Mathematical Morphology on Complete Lattices for Imperfect Information Processing

Application to Image Understanding and Spatial Reasoning

Isabelle Bloch

isabelle.bloch@telecom-paristech.fr

April 2014

Lattices and information processing

Lattices: core mathematical structure in many information processing problems.
Examples:
■ soft computing (fuzzy sets, bipolar information),
■ knowledge representation,

- logics,
- formal concept analysis,
- automated reasoning,
- decision making,

■ image processing and understanding,
■ information retrieval,

- etc.

Mathematical morphology on complete lattices.

Mathematical Morphology for Spatial Information

Matheron (mid-1960's), Serra (1982)

- A theory of space.
- Widely used in image processing and interpretation.

■ At different levels (local, regional, structural...).
■ For different tasks (filtering, enhancement, segmentation, interpretation, spatial knowledge modeling...).

Filtering

Segmentation

Interpretation

Knowledge modeling What is the region to the right of R ? Is B to the right of R (and to which degree)?

Spatial reasoning

Formal framework: complete lattices

- Lattice: (\mathcal{T}, \leq) (\leq partial ordering) such that $\forall(x, y) \in \mathcal{T}, \exists x \vee y$ and $\exists x \wedge y$.
■ Complete lattice: every family of elements (finite or not) has a smallest upper bound and a largest lower bound.
$■ \Rightarrow$ contains a smallest element 0 and a largest element I :

$$
0=\bigwedge \mathcal{T}=\bigvee \emptyset \text { and } I=\bigvee \mathcal{T}=\bigwedge \emptyset
$$

■ Examples of complete lattices:
■ ($\mathcal{P}(E), \subseteq)$: complete lattice, Boolean (complemented and distributive)

- functions of \mathbb{R}^{n} in $\overline{\mathbb{R}}$ for the partial ordering \leq :

$$
f \leq g \Leftrightarrow \forall x \in \mathbb{R}^{n}, \quad f(x) \leq g(x)
$$

- partitions
- logics (propositional logics, modal logics...)
- fuzzy sets, bipolar fuzzy sets
- rough sets and fuzzy rough sets
- formal concepts

Algebraic dilations and erosions

Heijmans, Ronse (1990)

Complete lattices $(\mathcal{T}, \leq),\left(\mathcal{T}^{\prime}, \leq^{\prime}\right)$

Algebraic dilation: $\delta: \mathcal{T} \rightarrow \mathcal{T}^{\prime}$ such that

$$
\forall\left(x_{i}\right) \in \mathcal{T}, \delta\left(\vee_{i} x_{i}\right)=\vee_{i}^{\prime} \delta\left(x_{i}\right)
$$

Algebraic erosion: $\varepsilon: \mathcal{T}^{\prime} \rightarrow \mathcal{T}$ such that

$$
\forall\left(x_{i}\right) \in \mathcal{T}^{\prime}, \varepsilon\left(\wedge_{i}^{\prime} x_{i}\right)=\wedge_{i} \varepsilon\left(x_{i}\right)
$$

Properties:

- $\delta(0)=0^{\prime}($ in $\mathcal{P}(E), 0=\emptyset)$
- $\varepsilon\left(I^{\prime}\right)=I($ in $\mathcal{P}(E), I=E)$
$\square \delta$ increasing, ε increasing
- in $\mathcal{P}\left(\mathbb{R}^{n}\right), \delta(X)=\cup_{x \in X} \delta(\{x\})$

Adjunctions

$\delta: \mathcal{T} \rightarrow \mathcal{T}^{\prime}, \varepsilon: \mathcal{T}^{\prime} \rightarrow \mathcal{T},(\varepsilon, \delta)$ adjunction if:

$$
\forall x \in \mathcal{T}, \forall y \in \mathcal{T}^{\prime}, \delta(x) \leq^{\prime} y \Leftrightarrow x \leq \varepsilon(y)
$$

Properties:

