
On Exact Reznick, Hilbert-Artin and Putinar’s Representations

Victor Magron

CNRS; LAAS; 7 avenue du colonel Roche, F-31400 Toulouse; France

Mohab Safey El Din

Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6 (UMR 7606), PolSys, Paris, France.

Abstract

We consider the problem of computing exact sums of squares (SOS) decompositions for certain
classes of non-negative multivariate polynomials, relying on semidefinite programming (SDP)
solvers.

We provide a hybrid numeric-symbolic algorithm computing exact rational SOS decomposi-
tions with rational coefficients for polynomials lying in the interior of the SOS cone. The first
step of this algorithm computes an approximate SOS decomposition for a perturbation of the
input polynomial with an arbitrary-precision SDP solver. Next, an exact SOS decomposition is
obtained thanks to the perturbation terms and a compensation phenomenon. We prove that bit
complexity estimates on output size and runtime are both polynomial in the degree of the input
polynomial and singly exponential in the number of variables. Next, we apply this algorithm to
compute exact Reznick, Hilbert-Artin’s representation and Putinar’s representations respectively
for positive definite forms and positive polynomials over basic compact semi-algebraic sets. We
also report on practical experiments done with the implementation of these algorithms and exist-
ing alternatives such as the critical point method and cylindrical algebraic decomposition.

Keywords: Real algebraic geometry, Semidefinite programming, sums of squares
decomposition, Reznick’s representation, Hilbert-Artin’s representation, Putinar’s
representation, hybrid numeric-symbolic algorithm.

1. Introduction

Let Q (resp. R) be the field of rational (resp. real) numbers and X = (X1, . . . , Xn) be a se-
quence of variables. We consider the problem of deciding the non-negativity of f ∈ Q[X] either
over Rn or over a closed semi-algebraic set S defined by some constraints g1 ≥ 0, . . . , gm ≥ 0
(with g j ∈ Q[X]). Further, d denotes the maximum of the total degrees of these polynomials.

This problem is known to be co-NP hard (Blum et al., 2012). The Cylindrical Algebraic
Decomposition algorithm due to Collins (1975) and Wütrich (1976) allows one to solve it in time

Email addresses: vmagron@laas.fr (Victor Magron), mohab.safey@lip6.fr (Mohab Safey El Din)
URL: https://homepages.laas.fr/vmagron (Victor Magron), http://www-polsys.lip6.fr/~safey

(Mohab Safey El Din)

Preprint submitted to Journal of Symbolic Computation January 4, 2021

doubly exponential in n (and polynomial in d). This has been significantly improved, through the
so-called critical point method, starting from Grigoriev and Vorobjov (1988) which culminates
with Basu et al. (1998) to establish that this decision problem can be solved in time ((m+1)d)O(n).
These latter ones have been developed to obtain practically fast implementations which reflect
the complexity gain (see e.g. Bank et al. (2001, 2005); Safey El Din and Schost (2003); Safey
El Din (2007b); Bank et al. (2010); Guo et al. (2010); Bank et al. (2014); Greuet and Safey El
Din (2014); Greuet et al. (2012)). These algorithms are “root finding” ones: they are designed
to compute at least one point in each connected component of the set defined by f < 0. This
is done by solving polynomial systems defining critical points of some well-chosen polynomial
maps restricted to f = −ε for ε small enough. Hence the complexity of these algorithms depends
on the difficulty of solving these polynomial systems (which can be exponential in n as the
Bézout bound on the number of their solutions is). Moreover, when f is non-negative, they
return an empty list without a certificate that can be checked a posteriori. This paper focuses on
the computation of such certificates under some favorable situations.

To compute certificates of non-negativity, an approach based on sums of squares (SOS) de-
compositions of polynomials (see Lasserre (2001) and P. A. Parrilo (2000)). Many positive poly-
nomials are not sums of squares of polynomials following Blekherman (2006). However, some
variants have been designed to make this approach more general ; see e.g. the survey by Laurent
(2009) and references therein. In a nutshell, the core and initial idea is as follows.

A polynomial f is non-negative over Rn if it can be written as an SOS s2
1 + · · · + s2

r with
si ∈ R[X] for 1 ≤ i ≤ r. Also f is non-negative over the semi-algebraic set S if it can be written
as s2

1 + · · ·+ s2
r +

∑m
j=1 σ jg j where σi is a sum of squares in R[X] for 1 ≤ j ≤ m. It turns out that,

thanks to the “Gram matrix method” (see e.g. Choi et al. (1995); Lasserre (2001); P. A. Parrilo
(2000)), computing such decompositions can be reduced to solving Linear Matrix Inequalities
(LMI). This boils down to considering a semidefinite programming (SDP) problem.

For instance, on input f ∈ Q[X] of even degree d = 2k, the decomposition f = s2
1 + · · · + s2

r
is a by-product of a decomposition of the form f = vT

k LT DLvk, where vk is the vector of all
monomials of degree ≤ k in Q[X], L is a lower triangular matrix with non-negative real entries
on the diagonal and D is a diagonal matrix with non-negative real entries. The matrices L and
D are obtained after computing a symmetric matrix G (the Gram matrix), semidefinite positive,
such that f = vT

k Gvk. Such a matrix G is found using solvers for LMIs. Such inequalities
can be solved symbolically (see Henrion et al. (2016)), but the degrees of the algebraic exten-
sions needed to encode exactly the solutions are prohibitive on large examples Nie et al. (2010).
Besides, there exist fast numerical solvers for solving LMIs implemented in double precision,
e.g. SeDuMi by Sturm (1998), SDPA by Yamashita et al. (2010) as well as arbitrary-precision
solvers, e.g. SDPA-GMP by Nakata (2010), successfully applied in many contexts, including
bounds for kissing numbers by Bachoc and Vallentin (2008) or computation of (real) radical
ideals by J.B. Lasserre, M. Laurent, B. Mourrain, P. Rostalski and P. Trébuchet (2013).

But using solely numerical solvers yields “approximate” non-negativity certificates. In our
example, the matrices L and D (and consequently the polynomials s1, . . . , sr) are not known
exactly.

This raises topical questions. The first one is how to use symbolic computation jointly with
these numerical solvers to get exact certificates? Since not all positive polynomials are SOS,
what to do when SOS certificates do not exist? Also, given inputs with rational coefficients, can
we obtain certificates with rational coefficients?

For these questions, we inherit from contributions in the univariate case by Chevillard et al.
(2011); Magron et al. (2018) as well as in the multivariate case by Peyrl and Parrilo (2008);

2

Kaltofen et al. (2008). Note that Kaltofen et al. (2008, 2012) allow us to compute SOS with
rational coefficients on some degenerate examples. Moreover, Kaltofen et al. (2012) allows to
compute decompositions into sums of squares of rational fractions. Diophantine aspects are
considered in Safey El Din and Zhi (2010); Guo et al. (2013). When an SOS decomposition
exists with coefficients in a totally real Galois field, Hillar (2009) and Quarez (2010) provide
bounds on the total number of squares.

In the univariate (un)-constrained case, given f ∈ Q[X], the algorithm by Chevillard et al.
(2011) computes an exact (weighted) SOS decomposition f =

∑t
i=1 cig2

i with ci ∈ Q and gi ∈

Q[X]. We call such SOS decompositions weighted because the coefficients ci are considered
outside the square, which helps when one wants to output data with rational coefficients only. To
do that, the algorithm considers first a perturbation of f , performs (complex) root isolation to get
an approximate SOS decomposition of f . When the isolation is precise enough, the algorithm
relies the perturbation terms to recover an exact rational decomposition.

In the multivariate unconstrained case, Parillo and Peyrl designed a rounding-projection algo-
rithm in Peyrl and Parrilo (2008) to compute a weighted rational SOS decompositon of a given
polynomial f in the interior of the SOS cone. The algorithm computes an approximate Gram
matrix of f , and rounds it to a rational matrix. With sufficient precision digits, the algorithm
performs an orthogonal projection to recover an exact Gram matrix of f . The SOS decomposi-
tion is then obtained with an exact LDLT procedure. This approach was significantly extended
in Kaltofen et al. (2008) to handle rational functions and in Guo et al. (2012) to derive certificates
of impossibility for Hilbert-Artin representations of a given degree. In a recent work by Laplagne
(2018), the author derives an algorithm based on facial reduction techniques to obtain exact ra-
tional decompositions for some sub-classes of non-negative polynomials lying in the border of
the SOS cone. Among such degenerate sub-classes, he considers polynomials that can be written
as sums of squares of polynomials with coefficients in an algebraic extension of Q of odd degree.

Main contributions. This work provides an algorithmic framework for computing exact ra-
tional weighted SOS decompositions in some favourable situations. The first contribution, given
in Section 3, is a hybrid numeric-symbolic algorithm, called intsos, providing rational SOS
decompositions for polynomials lying in the interior of the SOS cone. As for the algorithm
by Chevillard et al. (2011), the main idea is to perturb the input polynomial, then to obtain an
approximate SOS decomposition (through some Gram matrix of the perturbation by solving an
SDP problem), and to recover an exact decomposition using the perturbation terms.

In Section 4.1, we rely on intsos to compute decompositions of positive definite forms
into SOS of rational functions, based on Reznick’s representations, yielding an algorithm, called
Reznicksos. In Section 4.2, we provide another algorithm, called Hilbertsos, to decompose
non-negative polynomials into SOS of rational functions, under the assumption that the numer-
ator belongs to the interior of the SOS cone. In Section 5, we rely on intsos to compute
weighted SOS decompositions for polynomials positive over basic compact semi-algebraic sets,
yielding the Putinarsos algorithm.
When the input is an n-variate polynomial of degree d with integer coefficients of maximum bit
size τ, we prove in Section 3 that Algorithm intsos runs in boolean time τ2dO (n) and outputs
SOS polynomials of bit size bounded by τdO (n). This also yields bit complexity analysis for Al-
gorithm Reznicksos (see Section 4.1) and Algorithm Putinarsos (see Section 5). To the best
of our knowledge, these are the first complexity estimates for the output of algorithms providing
exact multivariate SOS decompositions. The constants in the exponents are explicitely given in
the sequel.
The three algorithms are implemented within a Maple procedure, called multivsos, integrated

3

in the RealCertify Maple library by Magron and Safey El Din (2018b). In Section 6, we
provide benchmarks to evaluate the performance of multivsos. We compare it with previous
approaches in Peyrl and Parrilo (2008) as well as with the more general methods based on the
critical point method and Cylindrical Algebraic Decomposition.
This paper is the follow-up of our previous contribution (Magron and Safey El Din, 2018a),
published in the proceedings of ISSAC’18. The main theoretical and practical novelties are the
following: we provide explicit bounds for the bit complexity analyzes of our algorithms. In
Section 3.4, we state formally the rounding-projection algorithm from Peyrl and Parrilo (2008),
analyze its bit complexity and compare it with our algorithm intsos. We show that both algo-
rithms have the same bit complexity. Another novelty is in Section 4.2, where we explain how
to handle the sub-class of non-negative polynomials admitting an Hilbert-Artin’s representation,
for which the numerator belongs to the interior of the SOS cone. In Section 5.4, we state a
constrained version of the rounding-projection algorithm. Again, this algorithm has the same
bit complexity as Putinarsos. We have updated accordingly Section 6 by providing some re-
lated numerical comparisons. We also consider benchmarks involving non-negative polynomials
which do not belong to the interior of the SOS cone.

