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ABSTRACT
Classifying the Perspective-Three-Point problem (abbrevi-
ated by P3P in the sequel) consists in determining the num-
ber of possible positions of a camera with respect to the ap-
parent position of three points. In the case where the three
points form an isosceles triangle, we give a full classifica-
tion of the P3P. This leads to consider a polynomial system
of polynomial equations and inequalities with 4 parameters
which is generically zero-dimensional. In the present situa-
tion, the parameters represent the apparent position of the
three points so that solving the problem means determining
all the possible numbers of real solutions with respect to the
parameters’ values and give a sample point for each of these
possible numbers. One way for solving such systems consists
first in computing a discriminant variety. Then, one has to
compute at least one point in each connected component of
its real complementary in the parameter’s space. The last
step consists in specializing the parameters appearing in the
initial system by these sample points. Many computational
tools may be used for implementing such a general method,
starting with the well known Cylindrical Algebraic Decom-
position (CAD in short), which provides more information
than required. In a first stage, we propose a full algorithm
based on the straightforward use of some sophisticated soft-
ware such as FGb (Gröbner bases computations) RS (real
roots of zero-dimensional systems), DV (Discriminant vari-
eties) and RAGlib (Critical point methods for semi-algebraic
systems). We then improve the global algorithm by refining
the required computable mathematical objects and related
algorithms and finally provide the classification. Three full
days of computation were necessary to get this classifica-
tion which is obtained from more than 40000 points in the
parameter’s space.
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1. INTRODUCTION
The perspective-n-points problem has been widely studied
during the past decades [7, 13, 30, 9]. The goal is to deter-
mine the position of a camera given the apparent position
of n points. This problem has many applications in fields
such as computer vision [16] or automated cartography [7]
for example. It was summarized in [7] for the general case
of n points as follow:
“Given the relative spatial location of n control points, and
given the angle to every pair of control points from an addi-
tional point called the Center of Perspective (CP), find the
lengths of the line segments joining CP to each of the control
points.”
It was proved in 1984 [8] that for n ≥ 6, the position of the
Center of Perspective is uniquely determined by the angles
from CP to the pairs of control points. Different algorithms
were designed for the direct computation. Harlick et al.
reviewed the major direct solutions before 1991 in [13]. More
recently, this direct problem has been revisited in [21], [1],
[22] and references therein.
However, in [7] Fischler and Bolles observed that the P3P
problem could have from 0 up to 4 solutions, according to the
triangle lengths and the angles observed from the perspec-
tive point of view. Moreover, in [15] and references therein,
Z.Y. Wu and F.C. Hu show that the P5P problem can have
2 solutions, and the P4P problem up to 5 solutions. But for



each number of solutions, the corresponding set of parame-
ters was not given.
In [10], X.-S. Gao and J. Tang have finally proved that for
n ≥ 4, the set of parameters where the PnP problem admits
more than one solution has a zero volume.
In [30] and [9] Yang, Gao and al. exhibit respectively a
partial and an exhaustive set of polynomial conditions to
decide the number of solutions of the P3P problem. These
conditions were obtained by combining a triangular decom-
position, resultant computations and a careful use of the
Descartes’ rule of sign and of the Sylvester-Habicht sequen-
ces. However, these conditions are rather complex and do
not give usable informations on the geometry of these cells.
In particular, testing the satisfiability of such conditions is
challenging since it is not feasible with current CAD and
generic CAD software.
Recently in [31], [29], the authors give some geometrical con-
dition for the P3P problem to have 4 solutions, and provide
a guide to arrange control points in real applications.
In this article, we present an efficient and certified method
to obtain a more intuitive classification of the parameters of
a system with respect to its number of solutions. We then
apply this method to the P3P problem in the case where the
three points form an isosceles triangle. Our output will be a
so-called open classification . In particular, for each possible
number of solutions of the perspective three point problem
we provide at least one point in each component of the cor-
responding set of parameters. Our classification is said open
because we ensure that the components we compute have a
non-null volume and are thus reachable in practice. In par-
ticular we omit components of null volume, since they have
no physical interest.
Main result and related work. The complete resolution
of the P3P problem is given for an isosceles triangle. It
required 3 days of computations. The number of computed
points is 60086.
A first key tool which allowed us to solve this problem is the
discriminant variety. This notion is related to the implicit
function theorem and has many variants, as those presented
in [19, 11] for example. We use the definition of [17], where
a Discriminant Variety of a parametric system with ratio-
nal or real coefficients is an algebraic variety of the param-
eter’s space such that, among other remarkable properties,
the number of real solutions of the initial system is invariant
on each connected component of its complementary over the
reals. For its computation, we used the algorithm provided
in [17] and implemented in the DV package for the so-called
well-behaved systems.
CAD implementations could not compute at least one point
in each connected component of the complementary of the
discriminant variety over the reals, due to the prohibitive
number of cells (and timing) induced by the doubly expo-
nential behaviour of the algorithms. Thus we developed
new algorithms to tackle this problem. These algorithms
are based on the critical point method. These methods are
known to have a better worst-case complexity than CAD al-
gorithm (see [3, Chapter 13] and references therein). Never-
theless, up to now, they used infinitesimals [2, 12, 14] which
makes heavier the arithmetic with which computations are
performed and, finally, spoil the practical behavior of this
method. The first algorithm we developed, generalizes the
strategy developed in [26] and computes a priori special-
ization values for the infinitesimal. This algorithm allowed