- $\delta(0)=0^{\prime}$ and $\varepsilon\left(I^{\prime}\right)=I$

■ (ε, δ) adjunction $\Rightarrow \varepsilon=$ algebraic erosion and $\delta=$ algebraic dilation

- δ increasing $=$ algebraic dilation iff $\exists \varepsilon$ such that (ε, δ) is an adjunction $\Rightarrow \varepsilon=$ algebraic erosion and $\varepsilon(x)=\bigvee\left\{y \in \mathcal{T}, \delta(y) \leq^{\prime} x\right\}$
■ ε increasing $=$ algebraic erosion iff $\exists \delta$ such that (ε, δ) is an adjunction $\Rightarrow \delta=$ algebraic dilation and $\delta(x)=\bigwedge\left\{y \in \mathcal{T}^{\prime}, \varepsilon(y) \geq x\right\}$
- $\varepsilon \delta \geq I d$ and $\delta \varepsilon \leq I d^{\prime}$
- $\varepsilon \delta \varepsilon=\varepsilon$ and $\delta \varepsilon \delta=\delta$

■ $\varepsilon \delta \varepsilon \delta=\varepsilon \delta$ and $\delta \varepsilon \delta \varepsilon=\delta \varepsilon$
■ δ and ε increasing such that $\delta \varepsilon \leq I d^{\prime}$ and $\varepsilon \delta \geq I d \Rightarrow(\varepsilon, \delta)$ adjunction

Morphological dilations and erosions

■ On the lattice of the subsets of \mathbb{R}^{n} or \mathbb{Z}^{n}, with inclusion:

$$
\delta(X)=\cup_{x \in X} \delta(\{x\})
$$

■ + invariance under translation

$$
\left.\Rightarrow \exists B, \delta(X)=D(X, B)=\left\{x, \check{B}_{x} \cap X \neq \emptyset\right\} \text { (with } B_{x}=x+B\right)
$$

■ $B=$ structuring element (neighborhood, binary relation).

- Same result on the lattice of functions.
- Similar results for erosion: $\exists B, \varepsilon(X)=E(X, B)=\left\{x, B_{x} \subseteq X\right\}$.

Derived operators: opening, closing, conditional (geodesic) operations, gradient...
Relaxing the assumption on invariance under translation: structuring elements varying in space (ex: projective geometry, omnidirectional images...).

Algebraic opening and closing

■ Algebraic opening: γ increasing, idempotent and anti-extensive.
■ Algebraic closing: φ increasing, idempotent and extensive.
■ Examples: $\gamma=\delta \varepsilon$ and $\varphi=\varepsilon \delta$ with (ε, δ) adjunction.
■ Invariance domain: $\operatorname{Inv}(\varphi)=\{x \in \mathcal{T}, \varphi(x)=x\}$.
■ γ opening $\Rightarrow \gamma(x)=\bigvee\{y \in \operatorname{Inv}(\gamma), y \leq x\}$.
■ φ closing $\Rightarrow \varphi(x)=\bigwedge\{y \in \operatorname{Inv}(\varphi), x \leq y\}$.
■ (γ_{i}) openings $\Rightarrow \bigvee_{i} \gamma_{i}$ opening.
$■\left(\varphi_{i}\right)$ closings $\Rightarrow \bigwedge_{i} \varphi_{i}$ closing.

- γ_{1} and γ_{2} openings \Rightarrow equivalence between:
$1 \gamma_{1} \leq \gamma_{2}$

2. $\gamma_{1} \gamma_{2}=\gamma_{2} \gamma_{1}=\gamma_{1}$
$3 \operatorname{Inv}\left(\gamma_{1}\right) \subseteq \operatorname{Inv}\left(\gamma_{2}\right)$
■ Similar result on closings.

