (SBP) in [54] where present a generic technique permitting to transform any MI-based
multivariate signature scheme into a new scheme with much shorter public-key but larger
signatures. We emphasize that the technique from [54] can be viewed as a mode of operations
that offers a new flexibility for MI-like signature schemes. Thus, we believe that DualModeMS
could also be useful for others multivariate-based signature candidates proposed to NIST.

DualModeMS is composed by two distinct layers. The first one (Inner.DualModeMS), that we
shall call inner layer (Section 2.1), is a classical MI-like multivariate scheme based on HFEv.
The second part, outer layer (Section 2.2), is the mode of operations specified in [54].

This submission is somewhat a complement to another multivariate-based signature scheme
proposed to NIST : GeMSS [18]. In particular, the security analysis for Inner.DualModeMS
is largely similar to the one performed for GeMSS. In fact, Inner.DualModeMS is a re-
parametrization of GeMSS imposed by a specificity of SBP [54].

Acknowledgement. GeMSS has been prepared with the support of the french Programme
d’Investissement d’Avenir under national project RISQ1 P141580.

2 General algorithm specification (part of 2.B.1)

2.1 Description of the inner layer – Specification of In-
ner.DualModeMS

2.1.1 Parameter space

The main parameters involved in Inner.DualModeMS are:

• D, a positive integer that is the degree of a secret polynomial. D is such that D = 2i

for i ≥ 0, or D = 2i+j for i 6= j, and i, j ≥ 0.

• K, the security level of SHA3 (in bits),

• λ, the security level of Inner.DualModeMS,

1https://risq.fr/?page_id=31&lang=en

5

https://risq.fr/?page_id=31&lang=en

• m, number of equations in the public-key,

• n, the degree of a field extension,

• v, the number of vinegar variables,

• ∆, the number of minus (the number of equations in the public-key is such that is
m = n−∆).

In Section 8.6, we specify precisely these parameters to achieve a security level λ ∈
{128, 192, 256}.

2.1.2 Secret-key and public-key

Secret-key. It is composed by a couple of invertible matrices (S,T) ∈ GLn+v (F2) ×
GLn (F2) and a polynomial F ∈ F2n [X, v1, . . . , vv] with the following structure:∑

06i<j<n
2i+2j6D

Ai,j X
2i+2j +

∑
06i<n
2i6D

βi(v1, . . . , vv)X
2i + γ(v1, . . . , vv), (1)

where Ai,j, Bi, C ∈ F2n ,∀i, j, 0 6 i < j < n, each βi : Fv2 → F2n is linear and γ(v1, . . . , vv) :
Fv2 → F2n is quadratic. The variables v1, . . . , vv are called the vinegar variables. We shall
say that a polynomial F ∈ F2n [X, v1, . . . , vv] with the form of (1) has a HFEv-shape.

Remark 1. The particularity of a polynomial F (X, v1, . . . , vv) with HFEv-shape is that for
any specialization of the vinegar variables the polynomial F becomes a HFE polynomial [46],
i.e. univariate polynomial of the following form:∑

06j<i<n
2i+2j6D

Ai,j X
2i+2j +

∑
06i<n
2i6D

BiX
2i + C ∈ F2n [X], (2)

with Ai,j, Bi, C ∈ F2n ,∀i, j, 0 6 i, j < n.

By abuse of notation, we will call degree of F the (max) degree of its corresponding HFE

polynomials, i.e. D.

The special structure of (1) is chosen such that its multivariate representation over the base
field F2 is composed by quadratic polynomials in F2[x1, . . . , xn+v]. This is due to the special
exponents chosen in X that have all a binary decomposition of Hamming weight at most 2.

Let (θ1, . . . , θn) ∈ (F2n)n be a basis of F2n over F2. We set ϕ : E =
∑n

k=1 ek · θk ∈ F2n −→
ϕ(E) = (e1, . . . , en) ∈ Fn2 .

We can now define a set of multivariate polynomials f = (f1, . . . , fn) ∈ F2[x1, . . . , xn+v]
n

derived from a HFEv polynomial F ∈ F2n [X, v1, . . . , vv] by:

F

(
n∑
k=1

θkxk, v1, . . . , vv

)
=
∑n

k=1 θkfk . (3)

6

To ease notations, we now identify the vinegar variables (v1, . . . , vv) = (xn+1, . . . , xn+v).
Also, we shall say that the polynomials f1, . . . , fn ∈ F2[x1, . . . , xn+v] are the components of
F over F2.

Public-key. It is given by a set of m quadratic square-free non-linear polynomials in n+v
variables over F2. That is, the public key is p = (p1, . . . , pm) ∈ F2[x1, . . . , xn+v]

m. It is
obtained from the secret-key by taking the first m = n−∆ polynomials of:(

f1

(
(x1, . . . , xm)S

)
, . . . , fn

(
(x1, . . . , xm)S

))
T, (4)

and reducing it modulo the field equations, i.e. modulo 〈x2
1 − x1, . . . , x

2
n+v − xn+v〉. We

denote these polynomials by p = (p1, . . . , pm) ∈ F2[x1, . . . , xn+v]
m.

We summarize the public-key/secret-key generation in Algorithm (1). It takes the security
parameter λ as input. As discussed in Section 8, the security level of Inner.DualModeMS will
be a function of D,n, v and m.

Algorithm 1 PK/SK generation in Inner.DualModeMS

1: procedure Inner.DualModeMS.KeyGen(1λ)
2: Randomly sample (S,T) ∈ GLn+v (F2)×GLn (F2) . This step is further detailed in

Section 2.3.1.
3: Randomly sample F ∈ F2[X, v1, . . . , vv] with HFEv-shape of degree D . This step is

further detailed in Section 2.3.2.
4: sk← (F,S,T) ∈ F2[X, v1, . . . , vv]×GLn+v (F2)×GLn (F2)
5: Compute f = (f1, . . . , fn) ∈ F2[x1, . . . , xn+v]

n such that:

F

(
n∑
k=1

θkxk, v1, . . . , vv

)
=

n∑
k=1

θkfk

. See Section 2.3.5 for details on Step 5.
6: Compute (p1, . . . , pn) =(

f1

(
(x1, . . . , xn+v)S

)
, . . . , fn

(
(x1, . . . , xn+v)S

))
T mod 〈x2

1−x1, . . . , x
2
n+v−xn+v〉 ∈ F2[x1, . . . , xn+v]

n

7: pk← p = (p1, . . . , pm) ∈ F2[x1, . . . , xn+v]
m . Take the first m = n−∆ polynomials

computed in Step 6
8: return (sk, pk)
9: end procedure

7

2.1.3 Signing process

The main step of the signature process requires to solve:

p1(x1, . . . , xn+v)− d1 = 0, . . . , pm(x1, . . . , xn+v)− dm = 0. (5)

for d = (d1, . . . , dm) ∈ Fm2 .

To do so, we randomly sample r = (r1, . . . , rn−m) ∈ Fn−m2 and append it to d. This gives
d′ = (s, r) ∈ Fn2 . We then compute D′ = ϕ−1(d′ × T−1) ∈ F2n and try to find a root
(Z, z1, . . . , zv) ∈ F2n × Fv2 of the multivariate equation:

F (Z, z1, . . . , zv)−D′ = 0.

To solve this equation, we take advantage of the special HFEv-shape. That is, we randomly
sample v ∈ Fv2 and consider the univariate polynomial F (X,v) ∈ F2n [X]. This yields a HFE

polynomial according to Remark 1. We then find the roots of the univariate equation:

F (X,v)−D′ = 0.

If there is a root Z ∈ F2n , we return (ϕ(Z),v)× S−1 ∈ Fn+v
2 .

A core part of the signature generation is to compute the roots of FD′(X) = F (X,v)−D′.
To do so, we use the Berlekamp algorithm as described in [56, Algorithm 14.15].

Algorithm 2 Algorithm for finding the roots of an univariate polynomial

function FindRoots(FD′ ∈ F2n [X])
Xn ← X2n −X mod FD′ . This step is further detailed in Section 5.5
G← gcd(FD′ , Xn)
if degree(G) > 0 then

Roots ← List of all roots of G, computed by the equal-degree factorization algo-
rithm described in [56, Section 14.3]

return (degree(G),Roots)
end if
return (degree(G), ∅)

end function

The complexity of Algorithm 2 is given by the following general result:

Theorem 1 (Corollary 14.16 from [56]). Let Fq be a finite field, and Mq(D) be the number
of operations in Fq to multiply two polynomials of degree ≤ D. Given f ∈ Fq[x] of degree D,
we can find all the roots of f over Fq using an expected number of

O
(

Mq(D) log(D) log(Dq)
)

or Õ
(
D log(q)

)
operations in Fq.

8

For q = 2n, we get that finding all the roots of a polynomial of degree D can be done in
(expected) quasi-linear time, i.e.:

Õ(nD). (6)

The signature process in Inner.DualModeMS is then given in Algorithm 3:

Algorithm 3 Signing process in Inner.DualModeMS

1: procedure Inner.DualModeMS.Sign(M ∈ {0, 1}∗, sk ∈ F2[X, v1, . . . , vv]× GLn+v (F2)×
GLn (F2))

2: d← first m bits of SHA3(M)
3: repeat
4: r ∈R Fn−m2 . The notation ∈R stands for randomly sampling.
5: d′ ← (d, r) ∈ Fn2
6: D′ ← ϕ−1(d′ ×T−1) ∈ F2n

7: v ∈R Fv2
8: FD′(X)← F (X,v)−D′
9: (·,Roots)← FindRoots(FD′)

10: until Roots = ∅
11: Z ∈R Roots
12: return (ϕ(Z),v)× S−1 ∈ Fn+v

2

13: end procedure

Remark 2. We sample a roots at Step 11 always in the same way. First, we sort the
elements of Roots in ascending order. We then compute SHA3(D′), and take the first 64 bits
H64 of this hash. We view H64 as an integer, and finally return the (H64 mod #Roots)-th
element in Roots.

