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ABSTRACT
We study a variant of the real quantifier elimination problem
(QE). The variant problem requires the input to satisfy a
certain extra condition, and allows the ouput to be almost
equivalent to the input. In a sense, we are strengthening
the pre-condition and weakening the post-condition of the
standard QE problem.

The motivation/rationale for studying such a variant QE
problem is that many quantified formulas arising in applica-
tions do satisfy the extra conditions. Furthermore, in most
applications, it is sufficient that the ouput formula is almost
equivalent to the input formula. Thus, we propose to solve
a variant of the initial quantifier elimination problem.

We present an algorithm (VQE) , that exploits the strength-
ened pre-condition and the weakened post-condition. The
main idea underlying the algorithm is to substitute the re-
peated projection step of CAD by a single projection without
carrying out a parametric existential decision over the reals.

We find that the algorithm VQE can tackle important and
challenging problems, such as numerical stability analysis of
the widely-used MacCormack’s scheme. The problem has
been practically out of reach for standard QE algorithms in
spite of many attempts to tackle it. However the current
implementation of VQE can solve it in about 1 day.

1. INTRODUCTION
Real quantifier elimination (QE) is a fundamental prob-

lem in mathematical logic and computational real algebraic
geometry. Furthermore, it naturally arises in many challeng-
ing problems in diverse application areas. Thus, there have
been extensive research on developing mathematical theo-
ries, efficient algorithms, software systems, and applications
(to cite only a few: [32, 7, 12, 20, 2, 1, 5, 16, 17, 18, 29, 31]).

In this paper, we study a variant of the QE problem,
obtained by strengthening the pre-condition and weakening
the post-condition of the standard QE problem. Roughly
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speaking, we strengthen the pre-condition by requiring that
the input quantified formula has a certain logical (boolean
and quantification) structure and that some polynomials sat-
isfy certain geometric conditions (such as equidimentional-
ity, smoothness, compactness, etc). We weaken the post-
condition by allowing that the input and the output are “al-
most” equivalent, unlike the standard QE where the input
and the output are required to be exactly equivalent.

The motivation/rationale for studying a variant QE prob-
lem is that currently many important and challenging ap-
plication problems are still practically out of reach for stan-
dard QE algorithms/software systems, in spite of tremen-
dous progress made in their efficiency during last 30 years.
We choose to strengthen the pre-condition because many im-
portant quantified formulas arising in real-life applications
(for example, numerical stability analysis, control system
design, etc) naturally satisfy the extra conditions. Further-
more, in most real-life applications, it is sufficient that the
ouput formula is almost equivalent to the input formula.

We present an algorithm (VQE), that exploits the strength-
ened pre-condition and the weakened post-condition. The
main idea underlying the algorithm is to substitute the re-
peated projection step of CAD by a single projection without
carrying out a parametric existential decision over the reals.

We find that the algorithm VQE can tackle challenging
problems such as stability analysis of the renowned Mac-
Cormack’s scheme. The problem has been practically out
of reach for standard QE algorithms implemented in Math-
ematica, RedLog or QEPCAD. However the current im-
plementation of the algorithm VQE solves it in about 1 day.

Structure of the paper: Section 2 provides a precise
statement of the variant QE problem. Section 3 presents an
algorithm VQE for the problem. Section 4 gives a proof of
the algorithm’s correctness. Section 5 describes a case study
where the algorithm is successfully applied to a challenging
problem arising from numerical stability anaysis.



2. PROBLEM
In this section, we state the variant quantifier elimination

problem precisely and illustrate it by a simple (toy) example.
As stated in the abstract, the variant QE problem strength-
ens the pre-condition and weakens the post-condition of the
standard QE problem. First, we introduce a notion that will
be used in strengthening the pre-condition.

Definition 1 (Natural system). We say that a poly-
nomial system G = {g1, . . . , gk} ⊂ Q[X] is a natural system
iff the following two conditions are met

H1 : 〈G〉 is radical and the complex variety defined by G
is equidimensional, smooth, and of co-dimension k

H2 : the real variety defined by G in the X-space is com-
pact.

We chose the above two conditions because they are natu-
rally satisfied by many QE problems arising from applica-
tions, especially in stability analysis. Next, we introduce a
notion that will be used in weakening the post-condition.

Definition 2 (Almost equivalent). We say that two
formulas Ψ and Φ are almost equivalent iff the closure of the
interior of the solution set of Ψ is the same as the closure
of the interior of the solution set of Φ.

Considering the closure of the interior of a semi-algebraic
set is classically referred to as the regular closure of the con-
sidered semi-algebraic set (see [30]).

Now we are ready to state the problem.

Problem: Variant Quantifier Elimination (VQE)

Input: Ψ, a quantified formula of the form

∀X G(X) = 0 =⇒ f(X,Y) ≤ 0

where X and Y are lists of variables, f ∈ Q[X,Y],
and G ⊂ Q[X] is a natural system.

Output: Φ, a quantifier-free formula almost equivalent to Ψ.

Example: We will illustrate the problem by a simple (toy)
example. A non-trivial example will be given later in the
application section. We claim that the input and the output
in the following example satisfy the conditions in the above
problem statement.

Input: Ψ, the quantified formula

∀X G(X) = 0 =⇒ f(X,Y) ≤ 0

where

X = {X1, X2}
Y = {Y }
G = {X2

1 +X2
2 − 1}

f = X2
1Y − (X2 − 1)2

Output: Φ, the quantifier-free formula

Y < 0

To check the claim, let us take a look at the surfaces defined
by the vanishing of G and f as shown in Figure 1. The
cylinder (in red) is the vanishing set of G and the Whitney
umbrella (in blue) is that of f .

