On The Complexity Of Computing Gröbner Bases For Weighted Homogeneous Systems

Jean-Charles Faugère1 \quad Mohab Safey El Din1,2 \\

\textbf{Thibaut Verron}1

1Université Pierre et Marie Curie, Paris 6, France \quad
INRIA Paris-Rocquencourt, Équipe POLSYS \quad
Laboratoire d'Informatique de Paris 6, UMR CNRS 7606

2Institut Universitaire de France

12 september 2014
An example
Finding the relations between 50 monomials of degree 2 in 25 variables

\[
\begin{align*}
X_{15}X_{25} - T_1 & \quad X_{21}X_{22} - T_{11} & \quad X_{12}X_{14} - T_{21} & \quad X_3X_{21} - T_{31} & \quad X_1X_{12} - T_{41} \\
X_2X_4 - T_2 & \quad X_4X_{12} - T_{12} & \quad X_4X_{16} - T_{22} & \quad X_6X_{24} - T_{32} & \quad X_5X_{12} - T_{42} \\
X_8X_{15} - T_3 & \quad X_1^2 - T_{13} & \quad X_6X_8 - T_{23} & \quad X_6X_8 - T_{23} & \quad X_1X_{19} - T_{43} \\
X_6X_8 - T_4 & \quad X_1X_2 - T_{14} & \quad X_{14}^2 - T_{24} & \quad X_{13}X_{20} - T_{34} & \quad X_{12}X_{18} - T_{44} \\
X_5X_{12} - T_5 & \quad X_2^2 - T_{15} & \quad X_8X_{21} - T_{25} & \quad X_6X_{19} - T_{35} & \quad X_7X_{11} - T_{45} \\
X_6X_{12} - T_6 & \quad X_5X_{10} - T_{16} & \quad X_{16}X_{23} - T_{26} & \quad X_9X_{15} - T_{36} & \quad X_9X_{20} - T_{46} \\
X_9X_{19} - T_7 & \quad X_1X_{10} - T_{17} & \quad X_3X_{13} - T_{27} & \quad X_2X_{13} - T_{37} & \quad X_4X_{21} - T_{47} \\
X_6X_{10} - T_8 & \quad X_{20}X_{23} - T_{18} & \quad X_{11}X_{20} - T_{28} & \quad X_{10}X_{23} - T_{38} & \quad X_7X_{23} - T_{48} \\
X_8X_{18} - T_9 & \quad X_2X_{23} - T_{19} & \quad X_{14}X_{22} - T_{29} & \quad X_3X_7 - T_{39} & \quad X_{14}X_{22} - T_{49} \\
X_5X_8 - T_{10} & \quad X_3X_{14} - T_{20} & \quad X_{16}X_{23} - T_{30} & \quad X_{10}X_{19} - T_{40} & \quad X_5X_7 - T_{50}
\end{align*}
\]
An example

Finding the relations between 50 monomials of degree 2 in 25 variables

$X_{15}X_{25} - T_1$	$X_{21}X_{22} - T_{11}$	$X_{12}X_{14} - T_{21}$	$X_{3}X_{21} - T_{31}$	$X_{1}X_{12} - T_{41}$	
$X_2X_4 - T_2$	$X_{4}X_{12} - T_{12}$	$X_{4}X_{16} - T_{22}$	$X_{6}X_{24} - T_{32}$	$X_{5}X_{12} - T_{42}$	
$X_8X_{15} - T_3$	$X_{2}^2 - T_{13}$	$X_{2}^2 - T_{24}$	$X_{13}X_{20} - T_{34}$	$X_{16}X_{19} - T_{43}$	
$X_6X_8 - T_4$	$X_1X_2 - T_{14}$	$X_8X_{21} - T_{25}$	$X_6X_{19} - T_{35}$	$X_{12}X_{18} - T_{44}$	
$X_5X_{12} - T_5$	$X_{25} - T_{15}$	$X_8X_{23} - T_{26}$	$X_9X_{15} - T_{36}$	$X_7X_{11} - T_{45}$	
$X_6X_{12} - T_6$	$X_5X_{10} - T_{16}$	$X_{16}X_{23} - T_{26}$	$X_9X_{20} - T_{46}$	$X_9X_{20} - T_{46}$	
$X_9X_{19} - T_7$	$X_1X_{10} - T_{17}$	$X_{3}X_{13} - T_{27}$	$X_{2}X_{13} - T_{37}$	$X_4X_{21} - T_{47}$	
$X_6X_{10} - T_8$	$X_{20}X_{23} - T_{18}$	$X_{11}X_{20} - T_{28}$	$X_{10}X_{23} - T_{38}$	$X_7X_{23} - T_{48}$	
$X_8X_{18} - T_9$	$X_2X_{23} - T_{19}$	$X_{14}X_{22} - T_{29}$	$X_{3}X_{7} - T_{39}$	$X_{14}X_{22} - T_{49}$	
$X_5X_8 - T_{10}$	$X_{3}X_{14} - T_{20}$	$X_{16}X_{23} - T_{30}$	$X_{10}X_{19} - T_{40}$		$X_5X_{7} - T_{50}$