A simple example

(Illustration: C. Ronse)

Lattice of fuzzy sets and fuzzy morphology

- Space \mathcal{S} (e.g. \mathbb{Z}^{n} or \mathbb{R}^{n})
- \mathcal{F} : set of fuzzy sets on $\mathcal{S}-\mu \in \mathcal{F}, \mu: \mathcal{S} \rightarrow[0,1]$.
- Partial ordering:

$$
\forall\left(\mu_{1}, \mu_{2}\right) \in \mathcal{F}^{2}, \mu_{1} \leq \mu_{2} \Leftrightarrow \forall x \in \mathcal{S}, \mu_{1}(x) \leq \mu_{2}(x)
$$

- $(\mathcal{F}, \leq)=$ complete lattice
- $\wedge=\min$

■ $\vee=\max$

- Algebraic dilation and erosion: as in any complete lattice

Morphological operations in the fuzzy case

Operators: t-norm t, t-conorm T, complementation c, implication I derived from T and c, residual implication I_{R} derived from t.
Fuzzy dilation of μ by ν :

$$
\delta_{\nu}(\mu)(x)=\sup _{y \in \mathcal{S}} t[\nu(x-y), \mu(y)]
$$

Fuzzy erosion of μ by ν :
■ by duality:

$$
\varepsilon_{\nu}(\mu)(x)=\inf _{y \in \mathcal{S}} T[c(\nu(y-x)), \mu(y)]=\inf _{y \in \mathcal{S}} l[\nu(y-x), \mu(y)]
$$

- by adjunction:

$$
\varepsilon_{\nu}(\mu)(x)=\inf _{y \in \mathcal{S}} I_{R}[\nu(y-x), \mu(y)]
$$

Equivalence for Lukasiewicz operators (up to a bijective permutation on $[0,1])$.
Properties: as in classical morphology.

Structural information: spatial relations

Expression of several spatial relations in terms of morphological operators:
■ adjacency
■ distance (nearest point distance, Hausdorff distance)

- relative direction

■ more complex relations (between, along...)
Two classes of relations:
■ well defined in the crisp case
■ vague even if objects are well defined

Example of directional relation

Minimum distance density

Binary discrete case:

$$
\begin{gathered}
d_{N}(X, Y)=n \Leftrightarrow \delta^{n}(X) \cap Y \neq \emptyset \text { and } \delta^{n-1}(X) \cap Y=\emptyset \\
d_{N}(X, Y)=0 \Leftrightarrow X \cap Y \neq \emptyset
\end{gathered}
$$

Degree to which the distance between μ and μ^{\prime} is equal to n :

$$
\begin{aligned}
& d_{N}\left(\mu, \mu^{\prime}\right)(n)=t\left[\sup _{x \in \mathcal{S}} t\left[\mu^{\prime}(x), \delta_{\nu}^{n}(\mu)(x)\right], c\left[\sup _{x \in \mathcal{S}} t\left[\mu^{\prime}(x), \delta_{\nu}^{n-1}(\mu)(x)\right]\right]\right] \\
& d_{N}\left(\mu, \mu^{\prime}\right)(0)=\sup _{x \in \mathcal{S}} t\left[\mu(x), \mu^{\prime}(x)\right]
\end{aligned}
$$

Hausdorff distance: similar equations.

Fuzzy distance: example

The heart is between the lungs

Morpho-Logics

■ Propositional logics and modal logics, associated complete lattice

- Dilations and erosions:

$$
\llbracket \delta_{B}(\varphi) \rrbracket=\left\{\omega \in \Omega \mid \check{B}_{\omega} \wedge \varphi \text { consistent }\right\} \quad \llbracket \varepsilon_{B}(\varphi) \rrbracket=\left\{\omega \in \Omega \mid B_{\omega} \models \varphi\right\}
$$

■ Applications: revision, fusion, abduction, mediation, spatial reasoning (joint work with J. Lang, R. Pino-Perez, C. Uzcategui)
■ Morphological expression of the max-fusion operator:

$$
X \Delta Y=\delta_{n}(X) \cap \delta_{n}(Y) \quad \text { with } n=\min \left\{k: \delta_{k}(X) \cap \delta_{k}(Y) \neq \emptyset\right\}
$$