Acknowledgments.. M. Safey El Din is supported by the ANR-18-CE33-0011 Sesame, the ANR-
19-CE40-0018 De Rerum Natura projects funded by ANR (Agence Nationale de la Recherche),
the ANR-19-CE48-0015 Ecarp project funded jointly by ANR and FWF, and the CAMiSAdo
project funded by PGMO/FMJH. V. Magron benefited from the support of the FMJH Program
PGMO (EPICS project) and from the support of EDF, Thales, Orange et Criteo, as well as from
the Tremplin ERC Stg Grant ANR-18-ERC2-0004-01 (T-COPS project). Both authors are sup-
ported by European Union’s Horizon 2020 research and innovation programme under the Marie
Sklodowska-Curie grant agreement 813211 (POEMA).

2. Preliminaries

Let Z be the ring of integers and X = (X1, . . . , Xn). For α = (α1, . . . , αn) ∈ Nn, one has
|α| := α1 + · · · + αn and Xα := Xα1

1 . . . Xαn
n . For all k ∈ N, we let Nn

k := {α ∈ Nn : |α| ≤ k},
whose cardinality is the binomial

(
n+k

k

)
. A polynomial f ∈ R[X] of degree d = 2k is written as

f =
∑
|α|≤d fα Xα and we identify f with its vector of coefficients f = (fα) in the basis (Xα),

α ∈ Nn
d. When referring to univariate polynomials, we use the indeterminate E and we denote

by Z[E] the set of univariate polynomials with integer coefficients. Let Σ[X] be the convex cone
of sums of squares in R[X] and Σ̊[X] be the interior of Σ[X]. We will be interested in those
polynomials which lie in Z[X] ∩ Σ[X]. For instance, the polynomial

f = 4X4
1 + 4X3

1 X2 − 7X2
1 X2

2 − 2X1X3
2 + 10X4

2 = (2X1X2 + X2
2)2 + (2X2

1 + X1X2 − 3X2
2)2

lies in Z[X] ∩ Σ[X].
The complexity estimates in this paper rely on the bit complexity model. The bit size of an

integer b is denoted by τ(b) := blog2(|b|)c + 1 with τ(0) := 1. For f =
∑
|α|≤d fαXα ∈ Z[X] of

degree d, we denote ‖ f ‖∞ := max|α|≤d | fα| and τ(f) := τ(‖ f ‖∞) with slight abuse of notation.
Given b ∈ Z and c ∈ Z\{0} with gcd(b, c) = 1, we define τ(b/c) := max{τ(b), τ(c)}. For two
mappings g, h : Nl → R, we use the notation “g(v) = O (h(v))” to state the existence of b ∈ N
such that g(v) ≤ bh(v), for all v ∈ Nl.

4

The Newton polytope or cage C (f) is the convex hull of the vectors of exponents of mono-
mials that occur in f ∈ R[X]. For the above example, C (f) = {(4, 0), (3, 1), (2, 2), (1, 3), (0, 4)}.
For a symmetric real matrix G, we note G � 0 (resp. G � 0) when G has only non-negative
(resp. positive) eigenvalues and we say that G is positive semidefinite (SDP) (resp. positive def-
inite). For a given Newton polytope P, let ΣP[X] be the convex cone of sums of squares whose
Newton polytope is contained in P. Since the Newton polytope P is often clear from the context,
we suppress the index P.

With f ∈ R[X] of degree d = 2k, we consider the SDP program:

inf
G�0

Tr (G B0) s.t. Tr (G Bγ) = fγ , ∀γ ∈ Nn
d − {0} , (1)

where Tr(M) (for a given matrix M) denotes the trace of M, Bγ has rows (resp. columns) indexed
by Nn

k with (α, β) entry equal to 1 if α + β = γ and 0 otherwise.

Theorem 1. (Lasserre, 2001, Theorem 3.2) Let f ∈ R[X] of degree d = 2k and global infimum
f ? := infx∈Rn f (x). Assume that SDP (1) has a feasible solution G? =

∑r
i=1 λiqi qT

i , with the
qi being the eigenvectors of G? corresponding to the non-negative eigenvalues λi, for all i =

1, . . . , r. Then f − f ? =
∑r

i=1 λiq2
i .

For the sake of efficiency, one reduces the size of the matrix G by indexing its rows and
columns by half of C (f):

Theorem 2. (Reznick, 1978, Theorem 1) Let f ∈ Σ[X] with f =
∑r

i=1 s2
i , P := C (f) and Q :=

P/2 ∩ Nn. Then for all i = 1, . . . , r, C (si) ⊆ Q.

Given f ∈ R[X], Theorem 1 states that one can theoretically certify that f lies in Σ[X] by
solving SDP (1). However, available SDP solvers are typically implemented in finite-precision
and require the existence of a strictly feasible solution G � 0 to converge. This is equivalent for
f to lie in Σ̊[X] as stated in (Choi et al., 1995, Proposition 5.5):

Theorem 3. Let f ∈ Z[X] with P := C (f), Q := P/2∩Nn and vk be the vector of all monomials
with support in Q. Then f ∈ Σ̊[X] if and only if there exists a positive definite matrix G such that
f = vT

k Gvk.

Eventually, we will rely on the following bound for the roots of polynomials with integer
coefficients:

Lemma 4. (Mignotte, 1992, Theorem 4.2 (ii)) Let f ∈ Z[E] of degree d, with coefficient bit size
bounded from above by τ. If f (e) = 0 and e , 0, then 1

2τ+1 ≤ |e| ≤ 2τ + 1.

3. Exact SOS representations

The aim of this section is to state and analyze a hybrid numeric-symbolic algorithm, called
intsos, computing weighted SOS decompositions of polynomials in Z[X] ∩ Σ̊[X]. This algo-
rithm relies on perturbations of such polynomials. We first establish the following preliminary
result.

Proposition 5. Let f ∈ Z[X] ∩ Σ̊[X] of degree d = 2k, with τ = τ(f), P = C(f) and Q :=
P/2 ∩ Nn. Then, there exists N ∈ N − {0} such that for ε := 1

2N , f − ε
∑
α∈Q X2α ∈ Σ̊[X], with

N ≤ τ(ε) ≤ O (τ · (4d + 2)3n+3).
5

The proof of this result relies on the following technical statement whose proof is postponed
in the Appendix.

Proposition 6. Let g ∈ Z[X] of degree d and let τ = τ(g). Assume that the algebraic set
V(g) ⊂ Cn defined by g = 0 is smooth. Then, there exists a polynomial w ∈ Z[X1] of degree
≤ dn with coefficients of bit size ≤ τ · (4d + 2)3n such that its set of real roots contains the critical
values of the restriction of the projection on the X1-axis to V(g).

Proof of Proposition 5. Let vk be the vector of all monomials Xα, with α in Q. Note that each
monomial in vk has degree ≤ k and that vT

k vk =
∑
α∈Q X2α. Since f ∈ Σ̊[X], there exists by

Theorem 3 a matrix G � 0 such that f = vT
k Gvk, with positive smallest eigenvalue λ. Let us

define N := dlog2
1
λ
e + 1, i.e. the smallest integer such that ε = 1

2N ≤
λ
2 . Then, λ > ε and the

matrix G − εI has only positive eigenvalues. Hence, one has

fε := f − ε
∑
α∈Q

X2α = vT
k Gvk − εvT

k Ivk = vT
k (G − εI)vk ,

yielding fε ∈ Σ̊[X].
For the second claim, let us consider the algebraic set V defined by

f (X) − E =
∂ f
∂X1

= · · · =
∂ f
∂Xn

.

Let us note A the projection of V ∩ Rn on the E-axis. Note that A contains the minimizers of
f (x).

Note that the algebraic set defined by f − E = 0 is smooth (since it is a graph). Applying
Proposition 6 to f − E, we deduce that there exists a polynomial in Z[E] of degree less than dn+1

with coefficients of bit size less than τ · (4d + 2)3n+3 such that its set of real roots contains A. By
Lemma 4, it follows that it is enough to select N ≤ O (τ · (4d + 2)3n+3).

The following can be found in (Bai et al., 1989, Lemma 2.1) and (Bai et al., 1989, Theo-
rem 3.2).

Proposition 7. Let G � 0 be a matrix with rational entries indexed on Nn
r . Let L be the factor of

G computed using Cholesky’s decomposition with finite precision δc. Then LLT = G + F where

|Fα,β| ≤
(r + 1)2−δc |Gα,α Gβ,β|

1
2

1 − (r + 1)2−δc
. (2)

In addition, if the smallest eigenvalue λ̃ of G satisfies the inequality

2−δc <
λ̃

r2 + r + (r − 1)λ̃
, (3)

Cholesky’s decomposition returns a rational nonsingular factor L.

6

Algorithm 1 intsos
Input: f ∈ Z[X], positive ε ∈ Q, precision parameters δ,R ∈ N for the SDP solver, precision

δc ∈ N for the Cholesky’s decomposition
Output: list c_list of numbers in Q and list s_list of polynomials in Q[X]

1: P := C (f), Q := P/2 ∩ Nn

2: t :=
∑
α∈Q X2α, fε := f − εt

3: while fε < Σ̊[X] do ε := ε
2 , fε := f − εt

4: done
5: ok := false
6: while not ok do
7: (G̃, λ̃) := sdp(fε, δ,R)
8: (s1, . . . , sr) := cholesky(G̃, λ̃, δc) . fε '

∑r
i=1 s2

i
9: u := fε −

∑r
i=1 s2

i
10: c_list := [1, . . . , 1], s_list := [s1, . . . , sr]
11: for α ∈ Q do εα := ε
12: done
13: c_list, s_list, (εα) := absorb(u,Q, (εα), c_list, s_list)
14: if minα∈Q{εα} ≥ 0 then ok := true
15: else δ := 2δ, R := 2R, δc := 2δc

16: end
17: done
18: for α ∈ Q do c_list := c_list ∪ {εα}, s_list := s_list ∪ {Xα}

19: done
20: return c_list, s_list

Algorithm 2 absorb
Input: u ∈ Q[X], multi-index set Q, lists (εα) and c_list of numbers in Q, list s_list of

polynomials in Q[X]
Output: lists (εα) and c_list of numbers in Q, list s_list of polynomials in Q[X]

1: for γ ∈ supp(u) do
2: if γ ∈ (2N)n then α := γ

2 , εα := εα + uγ
3: else
4: Find α, β ∈ Q such that γ = α + β

5: εα := εα −
|uγ |
2 , εβ := εβ −

|uγ |
2

6: c_list := c_list ∪ { |uγ |2 }

7: s_list := s_list ∪ {Xα + sgn (uγ)Xβ}

8: end
9: done

7

3.1. Algorithm intsos
We present our algorithm intsos computing exact weighted rational SOS decompositions

for polynomials in Z[X] ∩ Σ̊[X].
Given f ∈ Z[X] of degree d = 2k, one first computes its Newton polytope P := C (f) (see

line 1) and Q := P/2 ∩ Nn using standard algorithms such as quickhull by Barber et al. (1996).
The loop going from line 3 to line 4 finds a positive ε ∈ Q such that the perturbed polynomial
fε := f −ε

∑
α∈Q X2α is also in Σ̊[X]. This is done thanks to any external oracle deciding the non-

negativity of a polynomial. Even if this oracle is able to decide non-negativity, we would like
to emphasize that our algorithm outputs an SOS certificate in order to certify the non-negativity
of the input. In practice, we often choose the value of ε while relying on a heuristic technique
rather than this external oracle, for the sake of efficiency (see Section 6 for more details).