Figure 1: Simple example

It is immediate that 〈G〉 is radical, that the complex va-
riety defined by G is equidimensional, smooth, and of co-
dimension 1, and that the real variety defined by G in the
{X1, X2}-space is compact. Thus G is a natural system, and
the input satisfies the condition in the problem statement.

It is also immediate from the drawings that the solution
set of Ψ is given by Y ≤ 0. Thus, the closure of the interior
of the solution set of Ψ is {Y | Y ≤ 0}. Likewise the closure
of the interior of the solution set of Φ is {Y | Y ≤ 0}.
Therefore Ψ and Φ are almost equivalent. Hence the ouput
satisfies the condition in the problem statement.

3. ALGORITHM
In this section, we present an algorithm for the variant

quantifier elimination problem stated in the previous sec-
tion. We will also illustrate the algorithm by tracing it on
the same simple (toy) example used for illustrating the prob-
lem. We will use the notations introduced in the previous
section, such as Ψ,Φ,X,Y,G, f and k.

Algorithm: Φ ← VQE(Ψ)

1. J1 ← the jacobian of G ∪ {f} with respect to X

2. ∆1 ← the set of all minors of J1 of size k + 1

3. J ← the jacobian of G ∪ {f} with respect to X ∪Y

4. ∆← the set of all minors of J of size k + 1

5. G← a set of generators of 〈G ∪∆1〉 : 〈G ∪∆〉∞

6. E ← a set of generators of 〈G ∪ {f}〉 ∩Q[Y]

7. P ← the set of all squarefree parts of E

8. C ← SemiAlgebraicDescription(P )

9. Φ←
W
{C | (C, S) ∈ C and Ψ(S) is true}

Subalgorithms: Steps 1 and 7 can be carried out using
standard algorithms available in computer algebra systems.
Step 9 can be carried out by using any real decision algo-
rithms such as CAD method, critical point method, etc. For
the moment, the critical point method seems to be the best
practical choice.

In Step 8, the subalgorithm SemiAlgebraicDescription takes
as input a list of polynomials P in Q[Y] defining an algebraic
set V and outputs a set of couples

C = {(C1, S1) . . . , (CN , SN )}

such that Ci is a quantifier-free formula, Si is a sample
point of the semi-algebraic set defined by Ci and the closure



of each semi-algebraically connected component of Rp \ V
equals the closure of the semi-algebraic sets defined by some
of the Ci’s. It can be carried out by using open-CAD algo-
rithm. One can also use critical point methods [24, 11] and
roadmap algorithms [6, 3, 27] and their parameterized ver-
sions. For the moment, CAD seems to be the best practical
choice.

Example continued: We will illustrate the algorithm VQE
by tracing it on the simple (toy) example that we used for il-
lustrating the variant quantifier elimination problem. Recall
that

X = {X1, X2}
Y = {Y }
G = {X2

1 +X2
2 − 1}

f = X2
1Y − (X2 − 1)2

1. We compute the jacobian of G ∪ {f} with respect to
X, obtaining

J1 =

"
2X1 2X2

2X1Y −2X2 + 2

#
2. We compute the set of all the minors of J1 of size

1 + 1, obtaining

∆1 = {−4X1 (X2 − 1 +X2Y )}

3. We compute the jacobian of G ∪ {f} with respect to
X ∪Y, obtaining

J =

"
2X1 2X2 0

2X1Y −2X2 + 2 X1
2

#
4. We compute the set of all minors of J of size 1 + 1,

obtaining

∆ =
˘
−4X1 (X2 − 1 +X2Y ) , 2X1

3, 2X2X1
2¯

5. We compute a set of generators of 〈G∪∆1〉 : 〈G∪∆〉∞,
obtaining

G =
˘
X1

2 +X2
2 − 1, X2 − 1 +X2Y

¯
6. We compute a set of generators of 〈G∪ {f}〉 ∩Q[Y],

obtaining

E =
˘
Y 2¯

7. We compute a set of squarefree parts of E, obtaining

P = {Y }

8. We call SemiAlgebraicDescription(P ), obtaining

C = { [y < 0, −1] , [y > 0, +1] }

9. We compute
W
{C | (C, S) ∈ C and Ψ(S) is true},

obtaining

Φ ≡ y < 0

Comparison to CAD: It is instructive to observe how
CAD would handle the problem. Note that G = 0 can be
viewed as “equational constraint”. Hence we use the im-
proved version of CAD that utilizes equational constraints
[8, 18]. The first projection with respect to X2 produces the
polynomials:

{X1

`
−4Y +X1

2(Y + 1)2
´
, 4 (X1 − 1) (X1 + 1) }

which are the square-free part of the resultant of f and g
and the square-free part of the resultant of g and ∂g

∂X2
. The

second projection with respect to X1 produces the polyno-
mials

{Y, Y − 1, Y + 1 }

The lifting phase will eventually produce, using the projec-
tion polynomials and sample point checks, a quantifier-free
formula Y ≤ 0.

It is crucial note that the projection polynomials

Y − 1, Y + 1

are irrelevant to the quantifier elimination problem. They
induce useless cells, causing inefficiency. In comparision, the
VQE algorithm does not produce the irrelevant polynomials.

We will explain why this happens geometrically. See Fig-
ure 2 below. The CAD algorithm, among others, projects

Figure 2: Simple example continued

the intersection of the red cylinder (G) and the blue Whitney
umbrella (f), which is complicated. On the other hand, the
VQE algorithm projects the intersection of the green curve
(G in Step 5) and the blue Whitney umbrella (f), which is
much simpler.