Description of the system

- 50 equations, 75 variables
- Polynomials $m_i - T_i$ with m_i degree 2 monomial
- **Goal**: find all relations between the m_i \iff find all polynomials $P(T_j)$ in the ideal

Tool: Gröbner bases

Total degree grading

- difficult (~8h with Magma, intermediate basis in 4h)
- irregular behavior
 (highest deg. components not indep.)

Weighted degree grading

- Weight(T_i) = Degree(m_i) = 2
- easier (~4h with Magma, intermediate basis in 0.1s)
- regular behavior
An example
Finding the relations between 50 monomials of degree 2 in 25 variables

\[X_{15}X_{25} - T_1 \]
\[X_{24}X_4 - T_2 \]
\[X_{8}X_{15} - T_3 \]
\[X_{6}X_{8} - T_4 \]
\[X_{5}X_{12} - T_5 \]
\[X_{6}X_{12} - T_6 \]
\[X_{9}X_{19} - T_7 \]
\[X_{6}X_{10} - T_8 \]
\[X_{8}X_{18} - T_9 \]
\[X_{5}X_{8} - T_{10} \]
\[X_{21}X_{22} - T_{11} \]
\[X_{4}X_{12} - T_{12} \]
\[X_{1}X_{2} - T_{14} \]
\[X_{25}^2 - T_{15} \]
\[X_{5}X_{10} - T_{16} \]
\[X_{1}X_{10} - T_{17} \]
\[X_{20}X_{23} - T_{18} \]
\[X_{3}X_{14} - T_{20} \]
\[X_{12}X_{14} - T_{21} \]
\[X_{4}X_{16} - T_{22} \]
\[X_{4}^2 - T_{24} \]
\[X_{8}X_{21} - T_{25} \]
\[X_{5}X_{19} - T_{35} \]
\[X_{6}X_{19} - T_{35} \]
\[X_{2}X_{23} - T_{19} \]
\[X_{2}X_{10} - T_{26} \]
\[X_{3}X_{13} - T_{27} \]
\[X_{11}X_{20} - T_{28} \]
\[X_{4}X_{22} - T_{29} \]
\[X_{3}X_{7} - T_{39} \]
\[X_{16}X_{23} - T_{30} \]
\[X_{10}X_{19} - T_{40} \]
\[X_{5}X_{7} - T_{50} \]

Description of the system
- 50 equations, 75 variables
- Polynomials \(m_i - T_i \) with \(m_i \) degree 2 monomial
- Goal: find all relations between the \(m_i \) \iff find all polynomials \(P(T_j) \) in the ideal

Tool: Gröbner bases

Total degree grading
- difficult (~8h with Magma, intermediate basis in 4h)
- irregular behavior (highest deg. components not indep.)