The signature process described here for Inner.DualModeMS is slightly different from the one
used in GeMSS [18]. This is due to the fact that the size of a digest m considered here has to
be bigger than in GeMSS. Thus, the iterative process of GeMSS is no longer required here.
In fact, Inner.DualModeMS is equivalent to a GeMSS where the number of iterations is set to
zero [18, Section 2].

2.1.4 Verification process

Let d ∈ Fn+v
2 and s← Inner.DualModeMS.Sign

(
d, sk = (F,S,T)

)
∈ Fn+v

2 . By construction,
we have:

p(s) = d,where p in the public-key associated to sk.

Thus, the verification of a signature (Algorithm 4) only requires to evaluate the public-key
polynomials.

9

Algorithm 4 Verification process in Inner.DualModeMS

1: procedure Inner.DualModeMS.Verif(M ∈ {0, 1}∗, s ∈ Fn+v
2 , pk = p ∈

F2[x1, . . . , xn+v]
m)

2: H← first m bits of SHA3(M)
3: S0 ← p(s)⊕ d
4: return VALID if S0 = 0 and INVALID otherwise.
5: end procedure

2.2 The SBP technique, Description of the outer layer and Speci-
fication of DualModeMS

2.2.1 Overview

The SBP technique [54], that we describe here, allows to transform the public-key origin.pk =
p = (p1, . . . , pm) ∈ F2[x1, . . . , xn+v]

n+v of Inner.DualModeMS into a new public-key pk that
is going to be the root of a binary tree (Algorithm 6). The new secret-key sk will include
the original public-key of Inner.DualModeMS.

The new signature process (Algorithm 7) will require to generate signatures from In-
ner.DualModeMS. A (new) signature from DualModeMS will include random linear combina-
tions h = (h1, . . . , hα) ∈ F2[x1, . . . , xn+v]

α, with 1 ≤ α ≤ m, from the public-key origin.pk of
Inner.DualModeMS together with a set of nodes allowing to check that h has been correctly
derived from origin.pk (Algorithm 8).

2.2.2 Parameter space

The main parameters involved in the outer layer of DualModeMS are:

• N , number of square-free monomials in n+ v variables of degree ≤ 2

• σ, number of signatures of Inner.DualModeMS included in the final signature of
DualModeMS

• α, number of polynomials included in a signature of DualModeMS

• τ ≥ 1, size of an evaluation set; must be a power of two

• k, degree of the extension field for MAC polynomials (Algorithm 5); must be such that
2k ≥ τ

• ν, number of Merkle paths to open

10

2.2.3 Secret-key and public-key

We describe the generation of the secret-key and the public-key in DualModeMS. This pro-
cess uses the function Inner.DualModeMS.KeyGen that returns the public-key and secret-
key of the inner multivariate scheme Inner.DualModeMS. That is (origin.sk, origin.pk) ←
Inner.DualModeMS.KeyGen(1λ) with:

origin.sk ← (F,S,T) ∈ F2[X, v1, . . . , vv]×GLn+v (F2)×GLn (F2)

origin.pk ← p = (p1, . . . , pm) ∈ F2[x1, . . . , xn+v]
m

The signature process in DualModeMS requires to generate signatures from In-
ner.DualModeMS. In addition, a signature from DualModeMS will also include a set of random
linear combination

h = (h1, . . . , hα) ∈ F2[x1, . . . , xn+v]
α (7)

of Inner.DualModeMS’s public-key. A key point in the constuction of [54], and so in
DualModeMS, is a mechanism allowing to check that h ∈ F2[x1, . . . , xn+v]

α has been indeed
correctly derived from origin.pk.

To do so, SBP introduced the concept of MAC polynomial. This is a univariate polynomial
defined over F2k constructed from any multivariate polynomial (Algorithm 5).

Algorithm 5 Construction of the MAC polynomial

1: function MacPoly(f ∈ F2[x1, . . . , xn+v])
2: Coefficients← Sorted list of all coefficients of f
3: j ← 1
4: for i from 0 to

⌈
N
k

⌉
− 1 do

5: ci ← Cast Coefficients[j, . . . , j + (k − 1)] as an element of F2k

6: j ← j + k
7: end for

8: f̂ ←
∑dN

k
e−1

j=0 cjz
j

9: return f̃
10: end function

The MAC polynomials corresponding to origin.pk and h from (7) has to coincide. This is
verified by evaluating the MAC polynomials on a set Z ⊆ F2k of τ points. This set is stored
and compressed in a Merkle tree [45]. The function Merkle.generate tree (Section 2.3.7,
Algorithm 9) takes as input a set of τ points in Fm

2k
and construct the corresponding Merkle

tree. The leafs of the Merkle tree are elements in Fm
2k

whilst the inner nodes are hash values
of size λ.

We have now all the tools to describe the public-key/secret-key generation process in
DualModeMS (Algorithm (1)).

The public-key is then just a hash value of λ bits. On the other hand, the secret is big since
it will include – in particular – the public-key of Inner.DualModeMS.

11

Algorithm 6 PK/SK generation in DualModeMS

1: procedure DualModeMS.KeyGen(1λ)
2: (origin.sk, origin.pk)← Inner.DualModeMS.KeyGen(1λ)
3: origin.pk← (p1, . . . , pm) ∈ F2[x1, . . . , xn+v]

m

4: for i from 1 to m do
5: p̂i ← MacPoly(pi)
6: end for
7: p̂← (p̂1, . . . , p̂m)
8: Z ← Randomly choose a set of τ points Z1, . . . , Zτ ∈ F2k .
9: mt← Merkle.generate tree({p̂(z)z∈Z})

10: pk← Merkle.root(mt) . The (new) public-key is the root of a Merkle tree
11: sk← (origin.sk,p, Z)
12: return (sk, pk)
13: end procedure

2.2.4 Signing process

The signature process of DualModeMS is derived from Inner.DualModeMS. The novelty in
DualModeMS.KeyGen is on the use of a Merkle tree for adding an authentication tag. In
particular, the function Merkle.path takes as input the root of a Merkle tree and a leaf of
this tree and return a list of nodes allowing to re-compute the public-key root from tree from
the leaf (Algorithm 10, Section 2.3.9).

The signature process in DualModeMS is described in Algorithm 7.

Algorithm 7 Signing process in DualModeMS

1: procedure Verif.Sign(M ∈ {0, 1}∗, sk = (origin.sk, origin.pk, Z) ∈ F2[X, v1, . . . , vv] ×
GLn+v (F2)×GLn (F2)× F2[x1, . . . , xn+v]

m × F2k)
2: p← origin.pk = (p1, . . . , pm) ∈ F2[x1, . . . , xn+v]

m

3: for i from 1 to σ do
4: si ← Inner.DualModeMS(M‖i, sk) . Get σ signatures from Inner.DualModeMS
5: end for
6: t← Cast m× α bits of PRNG(M‖s1‖ · · · ‖sσ) into a matrix Mm×α(F2)
7: h = (h1, . . . , hα)← p× t ∈ F2[x1, . . . , xn+v]

α

8: i1, . . . , iν ← Cast ν× log2(τ) bits of PRNG(M‖s1‖ · · · ‖sσ‖h) into a set ν integers, each
∈ [1, τ]

9: O ← {Zi1 , . . . , Ziν} ⊂ F2k . A random subset of Z ∈ F2k of size ν
10: p̂←

(
MacPoly(p1), . . . ,MacPoly(pm)

)
11: for i from 1 to ν do
12: openpath[i]← Merkle.path

(
mt, p̂(Oi)

)
13: end for
14: openpaths← [openpath[i] | 1 ≤ i ≤ τ]
15: Return (s1, . . . , sσ,h, openpaths)
16: end procedure

12

The size of a signature is then :

(n+ v) · σ + α ·N + ν ·m · k + ν(log2(τ)− 2)λ. (8)

2.2.5 Verification process

The verification process in DualModeMS is described in Algorithm 8. We need to verify the
validity of signatures from Inner.DualModeMS as well as the validity of polynomials included
in a signature from Verif.Sign. To so so, we use the function Merkle.verify (Algorithm 11,
Section 2.3.9) that takes as input the root of a Merkle tree and a set of nodes and verify
that the root can be indeed generated from the nodes.

Algorithm 8 Verification process in DualModeMS

1: procedure Verif.DualModeMS(M ∈ {0, 1}∗, s ∈ Fσ·m2 ×F2[x1, . . . , xn+v]
α×{0, 1}∗, pk =

mt ∈ {0, 1}λ)
2: (s1, . . . , sσ,h, openpaths)← s
3: t← Cast m× α bits of PRNG(M‖s1‖ · · · ‖sσ) in a matrix Mm×α(F2)
4: for i from 1 to σ do
5: Hi ← first m bits of SHA3(M‖i)
6: if h(si) 6= Hi × t then
7: return INVALID
8: end if

. We use the verification process of Inner.DualModeMS with h as a public-key
9: end for

10: ĥ←
(
MacPoly(h1), . . . ,MacPoly(hα)

)
11: i1, . . . , iν ← Cast ν × log2(τ) bits of PRNG(M‖s1‖ · · · ‖sσ‖h) into a set ν integers
∈ [1, . . . , τ]

12: O ← {Zi1 , . . . , Ziν} ⊂ F2k

13: for i from 1 to τ do
14: p̂(Oi), mp← openpaths[i]
15: if Merkle.verify(pk, mp) = False or p̂(Oi) 6= ĥ(Oi)× t then
16: return INVALID
17: end if
18: end for
19: return VALID
20: end procedure

We can now explain why GeMSS [18] can not be directly used in DualModeMS. In Step 6,
we use the fact that:

h(si) = p(si)× t = Hi × t.