us to solve the problem but required 3 weeks of computa-
tions. Then, we developed a second algorithm whose practi-
cal behavior is much better, since this one allows us to solve
completely the problem in 3 days.
In the first two parts, we will recall the P3P problem and
present our general classification strategy. Then we will de-
tail the two main algorithms of our method. Finally, we will
show its application on the P3P problem.

2. DESCRIPTION OF THE PERSPECTIVE
THREE POINT PROBLEM

Let A,B and C be the three control points, P be the per-
spective point and α,β, γ be respectively the three angles

B̂PC,ÂPC and ÂPB. Furthermore, let a = PA, b = PB,
c = PC, l0 = AB, l1 = BC and l2 = AC.
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The lengths a,b,c are the solutions of the following equations
given in [7]: 8<: l20 = a2 + b2 − 2ab cos(α)

l21 = b2 + c2 − 2bc cos(β)
l22 = a2 + c2 − 2ac cos(γ)

We denote by u,v and w the expressions 2 cos(α), 2 cos(β)
and 2 cos(γ). Moreover, as in [9], we express all the lengths
of our problem relatively to l0. Thus we introduce A = a

l0
,

B = b
l0

, C = c
l0

. And for the length of the triangle, we use

x =
l22
l20

and t =
l21
l20

. Thus we get the following simplified

system: 8<: 1 = A2 +B2 −ABu
t = B2 + C2 −BCv
x = A2 + C2 −ACw

with the following constraints:

x > 0, t > 0,−2 < u < 2,−2 < v < 2,−2 < w < 2

where:
- A,B,C are the unknowns
- x, t, u, v, w are the parameters
We will present a general method to classify the parameters
of such a system. Given a number k, this method allows us
to say if there exists an open set of the parameters where
the system admit exactly k solutions.
We will show the application of this method for the classi-
fication of the parameters of the P3P problem, in the case
where the triangle is isosceles.

3. CLASSIFICATION METHOD - DISCRI-
MINANT VARIETY

Goal. Let ST(X) be a parametric system of polynomial
equalities and inequalities in Q[T][X], where T = T1, . . . , Ts



are the parameters and X = X1, . . . , Xn the unknowns. We
want to be able to answer to the following question:
“Given a parametric system ST and an integer i, does there
exist an open set O in the parameters’ space such that for
all p0 ∈ O, the number of solutions of Sp0 is i? If yes, give
explicitly a point a ∈ O”.
For this purpose, we present a method to classify the para-
metric values p0 of a dense open set of P according to the
number of real solutions of Sp0 . In the following, P will
denote the real parameters’ space. The method we describe
in this article computes exactly an open classification of P
with relation to ST according to the following definition:

Definition 1. ( Open classification) Let ST(X) be a pa-
rametric system. Let k ∈ N and O0, . . . ,Ok be open sets (for
the euclidean topology) in the parameters’ space such that:

∀p0 ∈ Oi, Sp0 has i real solutionsSk
i=0Oi is dense in the parameters’ space

We call the family (Oi)0≤i≤k an open classification of P
with relation to ST.
As announced in the introduction, the proposed methods
will be based on the discriminant variety introduced in [17].

Definition 2. (Discriminant variety) Given a construc-
tible set C, a discriminant variety of C is an algebraic set
in the parameter’s space such that a restriction of the trivial
projection from C onto the complementary of the discrim-
inant variety in the parameters’ space defines an analytic
cover.

In addition, a discriminant variety is the parameters’ space
itself if and only if each of the (complex) fibers are infinite.

Definition 3. (Minimal discriminant variety) The min-
imal discriminant variety is the intersection of all the dis-
criminant varieties (and is thus a discriminant variety).

Remark 1. In particular, the complementary of a dis-
criminant variety defines an open classification of P with
relation to ST.

Computing an open classification. Given a parametric
system ST, we show that an open classification of ST can
be represented by (q, F, φ), which are defined as follows:

- q is a polynomial and a discriminant variety of ST;

- F a set of rational points in each connected component
of q 6= 0;

- φ is a table which associates to each point p0 of F the
number of solutions of the 0-dimensional systems Sp0 .