Weighted degree grading
- \(\text{Weight}(T_i) = \text{Degree}(m_i) = 2 \)
- easier (~4h with Magma, intermediate basis in 0.1s)
- regular behavior
An example
Finding the relations between 50 monomials of degree 2 in 25 variables

\[
\begin{align*}
X_{15}X_{25} - T_1 & \quad X_{21}X_{22} - T_{11} & \quad X_{12}X_{14} - T_{21} & \quad X_3X_{21} - T_{31} & \quad X_1X_{12} - T_{41} \\
X_2X_4 - T_2 & \quad X_4X_{12} - T_{12} & \quad X_4X_{16} - T_{22} & \quad X_6X_{24} - T_{32} & \quad X_5X_{12} - T_{42} \\
X_8X_{15} - T_3 & \quad X_{12} - T_{13} & \quad X_6X_8 - T_{23} & \quad X_{15}X_{25} - T_{33} & \quad X_6X_{19} - T_{43} \\
X_6X_8 - T_4 & \quad X_1X_2 - T_{14} & \quad X^2_{14} - T_{24} & \quad X_{13}X_{20} - T_{34} & \quad X_7X_{11} - T_{44} \\
X_5X_{12} - T_5 & \quad X^2_{25} - T_{15} & \quad X_8X_{21} - T_{25} & \quad X_6X_{19} - T_{35} & \quad X_7X_{11} - T_{45} \\
X_6X_{12} - T_6 & \quad X_5X_{10} - T_{16} & \quad X_{16}X_{23} - T_{26} & \quad X_9X_{15} - T_{36} & \quad X_9X_{20} - T_{46} \\
X_9X_{19} - T_7 & \quad X_1X_{10} - T_{17} & \quad X_3X_{13} - T_{27} & \quad X_2X_{13} - T_{37} & \quad X_4X_{21} - T_{47} \\
X_6X_{10} - T_8 & \quad X_{20}X_{23} - T_{18} & \quad X_{11}X_{20} - T_{28} & \quad X_{10}X_{23} - T_{38} & \quad X_7X_{23} - T_{48} \\
X_8X_{18} - T_9 & \quad X_2X_{23} - T_{19} & \quad X_{14}X_{22} - T_{29} & \quad X_3X_7 - T_{39} & \quad X_{14}X_{22} - T_{49} \\
X_5X_8 - T_{10} & \quad X_3X_{14} - T_{20} & \quad X_{16}X_{23} - T_{30} & \quad X_{10}X_{19} - T_{40} & \quad X_5X_7 - T_{50}
\end{align*}
\]

Description of the system
- 50 equations, 75 variables
- Polynomials $m_i - T_i$ with m_i degree 2 monomial
- **Goal**: find all relations between the m_i \iff find all polynomials $P(T_j)$ in the ideal

Tool: Gröbner bases

Total degree grading
- difficult (~8h with Magma, intermediate basis in 4h)
- irregular behavior (highest deg. components not indep.)

Weighted degree grading
- Weight(T_i) = Degree(m_i) = 2
- easier (~4h with Magma, intermediate basis in 0.1s)
- regular behavior
A run of F_4 on the example
Ideal of relations between 50 monomials of degree 2 in 25 variables

Algorithm F_4, step by step

- 50 equations of (W-)degree 2 in 75 variables
- GREVLEX ordering (e.g. for a 2-step strategy)
- Without weights: 3.9 h (34 steps reaching degree 22)
- With weights: 0.1 s (5 steps reaching W-degree 6)
Gröbner bases and structured systems

Polynomial system

\[
\begin{align*}
 f : \quad X^2 + 2XY + Y^2 + X &= 0 \\
 g : \quad X^2 - XY + Y^2 + Y - 1 &= 0
\end{align*}
\]

Gröbner basis

\[
\begin{align*}
 Y^3 &+ Y^2 - \frac{4}{9}X - \frac{2}{9}Y - \frac{4}{9} \\
 X^2 &+ Y^2 + \frac{1}{3}X + \frac{2}{3}Y - \frac{2}{3} \\
 XY &+ \frac{1}{3}X - \frac{1}{3}Y + \frac{1}{3}
\end{align*}
\]

Problematic

Structured systems

→ Can we exploit it?