Thus, we can use h instead of p in the verification process of Inner.DualModeMS. Due to the
iterative process used in GeMSS, this trick is no longer possible. This is why we have to use
a multivariate-based signature without any iterative signature process.

13

Due to this constraint, we have to consider m = 2λ in order to avoid a simple birthday
paradox.

2.3 Implementation

2.3.1 Generating invertible matrices

This part is similar to [18, Section 2.5.1] of the GeMSS submission.

2.3.2 Generating HFEv polynomials

Similar to [18, Section 2.5.2] of the GeMSS submission.

2.3.3 Data structure for F2[x1, . . . , xn+v]
m

Similar to [18, Section 2.5.3] of the GeMSS submission.

2.3.4 Generating the components of a HFEv polynomial

Similar to [18, Section 2.5.4] of the GeMSS submission.

2.3.5 Generating the components of a HFEv polynomial

Similar to [18, Section 2.5.5] of the GeMSS submission.

2.3.6 Generation of the public-key pk = p ∈ F2[x1, . . . , xn+v]
m

Similar to [18, Section 2.5.6] of the GeMSS submission.

14

Algorithm 9 Generation of the Merkle tree

1: function Merkle.generate tree({z0, . . . , zτ−1} ⊂ Fm
2k

)
2: for i from 0 to τ − 1 do
3: mt[i]← SHA3(zi)
4: end for
5: j ← 0
6: for i from τ to 2τ − 2 do . Each node is the SHA3 of the concatenation of these

leaves
7: mt[i]← SHA3(mt[j]|‖mt[j + 1])
8: j ← j + 2
9: end for

10: end function

Algorithm 10 Authentification path

1: function Merkle.path(mt, leaf)
2: index← index of the leaf in mt
3: fl← 0 . Index of the begin of the ith floor
4: for i from 0 to log2(τ)− 1 do . For each floor of the Merkle tree (excepted the root)
5: ∓[i]← mt[fl + (indexxor 1)]
6: fl+ = τ

2i
. Add the size of the current floor

7: index/ = 2 . Integer division
8: end for
9: return ∓

10: end function

Algorithm 11 Authentification path

1: function Merkle.verify(pk,∓, p̂(Oi))
2: H−1 ← SHA3(p̂(Oi))
3: index← index of H−1 in mt
4: for i from 0 to log2(τ)− 1 do . For each floor of the Merkle tree (excepted the root)
5: if (index mod 2) = 0 then
6: Hi ← SHA3(Hi−1|| ∓ [i])
7: else
8: Hi ← SHA3(mp[i]||Hi−1)
9: end if

10: index/ = 2 . Integer division
11: end for
12: if Hlog2(τ)−1 == pk then
13: return VALID
14: else
15: return INVALID
16: end if
17: end function

15

2.3.7 Generation of the Merle tree

2.3.8 Computing the authenfication path

2.3.9 Verification of the authenfication path

3 List of parameter sets (part of 2.B.1)

3.1 Parameter set sign/DualModeMS128

We choose ∆ = 10, v = 11 and m = 256. This gives n = 266, n + v = 277 D = 129 and
K = 128. The extension field is defined as F2n = F2[X]

Xn+X47+1
. For Inner.DualModeMS, the

public-key size is then 1139.06 KBytes and the signature size is 277 bits.

For the outer layer, we choose α = 2, σ = 64, τ = 218, k = 21, PKIv = 18 and δ = 4. The
extension field is defined as F2k = F2[X]

Xk+X2+1
. For DualModeMS, this gives a public-key of 528

bytes and a signature of 32.002 KBytes.

3.2 Parameter set sign/DualModeMS192

We choose ∆ = 18, v = 18 and m = 384. This gives n = 402, n + v = 420, D = 129 and
K = 192. The extension field is defined as F2n = F2[X]

Xn+X171+1
. For Inner.DualModeMS, this

gives a public-key of 4243.73 KBytes and a signature of 420 bits.

For the outer layer, we choose α = 2, σ = 96, τ = 218, k = 20, PKIv = 33 and δ = 5. The
extension field is defined as F2k = F2[X]

Xk+X3+1
. For DualModeMS, this gives a public-key of

1560 bytes and a signature of 79.415 KBytes.

3.3 Parameter set sign/DualModeMS256

We choose ∆ = 32, v = 32 and m = 512. This gives n = 544, n + v = 576, D = 129 and
K = 256. The extension field is defined as F2n = F2[X]

Xn+X8+X3+X+1
. For Inner.DualModeMS,

this gives a public-key of 10635.32 KBytes and a signature of 576 bits.

For the outer layer, we choose α = 1, σ = 256, τ = 218, k = 20, PKIv = 52 and δ = 5.
The extension field is defined as F2k = F2[X]

Xk+X3+1
. For DualModeMS, this gives a public-key

of 2112 bytes and a signature of 149.029 KBytes.

16

4 Design rationale (part of 2.B.1)

The main design rationale of DualModeMS is to propose SBP [54] as a mode of operations for
multivariate schemes. In order to demonstrate the drastic effect of SBP on public-key sizes,
we tailored a specific inner multivariate-based scheme. Inner.DualModeMS is a HFEv- scheme
[46, 41, 48] since [54] identified that such family is well suited in the context for SBP.

The design of Inner.DualModeMS follows from the analysis performed for GeMSS, a HFEv-
based scheme, proposed in [18]. The SBP imposes to have a scheme without the iterative
procedure proposed in GeMSS. It is then rather natural to take the number of equations m
equals to the security parameter Inner.DualModeMS. We then use the methodology proposed
in GeMSS [18, Section 8] to derive secure parameters. A signature of SBP requires to generate
many signatures from Inner.DualModeMS. This leads toward the choice of a small D = 129 to
make the signature process of Inner.DualModeMS efficient. We detail these choices in Section
8.

5 Detailed performance analysis (2.B.2)

We consider the parameters of DualModeMS128.

5.1 Description of platform

Computer OS Architecture Processor Frequency Version of g++
Laptop Ubuntu 16.04.3 LTS x86 64 i7-6600U 2.60 GHz 6.3

Table 1: Materials.

Computer RAM L1d L1i L2 L3
Laptop 31.3 Gio 32 Ko 32 Ko 256 Ko 4096 Ko

Table 2: Memory.

The measurements used one core of the CPU, and the code was compiled with g++ -O4.
For the optimized and additional implementations, the code was compiled with
g++ -O4 -mavx2 -mpclmul. The optimized implementation requires -mavx2 -mpclmul

only to improve the performance of third-party open source libraries.

17

5.2 Third-party open source library

We have use the Keccak code package2 and NTL library3. The optimized implementation
uses gf2x library4 which implements fast multiplications of binary polynomials. The addi-
tional implementation replaces gf2x library by a new implementation of multiplications of
binary polynomials. In particular, we use mm clmulepi64 si128 intrinsic to improve the
multiplication of binary polynomials.

5.3 Time

For the optimized implementation, the DualModeMS.KeyGen takes 797 seconds, the time
to sign is 2.31 seconds, and the verification takes 2.69 ms.

For the additional implementation, the DualModeMS.KeyGen takes 552 seconds, the time
to sign is 2.05 seconds, and the verification takes 2.84 ms.

5.4 Space

Here are the size of public key, secret key and signature in the implementation. The
implementation does not optimize the size, so it explains the difference with theoretical
sizes.

DualModeMS:
Public key is 528 bytes. Secret key is 18038184 bytes. Signatures are 32640 bytes.

5.5 Optimizations

The optimizations used for Inner.DualModeMS are similar to the ones used by GeMSS [18,
Section 5.6].

6 Expected strength (2.B.4) in general

We review in this part known results on the provable security of DualModeMS in the sense of
the existential unforgeability against adaptive chosen-message attack (EUF-CMA security).
The SBP technique [54] allows to reduce, for a certain range of parameters, the security of

2https://keccak.team/
3http://www.shoup.net/ntl/
4http://gf2x.gforge.inria.fr/

18

https://keccak.team/
http://www.shoup.net/ntl/
http://gf2x.gforge.inria.fr/

DualModeMS to the one of Inner.DualModeMS. We then first discuss the EUF-CMA security
(Section 6.1) of Inner.DualModeMS and then continue with the (EUF-CMA) security (Section
6.2) of Inner.DualModeMS.

6.1 EUF-CMA security of Inner.DualModeMS

This part is essentially similar to [18, Section 6.2] of the GeMSS submission. However, there
is a slight difference between Inner.DualModeMS and GeMSS. Inner.DualModeMS is a version
of GeMSS without any iteration.

EUF-CMA security of HFEv-, over which Inner.DualModeMS is designed, has been mainly
investigated in [53]. The authors demonstrated that a minor, but costly, modification
of Inner.DualModeMS.Sign (Algorithm 3) permits to achieve EUF-CMA security for In-
ner.DualModeMS.

We first formalize the security of Inner.DualModeMS against chosen message attacks.