In this representation, each Oi is represented by q and the
subset of points φ−1(i) ⊂ F such that:

Oi = { x ∈ P | there exists p ∈ φ−1(i) and
a continuous path from p to x included in q 6= 0}

To compute this representation, our algorithm is naturally
decomposed in three steps:
Input: a parametric system ST, the set of parameters T,
and the set of unknowns X.
Output: the 3-tuple (q, F, φ)
Main algorithm:

Step a: The discriminant variety q. For the first step, we
compute q as a polynomial vanishing at the discriminant va-
riety of ST. The full algorithm may be found in [17] and the
main ideas of its computation are recalled in the appendix.
It is implemented in the maple DVlib package and will be
directly available in the next release of Maple [18].
Step b: The sampling points F . The critical point method
allows to compute at least one point in each connected com-
ponent of a semi-algebraic set defined by strict inequalities.
An algorithm using these methods is given in [26]. We show
in section 4 an improvement of this algorithm. In this step,
F is a finite set of point in each connected component of
the semi-algebraic set defined by q 6= 0. This function is
implemented in the maple RAGlib package.
Step c: The table φ Finally, we compute a table where each
point p0 of F is associated to the number of real solutions
of the system Sp0 . For this step, we use the Rational Uni-
variate Representation presented in [23] and implemented in
the RS software which gives a list of non overlapping boxes
with rational bounds, containing the real solutions of a zero-
dimensional system. �
Theoretically, the first step has the largest complexity upper
bound. However, in practice the behavior of the three steps
does not follow the same scheme. In particular, the first step
is not often slower than the other steps.

4. SOLVING SYSTEMS OF POLYNOMIAL
INEQUALITIES

As described above, once a discriminant variety V is com-
puted, one has to compute at least one point in each con-
nected component of Rn \ V . RAGlib provides routines
allowing us to tackle this computation. This section is de-
voted to present the algorithms we implemented in RAGlib
and give some sketch of proofs. The techniques we use are
based on computations of critical points or critical values
of polynomial mappings. In the whole section, we con-
sider a polynomial family (f1, . . . , fs) in Q[X1, . . . , Xn] of
degree bounded by D. We denote by S the semi-algebraic
set defined by f1 > 0, . . . , fs > 0 which is supposed to
be bounded. Denote by Q+ the set of positive rationals.
Given a = (a1, . . . , as) ∈ Qs

+, I = {i1, . . . , i`} ⊂ {1, . . . , s},
and e ∈ R (resp. E a new variable) we denote by S

(a)
I,e

(resp. S
(a)
I,E) the polynomial system fi1 − ai−1e = · · · =

fi` − ai`e = 0 (resp. fi1 − ai1E = · · · = fi` − ai`E = 0)

and by V
(a)
I,e ⊂ Cn (resp. V

(a)
I,E ⊂ Cn+1) the algebraic variety

it defines. In the sequel, we use the following notations:

− Π denotes the canonical projection (x1, . . . , xn, e) ∈
Cn+1 → (x1, . . . , xn) ∈ Cn;

− The canonical projection (x1, . . . , xn) ∈ Cn → xi ∈ C
(resp. (x1, . . . , xn, e) ∈ Cn+1 → e ∈ C) is denoted by
πi (resp. πE).

− Given a polynomial mapping ϕ : Cn → Ck and an
algebraic variety V ⊂ Cn, C(ϕ, V ) denotes the critical
locus of the restriction of ϕ to V ;

− Given a polynomial mapping ϕ : Cn → Ck and an
algebraic variety V ⊂ Cn, K(ϕ, V ) denotes the critical
values of the restriction of ϕ to V ;

− Given I and a, Ca
I denotes the Zariski-closure of

∪
e∈C\K(π1,V

(a)
I,E

)
{(x, e) ∈ Cn+1 | x ∈ C(π1, V

(a)
I,e )}



− Given I and a, eaI denotes the smallest positive value

of K(πE , V
(a)
I,E)

S
j∈{1,...,s}\I πE(Ca

I∩{x ∈ Rn | fj(x) =

0}).

The following result shows that under some assumptions of

genericity on a and e, V
(a)
I,e is smooth and equi-dimensional,

and the ideal generated by S
(a)
I,e is radical. These properties

are useful to compute critical points of polynomial mappings

restricted to V
(a)
I,e by intersecting V

(a)
I,e with the vanishing set

of some minors of the Jacobian matrix associated to S
(a)
I,e.

Lemma 1. Given I ⊂ {1, . . . , s}, there exists a proper
Zariski-closed subset A × E ( Cs × C such that for all a ∈
Qs \ A and e ∈ Q \ E, S

(a)
I,e generates a radical and equi-

dimensional ideal and V
(a)
I,e is smooth of dimension n − ]I

or empty.

Proof. Consider the polynomial mapping ϕ : x ∈ Cn →
(fi1(x), . . . , fi`(x)) ∈ C`. From the algebraic Sard’s the-
orem [3], the set of critical values of ϕ is contained in a
proper Zariski-closed subset A ( C`. This implies that for
all (ai1 , . . . , ai`) ∈ Q` \ A, the system fi1 − ai1 = · · · =
fi` − ai` = 0 generates a radical and equidimensional ideal
and defines a smooth variety of dimension n−`. Considering
now the restriction of the mapping (x, e) ∈ Cn × C → e to
the variety defined by fi1 − ai1e = · · · = fi` − ai`e = 0 and
using as previously, Sard’s theorem ends the proof. �

First algorithm. This paragraph contains a description of
a first algorithm which generalizes to the case of polynomial
systems of inequalities the strategy developed in [26]. From
the proposition below, one can reduce the computation of
at least one point in each connected component of S to the
computation of at least one point in each connected compo-

nent of real algebraic sets V
(a)
I,e ∩ Rn if e is small enough.