Successfully studied structures

- Bihomogeneous (Dickenstein, Emiris, Faugère, Safey, Spaenlehauer...)
- Group symmetries (Colin, Faugère, Gatermann, Rahmany, Svartz...)
- Weighted homo. / Quasi-homo. ([Traverso 1996], [FSV 2013]...)
Weighted homogeneous systems: definitions

Definition (e.g. [Robbiano 1986], [Becker and Weispfenning 1993])

System of weights: \(W = (w_1, \ldots, w_n) \in \mathbb{N}^n \)

Weighted degree (or \(W \)-degree): \(\deg_W(X_1^{\alpha_1} \ldots X_n^{\alpha_n}) = \sum_{i=1}^{n} w_i \alpha_i \)

Weighted homogeneous polynomial: poly. with monomials of same \(W \)-degree

→ Example: physical systems: Volume = Area \(\times \) Height

\[\text{Weight 3} \quad \text{Weight 2} \quad \text{Weight 1} \]

Given a general (not weighted homogeneous) system and a system of weights

Computational strategy: weighted-homogenize it as in the homogeneous case

Complexity estimates: consider the highest \(W \)-degree components of the system

→ Enough to study weighted homogeneous systems
Weighted homogeneous systems: definitions

Definition (e.g. [Robbiano 1986], [Becker and Weispfenning 1993])

System of weights: \(W = (w_1, \ldots, w_n) \in \mathbb{N}^n \)

Weighted degree (or \(W \)-degree): \(\text{deg}_W(X_1^{\alpha_1} \cdots X_n^{\alpha_n}) = \sum_{i=1}^{n} w_i \alpha_i \)

Weighted homogeneous polynomial: poly. with monomials of same \(W \)-degree

→ Example: physical systems: Volume = Area \(\times \) Height

\[\begin{array}{c}
\text{Weight 3} \\
\text{Weight 2} \\
\text{Weight 1}
\end{array}\]

Given a general (not weighted homogeneous) system and a system of weights

Computational strategy: weighted-homogenize it as in the homogeneous case

Complexity estimates: consider the highest \(W \)-degree components of the system

▶ Enough to study weighted homogeneous systems
Complexity for generic homogeneous systems

Homogeneous, generic, with total degree \((d_1, \ldots, d_m)\)

\[F(X_1, \ldots, X_n) \]

Buchberger

- [Buchberger 1976]
- [Faugère 1999]
- [Faugère 2002]

\[\text{GREVLEX basis} \]

if \(m \geq n\) (zero-dimensional case)

\[\text{FGLM} \]
[Faugère, Gianni, Lazard and Mora 1993]

\[\text{LEX basis} \]
Complexity for generic homogeneous systems

Homogeneous, generic, with total degree \((d_1, \ldots, d_m)\)

- \(F(X_1, \ldots, X_n)\)
- \(F_5\)
- \(\text{GRevLex basis}\)
- \(\text{FGLM}\) if \(m \geq n\) (zero-dimensional case)
- \(\text{Lex basis}\)

- Highest degree \(d_{\text{reg}} \leq \sum_{i=1}^{m} (d_i - 1) + 1\)
- Size of the matrix at degree \(d = \binom{n + d - 1}{d}\)

Number of solutions = \(\prod_{i=1}^{n} d_i\) (Bézout bound)

\[O\left(\left(\frac{n + d_{\text{reg}} - 1}{d_{\text{reg}}}\right)^3 + n\left(\prod_{i=1}^{n} d_i\right)^3\right)\]
Computational strategy for weighted homogeneous systems

- $F(X_1, \ldots, X_n)$, W
 - W-Homogeneous, generic, with W-degree (d_1, \ldots, d_m)
 - (zero-dimensional: $m = n$)

- $F(X_1^{w_1}, \ldots, X_n^{w_n})$
 - Homogeneous, with total degree (d_1, \ldots, d_m)

- W-GREVLEX basis of F
- FGLM
 - W-GREVLEX basis of F
- LEX basis

$W = (w_1, \ldots, w_n)$
Algorithms: from weighted homogeneous to homogeneous

Transformation morphism

\[\text{hom}_W : (\mathbb{K}[X], W\text{-deg}) \rightarrow (\mathbb{K}[X], \text{deg}) \]

\[f \mapsto f(X_1^{w_1}, \ldots, X_n^{w_n}) \]

- Graded injective morphism
- Sends regular ("independent") sequences on regular sequences
- \(S\text{-Pol}(\text{hom}_W(f), \text{hom}_W(g)) = \text{hom}_W(S\text{-Pol}(f, g)) \)
 \[\rightarrow \text{Good behavior w.r.t Gröbner bases} \]