This kind of advantage becomes much more pronounced
for larger problems, yielding significant improvement in com-
puting time. Indeed, on the one hand, the Bézout theorem
of [13, Prop. 2.3] shows that the degree of the variety defined
by G, which is computed at Step 5 (and therefore the de-
gree of the variety defined by E which is computed at Step
E) is bounded by Dp((p + 1)D)n−p where p = ]G, n = ]X,
and D bounds the degrees of f and the polynomials in G.
On the other hand, the set of the Y-projected polynomials
computed by CAD has a degree which is still polynomial in
D but doubly exponential in n.

4. CORRECTNESS
In this section, we prove the correctness of the algorithm.

Before plunging into the details, we provide a quick overview.
Algorithm VQE has substituted the recursive projection step
of CAD by the computation of the Zariski-closure of the pro-
jection of an algebraic set onto the Y’s space (Step 6). Thus,
we consider the projection π : (x1, . . . ,xn,y1, . . . ,yp) →
(y1, . . . ,yp). The algebraic variety defined by g1 = · · · =
gk = 0 in Cn+p is denoted by X . Denote by R a real closed
field containing R and by C the algebraic closure of R. Given
(e,y) ∈ Rp+1, we denote by Ve ⊂ Cn+p the real algebraic
set defined by f(X,Y) − e = g1(X) = · · · = gk(X) = 0.
Denote by S the semi-algebraic set defined by the input of
Algorithm VQE. We are looking at the points y ∈ Rp such



that there exists e > 0 such that π−1(y) ∩ Ve ∩ Rn+p is not
empty. To this end, we try to characterize the frontier of S .
Roughly speaking, we prove hereafter that the vanishing set
V associated to the polynomial system computed at Steps
6 and 7 of the algorithm contains the frontier of S . Then,
by studying the semi-algebraically connected components of
Rp \ V , one gets a description of the closure of int(S ). To
this end, we prove that V is the projection of the critical
points of the restriction π to Ve when “e→ 0”.

Now we elaborate the technical details of the proof. Be-
low, we introduce formally the notions of critical points and
critical values and give some results that are useful for the
proof of the algorithm. Assumption H1 here is technical
but fundamental: it allows us to generate polynomial sys-
tems defining critical points of the restriction of π to Ve for
some “generic” e. Then, we use assumption H2 to study the
properties of the images of the semi-algebraically connected
components of Ve by π for some generic e. Before that, we
introduce some notions about infinitesimals, which will al-
low us to study formally the limits of the aforementionned
critical points when e→ 0.

Preliminaries: Let K be a field containing Q. We con-
sider in the sequel an infinitesimal ε and the Puiseux series
field K〈ε〉. If z =

P
i≥i0

aiε
i/q ∈ K〈ε〉 for q ∈ Q? and i0 ∈ Z,

z is bounded if and only if i0 ≥ 0. Note that, if K = R, this
implies that there exists η ∈ R such that z < η.

Given z = (z1, . . . , zn) ∈ K〈ε〉n we say that z is bounded if
for 1 ≤ i ≤ n, zi is bounded by an element of K. Given q ∈
Q?, i0 ∈ Z and a bounded element z =

P
i≥i0

aiε
i/q ∈ K〈ε〉

we denote by limε→0 z, the real a0. Given a bounded element
z ∈ K〈ε〉n, we denote by limε→0 z the point (limε→0(z1), . . . ,
limε→0(zn)) ∈ Kn.

Given a subset A ⊂ K〈ε〉n, we denote by limε→0(A) the
set {limε→0(z) | z ∈ A and z is bounded}. Given a semi-
algebraic (resp. constructible) set A ⊂ Rn (resp. A ⊂
Cn) defined by a quantifier-free formula Φ with polyno-
mials in R[X1, . . . , Xn], we denote by Ext(A,R〈ε〉n) (resp.
Ext(A,C〈ε〉n)) the set of solutions of Φ in R〈ε〉n (resp. C〈ε〉n).

Denote by K̄ the algebraic closure of K. Let V ⊂ K̄n be an
algebraic variety and ϕ be a polynomial mapping V → K̄m.
The set of regular points of V is denoted by reg(V ). Given
x ∈ V , the tangent space to V at x is denoted by TxV . The
differential of ϕ at x is denoted by dxϕ.

A point x ∈ reg(V ) is a critical point of ϕ if dxϕ(TxV ) 6=
K̄m; we denote by crit(ϕ, V ) the set of all critical points
of ϕ. A critical value of ϕ is the image by ϕ of a criti-
cal point. We denote by D(ϕ, V ) the set of critical values
of ϕ. A regular value is a point of K̄m which is a not a
critical value. The algebraic version of Sard’s theorem (see
[28, Chapter 6, Theorem 2, pp 141]) asserts that D(ϕ, V )
is enclosed in a proper Zariski-closed subset of K̄m. Given
a polynomial family H = (h1, . . . , hr) and a set of vari-
ables L = [`1, . . . , `s], jac(H,L) denotes the jacobian matrix

( ∂hi
∂`j

)(i,j)∈{1,...,r}×{1,...,s}

Lemma 1. Let {h1, . . . , hr, h} ⊂ K[X1, . . . , Xn] such that
the ideal 〈h1, . . . , hr〉 is equidimensional, radical and that its
associated algebraic variety V is smooth of co-dimension r.