If f ∈ Z[X] ∩ Σ̊[X], then the set {e ∈ R>0 : ∀x ∈ Rn, f (x) − e
∑
α∈Q x2α ≥ 0} is non

empty (see the proof of Proposition 5). If the oracle asserts that x 7→ f (x) − e
∑
α∈Q x2α is

non-negative on Rn, then e belongs to this set and it is enough to select ε = e/2 to ensure that
fε := f − ε

∑
α∈Q X2α ∈ Σ̊[X].

Next, we enter in the loop starting from line 6. Given fε ∈ Z[X], positive integers δ and R, the
sdp function calls an SDP solver and tries to compute a rational approximation G̃ of the Gram
matrix associated to fε together with a rational approximation λ̃ of its smallest eigenvalue.

In order to analyse the complexity of the procedure (see Remark 8), we assume that sdp
relies on the ellipsoid algorithm by Grötschel et al. (1993).

Remark 8. In de Klerk and Vallentin (2016), the authors analyze the complexity of the short
step, primal interior point method, used in SDP solvers. Within fixed accuracy, they obtain a
polynomial complexity, as for the ellipsoid method, but the exact value of the exponents is not
provided.

Also, in practice, we use an arbitrary-precision SDP solver implemented with an interior-
point method.

SDP problems are solved with this latter algorithm in polynomial-time within a given ac-
curacy δ and a radius bound R on the Frobenius norm of G̃. The first step consists of solving
SDP (1) by computing an approximate Gram matrix G̃ � 2−δI such that

|Tr (G̃Bγ) − (fε)γ| = |
∑
α+β=γ

G̃α,β − (fε)γ| ≤ 2−δ

and
√

Tr (G̃2) ≤ R. We pick large enough integers δ and R to obtain G̃ � 0 and λ̃ > 0 when
fε ∈ Σ̊[X].

The cholesky function computes the approximate Cholesky’s decomposition LLT of G̃ with
precision δc. In order to guarantee that L will be a rational nonsingular matrix, a preliminary
step consists of verifying that the inequality (3) holds, which happens when δc is large enough.
Otherwise, cholesky selects the smallest δc such as (3) holds. Let vk be the size r vector of all
monomials Xα with α belonging to Q. The output is a list of rational polynomials [s1, . . . , sr]
such that for all i = 1, . . . , r, si is the inner product of the i-th row of L by vk. By Theorem 1, one
would have fε =

∑r
i=1 s2

i with si ∈ R[X] after using exact SDP and Cholesky’s decomposition.
Here, we have to consider the remainder u = f − ε

∑
α∈Q X2α −

∑r
i=1 s2

i , with si ∈ Q[X].
After these steps, the algorithm starts to perform symbolic computation with the absorb

subroutine at line 13. The loop from absorb is designed to obtain an exact weigthed SOS de-
composition of εt + u = ε

∑
α∈Q X2α +

∑
γ uγXγ, yielding in turn an exact decomposition of f .

8

Each term uγXγ can be written either uγX2α or uγXα+β, for α, β ∈ Q. In the former case (line 2),
one has

εX2α + uγX2α = (ε + uγ)X2α .

In the latter case (line 4), one has

ε(X2α + X2β) + uγXα+β = |uγ|/2(Xα + sgn (uγ)Xβ)2 + (ε − |uγ|/2)(X2α + X2β) .

If the positivity test of line 14 fails, then the coefficients of u are too large and one cannot ensure
that εt + u is SOS. So we repeat the same procedure after increasing the precision of the SDP
solver and Cholesky’s decomposition.

In prior work Magron et al. (2018), the authors and Schweighofer formalized and analyzed
an algorithm called univsos2, initially provided in Chevillard et al. (2011). Given a univariate
polynomial f > 0 of degree d = 2k, this algorithm computes weighted SOS decompositions of
f . With t :=

∑k
i=0 X2i, the first numeric step of univsos2 is to find ε such that the perturbed

polynomial fε := f − εt > 0 and to compute its complex roots, yielding an approximate SOS
decomposition s2

1 + s2
2. The second symbolic step is very similar to the loop from line 1 to line 9

in intsos: one considers the remainder polynomial u := fε − s2
1 − s2

2 and tries to computes an
exact SOS decomposition of εt+u. This succeeds for large enough precision of the root isolation
procedure. Therefore, intsos can be seen as an extension of univsos2 in the multivariate case
by replacing the numeric step of root isolation by SDP and keeping the same symbolic step.

Example 9. We apply Algorithm intsos on

f = 4X4
1 + 4X3

1 X2 − 7X2
1 X2

2 − 2X1X3
2 + 10X4

2 ,

with ε = 1, δ = R = 60 and δc = 10. Then

Q := C (f)/2 ∩ Nn = {(2, 0), (1, 1), (0, 2)}

(line 1). The loop from line 3 to line 4 ends and we get f − εt = f − (X4
1 + X2

1 X2
2 + X2

2) ∈ Σ̊[X].
The sdp (line 7) and cholesky (line 8) procedures yield

s1 = 2X2
1 + X1X2 −

8
3

X2
2 , s2 =

4
3

X1X2 +
3
2

X2
2 and s3 =

2
7

X2
2 .

The remainder polynomial is u = f − εt − s2
1 − s2

2 − s2
3 = −X4

1 −
1
9 X2

1 X2
2 −

2
3 X1X3

2 −
781

1764 X4
2 .

At the end of the loop from line 1 to line 9, we obtain ε(2,0) = (ε − X4
1 = 0, which is the

coefficient of X4
1 in εt + u. Then,

ε(X2
1 X2

2 + X4
2) −

2
3

X1X3
2 =

1
3

(X1X2 − X2
2)2 + (ε −

1
3

)(X2
1 X2

2 + X4
2).

In the polynomial εt + u, the coefficient of X2
1 X2

2 is ε(1,1) = ε− 1
3 −

1
9 = 5

9 and the coefficient of X4
4

is ε(0,2) = ε − 1
3 −

781
1764 = 395

1764 .
Eventually, we obtain the weighted rational SOS decomposition:

4X4
1 + 4X3

1 X2 − 7X2
1 X2

2 − 2X1X3
2 + 10X4

2 =
1
3

(X1X2 − X2
2)2 +

5
9

(X1X2)2 +
395

1764
X4

2

+ (2X2
1 + X1X2 −

8
3

X2
2)2 + (

4
3

X1X2 +
3
2

X2
2)2 + (

2
7

X2
2)2) .

9

3.2. Correctness and bit size of the output
Let f ∈ Z[X] ∩ Σ̊[X] of degree d = 2k, τ := τ(f) and Q := C(f)/2 ∩ Nn.

Proposition 10. Let G be a positive definite Gram matrix associated to f and take 0 < ε ∈ Q as
in Proposition 5 so that fε = f − ε

∑
α∈Q X2α ∈ Σ̊[X]. Then, there exist positive integers δ, R such

that G − εI is a Gram matrix associated to fε, satisfies G − εI � 2−δI and
√

Tr ((G − εI)2) ≤ R.
Also, the maximal bit sizes of δ and R are upper bounded byO (τ · (4d + 2)3n+3) andO (τ · (4d + 2)4n+3),
respectively.

Proof. Let λ be the smallest eigenvalue of G. By Proposition 5, G � εI for ε = 1
2N ≤

λ
2 with

N ≤ O (τ · (4d + 2)3n+3). By defining δ := N +1, 2−δ = 1
2N+1 ≤

λ
4 <

λ
2 , yielding G−ε � λ

2 I � 2−δI.
As N ≤ O (τ · (4d + 2)3n+3), one has δ ≤ O (τ · (4d + 2)3n+3).

As in the proof of Proposition 5, we consider the largest eigenvalue λ′ of the Gram matrix G
of f and prove that the set {e′ ∈ R : ∀x ∈ Rn,− f (x) + e′

∑
α∈Q x2α ≥ 0} is not empty. We apply

again Proposition 6 as in the proof of Proposition 5 to establish that this set contains an interval
]0, 1

2N [with N ≤ O (τ · (4d + 2)3n+3). This allows in turn to obtain a rational upper bound ε′ of λ′

with bit size O (τ · (4d + 2)3n+3)). The size of G is bounded by
(

n+k
n

)
, thus the trace of G2 is less

than
(

n+k
n

)
ε′2. Using that for all k ≥ 2,(

n + k
n

)
=

(n + k) · · · (k + 1)
n!

= (1 +
k
n

)(1 +
k

n − 1
) · · · (1 + k) ≤ kn−1(1 + k) ≤ 2kn ≤ dn ,

one has
√

Tr ((G − εI)2) ≤
√

Tr (G2) ≤ d
n
2 ε′ = O (τ · (4d + 2)4n+3).

Proposition 11. Let f be as above. When applying Algorithm intsos to f , the procedure
always terminates and outputs a weighted SOS decompositon of f with rational coefficients. The
maximum bit size of the coefficients involved in this SOS decomposition is upper bounded by
O (τ · (4d + 2)4n+3).