Proposition 1. Let C be a connected component of S.
There exists I ⊂ {1, . . . , s} and e0 > 0 such that for all

e ∈]0, e0[, there exists a connected component of V
(a)
I,e ∩ Rn

contained in C.

Proof. The result is an immediate application of the trans-
fer principle and [3, Chapter 13, Proposition 13.2], remark-
ing that S is also defined by f1

a1
> 0, . . . , fs

as
> 0. �

Given a ∈ Qs, a connected component C of S, and I such
that the first item of Proposition 1 above applies, we show
below how to compute e0.

Theorem 1. Let C be a connected component of S. The-
re exists I ⊂ {1, . . . , s} such that for all e ∈]0, eaI [ there

exists a point of C(π1, V
(a)
I,e ) lying in C;

Proof. Let a = (a1, . . . , as) ∈ Qs. Consider a maximal (for
the order inclusion) subset I = {i1, . . . , i`} ⊂ {1, . . . , s} such
that Proposition 1 applies. Then, there exists e0 > 0 such
that for e ∈]0, e0[ there exists a compact connected compo-

nent Ce of V
(a)
I,e ∩Rn included in C. Since Ce is compact, it

contains a point xe of C(π1, V
(a)
I,e ) ⊂ Ca

I . Denote by B a ball
containing C. Since eaI is less than or inferior to the mini-

mum of the positive real numbers of K(πE , V
(a)
I,E), the Ehres-

mann’s fibration theorem implies that ΠE realizes a locally

trivial fibration over {(x, e) ∈ B × R} ∩ V (a)
I,E ∩ π

−1
E (]0, eaI [).

This implies that Ce varies continuously and remains non-
empty and compact when e varies in ]0, eaI [ and then has a

non-empty intersection with C(π1, V
(a)
I,e ). Note at last that

by definition of eaI , for all j ∈ {1, . . . , s} \ I, fj is positive at
each point of this intersection. �
Given A ∈ GLn(Q) and f ∈ Q[X1, . . . , Xn], we denote by
fA the polynomial f(AX) where X = [X1, . . . , Xn]. If V ⊂
Cn is an algebraic variety defined by f1 = · · · = fs = 0
(with {f1, . . . , fs} ⊂ Q[X1, . . . , Xn], V A denotes the variety
defined by fA

1 = · · · = fA
s = 0.

Proposition 2. Let e ∈ C \ K(πE , V
(a)
I,E). There exists

a Zariski-closed subset A ( GLn(C) such that for all A ∈
GLn(Q)\A, C(π1, V

(a)
I,e

A
) is either empty or zero-dimensio-

nal.

Proof. Since e /∈ K(πE , V
(a)
I,E), V

(a)
I,e is smooth. Now, the

result is an immediate consequence of [27, Theorem 2]. �
Finally, the algorithm consists in considering all the polyno-

mial systems S
(a)
I,E , compute a univariate polynomial whose

set of roots is K(πE , V
(a)
I,E), find a rational number e > 0

less than the smallest positive root of this polynomial and

compute a rational parameterization of K(π1, V
(a)
I,e ) up to a

generic enough linear change of variables. All these com-
putations are done using algebraic elimination routines. In
practice RAGlib uses Gröbner bases FGb engine [5, 6].

Remark 2. In order to generalize this strategy to the gen-
eral case of non-bounded semi-algebraic sets, it is sufficient
to compute the set of generalized critical values of πE re-

stricted to V
(a)
I,E (see [26, 25] for algorithms performing such

computations), find a rational number e > 0 less than the
smallest generalized critical value, and to compute at least

one point in each connected component of V
(a)
I,e (see [27] for

an efficient algorithm performing such a task).

Second algorithm. We will see in the next section that the
results (in terms of computation timings) obtained by the
above algorithm are not satisfactory even if it has allowed
us to solve completely the classification problem we con-
sider here. This paragraph is devoted to design an other
algorithm, based on similar techniques than those devel-
oped above, which is more efficient. It avoids the compu-

tations of K(πE , V
(a)
I,E) which are expensive, in particular

when the critical locus C(πE , V
(a)
I,E) has not dimension 0.

This is the case in the application we consider. Given a
connected component C of S, there exists I ⊂ {1, . . . , s}
from Proposition 1 such that the real algebraic set V

(a)
I,e has

a connected component contained in C for e small enough.
The idea we develop here is the following. Instead of com-
puting a specialization value for e (see Theorem 1 above),
we focus on the informations one can get when e tends to
0. From Proposition 2, there exists a Zariski-closed sub-
set E ( C such that for all e ∈ R \ E , up to a generic

linear change of coordinates, C(π1, V
(a)
I,e ) is either empty

or zero-dimensional. In the sequel, we denote by CI1 the

Zariski-closure of ∪e∈C\EC(π1, V
(a)
I,e ). From Hardt’s semi-

algebraic triviality theorem, there exists e0 ∈ R such that

C(π1, V
(a)
I,e )×]0, e0[ is homeomorphic ∪e∈]0,e0[C(π1, V

(a)
I,e ).