There exists a non-empty Zariski-open subset E ⊂ K̄ such
that for all e ∈ E , the algebraic variety Ve defined by h1 =
· · · = hr = h−e = 0 is smooth and the ideal 〈h1, . . . , hr, h−
e〉 ⊂ K[X,Y] is radical and equidimensional. Moreover,
either Ve is empty or it has co-dimension r + 1.

Proof. Consider the polynomial mapping h̃ : x ∈ V →
h(x). Suppose that dim(f̃(V )) = 1. From the algebraic
version of Sard’s Theorem [28, Chapter 6, Theorem 2, pp

141], the set E of critical values of h̃ is Zariski-closed and for
all e ∈ K̄\E, the intersection Ve of V with the hypersurface

defined by h− e = 0 is smooth and dzh̃ is surjective for all
z ∈ Ve. Since 〈h1, . . . , hr〉 is radical and equidimensional of
co-dimension r, for all z ∈ Ve ⊂ V , jacz(h1, . . . , hr) has rank

r. Since dz f̃ is surjective, jacz(h1, . . . , hr, h) has rank r+ 1.
Thus, from the implicit function theorem, codimz(Ve) =
r + 1. Thus, Ve is smooth and equidimensional. Moreover,
from [9, Theorem 2.1], 〈h1, . . . , hr, h− e〉 is radical.

Suppose now that dim(h̃(V )) = 0. This implies that there
exists a Zariski-closed subset E ( K̄ such that for all e ∈
K̄ \ E, Ve is empty.

Lemma 2. Let K be a field containing Q and {h1, . . . ,
hr} ⊂ K[X1, . . . , Xn], V be the algebraic variety defined by
h1 = · · · = hr = 0 and ϕ : x ∈ V → (ϕ1(x), . . . , ϕs(x)) be
a polynomial mapping. Suppose that 〈h1, . . . , hr〉 is radical
and equidimensional and that V is smooth of co-dimension r
and that s ≤ n−r. Let ∆ be the set of (r+s, r+s)-minors of
jac(h1, . . . , hr, ϕ1, . . . , ϕs). Then crit(ϕ, V ) is the algebraic
variety associated to 〈h1, . . . , hr〉+ 〈∆〉.

Exploiting compactness: Our goal now is to relate the
frontier of S with π(limε→0(crit(Vε))). To this end, we
study the images by π of the semi-algebraically connected
components of Ve ∩ Rn (for e “generic enough”).

Lemma 3. Let e ∈ R. Suppose that the assumptions H1

and H2 are satisfied and that Ve is smooth and equidimen-
sional. Let Ce be a semi-algebraically connected component
of Ve ∩ Rn+p and Z be a semi-algebraically connected com-
ponent of Rp \ D(π,Ve). Then, Z ∩ π(Ce) 6= 0 implies that
Z ⊂ π(Ce).

Proof. We claim that the frontier of π(Ce) is contained
in D(π,Ve). Let y ∈ Rp be a point of the frontier of π(Ce).
Since the real algebraic set defined by g1 = · · · = gk = 0 in
Rn is compact (Assumption H1), there exists a closed ball
B(y, r) of center y and radius r such that π−1(B(y, r))∩Ce

is compact since Ce ⊂ (Ve∩Rn+p) ⊂ (X ∩Rn+p). Consider
a sequence of points (y`)`∈N ⊂ B(y, r)∩π(Ce) converging to
y. Then, there exists a sequence of points (x`)`∈N ⊂ Rn such
that (x`,y`) ∈ π−1(B(y, r)) ∩ Ce. Since π−1(B(y, r)) ∩ Ce

is compact, once can extract a converging subsequence from
(x`,y`). The projection of the limit of this subsequence is
y since y` tends to y. Thus, y ∈ π(Ce) which means that
there exists x ∈ Rn such that (x,y) ∈ Ce. This implies that
d(x,y)π is not surjective, which means that y ∈ D(π,Ve).
Our claim follows.

Consider now a semi-algebraically connected component
Z of Rp \ D(π,Ve) such that Z ∩ Ce 6= ∅. Now, we prove
that this implies Z ⊂ π(Ce).

Since Z ∩Ce 6= ∅, there exists z ∈ Z ∩π(Ce). Suppose, by
contradiction, that there exists z′ ∈ Z such that z′ /∈ π(Ce).
Since Z ⊂ Rp is semi-algebraically connected, there exists
a semi-algebraic continuous path γ : t ∈ [0, 1] → γ(t) ⊂
Z such that γ(0) = z and γ(1) = z′. Since z ∈ π(Ce),
z′ /∈ π(Ce) and γ is continuous, there exists ϑ ∈ [0, 1] such
that γ(ϑ) ∈ Z belongs to the boundary of π(Ce). This
implies that γ(ϑ) ∈ D(π,Ve)∩Z which contradicts the fact
that Z is a semi-algebraically connected component of Rp \
D(π,Ve).



We denote by S ′ the complementary of S in Rp.

Lemma 4. Suppose that the assumptions H1 and H2 are
satisfied. Let S′ be a semi-algebraically connected compo-
nent of S ′. Given e ∈ R, denote by Ze a semi-algebraically
connected component of Rp \ D(π,Ve). Then, there exists
e0 ∈]0,+∞[ such that, for all e ∈]0, e0[, Ze ∩S′ 6= ∅ implies
Ze ⊂ S′.