Proof. Let us first consider the loop of Algorithm intsos defined from line 3 to line 4. From
Proposition 5, this loop terminates when fε ∈ Σ̊[X] for ε = 1

2N and N ≤ O (τ · (4d + 2)3n+3).
When calling the sdp function at line 7 to solve SDP (1) with precision parameters δ and R,

we compute an approximate Gram matrix G̃ of fε such that G̃ � 2δI and Tr (G̃2) ≤ R2. From
Proposition 10, this procedure succeeds for large enough values of δ and R of bit size upper
bounded by O (τ · (4d + 2)4n+3). In this case, we obtain a positive rational approximation λ̃ ≥ 2−δ

of the smallest eigenvalue of G̃.
Then the Cholesky decomposition of G̃ is computed when calling the cholesky function at

line 8. The decomposition is guaranteed to succeed by selecting a large enough δc such that (3)
holds. Let r be the size of G̃ and δc be the smallest integer such that 2−δc < 2−δ

r2+r+(r−1)2−δ . Since the
function x 7→ x

r2+r+(r−1)x is increasing on [0,∞) and λ̃ ≥ 2−δ, (3) holds. We obtain an approximate
weighted SOS decomposition

∑r
i=1 s2

i of fε with rational coefficients.
Let us now consider the remainder polynomial u = fε −

∑r
i=1 s2

i . The second loop of Algo-
rithm intsos defined from line 6 to line 17 terminates when for all α ∈ Q, εα ≥ 0. This condition
is fulfilled when for all α ∈ Q, ε −

∑
β∈Q |uα+β|/2 + uα ≥ 0. This latter condition holds when for

all γ ∈ supp(u), |uγ| ≤ ε
r .

Next, we show that this happens when the precisions δ of sdp and δc of cholesky are both
large enough. From the definition of u, one has for all γ ∈ supp(u), uγ = fγ − εγ − (

∑r
i=1 s2

i)γ,
10

where εγ = ε when γ ∈ (2N)n and εγ = 0 otherwise. The positive definite matrix G̃ computed by
the SDP solver is an approximation of an exact Gram matrix of fε. At precision δ, one has for all
γ ∈ supp(f), G̃ � 2−δI and

| fγ − εγ − Tr (G̃Bγ)| = | fγ − εγ −
∑
α+β=γ

G̃α,β| ≤ 2−δ .

In addition, it follows from (2) that the approximated Cholesky decomposition LLT of G̃
performed at precision δ satisfies LLT = G̃ + F with

|Fα,β| ≤
(r + 1)2−δc

1 − (r + 1)2−δc
|G̃α,α G̃β,β|

1
2 ,

for all α, β ∈ Q. Moreover, by using Cauchy-Schwartz inequality, one has∑
α∈Q

G̃α,α = Tr G̃ ≤
√

Tr I
√

Tr G̃2 ≤
√

rR .

For all γ ∈ supp(u), this yields

∣∣∣ ∑
α+β=γ

G̃α,α G̃β,β

∣∣∣ 1
2 ≤

∑
α+β=γ

G̃α,α + G̃β,β

2
≤ Tr G̃ ≤

√
rR ,

where the first inequality comes again from Cauchy-Schwartz inequality.
Thus, for all γ ∈ supp(u), one has

∣∣∣ ∑
α+β=γ

G̃α,β − (
r∑

i=1

s2
i)γ

∣∣∣ =
∣∣∣ ∑
α+β=γ

G̃α,β −
∑
α+β=γ

(LLT)α,β
∣∣∣ =

∣∣∣ ∑
α+β=γ

Fα,β

∣∣∣ ,
which is bounded by

(r + 1)2−δc

1 − (r + 1)2−δc

∑
α+β=γ

|G̃α,α G̃β,β|
1
2 ≤

√
r(r + 1)2−δc R

1 − (r + 1)2−δc
.

Now, let us take the smallest δ such that 2−δ ≤ ε
2r = 1

2N+1r as well as the smallest δc such that
√

r(r+1)2−δc R
1−(r+1)2−δc ≤

ε
2r , that is δ = dN + 1 + log2 re and δc = dlog2 R + log2(r + 1) + log2(2N+1r

√
r + 1)e.

From the previous inequalities, for all γ ∈ supp(u), it holds that

|uγ| = | fγ − εγ − (
r∑

i=1

s2
i)γ| ≤ | fγ − εγ −

∑
α+β=γ

G̃α,β| + |
∑
α+β=γ

G̃α,β − (
r∑

i=1

s2
i)γ| ≤

ε

2r
+
ε

2r
=
ε

r
.

This ensures that Algorithm intsos terminates.
Let us note

∆(u) := {(α, β) : α + β ∈ supp(u) , α, β ∈ Q , α , β} .

When terminating, the first output c_list of Algorithm intsos is a list of non-negative rational
numbers containing the list [1, . . . , 1] of length r, the list

{ |uα+β |

2 : (α, β) ∈ ∆(u)
}

and the list
{εα : α ∈ Q}. The second output s_list of Algorithm intsos is a list of polynomials containing

11

the list [s1, . . . , sr], the list {Xα + sgn (uα+β)Xβ : (α, β) ∈ ∆(u)} and the list {Xα : α ∈ Q}. From
the output, we obtain the following weigthed SOS decomposition

f =

r∑
i=1

s2
i +

∑
(α, β) ∈ ∆(u)

|uα+β|

2
(Xα + sgn (uα+β)Xβ)2 +

∑
α ∈ Q

εαX2α .

Now, we bound the bit size of the coefficients. Since r ≤
(

n+k
n

)
≤ dn and N ≤ O (τ · (4d + 2)3n+3),

one has δ ≤ O (τ · (4d + 2)3n+3). Similarly, δc ≤ O (τ · (4d + 2)4n+3). This bounds also the
maximal bit size of the coefficients involved in the approximate decomposition

∑r
i=1 s2

i as well as
the coefficients of u. In the worst case, the coefficient εα involved in the exact SOS decomposition
is equal to ε −

∑
β∈Q |uα+β|/2 + uα for some α ∈ Q. Using again that the cardinal r of Q is less

than
(

n+k
n

)
≤ dn, we obtain a maximum bit size upper bounded by O (τ · (4d + 2)3n+3).

3.3. Bit complexity analysis
Theorem 12. For f as above, there exist ε, δ, R, δc of bit sizes upper bounded byO (τ · (4d + 2)4n+3)
such that intsos(f , ε, δ,R, δc) runs in boolean time O (τ2 · (4d + 2)15n+6).

Proof. We consider ε, δ, R and δc as in the proof of Proposition 11, so that Algorithm intsos
only performs a single iteration within the two while loops before terminating. Thus, the bit size
of each input parameter is upper bounded by O (τ · (4d + 2)4n+3).

Computing C(f) with the quickhull algorithm runs in boolean time O (V2) for a polytope
with V vertices. In our case V ≤

(
n+d

n

)
≤ 2dn, so that this procedure runs in boolean time

O (dn+1). Next, we investigate the computational cost of the call to sdp at line 7. Let us note
nsdp = r (resp. msdp) the size (resp. number of entries) of G̃. This step consists of solving SDP (1),
which is performed in O (n4

sdp log2(2τnsdp R 2δ)) iterations of the ellipsoid method, where each
iteration requires O (n2

sdp(msdp + nsdp)) arithmetic operations over log2(2τnsdp R 2δ)-bit numbers

(see e.g. Grötschel et al. (1993)). Since msdp, nsdp are both bounded above by
(

n+d
n

)
≤ 2dn, one

has

log2(2τnsdp R 2δ) ≤ O (τ · (4d + 2)4n+3) ,

n2
sdp(msdp + nsdp) ≤ O (d3n) ,

n4
sdp log2(2τnsdp R 2δ) ≤ O (τ · (4d + 2)8n+3) .

Overall, the ellipsoid algorithm runs in boolean time O (τ2 · (4d + 2)15n+6) to compute the ap-
proximate Gram matrix G̃. We end with the cost of the call to cholesky at line 8. Cholesky’s
decomposition is performed in O (n3

sdp) arithmetic operations over δc-bit numbers. Since δc ≤

O (τ · (4d + 2)4n+3), the function runs in boolean time O (τ · (4d + 2)7n+3). The other elementary
arithmetic operations performed while running Algorithm intsos have a negligible cost w.r.t. to
the sdp procedure.

3.4. Comparison with the rounding-projection algorithm of Peyrl and Parrilo
We recall the algorithm designed in Peyrl and Parrilo (2008). We denote this rounding-

projection algorithm by RoundProject.
The first main step in Line 5 consists of rounding the approximation G̃ of a Gram matrix

associated to f up to precision δi. The second main step in Line 8 consists of computing the
12

Algorithm 3 RoundProject
Input: f ∈ Z[X], rounding precision δi ∈ N, precision parameters δ,R ∈ N for the SDP solver
Output: list c_list of numbers in Q and list s_list of polynomials in Q[X]

1: P := C (f), Q := P/2 ∩ Nn

2: ok := false
3: while not ok do
4: (G̃, λ̃) := sdp(f , δ,R)
5: G′ := round(G̃, δi)
6: for α, β ∈ Q do
7: η(α + β) := #{(α′, β′) ∈ Q2 | α′ + β′ = α + β}

8: G(α, β) := G′(α, β) − 1
η(α+β)

(∑
α′+β′=α+β G′(α′, β′) − fα+β

)
9: done

10: (c1, . . . , cr, s1, . . . , sr) := ldl(G) . f =
∑r

i=1 cis2
i

11: if c1, . . . , cr ∈ Q>0, s1, . . . , sr ∈ Q[X] then ok := true
12: else δ := 2δ, R := 2R, δc := 2δc

13: end
14: done
15: c_list := [c1, . . . , cr], s_list := [s1, . . . , sr]
16: return c_list, s_list

orthogonal projection G of G′ on an adequate affine subspace in such a way that
∑
α+β=γ Gα,β =

fγ, for all γ ∈ supp(f). For more details on this orthogonal projection, we refer to (Peyrl and
Parrilo, 2008, Proposition 7). The algorithm then performs in (10) an exact diagonalization of
the matrix G via the LDLT decomposition (see e.g. (Golub and Loan, 1996, § 4.1)). It is proved
in (Peyrl and Parrilo, 2008, Proposition 8) that for f ∈ Σ̊[X], Algorithm RoundProject returns a
weighted SOS decomposition of f with rational coefficients when the precision of the rounding
and SDP solving steps are large enough.

The main differences w.r.t. Algorithm intsos are that RoundProject does not perform a
perturbation of the input polynomial f and computes an exact LDLT decomposition of a Gram
matrix G. In our case, we compute an approximate Cholesky’s decomposition of G̃ instead
of a projection, then perform an exact compensation of the error terms, thanks to the initial
perturbation.

The next result gives upper bounds on the bit size of the coefficients involved in the SOS
decomposition returned by RoundProject as well as upper bounds on the boolean running time.
Even though intsos and RoundProject have the same exponential bit complexity, the upper
bound estimates are larger in the case of RoundProject. It would be worth investigating whether
these bounds are tight in general.

Theorem 13. For f as above, there exist δi, δ, R of bit sizes ≤ O (τ · (4d + 2)4n+3) such that
RoundProject(f , δi, δ,R) outputs a rational SOS decomposition of f with rational coefficients.
The maximum bit size of the coefficients involved in this SOS decomposition is upper bounded by
O (τ · (4d + 2)6n+3) and the boolean running time is O (τ2 · (4d + 2)15n+6).