Thus, one can define by continuity the set lim0 C(π1, V
(a)
I,e ) of

finite limits of C(π1, V
(a)
I,e ) when e tends to 0. In particular,

we look at lim0 C(π1, V
(a)
I,e ) and lim0K(π1, V

(a)
I,e ).



Theorem 2. Consider C be a connected component of
the bounded semi-algebraic set S. There exists I ⊂ {1, . . . , s}
such that
a) given {ξ1, . . . , ξk} = lim0(K(π1, V

(a)
I,e )) (with ξ1 < . . . <

ξk}),
b) and r1, . . . , rk−1 be rationals such that ξ1 < r1 < . . . <
rk−1 < ξk,
there exists i ∈ {1, . . . , k − 1} for which C ∩ π−1

1 (ri) 6= ∅.

Proof. From Proposition 1, there exists I ⊂ {1, . . . , s}
a maximal set (for the order inclusion) and e0 > 0 such

that for e ∈]0, e0[, V
(a)
I,e ∩Rn has a connected component Ce

included in C.
Since C is bounded, Ce is compact. Thus, its image by
the projection π1 is a closed interval [ae, be]. We prove now
that when e tends to 0, ae (resp. be) has a finite limit in R
denoted by a0 (resp. b0). Since S is supposed to be bounded,
there exists a ball B ⊂ Rn such that C ⊂ B. Suppose now
that ae has not a finite limit in R when e tends to 0. This
implies that there exists e small enough such that Ce is not
contained in B while it is still contained in C. This is a
contradiction. Consider now r ∈]a0, b0[. There obviously
exists e > 0 such that ae < r < be. Thus C ∩π−1

1 (r) 6= ∅. �
Denote by Jac(fi1 , . . . , fi`) the Jacobian matrix associated
to fi1 , . . . , fi` . 2664

∂fi1
∂X1

. . .
∂fi1
∂Xn

...
...

...
∂fi`
∂X1

. . .
∂fi`
∂Xn

3775
Denote by ΣI the set of all (n−`, n−`) minors of Jac(fi1 , . . . ,
fi`). We consider in the sequel ∆I the set of (n − `, n −
`) minors of the matrix obtained after removing the first
column of Jac(fi1 , . . . , fi`) and δI = ΣI \∆I . In the sequel,

δI [i] denotes the i-th element of δI and δ
(i)
I denotes the first

i elements of δI . Given I = {i1, . . . , i`} ⊂ {1, . . . , s} and
a = (a1, . . . , as) ∈ Qs, we consider polynomial systems Sa

I
ai1fi2 − ai2fi1 = · · · = ai1fi` − ai`fi1 = 0 and the ideals
defined by:

Ii = 〈Sa
I , LδI [i+ 1]− 1, δ

(i)
I ,∆I〉 ∩Q[X1, . . . , Xn]

The following result shows how to compute lim0(K(π1, V
(a)
I,e ))

under assumptions of genericity on a. Its proof is based on
similar techniques than the ones used in [24].

Theorem 3. There exists a Zariski-closed subset A×E (
Cn × C such that for all a ∈ Qs \ A, e ∈ R \ E and for all

I ⊂ {1, . . . , s}, S(a)
I,ε generates a radical and equidimensional

ideal and V
(a)
I,e is smooth of dimension n − ]I if it is not

empty. Then, lim0(K(π1, V
(a)
I,e )) belongs to the union of the

sets of solutions of (Ii + 〈fi1〉) ∩Q[X1] for i = 0 to ]δI − 1.

Thus, the algorithm consists, for all I ⊂ {1, . . . , s}, in com-

puting lim0(K(π1, V
(a)
I,e )) which is represented by a univari-

ate polynomial. Then, it isolates the real roots of these
polynomials and find one rational number r between each
successive isolated real root. Then, it performs recursively,
substituting X1 by r in the input polynomials.
Note the difference with CAD algorithm: here we obtain
boundary points of the projections of the connected compo-
nents of the studied semi-algebraic set by computing directly
limits of critical points. This allows to avoid the growth

of degree and the appearance of superfluous values induced
by the recursive projection step of CAD. Note also that we

never compute the critical loci C(πE , V (a)
I,E) considered in the

algorithm described in the previous paragraph.

Remark 3. If V a
I,0 is smooth and Sa

I,0 generates a radi-

cal equidimensional ideal, lim0(K(π1, V
(a)
I,e )) is contained in

K(π1, V
a
I,0).

Given I ⊂ {1, . . . , s}, note that the computations performed
by the algorithm we present in this paragraph can be seen as
computing Ca

I ∩{(x, 0) ∈ Cn+1}. The following result shows
that the degree of the curve Ca

I is well-controlled and is re-

lated to the positive dimensional components of C(πE , V
(a)
I,E).