- X

O Y
〇 $X \Delta^{\prime} Y$ $X \Delta Y$

Extension to the fuzzy case

$\llbracket \varphi \rrbracket$ as a fuzzy set.
Example: Median set $\left(\mu_{i}=\llbracket \varphi_{i} \rrbracket\right)$:

$$
M\left(\mu_{1}, \mu_{2}\right)=\sup _{\lambda} t\left[\delta_{\lambda \nu}\left(\mu_{1} \cap \mu_{2}\right), \varepsilon_{\lambda \nu}\left(\mu_{1} \cup \mu_{2}\right)\right]
$$

- ϕ_{1}
$M\left(\phi_{1}, \begin{array}{|c|cccccccc}\hline \text { Models } & a b c & \neg a b c & a \neg b c & a b \neg c & \neg a \neg b c & \neg a b \neg c & a \neg b \neg c & \neg a \neg b \neg c \\ \hline \varphi_{1} & 0 & 0 & 0 & 0 & 0 & 0.2 & 0 & 0 \\ \varphi_{2} & 0 & 0.5 & 0.5 & 0.5 & 0.5 & 0.8 & 0.5 & 0.7 \\ \hline \delta_{1}\left(\varphi_{1}\right) & 0 & 0.2 & 0 & 0.2 & 0 & 0.2 & 0 & 0.2 \\ \varepsilon_{1}\left(\varphi_{2}\right) & 0 & 0 & 0 & 0 & 0.5 & 0.5 & 0.5 & 0.5 \\ \delta_{2}\left(\varphi_{1}\right) & 0.2 & 0.2 & 0 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ \varepsilon_{2}\left(\varphi_{2}\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.5 \\ \hline M\left(\varphi_{1}, \varphi_{2}\right) & 0 & 0 & 0 & 0 & 0 & 0.2 & 0 & 0.2 \\ \hline\end{array}\right.$

Other logics

Modal logics
Accessibility relation Structuring element
\square ε
\diamond δ

Description logics
δ and ε as binary predicates.

Information and bipolarity

■ Positive information vs. negative information.

- Consistency: no overlap.
- No duality.

■ (Links with interval-valued fuzzy sets and intuitionistic fuzzy sets.)

- Recent work (Dubois, Prade, et al.): fuzzy and possibilistic formalism.
- Important in the spatial domain:
- image thresholding and edge detection (Chaira et al., Couto et al., Vlachos et al.)
- spatial representations for classification (Charlier et al., Malek)
- mathematical morphology (Bloch, Melange et al.)

Frameworks and examples

- Sets P and N with $P \cap N=\emptyset$.

■ Fuzzy sets μ and ν in \mathcal{S}, with $\forall x \in \mathcal{S}, \mu(x)+\nu(x) \leq 1$ (e.g. degrees of preferences or constraints).
■ Logical formulas φ and ψ with $\varphi \wedge \psi \models \perp$, and the models $\llbracket \varphi \rrbracket$ and $\llbracket \psi \rrbracket$ are sets or fuzzy sets.
■ Utility functions, capacities, possibility distributions...

Agent 1:
■ prefers to travel in Spain: $\varphi_{1}=$ Spain,
$■$ has to stay in Europe: $\psi_{1}=\neg($ Belgium \vee France \vee Spain \vee Portugal \vee Italy \vee Germany \vee TheNetherlands $\vee \ldots\}$.
Agent 2:
■ prefers to travel in Morocco: $\varphi_{2}=$ Morocco,
■ has to stay in a Mediterranean country:

$$
\psi_{2}=\neg(\text { Morocco } \vee \text { Spain } \vee \text { Italy } \vee \text { Portugal } \vee \ldots)
$$

\Rightarrow conflict!