Proof. Let us assume that Algorithm RoundProject returns a matrix G � 0 associated to f with
smallest eigenvalue λ and let N ∈ N be the smallest integer such that 2−N ≤ λ. As in Proposi-
tion 10, one proves that the bit size of N is upper bounded by O (τ · (4d + 2)3n+3). By (Peyrl and

13

Parrilo, 2008, Proposition 8), Algorithm RoundProject terminates and outputs such a matrix G
together with a weighted rational SOS decomposition of f if 2−δi + 2−δ

′

≤ 2−N , where δ′ stands
for the euclidean distance between G′ and G, yielding√ ∑

α,β∈Q

(Gα,β −G′α,β)
2 = 2−δ

′

.

For all α, β ∈ Q, one has |G′α,β − G̃α,β| ≤ 2−δi . As in the proof of Proposition 11, at SDP precision
δ, one has for all γ ∈ supp(f), G̃ � 2−δI and

| fγ −
∑
α+β=γ

G̃α,β| ≤ 2−δ .

For all α, β ∈ Q, let us define eα,β :=
∑
α′+β′=α+β G′(α′, β′) − fα+β and note that

|eα,β| ≤
∑

α′+β′=α+β

∣∣∣∣G′(α′, β′) − G̃(α′, β′)
∣∣∣∣ +

∣∣∣∣ ∑
α′+β′=α+β

G̃(α′, β′) − fα+β

∣∣∣∣ ≤ η(α + β)2−δi + 2−δ .

For all α, β ∈ Q, we use the fact that η(α + β) ≥ 1 and that the cardinal of Q is less than the size
r of G, with r ≤ dn, to obtain

2−δ
′

=
∑
α,β∈Q

eα,β
η(α + β)

≤ d2n(2−δi + 2−δ).

To ensure that 2−δi + 2−δ
′

≤ 2−N , it is sufficient to have (d2n + 1)2−δi + d2n2−δ ≤ 2−N , which is
obtained with δi and δ with bit size upper bounded by O (τ · (4d + 2)3n+3). The bit size of the
coefficients involved in the weighted SOS decomposition is upper bounded by the output bit size
of the LDLT decomposition of the matrix G, that is O (δir3) = O (τ · (4d + 2)6n+3).
The bound on the running time is obtained exactly as in Theorem 11.

4. Exact Reznick and Hilbert-Artin’s representations

Next, we show how to apply Algorithm intsos to decompose positive definite forms and
positive polynomials into SOS of rational functions.

4.1. Exact Reznick’s representations

Let Gn :=
∑n

i=1 X2
i and Sn−1 := {x ∈ Rn : Gn(x) = 1} be the unit (n − 1)-sphere. A positive

definite form f ∈ R[X] is a homogeneous polynomial which is positive over Sn−1. For such a
form, we set

ε(f) :=
minx∈Sn−1 f (x)
maxx∈Sn−1 f (x)

,

which measures how close f is to having a zero in Sn−1. While there is no guarantee that
f ∈ Σ[X], Reznick (1995) proved that for large enough D ∈ N, fGD

n ∈ Σ[X]. Such SOS de-
compositions are called Reznick’s representations and D is called the Reznick’s degree. The next
result states that for large enough D ∈ N, fGD

n ∈ Σ̊[X], as a direct consequence of Reznick
(1995).

14

Lemma 14. Let f be a positive definite form of degree d = 2k in Z[X] and D ≥ nd(d−1)
4 log 2 ε(f)−

n+d
2 +1.

Then f GD
n ∈ Σ̊[X].

Proof. First, for any positive e < minx∈Sn−1 f (x), the form (f − eGk
n) is positive on Sn−1. Then,

for any nonzero x ∈ Rn, one has

f (x) − eGn(x)k = Gn(x)k
(

f
(x
Gn(x)

)
− e

)
> 0 ,

implying that (f − eGk
n) is positive definite. Next, (Reznick, 1995, Theorem 3.12) implies that

for any positive integer De such that

De ≥ De :=
nd(d − 1)

4 log 2 ε(f − eGk
n)
−

n + d
2

,

one has (f − eGk
n) GDe

n ∈ Σ[X]. One has Gk+De
n =

∑
|α|=k+De

(
k+De
α1!...αn!

)
X2α. Let vk+De (X) be the

vector of monomials with exponents in Nn
k+De

. Then, one can write Gk+De
n = vT

k+De
Avk+De with

A being a diagonal matrix with positive entries
(

k+De
α1!...αn!

)
, thus A � 0. Next we select e small

enough so that there is no term cancellation in (f − eGk
n), ensuring that the Newton polytope of

(f − eGk
n) is equal to Nn

2k. This in turn implies that the Newton polytope of (f − eGk
n) GDe

n is
equal to Nn

2(k+De). Since (f − eGk
n) GDe

n ∈ Σ[X], there exists A′ � 0 indexed by Nn
k+De

such that
fGDe

n − eGk+De
n = vT

k+De
A′vk+De . This yields fGDe

n = vT
k+De

(eA + A′)vk+De . Since eA + A′ � 0,
Theorem 3 implies that f GDe

n ∈ Σ̊[X].
Next, with D := nd(d−1)

4 log 2 ε(f) −
n+d

2 , we prove that there exists a large enough N ∈ N such that

for e =
minx∈Sn−1 f (x)

N , De ≤ D + 1. Since f GDe
n ∈ Σ̊[X] for all De ≥ De, this will yield the desired

result. For any x ∈ Sn−1, one has Gn(x)k = 1, thus

min
x∈Sn−1

(f (x) − eGn(x)k) = min
x∈Sn−1

f (x) − e , max
x∈Sn−1

(f (x) − eGn(x)k) = max
x∈Sn−1

f (x) − e .

Hence,

ε(f − eGk
n) =

minx∈Sn−1 f (x)[1 − 1/N]
minx∈Sn−1 f (x)[1/ε(f) − 1/N]

=
ε(f)(N − 1)

N − ε(f)
.

Therefore, one has De =
N−ε(f)

N−1
nd(d−1)

4 log 2 ε(f) −
n+d

2 , yielding De − D =
1−ε(f)

N−1
nd(d−1)

4 log 2 ε(f) . By choosing

N > b (1−ε(f))nd(d−1)
4 log 2 ε(f) + 1c, one ensures that De − D ≤ 1, which concludes the proof.

Algorithm Reznicksos takes as input f ∈ Z[X], finds the smallest D ∈ N such that f GD
n ∈

Σ̊[X], thanks to an oracle which decides if some given polynomial is a positive definite form.
Further, we denote by interiorSOScone a routine which takes as input f ,Gn and D and returns
true if and only if f GD

n ∈ Σ̊[X], else it returns false. Then, intsos is applied on f GD
n .

Example 15. Let us apply Reznicksos on the perturbed Motzkin polynomial

f = (1 + 2−20)(X6
3 + X4

1 X2
2 + X2

1 X4
2) − 3X2

1 X2
2 X2

3 .

With D = 1, one has f Gn = (X2
1 + X2

2 + X2
3) f ∈ Σ̊[X] and intsos yields an SOS decomposition

of f Gn with ε = 2−20, δ = R = 60, δc = 10.
15

Algorithm 4 Reznicksos
Input: f ∈ Z[X], positive ε ∈ Q, precision parameters δ,R ∈ N for the SDP solver, precision

δc ∈ N for the Cholesky’s decomposition
Output: list c_list of numbers in Q and list s_list of polynomials in Q[X]

1: D := 0
2: while interiorSOScone(f Gn,D) = false do D := D + 1
3: done
4: return intsos(f GD

n , ε, δ,R, δc)

Theorem 16. Let f ∈ Z[X] be a positive definite form of degree d, coefficients of bit size at most
τ. On input f , Algorithm Reznicksos terminates and outputs a weighted SOS decomposition
for f . The maximum bit size of the coefficients involved in the decomposition and the boolean
running time of the procedure are both upper bounded by 2O (τ·(4d+2)4n+3).

Proof. By Lemma 14, the while loop from line 2 to 3 is ensured to terminate for a positive
integer D ≥ nd(d−1)

4 log 2 ε(f) −
n+d

2 . By Proposition 11, when applying intsos to f GD
n , the procedure

always terminates. The outputs are a list of non-negative rational numbers [c1, . . . , cr] and a list
of rational polynomials [s1, . . . , sr] providing the weighted SOS decompositon f GD

n =
∑r

i=1 cis2
i .

Thus, we obtain f =
∑r

i=1 ci
s2

i
GD

n
, yielding the first claim.

Since, (X2
1 + · · · + X2

n)D =
∑
|α|=D

D!
α1!···αn! X2α, each coefficient of GD

n is upper bounded by∑
|α|=D

D!
α1!···αn! = nD. Thus τ(f GD

n) ≤ τ + D log n. Using again Proposition 11, the maxi-
mum bit size of the coefficients involved in the weighted SOS decomposition of f GD

n is upper
bounded by O ((τ + D log n)(4d + 8D + 2)3n+3). Now, we derive an upper bound on D. One has
minx∈Sn−1 f (x) := min{e ∈ R>0 : f (x) − e = 0 , x ∈ Sn−1}.
Again, we rely on Proposition 6 to show that minx∈Sn−1 f (x) ≥ 2−O (τ·(4d+2)3n+3). Similarly, we
obtain maxx∈Sn−1 f (x) ≤ 2O (τ·(4d+2)3n+3) and thus 1

ε(f) ≤ 2O (τ·(4d+2)3n+3). Overall, we obtain

nd(d − 1)
4 log 2 ε(f)

−
n + d

2
+ 1 ≤ D ≤ 2O (τ·(4d+2)3n+3) .

This implies that

O ((τ + D log n)(4d + 8D + 2)3n+3) ≤ 2(3n+3)O (τ·(4d+2)3n+3) ≤ 2O (τ·(4d+2)4n+3) .

From Theorem 12, the running time is upper bounded by O ((τ + D log n)2(4d + 8D + 2)15n+6),
which ends the proof.

The bit complexity of Reznicksos is polynomial in the Reznick’s degree D of the represen-
tation. In all the examples we tackled, this degree was rather small as shown in Section 6.

4.2. Exact Hilbert-Artin’s representations
Here, we focus on the subclass of non-negative polynomials in Z[X] which admit an Hilbert-

Artin’s representation of the form f = σ̊
h2 , with h being a nonzero polynomial in R[X] and

σ̊ ∈ Σ̊[X].
We start to recall the famous result by Artin, providing a general solution to Hilbert’s 17th prob-
lem:

16

Theorem 17. (Artin, 1927, Theorem 4) Let f ∈ R[X] be a polynomial non-negative over the
reals. Then, f can be decomposed as a sum of squares of rational functions with rational coeffi-
cients and there exist a nonzero h ∈ Q[X] and σ ∈ Σ[X] such that f = σ

h2 .

Given f ∈ R[X] non-negative over the reals, let us note deg f = d = 2k, and τ = τ(f). Given
D ∈ N, we denote by S D the convex hull of the set

supp(f) + Nn
2D = {α + β | α ∈ supp(f), β ∈ Nn

2D} ⊆ Nn
d+2D.