(Weighted homogeneous)

\[F \]

Gröbner

Basis of \(F \) w.r.t \(\text{hom}_W^{-1}(\prec) \)

(Homogeneous)

\[\text{hom}_W(F) \]

Gröbner

Basis of \(\text{hom}_W(F) \) w.r.t \(\prec \)
Size of the Macaulay matrices

Counting the monomials

- $\text{hom}_W(F)$ lies in an algebra with a lot of useless monomials
- Count them: combinatorial object named Sylvester denumerants
- Result\(^1\): asymptotically $N_d \sim \frac{\# \text{Monomials of total degree } d}{\prod_{i=1}^{n} w_i}$

\(^1\)Geir Agnarsson (2002). ‘On the Sylvester denumerants for general restricted partitions’
$F(X_1, \ldots, X_n), W$

$F(X_1^{w_1}, \ldots, X_n^{w_n})$

F_5

W-GRevLex basis of F

W-Homogeneous, generic, with W-degree (d_1, \ldots, d_m)
(zero-dimensional: $m = n$)

Homogeneous, with total degree (d_1, \ldots, d_m)

Highest W-degree

$$d_{W,\text{reg}} \leq \sum_{i=1}^{m} (d_i - w_i) + \max\{w_j\}$$

Size of the matrix at W-degree $d \simeq \frac{1}{\prod_{i=1}^{n} w_i} \binom{n + d - 1}{d}$

Number of solutions $= \frac{\prod_{i=1}^{n} d_i}{\prod_{i=1}^{n} w_i}$ (weighted Bézout bound)

$O\left(\left(\frac{1}{\prod_{i=1}^{n} w_i}\right)^3 \left[\binom{n + d_{W,\text{reg}} - 1}{d_{W,\text{reg}}}^3 + n \left(\prod_{i=1}^{n} d_i\right)^3\right]\right)$
Main results: lifted hypotheses and sharper bound

\[F(X_1, \ldots, X_n), W \]

\[F(X_1^{w_1}, \ldots, X_n^{w_n}) \]

\[W\text{-Homogeneous, generic, with } W\text{-degree } (d_1, \ldots, d_m) \]

\[(m < n \text{ or } m = n \text{ or } m > n) \]

Homogeneous, with total degree \((d_1, \ldots, d_m)\)

\[W = (w_1, \ldots, w_n) \]

\[W\text{-Homogeneous, with total degree } (d_1, \ldots, d_m) \]

\[
\begin{align*}
\text{Highest } W\text{-degree (if } m \leq n) & \\
& d_{W, \text{reg}} \leq \sum_{i=1}^{m} (d_i - w_i) + w_m
\end{align*}
\]

\[
\text{Size of the matrix at } W\text{-degree } d \simeq \frac{1}{\prod_{i=1}^{n} w_i} \binom{n + d - 1}{d}
\]

\[\text{Number of solutions } = \frac{\prod_{i=1}^{n} d_i}{\prod_{i=1}^{n} w_i} \text{ (weighted Bézout bound)} \]

\[
O \left(\left(\frac{1}{\prod_{i=1}^{n} w_i} \right)^3 \left[\binom{n + d_{W, \text{reg}} - 1}{d_{W, \text{reg}}}^3 + n \left(\prod_{i=1}^{n} d_i \right)^3 \right] \right)
\]
Definition

\[F = (f_1, \ldots, f_m) \text{ W-homo. } \in \mathbb{K}[X] \text{ is regular iff } \]

\[
\begin{cases}
\langle F \rangle \nsubseteq \mathbb{K}[X] \\
\forall i, f_i \text{ is no zero-divisor in } \mathbb{K}[X]/\langle f_1, \ldots, f_{i-1} \rangle
\end{cases}
\]
Definition

\[F = (f_1, \ldots, f_m) \text{ } W\text{-homo. } \in \mathbb{K}[X] \text{ is regular iff } \]

\[
\begin{align*}
\langle F \rangle & \subsetneq \mathbb{K}[X] \\
\forall i, f_i & \text{ is no zero-divisor in } \mathbb{K}[X]/\langle f_1, \ldots, f_{i-1} \rangle
\end{align*}
\]