Proof. Suppose that there exists a semi-algebraically con-
nected component C of X ∩Rn+p such that for all (x,y) ∈
C, f(x,y) > 0. Since C is a semi-algebraically connected
component of the real real algebraic set defined by g1 =
· · · = gk = 0 and since {g1, . . . , gk} ⊂ Q[X], π(C) = Rp.
This implies that S ′ is semi-algebraically connected and
equalled to Rp. Since, from the algebraic Sard’s Theorem,
for all e > 0, D(π,Ve) is contained in a strict Zariski-closed
subset of Rp (see Lemma 1), each semi-algebraically con-
nected component of its complementary in Rp is non-empty
and contained in S ′.

Suppose now that each semi-algebraically connected com-
ponent of X ∩ Rn+p, contains a point at which f is not
positive. Consider y′ ∈ S′. Then, there exists x′ ∈ Rn

such that f(x′,y′) > 0. Consider the connected component
C of X ∩ Rn+p containing (x′,y′) and let (x,y) ∈ C such
that f(x,y) ≤ 0. Since C is semi-algebraically connected,
there exists a semi-algebraic continuous path γ : [0, 1] → C
such that γ(0) = (x′,y′) and γ(1) = (x,y). Note that
f(γ(0)) > 0 and f(γ(1)) ≤ 0.

Thus, the set A = {t ∈ [0, 1] | f(γ(t)) > 0} is semi-
algebraic and non-empty. Denote byA0 the semi-algebraical-
ly connected component of A containing 0. Since f and γ
are continuous and semi-algebraic, f ◦ γ : [0, 1] → R is con-
tinuous and semi-algebraic. Therefore, A0 is an open semi-
algebraically connected interval which is bounded since it is
contained in [0, 1]. Thus, t0 = supt∈A0

t lies in [0, 1] and
t0 /∈ A0. By continuity of f ◦ γ, f(γ(t0)) = 0 and choosing
e0 = supt∈A0

f(γ(t)), the intermediate value theorem im-
plies that for all 0 < e < e0, there exists te ∈ A0 such that
f(γ(te)) = e and γ(t) ∈ C. Note also that for all t ∈ A0,
π(γ(t)) ∈ S′ (since f(γ(t)) > 0 for all t ∈ A0) and that
{π(γ(t)) | t ∈ A0} is semi-algebraically connected.

For all 0 < e < e0 and te ∈ A0 such that f(γ(te)) = e,
denote by Ce the semi-algebraically connected component
of Ve ∩ Rn+p containing γ(te). Suppose that π(Ce) ⊂ S′.

Then, applying Lemma 1 with {h1, . . . , hk} = {g1, . . . , gk}
and h = f , there exists a non-empty Zariski-open set E ⊂ R
such that for all e ∈ E , Ve is smooth and equidimensional.
Thus, for all e ∈]0, e0[∩E , there exists a semi-algebraically
connected component Ce of Ve∩Rn+p such that π(Ce) ⊂ S′
and Ve is smooth and equidimensional. Applying Lemma
3 implies that there exists a semi-algebraically connected
component Z of Rp \ D(π,Ve) such that Z ⊂ π(Ce). Since
π(Ce) ⊂ S′, the result follows.

We prove now that π(Ce) ⊂ S′. Since there exists te ∈ A0

such that Ce contains γ(te) and since {π(γ(t)) | t ∈ [0, te]} is
semi-algebraically connected, there exists a continuous semi-
algebraic path γ1 linking y′ = π(γ(0)) to π(γ(te)). Consider
now an arbitrary point (x′′,y′′) in Ce. Remark that this
implies that y′′ ∈ S ′ (since, by definition, f(x′′,y′′) = e >
0). Since Ce is semi-algebraically connected and since it
contains γ(te), there exists a continuous semi-algebraic path
γe linking γ(te) to (x′′,y′′). Denote by γ2 the continuous
semi-algebraic path π(γe). Note that γ2 links π(γ(te)) to y′′.

Now, remark that γ1∪γ2 is a continuous semi-algebraic path
linking y′ to y′′. Since S′ is a semi-algebraically connected
component of S ′, y′ ∈ S′, and y′′ ∈ S ′, this implies that
y′′ ∈ S′. Our claim follows.

Geometric results: The result below allows us to char-
acterize the frontier of S ′ (and hence the one of S ).

Lemma 5. Suppose that the assumptions H1 and H2 are
satisfied. Let S′ be a semi-algebraically connected component
of S ′. Denote by fr(S ′) its frontier (for the euclidean topol-
ogy). Then fr(S ′) is contained in π(limε→0(crit(π,Vε))).

Proof. Let S′ be a semi-algebraically connected compo-
nent of S ′ and y be a point in fr(S′). We first prove that
y ∈ limε→0(D(π,Vε)).

In the sequel, given r > 0, B(y, r) ⊂ Rp denotes the ball
of Rp of center y and radius r. From the Transfer Principle,
proving that y ∈ limε→0(D(π,Vε)) is equivalent to prove
that for all r > 0, there exists e0 > 0 such that for all
e ∈]0, e0[, B(y, r) ∩D(π,Ve) 6= ∅.

Suppose on the contrary that there exists r0 > 0 such
that for all e0 > 0 there exists e ∈]0, e0[ such that B(y, r0)∩
D(π,Ve) = ∅. This implies that there exists a semi-algebraical-
ly connected component Ze of Rp\D(π,Ve) such thatB(y, r0)
⊂ Ze. Since y belongs to the frontier of S′, B(y, r0)∩S′ 6= ∅
which implies that Ze ∩ S′ 6= ∅. From Lemma 4, this im-
plies that Ze ⊂ π(S′). One deduces that B(y, r0) ⊂ S′ since
B(y, r0) ⊂ Ze. This contradicts the fact that y belongs to
the frontier of S′.