- Extending preferences using dilation:

$$
\begin{aligned}
& \delta\left(\varphi_{1}\right)=\text { Spain } \vee \text { France } \vee \text { Portugal } \vee \text { Morocco } \\
& \delta\left(\varphi_{2}\right)=\text { Morocco } \vee \text { Algeria } \vee \text { Portugal } \vee \text { Spain }
\end{aligned}
$$

■ Introducing the constraints in order to satisfy the consistency requirements:

$$
\begin{gathered}
\varphi_{1}^{\prime}=\delta\left(\varphi_{1}\right) \wedge \neg \psi_{1}=\text { Spain } \vee \text { France } \vee \text { Portugal } \\
\varphi_{2}^{\prime}=\delta\left(\varphi_{2}\right) \wedge \neg \psi_{2}=\delta\left(\varphi_{2}\right)
\end{gathered}
$$

■ Fusion of preferences and constraints: conjunction of the preferences and disjunction of the constraints

$$
(\varphi, \psi)=\left(\varphi_{1}^{\prime} \wedge \varphi_{2}^{\prime}, \psi_{1} \vee \psi_{2}\right)=(\text { Spain } \vee \text { Portugal, } \neg(\bigvee \text { Medit. and Eur. countries })
$$

\Rightarrow Solution for travelling in the set of models of these formulas.

Bipolar fuzzy sets

Modeling bipolarity and imprecision
Definition:

$$
\begin{aligned}
\mathcal{L}= & \left\{(a, b) \in[0,1]^{2} \mid a+b \leq 1\right\} \\
& (\mu, \nu): \mathcal{S} \rightarrow[0,1] \times[0,1] \\
& \forall x \in \mathcal{S}, \mu(x)+\nu(x) \leq 1
\end{aligned}
$$

- μ : membership function (positive information)
- ν : non-membership function (negative information)

■ do not necessarily come from the same source of information (not the same semantics as interval-valued fuzzy sets)

Complete lattice structure

Symmetrical role of positive and negative information:

- Pareto partial ordering: $\left(a_{1}, b_{1}\right) \preceq_{p}\left(a_{2}, b_{2}\right)$ iff $a_{1} \leq a_{2}$ and $b_{1} \geq b_{2}$
- $\left(\mathcal{L}, \preceq_{P}\right)$ and $\left(\mathcal{B}, \preceq_{P}\right)=$ complete lattices

■ Standard negation: (ν, μ)
Giving priority to the negative information:
■ Lexicographic ordering $\preceq_{\text {lex }}$ (total ordering)
■ $\left(\mathcal{L}, \preceq_{\text {lex }}\right)$ and $\left(\mathcal{B}, \preceq_{\text {lex }}\right)=$ complete lattices

- negation: reversing the order
- Supremum ($\bigvee_{P}, \bigvee_{\text {lex }}$), infimum ($\bigwedge_{P}, \bigwedge_{\text {lex }}$)

■ Smallest element: $(0,1)$, largest element: $(1,0)$

Bipolar fuzzy mathematical morphology

Algebraic definitions: dilation $=$ commutes with the supremum, erosion $=$ commutes with the infinum.
Using structuring elements:
■ I: bipolar implication, C bipolar t-norm.
■ Erosion as a bipolar degree of inclusion:

$$
\varepsilon_{\left(\mu_{B}, \nu_{B}\right)}((\mu, \nu))(x)=\bigwedge_{y \in \mathcal{S}} I\left(\left(\mu_{B}(y-x), \nu_{B}(y-x)\right),(\mu(y), \nu(y))\right)
$$

- Dilation as a bipolar degree of intersection:

$$
\delta_{\left(\mu_{B}, \nu_{B}\right)}((\mu, \nu))(x)=\bigvee_{y \in \mathcal{S}} C\left(\left(\mu_{B}(x-y), \nu_{B}(x-y)\right),(\mu(y), \nu(y))\right)
$$

Illustrative example

Positive information - Negative information

Bipolar fuzzy structuring element Bipolar fuzzy set

Dilation using lexicographic min

Dilation using Pareto min

FCA: Adjunction and Galois connection

Equivalent concepts by reversing the order on one space.