Property [FSV 2013]

- Regular sequences of \(W\)-homo. polynomials
- Generic if \(\neq \emptyset \)
- Good properties
- \(F_5 \)-criterion
- Hilbert series
Properties of regular sequences

Hilbert series

\[\text{HS}_{A/I}(T) = \sum_{d=0}^{\infty} (\text{rank defect of the F}_5 \text{ matrix at } W\text{-degree } d) \cdot T^d \]

Properties

For regular sequences of \(W \)-homogeneous polynomials of \(W \)-degree \(d_i \):

\[\text{HS}_{A/I}(T) = \frac{(1 - T^{d_1}) \cdots (1 - T^{d_m})}{(1 - T^{w_1}) \cdots (1 - T^{w_n})} \]

In dimension zero \((m = n)\):

- **Bézout bound on the degree:** \(D = \frac{\prod_{i=1}^{n} d_i}{\prod_{i=1}^{n} w_i} \)

- **Macaulay bound on \(d_{\text{reg}} \) [FSV 2013]:** \(d_{\text{reg}} \leq \sum_{i=1}^{n} (d_i - w_i) + \max\{w_j\} \)
Can we do better? Yes, but not with the regularity alone.

Positive dimension ($m < n$)

- Need to know what variables matter to the system
- Information not available from regularity
 → (Simultaneous) Noether position

Dimension 0 ($m = n$)

- Macaulay’s bound on d_{reg} is not sharp
- d_{reg} depends on the order of the variables:

<table>
<thead>
<tr>
<th>W</th>
<th>W-degree</th>
<th>Macaulay’s bound</th>
<th>d_{reg}</th>
<th>F_4 DRL time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(20, 5, 5, 1)$</td>
<td>$(60, 60, 60, 60)$</td>
<td>229</td>
<td>210</td>
<td>471s</td>
</tr>
<tr>
<td>$(1, 5, 5, 20)$</td>
<td>$(60, 60, 60, 60)$</td>
<td>229</td>
<td>220</td>
<td>916s</td>
</tr>
</tbody>
</table>

→ Simultaneous Noether position

Overdetermined systems ($m > n$)

- No regular sequence → Semi-regularity
Noether position

\[F = (f_1, \ldots, f_m) \in \mathbb{K}[X_1, \ldots, X_n], \; m \leq n \]

- **Noether position:**
 \((F, X_{m+1}, \ldots, X_n)\) regular

- **simultaneous Noether position:**
 \((f_1, \ldots, f_j)\) in NP for all \(j\)'s

Properties

- **Generic** if not empty
- **Valid under generic change of coordinates** for “nice” systems of weights
- **Relevant property for fine-grained complexity** (structure lemma [Bardet 2004])
- For a \(W\)-homogeneous sequence in simultaneous Noether position:

\[
d_{\text{reg}} \leq \sum_{i=1}^{m} (d_i - w_i) + w_m \quad \text{(sharp if \(w_m = 1\))}
\]
Semi-regular sequences

- **If** \(m > n \), reductions to zero cannot be eliminated.
- **Semi-regular sequence**: all reductions to zero are at high degrees.
- **Hilbert series of a semi-regular homogeneous sequence**:
 \[
 HS_{A/I}(T) = \left(\frac{1 - T^{d_1}}{1 - T} \right) \cdots \left(\frac{1 - T^{d_m}}{1 - T} \right) (1 - T)^n
 \]
 (series truncated to the first coefficient \(\leq 0 \))

- For \(W \)-homogeneous systems, only true for “nice” systems of weights.
- **Main consequence**: asymptotic estimate of the degree of regularity [Bardet 2004]

Fröberg’s conjecture

Semi-regular sequences are generic.