Now, we prove that y ∈ π(limε→0(crit(π,Vε))). Since the
restriction of π to X is supposed to be proper, there exists
r0 > 0 such that B = π−1(B(y, r0)) ∩X is compact. Since
y ∈ limε→0(D(π,Vε)), there exists a semi-algebraically con-
nected component A of crit(π,Vε) ∩B such that y belongs
to limε→0 π(A). Since A is semi-algebraically connected and
bounded, [4, Proposition 12.43] implies that limε→0(A) ex-
ists and is semi-algebraically connected, closed and bounded.
Thus π(limε→0(A)) is closed (see [4, Theorem 3.20]) and
contains y since y ∈ limε→0(π(A)) (see [4, Lemma 3.21]).
Now, remark that A ⊂ crit(π,Vε) implies limε→0(A) ⊂
limε→0(crit(π,Vε)). Thus, y ∈ limε→0(π(A)) = π(limε→0

(A)) ⊂ π(limε→0(crit(π,Vε))).

The result below allows us to compute the Zariski-closure
of π(limε→0(crit(π,Vε))) without introducing explicitely in-
finitesimals in the computations. This is crucial for reaching
practical efficiency. A similar approach is developped in [22]
for grabbing sampling points in real singular hypersurfaces.

Lemma 6. Suppose that the assumption H1 is satisfied.
Given 1 ≤ i ≤ p, let ∆1 be the set of (k + 1, k + 1)-minors
of jac([g1, . . . , gk, f ], [X]) and ∆ be the set of (k + 1, k + 1)-
minors of jac([g1, . . . , gk, f ], [X,Y]). Denote by I the ideal
〈{g1, . . . , gk} ∪∆1〉 and by J the ideal 〈{g1, . . . , gk} ∪∆1〉 :
〈{g1, . . . , gk} ∪∆〉∞.
? the algebraic variety associated to (J + 〈f〉)∩Q[Y1, . . . , Yp]
equals the Zariski-closure of π(limε→0(crit(π,Vε))).
? the algebraic variety associated to (J + 〈f〉)∩Q[Y1, . . . , Yp]
has dimension less than p.

Proof. Proving that the algebraic variety associated to
J + 〈f〉 equals limε→0(crit(π,Vε)) is sufficient.

We first prove that the algebraic variety associated to
J + 〈f〉 is contained in limε→0(crit(π,Vε)). Consider an el-
ement z of the algebraic variety associated to J + 〈f〉 and



denote by Z the irreducible component of this variety con-
taining z. Given r > 0, denote by B(z, r) ⊂ Cn+p the
ball centered at z of radius r. We prove that for all r > 0,
Ext(Z∩B(z, r),C〈ε〉n+p) has a non-empty intersection with
crit(π,Vε) which implies that limε→0(crit(π,Vε)) contains
z. Since J = 〈{g1, . . . , gk} ∪ ∆1〉 : 〈{g1, . . . , gk} ∪ ∆〉∞,
Z contains points such jac([g1, . . . , gk, f ], [X,Y]) has maxi-
mal rank. Denote by S the algebraic variety associated to
〈{g1, . . . , gk} ∪ ∆〉. Then, Z \ S is not empty. Moreover,
{t ∈ C | ∃z′ ∈ Z, f(z′) = t} has dimension 1 which im-
plies that Z \ S can not have dimension 0. Thus, for all
r > 0, B(z, r) ∩ Z \ S is positive dimensional and then,
it is connected. Remark now that f(z) = 0. Thus, from
the intermediate value theorem, there exists z′ ∈ Ext((Z \
S) ∩B(y, r),C〈ε〉n+p) such that f(z′) = ε. From Lemma 2
applied with {h1, . . . , hr} = {g1, . . . , gk, f − ε} and ϕ = p,
z′ ∈ crit(π,Vε).

Now, we prove that limε→0(crit(π,Vε)) is contained in the
intersection of the algebraic variety associated to J and the
hypersurface defined by f = 0.

Let z ∈ limε→0(crit(π,Vε)). By continuity of f , this im-
plies that that f(z) = 0. Thus, it remains to prove that
z belongs to VJ . Since z ∈ limε→0(crit(π,Vε)), from the
Transfer Principle, for all r > 0, there exists an open set
U ∈ C\{0} whose closure contains 0 such that for all e ∈ U ,
B(z, r) has a non-empty intersection with crit(π,Ve). Since
H1 is satisfied, one can apply Lemma 1. Then, there exists
a non-empty Zariski-open subset E of C such that for all
e ∈ E , Ve is smooth and equidimensional. Note also that
one can apply Lemma 2 in order to characterize the critical
points of Ve for e ∈ E .

Thus, without loss of generality, one can suppose that U ⊂
E . This implies that for all ze ∈ Ve, rank(jac([g1, . . . , gk, f ],
[X,Y])) is maximal which implies that one of the minors
in ∆ does not vanish. This implies that ze does not belong
to the algebraic variety associated to 〈{g1, . . . , gk} ∪∆〉. If
ze ∈ crit(π,Ve) then ze belongs to the algebraic variety
associated to I since the set of polynomials generating I
is contained in the one obtained applying Lemma 2 with
{h1, . . . , hr} = {g1, . . . , gk, f − e} and ϕ = π. Thus ze

belongs to VJ . Thus, for all r > 0, there exists an open set
U ∈ C\{0} whose closure contains 0 such that for all e ∈ U ,
Ve is contained in VJ and it has a non-empty intersection
with B(z, r). Since VJ , as an algebraic set, is closed, this
implies that z belongs to VJ .