$$
\begin{gathered}
\delta: A \rightarrow B, \varepsilon: B \rightarrow A \\
\delta(a) \leq_{B} b \Leftrightarrow a \leq_{A} \varepsilon(b)
\end{gathered}
$$

$$
\begin{gathered}
\alpha: B \rightarrow A, \beta: A \rightarrow B \\
a \leq_{A} \alpha(b) \Leftrightarrow b \leq_{B} \beta(a) \\
\left(\Leftrightarrow \beta(a) \leq_{B}^{\prime} b \text { with } \leq_{B}^{\prime} \equiv \geq_{B}\right)
\end{gathered}
$$

increasing operators

$$
\varepsilon \delta \varepsilon=\varepsilon, \delta \varepsilon \delta=\delta
$$

$\varepsilon \delta=$ closing, $\delta \varepsilon=$ opening

decreasing operators

$$
\alpha \beta \alpha=\alpha, \beta \alpha \beta=\beta
$$

$\alpha \beta$ and $\beta \alpha=$ closings $\operatorname{Inv}(\alpha \beta)=\alpha(B), \operatorname{Inv}(\beta \alpha)=\beta(A)$ $\alpha(B)$ and $\beta(A)=$ Moore families
$\delta(A)=$ dual Moore family
$\delta=$ dilation: $\delta\left(\vee_{A} a_{i}\right)=\vee_{B}\left(\delta\left(a_{i}\right)\right)$
$\alpha\left(\vee_{B} b_{i}\right)=\wedge_{A} \alpha\left(b_{i}\right)$
$\varepsilon=$ erosion: $\varepsilon\left(\wedge_{B} b_{i}\right)=\wedge_{A}\left(\varepsilon\left(b_{i}\right)\right)$

Fuzzy extension

Belohlavek (1999): fuzzy Galois connection

$$
A^{\uparrow}(y)=\bigwedge_{x}(A(x) \rightarrow I(x, y)), \quad B^{\downarrow}(x)=\bigwedge_{y}(B(y) \rightarrow I(x, y))
$$

\Rightarrow equivalent to a fuzzy anti-dilation

Dubois et al. (2007): possibilistic view

$$
\begin{gathered}
X^{\Pi}=\{y \mid \exists x \in X, I(x, y)\}, \quad X^{N}=\{y \mid \forall x, I(x, y) \Rightarrow x \in X\} \\
X^{\Delta}=\{y \mid \forall x \in X, I(x, y)\}, \quad X^{\nabla}=\{y \mid \exists x \in \bar{X}, \neg I(x, y)\}
\end{gathered}
$$

Fuzzy spatial relations and spatial reasoning

Example: brain imaging

- Linguistic descriptions
- direction: the thalamus is below the lateral ventricle
- distance: the lateral ventricles are far from the brain surface
- adjacency: the thalamus is adjacent to the third ventricle
- symmetry: homologous structures in both hemispheres
- Fuzzy representations

■ Attributed hierarchical graph (Colliot et al.) and ontologies (Hudelot et al.)

\longrightarrow hierarchy relation

Learning spatial relations

Khotanlou et al., Atif et al.

Optimizing the segmentation path

Reasoning in the graph and fusion with saliency information (Fouquier et al.)

Global approach using a constraint network

Nempont et al.

Final segmentation

Mathematical Morphology

Remote sensing image understanding

■ High resolution satellite image understanding.

- Collaboration with the CNES (PhD of Carolina Vanegas).

■ Contributions:

- modeling new spatial relations (surround, parallel, across, aligned...),
- conceptual graphs integrating these relations,
- new fuzzy CSP to deal with fuzzy complex relations and groups of objects,
- understanding guided by conceptual graphs using FCSP.