Proved for:
- \(n = 2 \)
- \(n = 3 \) for large fields
- \(m = n + 1 \) in characteristic 0.
Semi-regular sequences

- If $m > n$, reductions to zero cannot be eliminated.
- **Semi-regular sequence**: all reductions to zero are at high degrees
- Hilbert series of a semi-regular W-homogeneous sequence:
 \[
 \text{HS}_{A/I}(T) = \left[\frac{(1 - T^{d_1}) \cdots (1 - T^{d_m})}{(1 - T^{w_1}) \cdots (1 - T^{w_n})} \right] \quad \text{(series truncated to the first coefficient } \leq 0)\]

- For W-homogeneous systems, only true for “nice” systems of weights
- Main consequence: asymptotic estimate of the degree of regularity [Bardet 2004]

Fröberg’s conjecture

Semi-regular sequences are generic.

Proved for:
- $n = 2$
- $n = 3$ for large fields
- $m = n + 1$ in characteristic 0
Complexity

Input

- \(W = (w_1, \ldots, w_n) \)
- \(F = (f_1, \ldots, f_m) \in \mathbb{K}[X_1, \ldots, X_n] \) generic \(W \)-homogeneous

Complexity of \(F_5 \)

\[
\left(\frac{1}{\prod_{i=1}^{n} w_i} \right)^3 \left(n + d_{\text{reg}} - 1 \right)^3
\]

- Asymptotic gain from the size of the matrices
- Practical gain from the weighted Macaulay bound \(d_{\text{reg}} \)

Complexity of FGLM (\(m = n \))

\[
\left(\frac{1}{\prod_{i=1}^{n} w_i} \right)^3 n \left(\prod_{i=1}^{n} d_i \right)^3
\]

- Asymptotic gain from the weighted Bézout bound (number of solutions)
Benchmarking

F : 0-dim. affine system with a weighted homogeneous structure

$$f_i = \sum c_\alpha m_\alpha \text{ with } \deg_W(m_\alpha) \leq d_i$$

Assumption: the highest W-degree components are regular (e.g. if F is generic)
Benchmarks for generic systems

- Generic systems in n variables with weights $W = (2, \ldots, 2, 1, 1)$ and W-degree $D = (4, \ldots, 4)$
- Number of solutions: 2^{n+2}
- Benchmarks obtained with FGb:
 - F_5 [Faugère 2002]
 - SPARSEFGLM [Faugère and Mou 2013]

Algorithm F_5, timings

- FGLM timing for $n = 13$:
 - 5602.3 s
 - 1645.1 s
- 65,536 solutions
- Ratio = 2.1

Ratio = 8.4 for $n = 10$
The story is not over...

Sometimes, “normally” faster...

- Generic complete intersection (\texttt{GREVLEX}): 13 min. vs. 1h45 (speed-up: 8)
- Relations between monomials (elim.): 4h vs 8h (speed-up: 2)
- Relations between 14 invariants of the cyclic-5 group (elim.): 40 min. vs 10h (speed-up: 16)

... sometimes, faster than that...

- Relations between monomials (\texttt{GREVLEX}): 0.1s vs 4h (speed-up: 144 000)

... and sometimes, same speed.

- Relations between monomials (elim. from \texttt{GREVLEX})
- Elimination on generic systems (elim.)
Conclusion and perspectives

What we have done

- **Theoretical results** for W-homogeneous systems under generic assumptions
- **Complexity results** for F_5 for positive-dim. systems and overdetermined systems
 - Bound on the maximal degree reached by the F_5 algorithm
 - Complexity overall divided by $(\prod w_i)^3$

Consequences

Wide range of potential applications:
- Polynomial inversion, implicitization (positive dimension)
- Cryptography (overdetermined)

Perspectives

- Timings still not completely understood
- Affine systems: find the most appropriate system of weights
- Additional structure: W-homo. for several systems of weights, weights ≤ 0...
Conclusion and perspectives

What we have done

- **Theoretical results** for W-homogeneous systems under generic assumptions
- **Complexity results** for F_5 for positive-dim. systems and overdetermined systems
 - Bound on the maximal degree reached by the F_5 algorithm
 - Complexity overall divided by $(\prod w_i)^3$

Consequences

Wide range of potential applications:

- Polynomial inversion, implicitization (positive dimension)
- Cryptography (overdetermined)

Perspectives

- Timings still not completely understood
- **Affine systems**: find the most appropriate system of weights
- **Additional structure**: W-homo. for several systems of weights, weights ≤ 0...
Thank you for your attention!