Definition 1 ([53]). The Inner.DualModeMS signature scheme

(Inner.DualModeMS.KeyGen, Inner.DualModeMS.Sign, Inner.DualModeMS.Verif)

is
(
ε(λ), qs(λ), qh(λ), t(λ)

)
-secure if there is no forger A who takes as input a public-key

(·, pkInner.DualModeMS) ← Inner.DualModeMS.KeyGen() and outputs a valid signature after
t(λ) steps with a probability at least ε(λ) with at most qh(λ) queries to the random oracle
and qs(λ) queries to the signature oracle,

We want to provably reduce EUF-CMA security of Inner.DualModeMS to the the hardness of
inverting the public-key of Inner.DualModeMS. Formally:

Definition 2 ([53]). We shall say that the Inner.DualModeMS function generator In-
ner.DualModeMS.KeyGen is

(
ε(λ), t(λ)

)
secure, if there is no inverting algorithm

that takes pkInner.DualModeMS = pInner.DualModeMS generated via (·, pkInner.DualModeMS) ←
Inner.DualModeMS.KeyGen(1λ), a challenge d ∈R Fm2 , and finds a preimage s ∈R Fn+v

2

such that
pInner.DualModeMS(s) = d.

after t(λ) steps with success probability at least ε(λ).

Following [53], we explain now how to modify Inner.DualModeMS for proving EUF-CMA secu-
rity. Recall that D is degree of the secret polynomial with HFEv-shape in Inner.DualModeMS.
The main modification proposed by [53] is roughly to repeat D times the signature process
described in Algorithm 3.

Let ` be the length of a random salt. The modified inversion process is given in Algorithm
12:

We then have:

19

Algorithm 12 Modified inversion for Inner.DualModeMS

1: procedure Inner.DualModeMS.Sign∗(M ∈ {0, 1}∗, sk ∈ F2[X, v1, . . . , vv]×GLn+v (F2)×
GLn (F2))

2: d← first m bits of SHA3(M)
3: v ∈R Fv2
4: repeat
5: salt ∈R {0, 1}`
6: r← first n−m bits of SHA3(d‖salt)
7: d′ ← (d, r) ∈ Fn2
8: D′ ← ϕ−1(d′ ×T−1) ∈ F2n

9: FD′(X)← F (X,v)−D′
10: (·,Roots)← FindRoots(FD′)
11: u ∈R {1, . . . , D}
12: until 1 ≤ u ≤ #Roots
13: Z ∈R Roots
14: return (ϕ(Z),v)× S−1 ∈ Fn+v

2

15: end procedure

Theorem 2 ([53]). Let Inner.DualModeMS∗ be the signature scheme defined by
(Inner.DualModeMS.KeyGen, Inner.DualModeMS.Sign∗, Inner.DualModeMS.Verif). If the
Inner.DualModeMS function generator Inner.DualModeMS.KeyGen is

(
ε′, t′

)
secure, then

Inner.DualModeMS∗ is
(
ε, t, qH , qS

)
secure, with:

ε =
ε′(qH + qs + 1)

1− (qH + qs)qs2`
,

t =
t′ − (qH + qs + 1)

tInner.DualModeMS +O(1)

where tInner.DualModeMS is the time required to evaluate the public-key of Inner.DualModeMS.

The modification of the signature process renders Inner.DualModeMS∗ less efficient than
Inner.DualModeMS. The expected number of calls to the roots finding (Step 10) in
Inner.DualModeMS.Sign∗ is 1

1−1/e
D ≈ 1.58 × D. In Inner.DualModeMS.Sign, the average

number of calls to the roots finding (Step 9) is 1
1−1/e

≈ 1.58. For efficiency reasons, we did
not incorporated this modification in our implementation.

Remark 3. The threshold D in Step 11 corresponds to a bound on the number of roots
of the univariate polynomial F at Step 10. However, F has a HFE-shape (Remark 1) and
has much less roots than a random univariate polynomial of the same degree. Indded, the
roots of a HFE polynomial correspond to the zeros of a system of n boolean equations in n
variables (see (3)). In [35], the authors studied the distribution of the number of zeroes of
algebraic systems. In particular, a random system of n equations in n variables has exactly
s solutions with probability 1

e s!
. Thus, as also mentionned [53], the threshold D in Step 11

can be theoretically much decreased without compromising the proof. The authors of [53]
mentioned a value around ≈ 30 for the threshold.

20

However, we emphasize that the provable security result mentioned up to know only require
minor modifications of the signature process. We don’t need to change the underlying
trapdoor. As a consequence, the security of Inner.DualModeMS has to be mainly investigated
with respect to the hardness of inverting the public-key. This question is investigated in
Section 8.

6.2 EUF-CMA security of DualModeMS

We consider now the EUF-CMA security of DualModeMS. The next fundamental theorem is
directly derived from [54].

Theorem 3 (SBP, [54]). If there exists a forger A that breaks the EUF-CMA security against
DualModeMS in time t with q random oracle queries and with success probability ε, then
there is an adversary BA than breaks EUF-CMA security of Inner.DualModeMS in time O(t)
and with success probability al least:

ε− (q + 1)

(⌈
N
k

⌉
− 1

τ

)ν

− 2τ
(q + 1)

2λ
− (q + 1)

1

2α
. (9)

Theorem 3 provides a guidance for choosing the various parameters involved in DualModeMS.

The term

(
dNk e−1

τ

)ν
in (9) is the probability that an invalid set of polynomials h′ ∈∈

F2[x1, . . . , xn+v]
α passes the test of Verif.DualModeMS (Algorithm 8). Thus, we need to

choose the parameters such that : (⌈
N
k

⌉
− 1

τ

)ν

<
1

2λ
.

When α = O(1), Theorem 3 is meaningless. However, this is the situation that we will
consider for DualModeMS. Indeed, α denotes the number of polynomials included in the
signature. Thus, taking small α allows to obtain smaller signatures.

In this situation, we have however no security reduction [54]. The security of the SBP

transform relies then on a new hard problem, so called Approximate Multivariate Quadratic
(AMQ) problem, that is defined below:
Input. a set of polynomial p = (p1, . . . , pm) ∈ F2[x1, . . . , xn+v]

m, σ vectors y1, . . . ,yσ ∈ Fm2
and r > 0.
Question. Find x1, . . . ,xσ ∈ Fn+v

2 such that

dim

(
Vec
(
p(x1)− y1, . . . ,p(xσ)− yσ

))
≤ r.

According to [54], it is necessary to have AMQ hard for small r, i.e:

r <
λ

α
.

This is discussed in Section in Section 8.

21

7 Expected strength (2.B.4) for each parameter set

7.1 Parameter set sign/DualModeMS128

Category 1.

7.2 Parameter set sign/DualModeMS192

Category 3.

7.3 Parameter set sign/DualModeMS256

Category 5.

8 Analysis of known attacks (2.B.5)

This part provides a summary of the main attacks against DualModeMS. In Section 8.1,
we consider direct signature forgery attacks Inner.DualModeMS. This includes, in partic-
ular, the analysis of known quantum attacks (Sections 8.1.2 and 8.3) and Gröbner basis
attacks (Sections 8.1.2 and 8.3). In Section 8.4, we consider key-recovery attacks against
Inner.DualModeMS.

8.1 Direct signature forgery attacks

The public-key of Inner.DualModeMS is given by a set of non linear-equations p =
(p1, . . . , pm) ∈ F2[x1, . . . , xn+v]

m. Given a digest (d1, . . . , dm) ∈ Fm2 , the problem of forg-
ing a signature is equivalent to solve the following system of non-linear equations:

p1(x1, . . . , xn+v)−d1 = 0, . . . , pm(x1, . . . , xn+v)−dm = 0, x2
1−x1, . . . , x

2
n+v−xn+v = 0. (10)

Stated differently, the task is to invert Inner.DualModeMS.Sign (Algorithm 3) without the
knowledge of the secret-key sk.

In our case, the system is under-defined, i.e. n+v > m. As a consequence, we can randomly
fix n + v − m variables r = (r1, . . . , rn+v−m) ∈ Fn+v−m

2 in (10) and try to solve for the
remaining variables. Note that this is similar to the (legitimate) signature process which
requires to randomly fix variables in Inner.DualModeMS.Sign (Steps 4 and 7 of Algorithm
3).

22

Thus, the problem of forging a signature reduces to solve a system of m quadratic equations
in m variables over F2:

p1

(
x1, . . . , xm, r)− d1 = 0, . . . , pm

(
x1, . . . , xm, r)− dm = 0, x2

1 − x1, . . . , x
2
m − xm = 0. (11)

8.1.1 Exhaustive search

In [10], the authors describe a fast exhaustive search for solving systems of boolean quadratic
equations. They also provide a detailed cost analysis of their approach. To recover a solution
of (11), the approach from [10] requires:

4 log2(m) 2m binary operations.

For the parameters of Inner.DualModeMS, we have:

m Fast exhaustive search ([10])
256 2261

384 2389.1

512 2517.16

8.1.2 Quantum exhaustive search

In [16], the authors proposed simple quantum algorithms for solving systems of quadratic
boolean equations. The principle of [16] is to perform a fast quantum exhaustive search by
using Grover’s algorithm. [16] demonstrated that we can solve a system of m − 1 binary
quadratic equations in n − 1 binary variables using m + n + 2 qubits and evaluating a

circuit of 2n/2
(

2m(n2 + 2n) + 1

)
quantum gates. They also describe a variant using less

qubits, i. e. 3 + n + dlog2(m)e qubits, but requiring to evaluate a larger circuit, i.e. with

≈ 2× 2n/2
(

2m(n2 + 2n) + 1

)
quantum gates.