Proposition 3. The degree of Ca
I is bounded by D`(D−

1)n−`
`
n−1
]I

´
− δsing where δsing is the sum of the degrees of

the positive irreducible components of C(πE , V
(a)
I,E).

Its proof uses a similar reasoning than those in [24] and
bi-homogeneous bounds computed from a Lagrangian for-
mulation of critical points (see [28]).

Remark 4. When S is not supposed to be bounded, the
above algorithm has to be modified to compute sampling poin-

ts of S by substituting the computation of lim0(K(π1, V
(a)
I,e ))

by the computation of limits of generalized critical values of

π1 restricted to V
(a)
I,e when e tends to 0.

5. COMPUTATIONS AND RESULTS
We show here the results of the computations we obtained
solving the P3P problem. We do the computation by restric-
tion to the case where the triangle we observe is isosceles,
that is: l0 = l1. The system we consider is:8<: 1 = A2 +B2 −ABu

1 = B2 + C2 −BCv
x = A2 + C2 −ACw

It has 4 parameters u,v,w,x and 3 unknowns A,B,C.
All the computations have been performed on a PC Intel(R)
Xeon(TM) CPU 3.20GHz with 6Gb of RAM.

The minimal discriminant variety. We first compute the
minimal discriminant variety with the DV software in about
1 minute. The result is the polynomial D given in appendix.
It is the minimal discriminant variety of the P3P paramet-
ric system when the triangle is isosceles. We can notice that
D has 7 factors of respective degrees 1, 1, 1, 2, 2, 3, 13, and
whose number of terms is at most 153. Along with the con-
straints on the parameters, the discriminant variety allows
us to define the following semi-algebraic set:

D 6= 0, x > 0− 2 < u < 2,−2 < v < 2,−2 < w < 2

The parametric system has a constant number of solutions
on each connected component of this semi-algebraic set.

Remark 5. The above semi-algebraic set is not bounded
in the variable x, which is needed to apply the methods pre-
sented in section 4.

Thus we split this set into x < 1 and x > 1. Using the
variable y = 1

x
, this leads to the study of two bounded semi-

algebraic set:



Hx

8>>><>>>:
D 6= 0

0 < x < 1
−2 < u < 2
−2 < v < 2
−2 < w < 2

and Hy

8>>><>>>:
Dy 6= 0

0 < y < 1
−2 < u < 2
−2 < v < 2
−2 < w < 2

where Dy denotes the polynomial obtained by the substitu-
tion of x by 1

y
in y5D.

Solving polynomial systems of inequalities. We consider
now the two semi-algebraic sets Hx and Hy. Thanks to the
property of the discriminant variety D, we know that on
each connected component of these semi-algebraic sets, the
parametric system has a constant number of solutions.
To get a open classification we first tried to compute a
Cylindrical Algebraic Decomposition. However, after one
month of computation, we could only complete the projec-
tion phase, but not the lifting phase neither with Maple
nor with Magma software. Finally, we implemented the al-
gorithms computing sampling points described in Section 4
in semi-algebraic sets defined by the systems Hx and Hy.
The first algorithm returned a result after 3 weeks of com-
putations, and the second after 3 days. As explained above,
this is mainly due to the fact that the discriminant variety
contains singularities of high dimension. More generally,
we observed that the computation of critical values of the
projection πE considered in Section 5 were particularly dif-
ficult. The critical loci of this projection restricted to the
varieties considered in Subsection 5.1 have a big dimension.
Most of the time spent by the first algorithm described in
Subsection 5.1 is spent in these computations. The second
algorithm described in Subsection 5.2 avoids the computa-
tions of the singularities which appear during the running
of the first algorithm. Moreover, as explained in Subsection
5.2, its complexity depends on the real geometry of the con-
sidered semi-algebraic set. This probably explains why it is
so efficient in our case.
These implementations will be soon available in the next
release of the RAGlib Maple package. We successfully got
one point in each connected components of Hx and Hy. As
a result we get 13612 points distributed in every connected
cell of Hx and 46474 points in Hy. These points can be
downloaded at

http://www-spiral.lip6.fr/~moroz/P3P.html

Note that contrarily to polynomials generated randomly, the
minimal discriminant variety contains singularities of high
dimensions which makes them more difficult to study. More-
over, since D is a minimal discriminant variety , this also en-
sures us that all conditions on the parameters discriminating
the parameters’ space according to the number of solutions
of the system would contain such singularities.
As we can see on the figures 1 and 2, some connected cells
seem very small and almost intractable with random approx-
imations. The drawings show the graph of Hx around the
point p0, one of the points returned by our computation:

p0 := (x0, u0, v0, w0)
= ( 452735729

9148876946
, 3371082457

1706654848
, 2763844376

1399264123
, 26504177576

13260182015
)

' (0.0494853, 1.97525, 1.97521, 1.99877)

On each figure, we present 2 slices centered on p0. The first
figure shows a global view of Hx and p0, while the second
figure shows a much closer neighborhood of p0. According
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Figure 1: Two slices of H partly specialized in p0: -
in the first, the variables v and w are specialized - in
the second, the variables u and x are specialized

to the slices, we can see that we have detected here a very
small connected cell of Hx.
More generally, the set of points we computed intersects each
connected component of Hx and Hy, and we now need to
compute the number of solutions of the parametric system
specialized in each point to achieve our classification.