Finally, we set QD := S D/2 ∩ Nn
k+D.

To compute Hilbert-Artin’s representation, one can solve the following SDP program:

sup
G,H�0

Tr G (4)

s.t. Tr (H Fγ) = Tr (G Bγ) , ∀γ ∈ QD ,

Tr (H) = 1 .

where Bγ is as for SDP (1), with rows (resp. columns) indexed by QD, and Fγ has rows
(resp. columns) indexed by Nn

D with (α, β) entry equal to
∑
α+β+δ=γ fδ. Let us now provide the

rationale behind SDP (4). The first set of trace equality constraints allows one to find a Gram
matrix H associated to h2, with rows (resp. columns) indexed by Nn

D, as well as a Gram matrix
G associated to σ, with rows (resp. columns) indexed by QD. The last trace equality constraint
allows one to ensure that H is not the zero matrix. Note that we are only interested in finding
a stricly feasible solution for SDP (4), thus we can choose any objective function. Here, we
maximize the trace, as we would like to obtain a full rank matrix for G.

Proposition 18. Let f ∈ Z[X] be a polynomial non-negative over the reals, with deg f = d = 2k.
Let us assume that f admits the Hilbert-Artin’s representation f = σ

h2 , with σ ∈ Σ̊[X], h ∈ Q[X],
deg h = D ∈ N and degσ = 2(D+k). Let QD be defined as above. Then, there exist σ̊D, σ̊ ∈ Σ̊[X]
such that

σ̊D f = σ̊ ,

ensuring the existence of a strictly feasible solution G,H � 0 for SDP (4).

Proof. By applying Proposition 5 to h2 f , there exists ε > 0 such that σ̃ := h2 f − ε
∑
α∈QD

X2α ∈

Σ̊[X]. In addition, for all λ > 0, one has

h2 f = h2 f + λ f
∑
α∈Nn

D

X2α − λ f
∑
α∈Nn

D

X2α =
(
h2 + λ

∑
α∈Nn

D

X2α)
)

f − λ f
∑
α∈Nn

D

X2α = σ̃ + ε
∑
α∈QD

X2α .

Let us define uλ := λ f
∑
α∈Nn

D
X2α. As in the proof of Proposition 11, we show that for small

enough λ, the polynomial ε
∑
α∈QD

X2α + uλ belongs to Σ[X]. Fix such a λ, and define σ̊ :=
σ̃ + ε

∑
α∈QD

X2α + uλ and σ̊D := h2 + λ
∑
α∈Nn

D
X2α. Since σ̃ ∈ Σ̊[X], there exists a positive

definite Gram matrix G associated to σ̊. Similarly, there exists a positive definite Gram matrix H
associated to σ̊D. By Theorem 3, this implies that σ̊, σ̊D ∈ Σ̊[X], showing the claim.

To find such representations in practice, we consider a perturbation of the trace equality
constraints of SDP (4) where we replace the matrix G by the matrix G − εI:

Pε : sup
G,H�0

Tr G

s.t. Tr (H Fγ) = Tr (G Bγ) − εTr (Bγ) , ∀γ ∈ QD ,

Tr (H) = 1 .

17

For D ∈ N, let us note Σ̊D(X) := { σ
σD

: σ ∈ Σ̊[X], σD ∈ Σ[X] with degσD ≤ 2D}.
Algorithm Hilbertsos takes as input f ∈ Z[X], finds σD ∈ Σ[X] of smallest degree 2D such
that f σD ∈ Σ̊[X], thanks to an oracle as in intsos (i.e., the smallest D for which f ∈ Σ̊D(X)).
Then, the algorithm finds the largest rational ε > 0 such that Problem Pε has a strictly feasible
solution. Problem Pε is solved by calling the sdp function, relying on an SDP solver. Eventu-
ally, the algorithm calls the procedure absorb, as in intsos, to recover an exact rational SOS
decomposition.

Algorithm 5 Hilbertsos
Input: f ∈ Z[X] of degree d = 2k, positive ε ∈ Q, precision parameters δ,R ∈ N for the

SDP solver, precision δc ∈ N for the Cholesky’s decomposition lists c_list1, c_list2 of
numbers in Q and lists s_list1, s_list2 of polynomials in Q[X]

1: D := 1
2: while f < Σ̊[X]/ΣD[X] do D := D + 1
3: done
4: Compute the convex hull S D of supp(f) + Nn

d+2D
5: QD := S D/2 ∩ Nn

k+D
6: t :=

∑
α∈QD

X2α

7: while Problem Pε has no strictly feasible solution do ε := ε
2

8: done
9: ok := false

10: while not ok do
11: (G̃, H̃, λ̃1, λ̃2) := sdp(f , ε, δ,R)
12: (s11, . . . , s1r1) := cholesky(G̃, λ̃1, δc)
13: (s21, . . . , s2r2) := cholesky(H̃, λ̃2, δc)
14: σ̃ :=

∑r1
i=1 s2

1i, σ̃D :=
∑r2

i=1 s2
2i

15: u := σ̃D f − σ̃ − εt
16: c_list1 := [1, . . . , 1], s_list1 := [s11, . . . , sr11]
17: c_list2 := [1, . . . , 1], s_list2 := [s12, . . . , sr22]
18: for α ∈ QD do εα := ε
19: done
20: c_list1, s_list1, (εα) := absorb(u,QD, (εα), c_list1, s_list1)
21: if minα∈QD {εα} ≥ 0 then ok := true
22: else δ := 2δ, R := 2R, δc := 2δc

23: end
24: done
25: for α ∈ QD do c_list1 := c_list1 ∪ {εα}, s_list1 := s_list1 ∪ {Xα}

26: done
27: return c_list1, c_list2, s_list1, s_list2

Theorem 19. Let f ∈ Z[X] ∩ Σ̊D(X) and assume that the SOS polynomials involved in the de-
nominator of f have coefficients of bit size at most τD ≥ τ. On input f , Algorithm Hilbertsos
terminates and outputs a weighted SOS decomposition for f . There exist ε, δ,R, δc of bit sizes up-
per bounded by O (τD · (4d + 4D + 2)3n+3) such that Hilbertsos(f , ε, δ,R, δc) runs in boolean
running time O (τ2

D · (4d + 4D + 2)15n+6).

Proof. Since f ∈ Σ̊D(X), the first loop of Algorithm Hilbertsos terminates and there exists
18

a strictly feasible solution for SDP (4), by Proposition (18). Thus, there exists a small enough
ε > 0 such that Problem Pε has also a strictly feasible solution. This ensures that the second
loop of Algorithm Hilbertsos terminates. Then, one shows as for Algorithm intsos that the
absorption procedure succeeds, yielding termination of the third loop. Let us note

∆D(u) := {(α, β) : α + β ∈ supp(u) , α, β ∈ QD , α , β} .

The first output c_list1 of Algorithm Hilbertsos is a list of non-negative rational numbers
containing the list [1, . . . , 1] of length r1, the list

{ |uα+β |

2 : (α, β) ∈ ∆D(u)
}

and the list {εα : α ∈ QD}.
The second output s_list1 of Algorithm intsos is a list of polynomials containing the list
[s11, . . . , sr11], the list {Xα + sgn (uα+β)Xβ : (α, β) ∈ ∆D(u)} and the list {Xα : α ∈ QD}. From
these two outputs, one reconstructs the weighted SOS decomposition of the numerator σ of f .
The third output c_list2 is a list of non-negative rational numbers containing the list [1, . . . , 1]
of length r2 and the fourth output is a list of polynomials [s12, . . . , sr22]. From these two outputs,
one reconstructs the weighted SOS decomposition of the denominator σD of f . At the end, we
obtain the weighted SOS decomposition f = σ

σD
with

σD :=
r2∑

i=1

s2
2i , σ :=

r1∑
i=1

s2
1i +

∑
(α, β) ∈ ∆D (u)

|uα+β|

2
(Xα + sgn (uα+β)Xβ)2 +

∑
α ∈ QD

εαX2α .

Writing f = σ
σD

, one shows as in Proposition 5 that the largest rational number belonging to
the set {ε ∈ R>0 : ∀x ∈ Rn, σD(x) f (x) − ε

∑
α∈QD

x2α ≥ 0} has bit size upper bounded by
O (τD · (4d + 4D + 2)3n+3). We conclude our bit complexity analysis as in Proposition 11 and
Theorem 12.

Remark 20. Note that even if the bit complexity of Hilbertsos is polynomial in the degree D of
the denominator, this degree can be rather large. In Lombardi et al. (2018), the authors provide
an upper bound expressed with a tower of five exponentials for the degrees of denominators
involved in Hilbert-Artin’s representations.

5. Exact Putinar’s representations

We let f , g1, . . . , gm in Z[X] of degrees less than d ∈ N and τ ∈ N be a bound on the bit size
of their coefficients. Assume that f is positive over S := {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0}
and reaches its infimum with f ? := minx∈S f (x) > 0. With f =

∑
|α|≤d fαxα, we set ‖ f ‖ :=

max|α|≤d
fαα1!···αn!
|α|! and g0 := 1.

We consider the quadratic module Q(S) :=
{∑m

j=0 σ jg j : σ j ∈ Σ[x]
}

and, for D ∈ N, the
D-truncated quadratic module QD(S) :=

{∑m
j=0 σ jg j : σ j ∈ Σ[x] , deg(σ jg j) ≤ D

}
generated

by g1, . . . , gm. We say that Q(S) is archimedean if N − Gn ∈ Q(S) for some N ∈ N (recall that
Gn :=

∑n
i=1 X2

i). We also assume in this section:

Assumption 21. The set S is a basic compact semi-algebraic set with nonempty interior, in-
cluded in [−1, 1]n and Q(S) is archimedean.

Under Assumption 21, f is positive over S only if f ∈ QD(S) for some D ∈ 2N (see Putinar
(1993)). In this case, there exists a Putinar’s representation f =

∑m
i=0 σ jg j with σ j ∈ Σ[X] for

19

0 ≤ j ≤ m. One can certify that f ∈ QD(S) for D = 2k by solving the next SDP with k ≥ dd/2e:

inf
G0,G1,...,Gm�0

Tr (G0 B0) +

m∑
i=1

g j(0) Tr (G j C j0) (5)

s.t. Tr (G0 Bγ) +

m∑
j=1

Tr (G j C jγ) = fγ , ∀γ ∈ Nn
D − {0} ,

where Bγ is as for SDP (1) and C jγ has rows (resp. columns) indexed by Nn
k−w j

with (α, β) entry
equal to

∑
α+β+δ=γ g jδ. SDP (5) is a reformulation of the problem

f ?D := sup{b : f − b ∈ QD(S)} .