We can now estimate is the cost for solving the system (11) for the parameters of In-
ner.DualModeMS. The quantum attacks from [16] require then:

m #qbits #quantum gates

256 516 2153.52

256 268 ≈ 2154.52

384 772 2219.27

384 396 ≈ 2220.27

512 1028 2284.51

512 525 ≈ 2289.51

23

8.2 Approximation algorithm

Recently, the authors of [43] proposed a new algorithm for solving systems of non linear
equations that is faster than a direct exhaustive search. The techniques from [43] allow
for the approximation of a non-linear system, as (11), by a single high-degree multivariate
polynomial P with m′ < m variables. The polynomial P is constructed such that it vanishes
on the same zeroes as the original non-linear system with high probability. We then perform
an exhaustive search on P to recover, with high probability, the zeroes of the non-linear
system. This leads to an algorithm for solving (11) whose asymptotic complexity is:

O∗
(
20.8765m

)
.

The notation O∗ omits polynomial factors. Anyway, we will estimate the cost of this attack
by the lower bound 20.8765m.

For the parameters of Inner.DualModeMS, we have then:

m Lower bound on the complexity of [43]
256 2224.38

384 2336.57

512 2448.76

8.3 Gröbner bases

To date, the best methods for solving non-linear equations, including the attack system (11),
utilize Gröbner bases [14, 13]. The historical method for computing such bases – known as
Buchberger’s algorithm – has been introduced by Buchberger in his PhD thesis [14, 13].
Many improvements on Buchberger’s algorithm have been done leading – in particular –
to more efficient algorithms such as the F4 and F5 algorithms of J.-C. Faugère [28, 29].
The F4 algorithm, for example, is the default algorithm for computing Gröbner bases in
the computer algebra software Magma [9]. The F5 algorithm, which is available through
the FGb [31] software5, provides today the state-of-the-art method for computing Gröbner
bases.

Besides F4 and F5, there is a large literature of algorithms computing Gröbner bases. We
mention for instance PolyBory [12] which is a general framework to compute Gröbner basis
in F2[x1, . . . , xn]/〈x2

i − xi〉1≤i≤n. It uses a specific data structure – dedicated to the Boolean
ring – for computing Gröbner basis on top of a tweaked Buchberger’s algorithm6. Another
technique proposed in cryptography is the XL algorithm [20]. It is now clearly established
that XL is a special case of Gröbner basis algorithm [1]. More recently, a zoo of algorithms
such as G2V [37], GVW [38], . . ., flourished building on the core ideas of F4 and F5. This
literature is vast and we refer to [27] for a recent survey of these algorithms.

5http://www-polsys.lip6.fr/~jcf/FGb/index.html
6http://polybori.sourceforge.net

24

http://www-polsys.lip6.fr/~jcf/FGb/index.html
http://polybori.sourceforge.net

Despite this important algorithmic literature, if is fair to say that Magma and FGb remain
the references softwares for polynomial system solving over finite fields. We have intensively
used both softwares to perform practical experiments and support our methodology to derive
secure parameters (Section 8.3.3). .

8.3.1 Asymptotically fast algorithms

BooleanSolve [6] is the fastest asymptotic algorithm for solving system of non-linear boolean
equations. BooleanSolve is a hybrid approach that combines exhaustive search and Gröbner
bases techniques. For a system with the same number of equations and variables (m), the
deterministic variant of BooleanSolve has complexity bounded by O(20.841m), while a Las-
Vegas variant has expected complexity

O(20.792·m).

It is mentioned in [6] that BooleanSolve is better than exhaustive search when m ≥ 200.
This is due to the fact that large constants are hidden in the big-O notation. As a conser-
vative choice, we lower bound here the cost of this attack by 20.792·m. We mention that [50]
recently considered a hybrid approach against HFEv-. The former result also indicates that
our approach is indeed conservative.

In Table 3, we report the security level of Inner.DualModeMS against BooleanSolve (prob-
abilistic version) for the three parameters proposed.

m Lower bound on the cost of BooleanSolve (20.792·m)
256 2202.75

384 2304.12

512 2405.50

Table 3: Security of Inner.DualModeMS against BooleanSolve.

QuantumBooleanSolve. In a recent paper [33], the authors present a quantum ver-
sion of BooleanSolve that takes advantages of Grover’s quantum algorithm [40].
QuantumBooleanSolve is a Las-Vegas quantum algorithm allowing to solve a system of m
boolean equations in m variables. It uses O(n) qbits, requires the evaluation of, on average,
O(20.462m) quantum gates. This complexity is obtained under certain algebraic assumptions.

In Table 4, we report the security level of Inner.DualModeMS against QuantumBooleanSolve
(probabilistic version) for the three parameters proposed.

8.3.2 Practically fast algorithms

The direct attack described in [30, 34] provides reference tools for evaluating the security of
HFE and HFEv- against a direct message-recovery attack. This attack uses the F5 algorithm

25

m Lower bound on the # quantum gates for QuantumBooleanSolve (20.462·m)
256 2118.27

384 2177.4

512 2236.54

Table 4: Security of Inner.DualModeMS against QuantumBooleanSolve.

[29, 4] and has a complexity of the following general form:

O
(
poly(m,n)ω·Dreg

)
, (12)

with 2 ≤ ω < 3 being the so-called linear algebra constant [56], i.e. the smallest constant
ω, 2 ≤ ω < 3 such that two matrices of size N ×N over a field F can be multiplied in O(Nω)
arithmetic operations over F. The best current bound is ω < 2.3728639 [36]. In this part,
we will always use ω = 2 to evaluate the cost of Gröbner bases attacks.

The complexity (12) is exponential in the degree of regularity Dreg [2, 5, 3]. However, this
degree of regularity Dreg can be difficult to predict in general ; as difficult than computing
a Gröbner basis. Fortunately, there is a particular class of systems for which this degree
can be computed efficiently and explicitly : semi-regular sequences [2, 5, 3]. This notion is
supposed to capture the behavior of a random system of non-linear equations. In order to set
the parameters for HFE and variants as well than for performing meaningful experiments on
the degree of regularity, we can assume that no algebraic system has a degree of regularity
higher than a semi-regular sequence.

In Table 5, we provide the degree of regularity of a semi-regular system of m boolean equa-
tions in m variables for various values of m.

m Dreg

4 ≤ m ≤ 8 3
9 ≤ m ≤ 15 4
16 ≤ m ≤ 24 5
25 ≤ m ≤ 31 6
32 ≤ m ≤ 40 7
41 ≤ m ≤ 48 8
49 ≤ m ≤ 57 9
58 ≤ m ≤ 66 10

154 ≤ m ≤ 163 20
234 ≤ m ≤ 243 28
316 ≤ m ≤ 325 36

Table 5: Degree of regularity of m semi-regular boolean equations in m variables.

In the case of HFE, the degree of regularity for solving (11) has been experimentally shown
to be smaller than log2(D) [30, 34]. This behavior has been further demonstrated in [39, 26].

26

In particular, [39] claims that the degree of regularity reached in HFE is asymptotically upper
bounded by:

(2 + ε)(1−
√

3/4) ·min
(
m, log2(D)

)
, for all ε > 0. (13)

This bound is obtained by estimating the degree of regularity of a semi-regular system of
3dlog2(D)e quadratic equations in 2dlog2(D)e variables. We emphasize that an asymptotic
bound such as (13) is not necessarily tight for specified values of the parameters. Thus,
(13) can not be directly used to derive actual parameters but still provide a meaningful
asymptotic trend.

Indeed, the behavior of HFE algebraic systems is then much different from a semi-regular
system of m boolean equations in m variables where the degree of regularity increases linearly
with m. Roughly, Dreg grows as ≈ m/11.11 in the semi-regular case [2, 5, 3].

We report below the degree of regularity DExp
reg observed in practice for HFE. These bounds

are are only meaningful for a sufficiently large m which is given in the first column. Indeed,
as we already explained, we can assume that the values from Tab. 5 are upper bounds on
the degree of regularity of any algebraic system of boolean equations.

Minimal m HFE(D) DExp
reg

> 4 3 ≤ D ≤ 16 3
> 9 17 ≤ D ≤ 128 4
> 16 129 ≤ D ≤ 512 5
> 25 513 ≤ D ≤ 4091 6
> 32 D ≥ 4092 7

Table 6: Degree of regularity in the case of HFE algebraic systems.

Following [34], we lower bound the complexity of F5 against HFE, i.e. for solving the attack
system (11). The principle is to only consider the cost of performing a row-echelon com-
putation on a full rank sub-matrix of the biggest matrix occurring in F5. At the degree of
regularity, this sub-matrix has

(
m
Dreg

)
columns and (at least)

(
m
Dreg

)
rows. Thus, we can bound

the complexity of a Gröbner basis computation against HFE by:

O

((
m

Dreg

)2
)
. (14)

This is a conservative estimate on the cost of solving (11). This represents the minimum
computation that has to be be done in F5. We also assumed that the linear algebra constant
ω is 2; the smallest possible value.

Given a value of m, we can now deduce from (14) and Table 3, the (smallest) degree of
regularity required to achieve a certain security level. These values are given in Table 7.

From Table (6), we can see that no HFE has a degree of regularity sufficiently large to achieve
a reasonable level of security. To do so, we need to use modifiers of HFE for increasing the
degree of regularity.

27

m minimal Dreg required Lower bound on the cost of a Gröbner basis as given in (14)
256 12 2133.57

384 17 2194.17

512 22 2263.64

Table 7: Smallest degree of regularity required.