Now, we prove that the algebraic variety associated to
(J + 〈f〉) ∩Q[Y1, . . . , Yp] has dimension less than p. To this
end, it is sufficient to prove that limε→0(D(π,Vε)) has di-
mension less than p since π(limε→0(crit(π,Vε))) ⊂ limε→0(D
(π,Vε)).

Denote by e a formal parameter and consider the ideal J+
〈f−e〉 ⊂ Q(e)[X,Y]. Given h ∈ Q(e)[X,Y] and e ∈ K where
K is a field containing Q, denote by ϕe(h) the polynomial
obtained by subsituting e by e in p. From Lemma 1, there
exists a non-empty Zariski open set E such that for all e ∈ E ,
ϕe(J + 〈f − e〉) ∩ Q[Y] is non-empty. This implies that
(J + 〈f − e〉) ∩ Q(e)[Y] is non-empty. Remark now that
ϕε(J + 〈f − e〉) = J + 〈f − ε〉. Thus (J + 〈f − ε〉)∩Q[Y] =
ϕε((J + 〈f − e〉)∩Q(e)[Y]) is non-empty. Consider now h ∈
(J+〈f−e〉)∩Q(e)[Y] and h̄ the primitive part of polynomial
obtained by multiplying h by the ppcm of its coefficients.
Remark now that ϕε(h̄) ∈ (J + 〈f − ε〉)Q(ε)[Y] since (J +
〈f − ε〉) ∩Q(ε)[Y] = ϕε((J + 〈f − e〉) ∩Q(e)[Y]). Note also

that ϕε(h̄) ∈ Q[ε][Y] since h̄ has no content and that the
set of solutions of ϕε(h̄) in C〈ε〉p contains D(π,Vε) since
ϕε(h̄) ∈ J + 〈f − ε〉. Denote by h0 ∈ Q[Y] the polynomial
ϕ0(ϕε(h̄)) and note that h0 6= 0 (since ϕε(h̄) ∈ Q[ε][Y] has
no content). The set of solutions of h0 has dimension less
than p since h0 6= 0 and it contains obviously limε→0({z ∈
C〈ε〉p | h0(z) = 0}. Since limε→0(D(π,Vε)) ⊂ limε→0({z ∈
C〈ε〉p | ϕε(h̄)(z) = 0}), we are done.

Proof of the algorithm: The following lemma states
that S is a closed semi-algebraic set.

Lemma 7. Suppose that H1 is satisfied. The semi-algeb-
raic set S is closed for the euclidean topology.

Proof. It is sufficient to prove that S ′ which is the
complementary of S is open for the euclidean topology.
Consider y ∈ S . Then, there exists x ∈ Rn such that
g1(x) = · · · = gk(x) = 0 and f(x,y) > 0. Then, there
exists an open neighbourhood U of (x,y) such that for all
z ∈ U , f(z) > 0. Since g1, . . . , gk is a reduced regular se-
quence defining a smooth algebraic variety X , from Lemma
2, z ∈ crit(π,X ) ⇒ rank(jacz(g1, . . . , gk), [X]) < k. This
contradicts the fact that X is smooth (since {g1, . . . , gk} ⊂
Q[X]) and g1, . . . , gk is a reduced regular sequence (assump-
tion H1). Hence, crit(π,X ) = ∅. In particular, (x,y) is
neither a critical point of the restriction of π to X nor a
singular point of X . Hence, the differential of π at (x,y) is
surjectve. This implies that π(U ∩X ) has dimension p, it
contains y and it is open since π is a projection.

Lemma 8. Let V ⊂ Rp be a real algebraic set contain-
ing the frontier of S , Z be a semi-algebraically connected
component Z of Rp \ V and p be an arbitrarily chosen point
in Z. The semi-algebraic set defined by g1 = · · · = gk =
0, f(X, p) > 0 is empty if and only if Z has a non-empty in-
tersection with the interior of a semi-algebraically connected
component of S .

Proof. Consider a semi-algebraically connected compo-
nent S of S such that int(S) 6= ∅. Then, there exists a semi-
algebraically connected component Z of Rp \ V such that
Z ∩ int(S) 6= ∅. Suppose that Z is not contained in S. This
means that there exists a couple of points (y,y′) ∈ Z × Z
such that y ∈ Z∩S and y′ /∈ S. Since Z is semi-algebraically
connected, there exists a continuous semi-algebraic path γ :
[0, 1] → Z such that γ(0) = y and γ(1) = y′. Consider
{t ∈ [0, 1] | γ(t) ∈ S}. This is a closed semi-algebraic
set since S is closed (see Lemma 7) and γ is continuous.
Moreover this semi-algebraic set does not equal [0, 1] (since
γ(1) /∈ S). Then, its frontier in [0, 1] is non-empty and
there exists t ∈ [0, 1] such that γ(t) belongs to the fron-
tier of S. This implies that there exists a semi-algebraically
connected component S′ of Rp \ S such that γ(t) belongs
to the frontier of S′. From Lemma 5, this implies that
y′ ∈ π(limε→0(crit(π,Vε))) ⊂ V which contradicts the fact
that γ(t) belongs to a semi-algebraically connected compo-
nent of Rp \ V . Thus, for all p ∈ Z, the semi-algebraic set
defined by g1 = · · · = gk = 0, f(X, p) > 0 is empty.

Conversely, consider a semi-algebraically connected com-
ponent Z of Rp \V such that Z ∩ int(S ) = ∅. If Z ∩S 6= ∅,
Z ∩S ⊂ S \ int(S ) and the points of Z ∩S lie in the fron-
tier of a semi-algebraically connected component of Rp \S .
From Lemma 5, these points lie in V . This implies that
these points do not belong to Z which is a contradiction.