Thus f ?D is also the optimal value of SDP (5). The next result follows from (Lasserre, 2001,
Theorem 4.2):

Theorem 22. We use the notation and assumptions introduced above. For D ∈ 2N large enough,
one has

0 < f ?D ≤ f ? .

In addition, SDP (5) has an optimal solution (G0,G1, . . . ,Gm), yielding the following Putinar’s
representation:

f − f ?D =

r∑
i=1

λi0q2
i0 +

m∑
i=1

g j

r j∑
i=1

λi jq2
i j ,

where the vectors of coefficients of the polynomials qi j are the eigenvectors of G j with respective
eigenvalues λi j, for all j = 0, . . . ,m.

The complexity of Putinar’s Positivstellensätz was analyzed by Nie and Schweighofer (2007):

Theorem 23. With the notation and assumptions introduced above, there exists a real χS > 0
depending on S such that

(i) for all even D ≥ χS exp
(
d2nd ‖ f ‖

f ?
)χS , f ∈ QD(S).

(ii) for all even D ≥ χS exp
(
2d2nd)χS , 0 ≤ f ? − f ?D ≤

6d3n2d‖ f ‖
χS
√

log D
χS

.

From a computational viewpoint, one can certify that f lies in QD(S) for D = 2k large
enough, by solving SDP (5). Next, we show how to ensure the existence of a strictly feasible
solution for SDP (5) after replacing the set defined by our initial constraints S by the following
one

S ′ := {x ∈ S : 1 − x2α ≥ 0 ,∀α ∈ Nn
k} .

5.1. Preliminary results

We first give a lower bound for f ?.

Proposition 24. With the above notation and assumptions, one has

f ? ≥ 2−(τ+d+d log2 n+1)dn+1
d−(n+1)dn+1

≥ 2−O (τ·d2n+2) .

20

Proof. Let Y = (Y1, . . . ,Yn) and f̃ ∈ Z[Y] be the polynomial obtained by replacing Yi by 2nYi−1
in f . Note that if x = (x1, . . . , xn) ∈ S ⊆ [−1, 1]n, then y =

((
xi+1
2n

))
1≤i≤n

lies in the standard
simplex ∆n, so the polynomial f̃ takes only positive values over ∆n. Since xi = 2nyi − 1 and
(2n− 1)d ≤ (2n)d, the polynomial f̃ has coefficients of bit size at most τ+ d + d log2 n. Then, the
inequality follows from (Jeronimo and Perrucci, 2010, Theorem 1), stating that

min
y∈∆n

f̃ (y) > 2−(τ(f̃)+1)dn+1
d−(n+1)dn+1

.

We obtain the second inequality after noticing that for all d ≥ 2, one has d log2 ndn+1 ≤ d2n+2,
ndn+1 ≤ d2n+1, d ≤ 2d, and 2d2n+2

dd2n+1
≤ 22d2n+2

.

Theorem 25. We use the notation and assumptions introduced above. There exists D ∈ 2N such
that:
(i) f ∈ QD(S) with the representation

f = f ?D +

m∑
j=0

σ jg j ,

for f ?D > 0, σ j ∈ Σ[X] with deg(σ jg j) ≤ D for all j = 0, . . . ,m.
(ii) f ∈ QD(S ′) with the representation

f =

m∑
j=0

σ̊ jg j +
∑
|α|≤k

cα(1 − X2α) ,

for σ̊ j ∈ Σ̊[X] with deg(σ̊ jg j) ≤ D, for all j = 0, . . . ,m, and some sequence of positive numbers
(cα)|α|≤k.
(iii) There exists a real CS > 0 depending on S and ε = 1

2N with positive N ∈ N such that

f − ε
∑
|α|≤k

X2α ∈ QD(S ′) , N ≤ 2CS τd2n+2
,

where τ is the maximal bit size of the coefficients of f , g1, . . . , gm.

Proof. Let χS be as in Theorem 23 and D = 2k be the smallest integer larger than

D := max{χS exp
(12d3n2d‖ f ‖

f ?
)χS
, χS (2d2nd)χS } .

Theorem 23 implies that f ∈ QD(S) and f ? − f ?D ≤
6d3n2d‖ f ‖
χS
√

log D
χS

≤
f ?

2 .

(i) This yields the representation f − f ?D =
∑m

j=0 σ jg j, with f ?D ≥
f ?

2 > 0, σ j ∈ Σ[X] and
deg(σ jg j) ≤ D for all j = 0, . . . ,m.

(ii) For 1 ≤ j ≤ m, let us define

t j :=
∑
|α|≤k−w j

X2α , t0 :=
∑
|α|≤k

X2α , t :=
m∑

j=0

t jg j .

21

For a given ν > 0, we use the perturbation polynomial −νt = −ν
∑
|γ|≤D tγXγ. For each term

−tγXγ, one has γ = α + β with α, β ∈ Nn
k , thus

−tγXγ = |tγ|(−1 +
1
2

(1 − X2α) +
1
2

(1 − X2β) +
1
2

(Xα − sgn (tγ)Xβ)2) .

As in the proof of Proposition 11, let us note

∆(t) := {(α, β) : α + β ∈ supp(t) , α, β ∈ Nn
k , α , β} .

Hence, for all α ∈ Nn
k , there exists dα ≥ 0 such that

f = f−νt+νt = f ?D−
∑
|γ|≤D

ν|tγ|+
m∑

j=0

σ jg j+νt+
∑
|α|≤k

dα(1−X2α)+ν
∑

(α,β)∈∆(t)

|tα+β|

2
(Xα−sgn (tα+β)Xβ)2 .

Since one has not necessarily dα > 0 for all α ∈ Nn
k , we now explain how to handle the case when

dα = 0 for α ∈ Nn
k . We write

−
∑
|γ|≤D

ν|tγ| +
∑
|α|≤k

dα(1 − X2α) = −
∑
|γ|≤D

ν|tγ| −
∑
α:dα=0

ν +
∑
α:dα=0

ν(1 − X2α) +
∑
α:dα=0

νX2α

+
∑
|α|:dα=0

dα(1 − X2α) +
∑
|α|:dα>0

dα(1 − X2α) .

For α ∈ Nn
k , we define cα := ν if dα = 0 and cα := dα otherwise, a :=

∑
|γ|≤D |tγ| +

∑
α:dα=0 1,

σ̊ j := σ j + νt j, for each j = 1, . . . ,m and

σ̊0 := f ?D − νa + σ0 + νt0 + ν
∑

(α,β)∈∆(t)

|tα+β|

2
(Xα − sgn (tα+β)Xβ)2 +

∑
α:dα=0

νX2α .

So, there exists a sequence of positive numbers (cα)|α|≤k such that

f =

m∑
j=0

σ̊ jg j +
∑
|α|≤k

cα(1 − X2α) .

Now, let us select ν := 1
2M with M being the smallest positive integer such that 0 < ν ≤

f ?D
2a . This

implies the existence of a positive definite Gram matrix for σ̊0, thus by Theorem 3, σ̊0 ∈ Σ̊[X].
Similarly, for 1 ≤ j ≤ m, σ̊ j belongs to Σ̊[X], which proves the second claim.

(iii) Let N := M + 1 and ε := 1
2N = ν

2 . One has

f − ε
∑
|α|≤k

X2α = f − εt0 = σ̊0 − εt0 +

m∑
j=1

σ̊ jg j +
∑
|α|≤k

cα(1 − X2α) .

Thus, σ0 + (ν − ε)t0 ∈ Σ̊[X]. This implies that σ̊0 − εt0 ∈ Σ̊[X] and f − εt0 ∈ QD(S ′). Next, we
derive a lower bound of f ?D

a . Since

t =
∑
|α|≤k

X2α +

m∑
j=1

g j

∑
|α|≤k−w j

X2α ,

22

one has ∑
|γ|≤D

|tγ| ≤ 2τ(m + 1)
(
n + D

n

)
.

This implies that

a ≤ 2τ(m + 1)
(
n + D

n

)
+

(
n + k

k

)
≤ 2τ(m + 2)

(
n + D

n

)
.

Recall that f ?

2 ≤ f ?D , implying

f ?D
a
≥

f ?

2τ+1(m + 2)
(

n+D
n

) ≥ 1
(m + 2)2−O (τd2n+2)Dn

,

where the last inequality follows from Theorem 24. Let us now give an upper bound of log2 D.
First, note that for all α ∈ Nn, |α|!

α1!···αn! ≥ 1, thus ‖ f ‖ ≤ 2τ. Since D is the smallest even integer
larger than D, one has

log2 D ≤ 1 + log2 D ≤ 1 + log χS + (12d3n2d2τ2O (τd2n+2))χS .

Next, since N is the smallest integer such that ε = 1
2N = ν

2 ≤
f ?D
2a , it is enough to take

N ≤ 1 + log2(m + 2) + 2O (τd2n+2) + n log2 D ≤ 2CS τd2n+2
,

for some real CS > 0 depending on S , the desired result.

5.2. Algorithm Putinarsos

We can now present Algorithm Putinarsos.

For f ∈ Z[X] positive over a basic compact semi-algebraic set S satisfying Assumption 21,
the first loop outputs the smallest positive integer D = 2k such that f ∈ QD(S).
Then the procedure is similar to intsos. As for the first loop of intsos, the loop from line 6
to line 7 allows us to obtain a perturbed polynomial fε ∈ QD(S ′), with S ′ := {x ∈ S : 1 − x2α ≥

0 ,∀α ∈ Nn
k}.

Then one solves SDP (5) with the sdp procedure and performs Cholesky’s decomposition to
obtain an approximate Putinar’s representation of fε = f − εt and a remainder u.
Next, we apply the absorb subroutine as in intsos. The rationale is that with large enough
precision parameters for the procedures sdp and cholesky, one finds an exact weighted SOS
decomposition of u + εt, which yields in turn an exact Putinar’s representation of f in QD(S ′)
with rational coefficients.

Example 26. Let us apply Putinarsos to f = −X2
1 − 2X1X2 − 2X2

2 + 6, S := {(x1, x2) ∈ R2 :
1 − x2

1 ≥ 0, 1 − x2
2 ≥ 0} and the same precision parameters as in Example 9. The first and second

loop yield D = 2 and ε = 1. After running absorb, we obtain the exact Putinar’s representation

f =
23853407

292204836
+

23
49

X2
1+

130657269
291009481

X2
2+

1
24422 +(X1−X2)2+(

X2

2437
)2+(

11
7

)2(1−X2
1)+(

13
7

)2(1−X2
2) .