In particular, the practical effect of the minus and vinegar modifiers have been considered
in [30, 34]. This has been further investigated in [21, 24] who presented a theoretical upper
bound on the degree of regularity arising in HFEv-. Let R = blog2(D − 1)c + 1, then the
degree of regularity for HFEv- is bounded from above by

R + v + ∆− 1

2
+ 2, when R + ∆ is odd, (15)

R + v + ∆

2
+ 2, otherwise. (16)

We observe that degree of regularity seems to increase linearly with (n+ v−m). This is the
sum of the modifiers : number of equations removed plus vinegar variables.

Very recently, [50] derived an experimental lower bound on the degree of regularity in HFEv-.
The authors [50] obtained that the degree of regularity for HFEv- should be at least :⌈

R + ∆ + v + 7

3

⌉
. (17)

8.3.3 Experimental results for HFEv-

The main question in the design of Inner.DualModeMS is to quantify, as precisely as possible,
the effect of the modifiers on the degree of regularity. To do so, we performed experimental
results on the behaviour of a direct attack against HFEv-, i.e. computing a Gröbner basis of
(11). We mention that similar experiments were performed in [51].

We first consider v = 0, and denote by ∆ the number of equation removed, i.e. m = n− r.
According to the upper bounds (15) and (16), the degree of regularity should increase by 1
when 2 equations are removed.

We report the degree of regularity DExp
reg reached during a Gröbner basis computation of a

system of m = n−∆ equations in n−∆ variables coming from a HFE public-key generated
from a univariate polynomial in F2n [X] of degree D. We also reported the degree of regularity
DTheo

reg of a semi-regular system of the same size (as in Table (5)).

The experimental results on HFE-, no vinegar, are not completely conclusive. Whilst the
degree of regularity appears to increase, it seems difficult to predict its behavior in function
of the number of equations removed. This was also observed in [51] where the authors

28

n ∆ n−∆ D DTheo
reg DExp

reg

32 0 32 4 7 3

33 1 32 4 7 3

34 2 32 4 7 3

35 3 32 4 7 4

36 4 32 4 7 4

37 5 32 4 7 4

38 6 32 4 7 4

39 7 32 4 7 4

40 8 32 4 7 5

41 9 32 4 7 5

42 10 32 4 7 5

43 11 32 4 7 5

44 12 32 4 7 5

45 13 32 4 7 5

46 14 32 4 7 6

47 15 32 4 7 6

48 16 32 4 7 6

49 17 32 4 7 6

49 18 32 4 7 6

50 19 32 4 7 6

51 20 32 4 7 6

n ∆ n−∆ D DTheo
reg DExp

reg

41 0 41 4 8 3

42 1 41 4 8 3

43 2 41 4 8 3

44 3 41 4 8 4

45 4 41 4 8 4

46 5 41 4 8 4

47 6 41 4 8 4

48 7 41 4 8 4

Table 8: HFE- with D = 4; 32 and 41 equations.

n ∆ n−∆ D DTheo
reg DExp

reg

32 0 32 17 7 4

33 1 32 17 7 4

34 2 32 17 7 4

35 3 32 17 7 5

36 4 32 17 7 5

37 5 32 17 7 6

38 6 32 17 7 6

39 7 32 17 7 6

n ∆ n−∆ D DTheo
reg DExp

reg

41 0 41 17 8 4

42 1 41 17 8 4

43 2 41 17 8 4

44 3 41 17 8 5

45 4 41 17 8 5

Table 9: HFE- with D = 17; 32 and 41 equations.

advised against using the minus modifier alone. Thus, the minus modifier should not be
used alone.

We now consider the opposite situation, i.e. no minus and we increase the number of vinegar
variables, i.e. HFEv.

The experimental results are more stable. In all cases, we need to add 3 vinegar variables to
increase the degree of regularity by 1.

We also performed experimental results with a combination of vinegar and minus. Similarly

29

n v m = n− v D DTheo
reg DExp

reg

32 0 32 6 7 3

32 7 25 6 7 5

32 8 25 6 7 6

32 9 25 6 7 6

32 10 25 7 7 6

32 11 25 6 7 7

32 12 25 6 7 7

32 15 25 6 7 7

Table 10: HFEv, D = 6 and 32 variables.

n v m = n− v D DTheo
reg DExp

reg

25 0 25 9 6 3

26 1 25 9 6 4

27 2 25 9 6 4

28 3 25 9 6 4

29 4 25 9 6 5

30 5 25 9 6 5

31 6 25 9 6 5

32 7 25 9 6 6

Table 11: HFEv, D = 9 and 25 variables.

n v m = n− v D DTheo
reg DExp

reg

25 0 25 16 6 3

26 1 25 16 6 4

27 2 25 16 6 4

28 3 25 16 6 4

29 4 25 16 6 5

30 5 25 16 6 5

31 6 25 16 6 5

32 7 25 16 6 6

n v m = n− v D DTheo
reg DExp

reg

32 0 32 16 7 3

33 1 32 16 7 4

34 2 32 16 7 4

35 3 32 16 7 4

36 4 32 16 7 5

37 5 32 16 7 5

Table 12: HFEv with D = 16; 25 and 32
equations.

to [51], we observed that the behaviour obtained seems similar for HFEv- with ∆ = 0 and v
vinegar variables than for a HFEv- with ∆ = v/2 and v/2 vinegar variables.

30

8.4 Key-recovery attacks

We conclude this part by covering key-recovery attacks. This part discusses the so-called
Kipnis-Shamir attack [42] (Section 8.4.1) and differential attacks (Section 8.4.2).

8.4.1 Kipnis-Shamir attack

In [42], A. Kipnis and A. Shamir demonstrated that key-recovery in HFE is essentially equiv-
alent to the problem of finding a low-rank linear combination of a set of m boolean matrices
of size m×m. This is a particular instance of the MinRank problem [15, 19].

We briefly review the principle of this attack for HFE. In the context of this attack, we can
assume w.l.o.g. that the HFE polynomial has a simpler form:∑

06i<j<n
2i+2j6D

Ai,j X
2i+2j ∈ F2n [X], with Ai,j ∈ F2n . (18)

We can then write (18) in a matrix form, that is:

XFXT

with X = (X,X2, X22 , . . . , X2n−1
) and F ∈M(F2n)n×n is a symmetric matrix with zeroes on

the diagonal (i.e. skew-symmetric matrix). Since the degree of F is bounded by D, it is easy
to see that F has rank at most dlog2(D)e. This implies that there exists a linear combinations
of rank dlog2(D)e of the public matrices representing the public quadratic forms [7]. The
secret-key can be then recovered easily from a solution of MinRank [42, 7].

In [7], the authors evaluated the cost of the Kipnis-Shamir key-recovery attack with the best
known tools for solving the MinRank [32] instance that occurs in HFE. Following [7], the cost
of the Kipnis-Shamir attack against HFE can be estimated to:

O
(
nω(dlog2(D)e+1)

)
, with 2 ≤ ω ≤ 3 being the linear algebra constant

and where D is the degree of the secret univariate polynomial.

Until recently, it was not clear how to apply the key-recovery attack from [42, 7] to HFE- when
n−m ≥ 2. In [55], the authors explained how to extend MinRank-based key-recovery for all
parameters of HFE-. Their results can be summarized as follows. From key-recovery point
of view, HFE- with a secret univariate polynomial of degree D and n variables is equivalent
to a HFE with m variables with secret univariate polynomial of degree D × 2∆. Combining
with [7], the cost of a MinRank-based key-recovery attack against HFE− is then:

O
(
mω(dlog2(D)e+∆+1)

)
.

For MinRank-based key-recovery, then minus modifier has then a strong impact on the secu-
rity.

31

In the case of HFEv, one can see that the rank of the corresponding matrix (see, for exemple
[51]) will be increased by the number of vinegar variables. Combining with the previous
result, the cost of solving MinRank in the case of HFEv- is then:

O
(
nω(dlog2(D)e+v+∆+1)

)
, (19)

where D is the degree of the secret univariate polynomial.

For all the parameters proposed for scheme, assuming ω = 2, the cost (19) is always much
bigger than the cost of the best direct attack (Section 8.1).

Remark 4. Recently, [22] proposed set of new attacks whose complexity remains essentially
exponential in the parameters. This attacks improved known attacks for some parameters.
We quickly verified the complexity of these attacks. They don’t decrease the security of
Inner.DualModeMS below the security parameter.

8.4.2 Differential attack

We finally consider so-called differential attacks, introduced [25], are structural attacks that
can be used to attack multivariate cryptosystems. Differential attacks turned to be very
efficient, e.g. [25, 11] against SFLASH [47]; a popular multivariate-based signature based on
the Mastsumoto and Imai [44].

HFE is the successor, and a generalization, of [44]. Up to know, differential attacks have not
really threatened the security of HFEv-. This is due to the fact the univariate polynomial used
is much more complex than in [44] variants such as SFLASH [47]. In [17], the authors proved
that variants of HFE, such as Inner.DualModeMS, are immune against known differential
attacks.

8.5 AMQ

For the parameters chosen, we need to assume the hardness of AMQ for

r <
λ

α
.

For our parameters, α = 1 or 2. Precisely, r is bounded by 64, 96 and 256 for the 3 parameters
proposed respectively in Section 8.6. In fact, we have chosen the parameters, so that m −
r = λ so that the best attack proposed has complexity 2λ. It can be also mentioned that
AMQ is related to the so-called Generalized MinRank Problem [32]. Given a matrix whose
coefficients are multivariate polynomials, the goal is to find a assignment of the variables
that makes the rank of the matrix smaller than a given rank. Thus, we have a problem
which is in some sense harder than the Kipnis-Shamir attack described Section 8.4.