Suppose now that Z ∩ S = ∅. Then, Z is contained in
Rp \S . Since the frontier of S ′ = Rp \S is contained in
V (see Lemma 5) and Z is a semi-algebraically connected
component of Rp \ V , Z is contained in a semi-algebraically
connected component of Rp \ S . This implies that for all
p ∈ Z, the semi-algebraic set defined by g1 = · · · = gk =
0, f(X, p) > 0 is non-empty. Our claim follows.

Theorem 9. Algorithm VQE is correct.

Proof. Denote by V the real algebraic set defined by P
which is computed at Step 7. From Lemma 6, V 6= Rp (since
the algebraic set defined by P has co-dimension greater than
or equalled to 1) and it contains π(limε→0(crit(π,Vε)))∩Rp.

Remark that any semi-algebraically connected component
S of S such that int(S) 6= ∅ has a non-empty intersection
with a semi-algebraically connected component of Rp \ V .

Let S be a semi-algebraically connected component of S ,
Z1, . . . , Zr be the set of semi-algebraically connected com-
ponents of Rp \ V such that Zi ∩ int(S) 6= ∅ (for 1 ≤ i ≤ r).
Denote by Z the union Z1 ∪ · · · ∪ Zr. Lemma 8 implies
Z ⊂ int(S). Moreover, since the frontier of int(S) is con-
tained in V and since Z is the union of semi-algebraically
connected components of Rp\V , int(S) and Z have the same
closure. From the specification of SemiAlgebraicDescription,
the union Ui of some semi-algebraic sets defined by its out-
put (computed at Step 8) equals the closure of Zi. This ends
the proof.

5. APPLICATION
Stability analysis is one of the most important tasks in

numerically solving differential equations. It is essentially a
quantifier elimination problem [16, 15]. In this section, we
consider the MacCormack’s scheme which is widely used in
solving hyperbolic partial differential equations, especially
in aerodynamics. The stability analysis of MacCormack’s
scheme can be reduced to eliminating quantifiers from

∀X G(X) = 0 =⇒ f(X,Y) ≤ 0

where X = {c1, s1, c2, s2} and Y = {a, b}, and where G =
{ c21 + s21 − 1, c22 + s22 − 1 } and f is a polynomial of degree
14 and 163 terms:
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Figure 3: h1 Figure 4: h2

Figure 5: h3 Figure 6: h4

All the previous attempts to algorithmically solve the QE
problem on a computer failed (aborted after several weeks
of computation). Some conservative estimate indicates that
it would take more than million years. After months’ effort,
an ad-hoc pen-paper solution has been found in [14]. How-
ever, it seems that the underlying idea cannot be turned
into an algorithm. We applied the VQE algorithm to this
problem. It is trivial to check that G is a natural system.
Thus, the VQE algorithm can be used for the problem. We
implemented the VQE on top of the following packages:

• FGb[10]: in C, by J.C. Faugère, for Gröbner bases
computations for Steps 1 through 7

• RS[21]: in C, by F. Rouillier, for isolating the real
solutions of zero-dimensional ideals for Step 8

• OpenCAD[19]: in Maple, by G. Moroz and F. Rouil-
lier, for Step 8.

• RAGlib[23]: in Maple, by M. Safey El Din, for Step 9.

The computations have been performed on a PC Intel(R)
Xeon(R) 2.50GHz with 6144 KB of Cache and 20 GB of
RAM. The following table gives the computing times for
each step:

Step 1 2 3 4 5 6 7 8 9
Time <1s <1s <1s <1s 1m 4h 2m 1h 15h

Thus the problem is solved in about 1 day. Note that Steps
1–5 takes short time as expected. Step 6–8 (“projection
and lifting”) takes 5 hours. It is significantly faster than
the standard QE softwares, (where they had to be aborted
after several weeks). Step 9 is most time-consuming because
it applies a decision algorithm on each of the 7652 sample
points produced by Step 8. The number 7652 is large, but
it estimated to be much smaller than what the standard QE
would produce (estimated to be at least millions). We also
believe that further improvements of VQE could reduce 7652
to a smaller number.
Step 7 produces 9 polynomials. The five of them are trivial:
a+ 1, a, b, a− 1, a4 − a2 + 1/2. The remaining four are non-
trivial:

h1 = a4 − a2 + 1/2− 2a2b2 − b2 + b4

h2 = a4 − a2 − 2a2b2 − b2 + b4



h3 = a6 − 1 + 3b2a4 + 3a2b4 + b6 − 3a4

+21a2b2 − 3b4 + 3a2 + 3b2

h4 = 4627325525704704 b80a18

+ · · ·+ 1199 terms + · · ·+
850320000000000 a2.

The polynomial h4 has degree 98. Figures 3, 4, 5 and
6 show the real curves defined by the polynomials. As ex-
pected, Figure 6 gives the most complicated curve.
Step 9 produced the output formula:

h3 < 0

which corresponds to the stability region obtained by the
pen-paper proof in [14].

Future works: We expect to make further reduction in the
size of the set in Step 7. For instance, the complicated poly-
nomial h4 in the above example is “useless”. Steps 8 and 9
takes long, mainly because of the presence of this useless
polynomial. Not generating such a polynomial will provide
even further improvement of the efficiency of the VQE algo-
rithm. We also expect to weaken or remove assumption H2

either by using properness assumptions [26] or by computing
generalized critical values [25]. Due to the lack of space, the
complexity analysis of the algorithm VQE will be carried
out in a future paper.
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