A	B	$\mu_{\\| N}(A, B)$	$\mu \\| N(B, A)$
b2	S4	0.94	0.55
b3	S5	0.97	0.87
b4	S5	0.89	0.66
S2	S4	0.97	0.97
S4	S1	0.87	0.94
S5	S3	0.90	0.95
S3	S1	0.78	0.43
b1	S4	0.90	0.69

A	B	$\mu_{\\| N}(A, B)$	$\mu_{\\| N^{(B, A)}}$
B1	D1	0.94	0.94
B2	D1	0.95	0.95
B1	B2	0.85	0.87

(a)

(c)

(a) Example image.

(c) Concept hierarchy T_{C} in the context of harbors.

(b) Labeled image: The blue regions represent the sea, the red and orange represent ships or boats and the yellow regions represent the docks.

(d) Conceptual graph representing the spatial organization of some elements of Figure 5.8(b).

Using modal logics

Examples (with $\square \equiv \varepsilon$ and $\diamond \equiv \delta$):

- tangential part: $\varphi \rightarrow \psi$ and $\diamond \varphi \wedge \neg \psi$ consistent, or $\varphi \rightarrow \psi$ and $\varphi \wedge \neg \square \psi$ consistent

■ non tangential part: $\diamond \varphi \rightarrow \psi$, or, $\varphi \rightarrow \square \psi$
■ external connection:
$\varphi \wedge \psi$ inconsistent and $\diamond \varphi \wedge \psi$ consistent (or $\varphi \wedge \diamond \psi$ consistent)
■ tangential proper part: tangential part and $\neg \varphi \wedge \psi$ consistent $(T P P(X, Y)=P(X, Y) \wedge \neg P(Y, X) \wedge \neg P(\delta(X), Y))$

Bipolarity and spatial reasoning

Directional information: the RPU is exterior (left on the image) of the union of RLV and RTH (positive information) and cannot be interior (negative information).
Distance information: the RPU is quite close to the union of RLV and RTH (positive information) and cannot be very far (negative information).
$■$ Semantics of left (resp. right): fuzzy structuring element ν_{L} (resp. ν_{R}).

$$
\left(\mu_{\text {dir }}, \nu_{\text {dir }}\right)=\left(\delta_{\nu_{L}}(\mathrm{RLV} \cup \mathrm{RTH}), \delta_{\nu_{R}}(\mathrm{RLV} \cup \mathrm{RTH})\right)
$$

■ Semantics of close (resp. far): $\nu_{C}\left(\right.$ resp. $\left.\nu_{F}\right)$.

$$
\left(\mu_{\text {dist }}, \nu_{\text {dist }}\right)=\left(\delta_{\nu_{C}}(\mathrm{RLV} \cup \mathrm{RTH}), 1-\delta_{1-\nu_{F}}(\mathrm{RLV} \cup \mathrm{RTH})\right)
$$

- Conjunctive fusion:

$$
\left(\mu_{\text {Fusion }}, \nu_{\text {Fusion }}\right)=\left(\min \left(\mu_{\text {dir }}, \mu_{\text {dist }}\right), \max \left(\nu_{\text {dir }}, \nu_{\text {dist }}\right)\right)
$$

Pathological hemisphere: deformations induced by the tumor.
■ Semantics of the induced variability: ($\mu_{\mathrm{var}}, \nu_{\mathrm{var}}$)

- Larger region, including the correct region:

$$
\left(\mu_{\text {dist }}^{\prime}, \nu_{\text {dist }}^{\prime}\right)=\delta_{\left(\mu_{\text {var },}, \nu_{\text {var }}\right.}\left(\mu_{\text {dist }}, \nu_{\text {dist }}\right)
$$

Conclusion

■ Algebraic framework of mathematical morphology.

- Strong properties.
- Local and structural knowledge representation and reasoning.

■ Applies in different frameworks (logics, fuzzy sets, bipolarity, FCA...).

- Towards spatial reasoning.

■ Towards preference modeling and decision making.

- Extension to spatio-temporal reasoning?