AMQ is Generalized MinRank Problem with n + v variables, polynomials of degree 2 and
matrix of size m×ν. [32] provides then the degree of regularity for solving the corresponding
determinantal system.

32

8.6 Deriving number of variables for Inner.DualModeMS

We now need to derive the number of vinegar variables v and minus ∆ required to achieve
the degree of regularity corresponding to a given security level (Table 7). This is the most
delicate point. According to the experiments performed in Section 8.3.3, and the insight
provided by the key-recovery attacks (Section 8.4), we make the choice to balance v and ∆.

In addition, we need to fix the degree D of the HFEv polynomial. This will give the initial
degree of regularity for a nude HFE (Table 6). For Inner.DualModeMS, we consider a secret
univariate polynomial of degree D = 129. This is less than the degree used in GeMSS [18]
that considers D = 512. We make this choice because we need to repeat many times the
signature process Inner.DualModeMS.Sign in DualModeMS.

This D = 129 corresponds to a degree of regularity of 5 for a nude HFE, i.e. without any
modifier. We consider that 3 modifiers allow to increase the degree of regularity by one.

In Table 13, we then derive the number of modifiers required as v + ∆ = 3 × Gap, with
Gap being the difference with the targeted degree of regularity minus the initial degree
of regularity (5 here). We consider the number of equations m and the targeted degree
of regularity as in Table 7. The third column of Table 13 gives the number of modifiers
required.

m Gap v + ∆
Inner.DualModeMS128 256 12− 5 = 7 21
Inner.DualModeMS192 384 17− 5 = 12 36
Inner.DualModeMS256 512 22− 5 = 22 64

Table 13: Numbers of modifiers required in Inner.DualModeMS.

9 Advantages and limitations (2.B.6)

Will be addressed in the full version.

The construction allows to greatly decreases the size of Inner.DualModeMS. However, the
secret is much bigger and the time to sign verify. However, this provides very interesting
tradeoffs for multivariate schemes.

References

[1] Gwénolé Ars, Jean-Charles Faugère, Hideki Imai, Mitsuru Kawazoe, and Makoto Sugita.
Comparison between XL and gröbner basis algorithms. In Pil Joong Lee, editor, Ad-
vances in Cryptology - ASIACRYPT 2004, 10th International Conference on the Theory

33

and Application of Cryptology and Information Security, Jeju Island, Korea, December
5-9, 2004, Proceedings, volume 3329 of Lecture Notes in Computer Science, pages 338–
353. Springer, 2004.

[2] Magali Bardet. Étude des systèmes algébriques surdéterminés. Applications aux codes
correcteurs et à la cryptographie. PhD thesis, Université de Paris VI, 2004.

[3] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. On the complexity of Gröbner
basis computation of semi-regular overdetermined algebraic equations. In International
Conference on Polynomial System Solving – ICPSS, pages 71–75, 2004.

[4] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. On the Complexity of the F5
Gröbner basis Algorithm. Journal of Symbolic Computation, pages 1–24, September
2014. 24 pages.

[5] Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and Bo-Yin Yang. Asymptotic be-
haviour of the degree of regularity of semi-regular polynomial systems. In The Effective
Methods in Algebraic Geometry Conference – MEGA 2005, pages 1–14, 2005.

[6] Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and Pierre-Jean Spaenlehauer. On
the complexity of solving quadratic boolean systems. Journal of Complexity, 29(1):53–
75, February 2013.

[7] Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Cryptanalysis of hfe, multi-
hfe and variants for odd and even characteristic. Des. Codes Cryptography, 69(1):1–52,
2013.

[8] Olivier Billet and Jintai Ding. Overview of Cryptanalysis Techniques in Multivariate
Public Key Cryptography, pages 263–283. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2009.

[9] Wieb Bosma, John J. Cannon, and Catherine Playoust. The Magma algebra system I:
The user language. Journal of Symbolic Computation, 24(3-4):235–265, 1997.

[10] Charles Bouillaguet, Hsieh-Chung Chen, Chen-Mou Cheng, Tung Chou, Ruben Nieder-
hagen, Adi Shamir, and Bo-Yin Yang. Fast exhaustive search for polynomial systems
in F 2. In Stefan Mangard and François-Xavier Standaert, editors, Cryptographic Hard-
ware and Embedded Systems, CHES 2010, 12th International Workshop, Santa Barbara,
CA, USA, August 17-20, 2010. Proceedings, volume 6225 of Lecture Notes in Computer
Science, pages 203–218. Springer, 2010.

[11] Charles Bouillaguet, Pierre-Alain Fouque, and Gilles Macario-Rat. Practical key-
recovery for all possible parameters of SFLASH. In Dong Hoon Lee and Xiaoyun Wang,
editors, Advances in Cryptology - ASIACRYPT 2011 - 17th International Conference
on the Theory and Application of Cryptology and Information Security, Seoul, South
Korea, December 4-8, 2011. Proceedings, volume 7073 of Lecture Notes in Computer
Science, pages 667–685. Springer, 2011.

34

[12] Michael Brickenstein and Alexander Dreyer. Polybori: A framework for gröbner-basis
computations with boolean polynomials. J. Symb. Comput., 44(9):1326–1345, 2009.

[13] Bruno Buchberger. Bruno Buchberger’s PhD thesis 1965: An algorithm for finding the
basis elements of the residue class ring of a zero dimensional polynomial ideal. Journal
of Symbolic Computation, 41(3-4):475–511, 2006.

[14] Bruno Buchberger, Georges E. Collins, Rudiger G. K. Loos, and Rudolph Albrecht.
Computer algebra symbolic and algebraic computation. SIGSAM Bull., 16(4):5–5, 1982.

[15] Jonathan F Buss, Gudmund S Frandsen, and Jeffrey O Shallit. The computational com-
plexity of some problems of linear algebra. Journal of Computer and System Sciences,
58(3):572–596, 1999.

[16] Claude Carlet, M. Anwar Hasan, and Vishal Saraswat, editors. Security, Privacy,
and Applied Cryptography Engineering - 6th International Conference, SPACE 2016,
Hyderabad, India, December 14-18, 2016, Proceedings, volume 10076 of Lecture Notes
in Computer Science. Springer, 2016.

[17] Ryann Cartor, Ryan Gipson, Daniel Smith-Tone, and Jeremy Vates. On the differential
security of the hfev- signature primitive. In Tsuyoshi Takagi, editor, Post-Quantum
Cryptography - 7th International Workshop, PQCrypto 2016, Fukuoka, Japan, February
24-26, 2016, Proceedings, volume 9606 of Lecture Notes in Computer Science, pages
162–181. Springer, 2016.

[18] A. Casanova, J.-C. Faugère, Orange G. Macario-Rat, J. Patarin, L. Perret, and J. Ryck-
eghem. GeMSS : A great multivariate short signature. Submission to NIST.

[19] Nicolas Courtois. Efficient zero-knowledge authentication based on a linear algebra
problem minrank. In ASIACRYPT, volume 2248, pages 402–421. Springer, 2001.

[20] Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Efficient algo-
rithms for solving overdefined systems of multivariate polynomial equations. In Bart
Preneel, editor, Advances in Cryptology - EUROCRYPT 2000, International Confer-
ence on the Theory and Application of Cryptographic Techniques, Bruges, Belgium, May
14-18, 2000, Proceeding, volume 1807 of Lecture Notes in Computer Science, pages 392–
407. Springer, 2000.

[21] Jintai Ding and Thorsten Kleinjung. Degree of regularity for HFE-. IACR Cryptology
ePrint Archive, 2011:570, 2011.

[22] Jintai Ding, Ray Perlner, Albrecht Petzoldt, and Daniel Smith-Tone. Improved crypt-
analysis of hfev- via projection. Cryptology ePrint Archive, Report 2017/1149, 2017.
https://eprint.iacr.org/2017/1149.

[23] Jintai Ding and Bo-Yin Yang. Multivariate Public Key Cryptography, pages 193–241.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

35

https://eprint.iacr.org/2017/1149

[24] Jintai Ding and Bo-Yin Yang. Degree of regularity for HFEv and HFEv-. In Philippe
Gaborit, editor, Post-Quantum Cryptography - 5th International Workshop, PQCrypto
2013, Limoges, France, June 4-7, 2013. Proceedings, volume 7932 of Lecture Notes in
Computer Science, pages 52–66. Springer, 2013.

[25] Vivien Dubois, Pierre-Alain Fouque, Adi Shamir, and Jacques Stern. Practical crypt-
analysis of SFLASH. In Alfred Menezes, editor, Advances in Cryptology - CRYPTO
2007, 27th Annual International Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 19-23, 2007, Proceedings, volume 4622 of Lecture Notes in Computer Science, pages
1–12. Springer, 2007.

[26] Vivien Dubois and Nicolas Gama. The degree of regularity of HFE systems. In Masayuki
Abe, editor, Advances in Cryptology - ASIACRYPT 2010 - 16th International Confer-
ence on the Theory and Application of Cryptology and Information Security, Singapore,
December 5-9, 2010. Proceedings, volume 6477 of Lecture Notes in Computer Science,
pages 557–576. Springer, 2010.

[27] Christian Eder and Jean-Charles Faugère. A survey on signature-based algorithms for
computing gröbner bases. J. Symb. Comput., 80:719–784, 2017.

[28] J.-C. Faugère. A new efficient algorithm for computing gröbner bases (F4). Journal of
Pure and Applied Algebra, 139(1-3):61–88, 1999.