Zero-dimensional system solving. In this step, we com-
pute the number of real solutions satisfying the constraint of
the problem for 60086 parameters’ values. The mean time
to solve each corresponding 0-dimensional system is about
0.05 second.
Finally, we can recover the fact that the parametric system
of our problem may have exactly 0, 1, 2, 3 or 4 solutions sat-
isfying the inequalities’ constraints. We present in table 1 a
sample point in the parameters’ space where the system has
i solutions for i from 0 to 4.
Moreover, even if we do not have a complete CAD of the
discriminant variety, we can have a geometric view of each
connected cell of the parameters’ space associated to a given
number of solutions by drawing the neighborhood of each
computed point. As we saw in the previous section, this
allowed us for example to exhibit a very small cell, and to
compute the number of distinct solutions of the system re-
stricted to this cell, which is exactly 4.



0.046

0.048

0.05

0.052

0.054

X

1.972 1.974 1.976 1.978 1.98

U

1.9984

1.9986

1.9988

1.999

1.9992

W

1.9748 1.975 1.9752 1.9754 1.9756

V

Figure 2: Two closer slices of H partly specialized
in p0

6. CONCLUSION
We give in this article a full algorithm to compute an intu-
itive classification of the parameters of a parametric system
given by polynomial equations and inequations.
Our method is validated by the description of the parame-
ters’ space of the P3P problem when the three control points
form an isosceles triangle. We also think that optimizations
our implementations and algorithms are possible to make
the study of a more general classification.

APPENDIX
Elements of discriminant variety theory
The discriminant variety is presented in [17]. We recall here
how to compute it for a well-behaved parametric system.

Definition 4. A parametric system ST is said well-behaved
if and only if:
i) The number of equations equals the number of unknowns
ii) For all p0 outside a Zariski closed set, Sp0 is radical and
zero-dimensional.

The P3P problem and most of the problems coming from
applications are modeled by well-behaved systems.
Given a well-behaved parametric system ST, let g denote
the product of the polynomial inequations of ST. and π the
projection map from the solutions of ST to the parameters’
space. If F is a subset of the parameters’ space, then SF

Number of
solutions

x u v w

0 452735729
9148876946 − 1087810617

4897634788 − 2322378129
10447926511

4610994663
2334015862

1 452735729
9148876946 − 1087810617

4897634788 − 2322378129
10447926511 − 10016606887

5135366188

2 452735729
9148876946 − 1087810617

4897634788
2322378129
10447926511

10016606887
5135366188

3 452735729
9148876946 − 1087810617

4897634788
1270625905
5709068079

2776826855
1423637843

4 1415953531
12404789665

4824522087
13860411335

2413516911
4607583958

11184766673
5921669493

Table 1: Sample parametric points corresponding to
a wanted number of solutions

denotes the restriction of the parametric system ST to F .
The discriminant variety can be decomposed in four alge-
braic components:
i) Vineq is the projection of the zeros of the polynomial equa-
tions and g
ii) Vsing is the Zariski closure of the projection of the singu-
lar locus of π
iii) Vc is the closure of the critical values of π
iv) V∞ is the set of parameters’ values p0 such that for all
neighborhood U0 of p0, the real solutions of SU0 are not
bounded.
The components Vineq, Vsing, Vc may be computed by sat-
uration and elimination of variables, which may be handled
with Gröbner bases computations (see [4] for example). The
component V∞ may be obtained by extracting some coeffi-
cients of a gröbner basis with relation to a block ordering
satisfying X >> T. More details on these computation may
be found in [17]. Beside, complexity results of this method
are given in [20].
Discriminant variety for the isosceles P3P problem