[29] J.-C. Faugère. A new efficient algorithm for computing gröbner bases without reduction
to zero : F5. In ISSAC’02, pages 75–83. ACM press, 2002.

[30] Jean-Charles Faugère. Algebraic cryptanalysis of HFE using Gröbner bases. Reasearch
report RR-4738, INRIA, 2003.

[31] Jean-Charles Faugère. FGb: A Library for Computing Gröbner Bases. In Komei
Fukuda, Joris Hoeven, Michael Joswig, and Nobuki Takayama, editors, Mathemati-
cal Software - ICMS 2010, volume 6327 of Lecture Notes in Computer Science, pages
84–87, Berlin, Heidelberg, September 2010. Springer Berlin / Heidelberg.

[32] Jean-Charles Faugère, Mohab Safey El Din, and Pierre-Jean Spaenlehauer. On the
complexity of the generalized minrank problem. Journal of Symbolic Computation,
55:30–58, 2013.

[33] Jean-Charles Faugère, Kelsey Horan, Delaram Kahrobaei, Marc Kaplan, Elham Kashefi,
and Ludovic Perret. Fast quantum algorithm for solving multivariate quadratic equa-
tions. To appear.

[34] Jean-Charles Faugère and Antoine Joux. Algebraic cryptanalysis of hidden field equa-
tion (HFE) cryptosystems using gröbner bases. In Dan Boneh, editor, Advances in
Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa
Barbara, California, USA, August 17-21, 2003, Proceedings, volume 2729 of Lecture
Notes in Computer Science, pages 44–60. Springer, 2003.

36

[35] Giordano Fusco and Eric Bach. Phase Transition of Multivariate Polynomial Systems,
pages 632–645. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[36] François Le Gall. Algebraic complexity theory and matrix multiplication. In Katsusuke
Nabeshima, Kosaku Nagasaka, Franz Winkler, and Ágnes Szántó, editors, International
Symposium on Symbolic and Algebraic Computation, ISSAC ’14, Kobe, Japan, July 23-
25, 2014, page 23. ACM, 2014.

[37] Shuhong Gao, Yinhua Guan, and Frank Volny, IV. A new incremental algorithm for
computing groebner bases. In Proceedings of the 2010 International Symposium on
Symbolic and Algebraic Computation, ISSAC ’10, pages 13–19, New York, NY, USA,
2010. ACM.

[38] Shuhong Gao, Frank Volny IV, and Mingsheng Wang. A new framework for computing
gröbner bases. Math. Comput., 85(297), 2016.

[39] Louis Granboulan, Antoine Joux, and Jacques Stern. Inverting HFE is quasipolyno-
mial. In Cynthia Dwork, editor, Advances in Cryptology - CRYPTO 2006, 26th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 20-24,
2006, Proceedings, volume 4117 of Lecture Notes in Computer Science, pages 345–356.
Springer, 2006.

[40] Lov K. Grover. A fast quantum mechanical algorithm for database search. In STOC,
pages 212–219. ACM, 1996.

[41] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and vinegar signature
schemes. In EUROCRYPT, volume 1592 of Lecture Notes in Computer Science, pages
206–222. Springer, 1999.

[42] Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE public key cryptosystem
by relinearization. In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO
’99, 19th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer Science,
pages 19–30. Springer, 1999.

[43] Daniel Lokshtanov, Ramamohan Paturi, Suguru Tamaki, R. Ryan Williams, and
Huacheng Yu. Beating brute force for systems of polynomial equations over finite fields.
In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January
16-19, pages 2190–2202. SIAM, 2017.

[44] Tsutomu Matsumoto and Hideki Imai. Public quadratic polynominal-tuples for efficient
signature-verification and message-encryption. In EUROCRYPT, volume 330 of Lecture
Notes in Computer Science, pages 419–453. Springer, 1988.

[45] Ralph C. Merkle. A certified digital signature. In CRYPTO, volume 435 of Lecture
Notes in Computer Science, pages 218–238. Springer, 1989.

37

[46] Jacques Patarin. Hidden fields equations (HFE) and isomorphisms of polynomials (IP):
two new families of asymmetric algorithms. In Ueli M. Maurer, editor, Advances in
Cryptology - EUROCRYPT ’96, International Conference on the Theory and Appli-
cation of Cryptographic Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding,
volume 1070 of Lecture Notes in Computer Science, pages 33–48. Springer, 1996.

[47] Jacques Patarin, Nicolas Courtois, and Louis Goubin. Flash, a fast multivariate signa-
ture algorithm. In CT-RSA, volume 2020 of Lecture Notes in Computer Science, pages
298–307. Springer, 2001.

[48] Jacques Patarin, Nicolas Courtois, and Louis Goubin. Quartz, 128-bit long digital
signatures. In David Naccache, editor, Topics in Cryptology - CT-RSA 2001, The
Cryptographer’s Track at RSA Conference 2001, San Francisco, CA, USA, April 8-12,
2001, Proceedings, volume 2020 of Lecture Notes in Computer Science, pages 282–297.
Springer, 2001.

[49] Ludovic Perret. Bases de Gröbner en Cryptographie Post-Quantique. (Gröbner bases
techniques in Quantum-Safe Cryptography). 2016.

[50] Albrecht Petzoldt. On the complexity of the hybrid approach on hfev-. Cryptology
ePrint Archive, Report 2017/1135, 2017. https://eprint.iacr.org/2017/1135.

[51] Albrecht Petzoldt, Ming-Shing Chen, Bo-Yin Yang, Chengdong Tao, and Jintai Ding.
Design principles for hfev- based multivariate signature schemes. In Tetsu Iwata and
Jung Hee Cheon, editors, Advances in Cryptology - ASIACRYPT 2015 - 21st Interna-
tional Conference on the Theory and Application of Cryptology and Information Secu-
rity, Auckland, New Zealand, November 29 - December 3, 2015, Proceedings, Part I,
volume 9452 of Lecture Notes in Computer Science, pages 311–334. Springer, 2015.

[52] ETSI ISG QSC. Quantum-safe cryptography (QSC); quantum-safe algorithmic frame-
work. http://www.etsi.org/deliver/etsi_gr/QSC/001_099/001/01.01.01_60/gr_
QSC001v010101p.pdf.

[53] Koichi Sakumoto, Taizo Shirai, and Harunaga Hiwatari. On provable security of UOV
and HFE signature schemes against chosen-message attack. In PQCrypto, volume 7071
of Lecture Notes in Computer Science, pages 68–82. Springer, 2011.

[54] Alan Szepieniec, Ward Beullens, and Bart Preneel. MQ signatures for PKI. In
PQCrypto, volume 10346 of Lecture Notes in Computer Science, pages 224–240.
Springer, 2017.

[55] Jeremy Vates and Daniel Smith-Tone. Key recovery attack for all parameters of HFE-.
In Tanja Lange and Tsuyoshi Takagi, editors, Post-Quantum Cryptography - 8th Inter-
national Workshop, PQCrypto 2017, Utrecht, The Netherlands, June 26-28, 2017, Pro-
ceedings, volume 10346 of Lecture Notes in Computer Science, pages 272–288. Springer,
2017.

38

https://eprint.iacr.org/2017/1135
http://www.etsi.org/deliver/etsi_gr/QSC/001_099/001/01.01.01_60/gr_QSC001v010101p.pdf
http://www.etsi.org/deliver/etsi_gr/QSC/001_099/001/01.01.01_60/gr_QSC001v010101p.pdf

[56] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra (3. ed). Cam-
bridge University Press, 2013.

[57] Christopher Wolf. Multivariate quadratic polynomials in public key cryptography. Univ.
Leuven Heverlee, 2005.

39

	Introduction
	General algorithm specification (part of 2.B.1)
	Description of the inner layer – Specification of Inner.DualModeMS
	Parameter space
	Secret-key and public-key
	Signing process
	Verification process

	The SBP technique, Description of the outer layer and Specification of DualModeMS
	Overview
	Parameter space
	Secret-key and public-key
	Signing process
	Verification process

	Implementation
	Generating invertible matrices
	Generating HFEv polynomials
	Data structure for F2[x1,@let@token ,xn+v]m
	Generating the components of a HFEv polynomial
	Generating the components of a HFEv polynomial
	Generation of the public-key pk=pF2[x1,@let@token ,xn+v]m
	Generation of the Merle tree
	Computing the authenfication path
	Verification of the authenfication path

	List of parameter sets (part of 2.B.1)
	Parameter set sign/DualModeMS128
	Parameter set sign/DualModeMS192
	Parameter set sign/DualModeMS256

	Design rationale (part of 2.B.1)
	Detailed performance analysis (2.B.2)
	Description of platform
	Third-party open source library
	Time
	Space
	Optimizations

	Expected strength (2.B.4) in general
	EUF-CMA security of Inner.DualModeMS
	EUF-CMA security of DualModeMS

	Expected strength (2.B.4) for each parameter set
	Parameter set sign/DualModeMS128
	Parameter set sign/DualModeMS192
	Parameter set sign/DualModeMS256

	Analysis of known attacks (2.B.5)
	Direct signature forgery attacks
	Exhaustive search
	Quantum exhaustive search

	Approximation algorithm
	Gröbner bases
	Asymptotically fast algorithms
	Practically fast algorithms
	Experimental results for HFEv-

	Key-recovery attacks
	Kipnis-Shamir attack
	Differential attack

	AMQ
	Deriving number of variables for Inner.DualModeMS

	Advantages and limitations (2.B.6)
	References