D := x(−x + 2 + w)(x − 2 + w)
(−x + u2)(−x + v2)(−uvw + w2 − 4 + v2 + u2)
(−2x2u3v5w3 − 72xuv5w − 8u3v3w3 − 96x4u3vw+
6x2uv5w3 + 4x3u4v4w2 − 8x2u3v3w3 + 1248xu2v2−
24x3u4v2 − 4x3u6w2 − 4x3v6w2 − 24x3u2v4−
96xu2v4 − 128x5v2 − 18x3u2v4w2 − 384xu3vw−
18x3u4v2w2 − 12uv5w3 − 96xu4v2 + 24x3v4w2−
240xv4 + 576xu4 + x5u4v4 − 768x2u2+
64x5u2v2 + 576x2v4 − 768x2v2 + 64x4u4−
416x3v4 + 64x3v6 − 96x4uv3w + 256x4uvw+
48x2u3vw3 + 8x2uv5w + 12x2u6v2 + 168xv4w2−
2x2u2v6w2 + 12x2v6w2 + 12x2u2v6 − 40x2u4v4+
168xu4w2 + 12x2u6w2 − 8xu4v4 + 16x5v4+
xu6v2w2 − 768x3uvw + 32x4u3v3w − 4xu6v2−
12xu6w2 − 12xv6w2 + 96xu3vw3 + 16x2u4v4w2+
8x4u5vw + 48x2uv3w3 + 96x3u3vw − 2x2u6v2w2+
96x3uv3w + 60xu4v2w2 + 96xuv3w3 + 60xu2v4w2+
6xu2v2w4 + 8x4uv5w − 336xu2v2w2 − 384xuv3w−
2xu4vw2 − 4xu2v6 − 1152x2u2v2 − 27xu4w4−
16x4u6 − 96x2v6 + 64x3u6 + 64xu6+
64xv6 − 240xu4 − 128x5u2 − 1024x4+
1024x3 + 768x2uvw + xu2v6w2 + 8xu5v3w+
6xu4v2w4 + 48u5vw + 8x3u5vw + 16x5u4−
27xv4w4 + 24x3u4w2 + 4x4u6v + 192x2v2w2−
128x4u2v2 + 4v6w2 − 4x4u4v4 + 64x4v4+
6xu2v4w4 + 8xu3v5w − 2xu5v3w3 + 192x2u3vw+
6xu5vw3 + 96u3v3w + 192x2uvw + 32x3u3v3w−
2xu3v5w3 + 4u6w2 + 256x3u2v2 + 96x3v2w2+
48uv5w − 36u4v2w2 + 256x4u2 − 8x5u4v2−
416x3u4 + 256x4v2 + 384x3v2 − 96x2u6−
72xu5vw − 76xu3v3w3 + 12u4v2w4 + 4x4u2v6−
12x3u6v2 + 96x3u2w2 − 256x3w2 − 8x5u2v4−
16v6 − 16x4v6 + 384x3u2 − 16u6+
8x3uv5w + xu4v4w4 + 6xuv5w3 − 36u2v4w2+
12u2v4w4 − 4u3v3w5 − 2x4u3v5w + x3u6v2w2−
6x3u5v3w − 192x2v4w2 − 48u2v4 − 12x3u2v6−
192x2u4w2 + 8x2u5vw + 192x2u2w2 − 48u4v2+
144xu3v3w − 2x4u5v3w − 192x2uvw3 + 176x2uv2+
24x3u4v4 + 176x2u2v4 − 160x2u3v3w − 6x3u3v5w+
6x2u5vw3 − 12u5vw3 + x3u2v6w2 − 2x2u5v3w3+
256x5)
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theoretical and practical complexity of the existential
theory of the reals. The Computer Journal,
36(5):427–431, 1993.

[15] Z.Y. Hu and F.C. Wu. A note on the number of
solutions of the noncoplanar p4p problem. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 24(4):550–555, 2002.

[16] B. Lacolle, O. Leboulleux, B. Conio, and R. Horaud.
An analytic solution for the perspective 4-point
problem. CVGIP: Image Understanding,
48(2):277–278, November 1989.

[17] D. Lazard and F. Rouillier. Solving parametric
polynomial systems. Journal of Symbolic
Computation, 42:636–667, 2007.

[18] S. Liang, J. Gerhard, and D. Jeffrey. A new maple
package for solving parametric polynomial systems. In
MACIS, 2007.

[19] J. Milnor. Morse Theory, volume 51 of Annals of
mathematics studies. Princeton University Press,
Princeton, 1963.

[20] G. Moroz. Complexity of the resolution of parametric
systems of polynomial equations and inequations. In
Jean-Guillaume Dumas, editor, International
Symposium on Symbolic and Algebraic Computation,
pages 246–253. ACM Press, 2006. isbn: 1-59593-276-3.

[21] L. Quan and Z.-D. Lan. Linear N-point camera pose
determination. IEEE Trans. Pattern Anal. Mach.
Intell, 21(8):774–780, 1999.

[22] G. Reid, J. Tang, and L. Zhi. A complete
symbolic-numeric linear method for camera pose
determination. In J. Rafael Senda, editor, ISSAC
2003, pages 215–223, pub-ACM:adr, 2003. ACM Press.

[23] F. Rouillier. Solving zero-dimensional systems through
the Rational Univariate Representation. AAECC
Journal, 9(5):433–461, 1999.

[24] M. Safey El Din. Finding sampling points on real
hypersurfaces in easier in singular situations. In
MEGA (Effective Methods in Algebraic Geometry)
Electronic proceedings, 2005.

[25] M. Safey El Din. Practical and theoretical issues for
the computation of generalized critical values of a
polynomial mapping and its applications. In
Proceedings of Asian Symposium on Computer
Mathematics 2007, 2007. to appear.

[26] M. Safey El Din. Testing sign conditions on a
multivariate polynomial and applications.
Mathematics in Computer Science, 1(1):177–207,
December 2007.
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