23

Algorithm 6 Putinarsos.
Input: f , g1, . . . , gm ∈ Z[X] of degrees less than d ∈ N, S := {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥

0}, positive ε ∈ Q, precision parameters δ,R ∈ N for the SDP solver , precision δc ∈ N for
the Cholesky’s decomposition

Output: lists c_list0, . . . , c_listm, c_alpha of numbers in Q and lists
s_list0, . . . , s_listm of polynomials in Q[X]

1: k := dd/2e, D := 2k, g0 := 1
2: while f < QD(S) do k := k + 1, D := D + 2
3: done
4: P := Nn

D, Q := Nn
k , S ′ := {x ∈ S : 1 − x2α ≥ 0 ,∀α ∈ Nn

k}

5: t :=
∑
α∈Q X2α, fε := f − εt

6: while fε < QD(S ′) do ε := ε
2 , fε := f − εt

7: done
8: ok := false
9: while not ok do

10: [G̃0, . . . , G̃m, λ̃0, . . . , λ̃m, (c̃α)|α|≤k], := sdp(fε, δ,R, S ′)
11: c_alpha := (c̃α)|α|≤k

12: for j ∈ {0, . . . ,m} do
13: (s1 j, . . . , sr j j) := cholesky(G̃ j, λ̃ j, δc), σ̃ j :=

∑r j

i=1 s2
i j

14: c_list j := [1, . . . , 1], s_list j := [s1 j, . . . , sr j j]
15: done
16: u := fε −

∑m
j=0 σ̃ j g j −

∑
|α|≤k c̃α(1 − X2α)

17: for α ∈ Q do εα := ε
18: done
19: c_list, s_list, (εα) := absorb(u,Q, (εα), c_list, s_list)
20: if minα∈Q{εα} ≥ 0 then ok := true
21: else δ := 2δ, R := 2R, δc := 2δc

22: end
23: done
24: for α ∈ Q do
25: c_list0 := c_list0 ∪ {εα}, s_list0 := s_list0 ∪ {xα}
26: done
27: return c_list0, . . . , c_listm, c_alpha, s_list0, . . . , s_listm

24

5.3. Bit complexity analysis
Theorem 27. We use the notation and assumptions introduced above. For some constants
CS > 0 and KS depending on S , there exist ε, δ, R, δc and D = 2k of bit sizes less than
O (2CS τd2n+2

) for which Putinarsos(f , S , ε, δ,R, δc) terminates and outputs an exact Putinar’s
representation with rational coefficients of f ∈ Q(S ′), with S ′ := {x ∈ S : 1− x2α ≥ 0 ,∀α ∈ Nn

k}.
The maximum bit size of these coefficients is bounded by O (2CS τd2n+2

) and the procedure runs in
boolean time O

(
22KS τd2n+2)

.

Proof. The loops going from line 2 to line 3 and from line 6 to line 7 always terminate as re-
spective consequences of Theorem 25 (i) and Theorem 25 (iii) with log2 D ≤ 2CS τd2n+2

, ε = 1
2N ,

N ≤ 2CS τd2n+2
, for some real CS > 0 depending on S . What remains to prove is similar to Propo-

sition 11 and Theorem 12.
Let ν, σ̊0, . . . , σ̊m, (cα)|α|≤k be as in the proof of Theorem 25. Note that ν (resp. ε − ν) is a lower
bound of the smallest eigenvalues of any Gram matrix associated to σ̊ j (resp. σ̊0) for 1 ≤ j ≤ m.
In addition, cα ≥ ν for all α ∈ Nn

k . When the sdp procedure at line 10 succeeds, the matrix G̃ j

is an approximate Gram matrix of the polynomial σ̊ j with G̃ j � 2δI,
√

Tr (G̃2
j) ≤ R, we obtain

a positive rational approximation λ̃ j ≥ 2−δ of the smallest eigenvalue of G̃ j, c̃α is a rational ap-
proximation of cα with c̃α ≥ 2−δ, and c̃α ≤ R, for all j = 0, . . . ,m and α ∈ Nn

k . This happens
when 2−δ ≤ ε and 2−δ ≤ ε − ν, thus for δ = O (2CS τd2n+2

).
As in the proof of Proposition 10, we derive a similar upper bound of R by a symmetric argument
while considering a Putinar representation of f D − f ∈ QD(S ′), where

f D := inf{b : b − f ∈ QD(S)} .

As for the second loop of Algorithm intsos, the third loop of Putinarsos terminates when the
remainder polynomial

u = fε −
m∑

j=0

σ̃ j g j −
∑
|α|≤k

c̃α(1 − X2α)

satisfies |uγ| ≤ ε
r0

, where r0 =
(

n+k
n

)
is the size of Q = Nn

k . As in the proof of Proposition 11, one
can show that this happens when δ and δc are large enough. To bound the precision δc required
for Cholesky’s decomposition, we do as in the proof of Proposition 11. The difference now is
that there are m +

(
n+k

k

)
= m + r0 additional terms in each equality constraint of SDP (5), by

comparison with SDP (1). Thus, we need to bound for all j = 1 . . . ,m, α ∈ Nn
k and γ ∈ supp(u)

each term |Tr (G̃ jC jγ) − (g jσ̃)γ| related to the constraint g j ≥ 0 as well as each term (omitted for
conciseness) involving c̃α related to the constraint 1 − X2α ≥ 0.
By using the fact that Tr (G̃ jC jγ) =

∑
δ g jδ

∑
α+β+δ=γ G̃ jα,β, we obtain

|Tr (G̃ jC jγ) − (g jσ̃)γ| ≤
∑
δ

|g jδ|

√r j(r j + 1)2−δc R

1 − (r j + 1)2−δc
,

where r j is the size of G̃ j.
Note that the size r0 of the matrix G̃0 satisfies r0 ≥ r j for all j = 1, . . . ,m. In addition, deg g j ≤ D
implies ∑

δ

|g jδ| ≤

(
n + deg g j

n

)
2τ ≤

(
n + D

n

)
2τ ≤ Dn2τ+1 .

25

This yields an upper bound of Dn2τ+1
√

r0(r0+1)2−δc R
1−(r0+1)2−δc . We obtain a similar bound (omitted for

conciseness) for each term involving c̃α. Then, we take the smallest δ such that 2−δ ≤ ε
2r0

and the
smallest δc such that

Dn2τ
√

r0(r0 + 1)2−δc R
1 − (r0 + 1)2−δc

≤
ε

2r0((m + 1) + r0)
.

Thus, one can choose δ and δc of bit size upper bounded by O (2CS τd2n+2
) in order to ensure that

Putinarsos terminates. As in the proof of Proposition (11), one shows that the output is an exact
Putinar’s representation with rational coefficients of maximum bit size bounded by O (2CS τd2n+2

).
As in the proof of Theorem 12, let nsdp be the sum of the sizes of the matrices involved in SDP (5)
and msdp be the number of entries. Note that

nsdp ≤ (m + 1)r0 + r0 ≤ (m + 2)
(
n + D

n

)
, msdp :=

(
n + D

n

)
.

To bound the boolean run time, we consider the cost of solving SDP (5), which is performed in
O (n4

sdp log2(2τnsdp R 2δ)) iterations of the ellipsoid method, where each iteration requiresO (n2
sdp(msdp + nsdp))

arithmetic operations over log2(2τnsdp R 2δ)-bit numbers. Since msdp is bounded by
(

n+D
n

)
≤ 2Dn

and log2 D = O (2CS τd2n+2
), one has

Dn = O
(
2n2CS τd2n+2)

≤ O
(
22(CS +1)τd2n+2)

.

We obtain a similar bound for nsdp, which ends the proof.

As for Reznicksos, the complexity is polynomial in the degree D of the representation. On
all the examples we tackled, it was close to the degrees of the involved polynomials, as shown in
Section 6.

5.4. Comparison with the rounding-projection algorithm of Peyrl and Parrilo

We now state a constrained version of the rounding-projection algorithm from Peyrl and
Parrilo (2008).

For f ∈ Z[X] positive over a basic compact semi-algebraic set S satisfying Assumption 21,
Algorithm RoundProjectPutinar starts as in Algorithm Putinarsos (see Section 5.2): it
outputs the smallest D such that f ∈ QD(S), solves SDP (5) in Line 6, and performs Cholesky’s
factorization in Line 9 to obtain an approximate Putinar’s representation of f . Note that the
approximate Cholesky’s factorization is performed to obtain weighted SOS decompositions as-
sociated to the constraints g1, . . . , gm (i.e. σ̃1, . . . , σ̃m, respectively).
Next, the algorithm applies in Line 15 the same projection procedure of Algorithm RoundProject
(see Section 3.4) on the polynomial u := f −

∑m
j=1 σ̃ jg j. Note that when there are no constraints,

one retrieves exactly the projection procedure from Algorithm RoundProject. Exact LDLT is
then performed on the matrix G corresponding to u.
If all input precision parameters are large enough, G is a Gram matrix associated to u and
σ̃1, . . . , σ̃m are weighted SOS polynomals, yielding the exact Putinar’s representation f = u +∑m

j=1 σ̃ jg j. As for Theorem 13 and Theorem 27, Algorithm RoundProjectPutinar has a simi-
lar bit complexity than Putinarsos.

26

Algorithm 7 RoundProjectPutinar
Input: f , g1, . . . , gm ∈ Z[X] of degrees less than d ∈ N, S := {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥

0}, rounding precision δi ∈ N, precision parameters δ,R ∈ N for the SDP solver, precision
δc ∈ N for the Cholesky’s decomposition

Output: lists c_list0, . . . , c_listm of numbers in Q and lists s_list0, . . . , s_listm of poly-
nomials in Q[X]

1: k := dd/2e, D := 2k, g0 := 1
2: while f < QD(S) do k := k + 1, D := D + 2
3: done
4: ok := false
5: while not ok do
6: [G̃0, . . . , G̃m, λ̃0, . . . , λ̃m], := sdp(f , δ,R, S)
7: G′ := round(G̃0, δi)
8: for j ∈ {1, . . . ,m} do
9: (s1 j, . . . , sr j j) := cholesky(G̃ j, λ̃ j, δc), σ̃ j :=

∑r j

i=1 s2
i j

10: c_list j := [1, . . . , 1], s_list j := [s1 j, . . . , sr j j]
11: done
12: u := f −

∑m
j=1 σ̃ j

13: Q := Nn
k

14: for α, β ∈ Q do η(α + β) := #{(α′, β′) ∈ Q2 | α′ + β′ = α + β}

15: G(α, β) := G′(α, β) − 1
η(α+β)

(∑
α′+β′=α+β G′(α′, β′) − uα+β

)
16: done
17: (c10, . . . , cr00, s10, . . . , sr00) := ldl(G) . f =

∑r0
i=1 ci0s2

i0 +
∑m

j=1 σ̃ j

18: if c10, . . . , cmrm ∈ Q≥0, s01, . . . , smrm ∈ Q[X] then ok := true
19: else δi := 2δi, δ := 2δ, R := 2R, δc := 2δc

20: end
21: done
22: c_list0 := [c10, . . . , cr00], s_list0 := [s10, . . . , sr00]
23: return c_list0, . . . , c_listm, s_list0, . . . , s_listm

27

Table 1: multivsos vs univsos2 Magron et al. (2018) for benchmarks from Chevillard et al. (2011).

Id d τ (bits) multivsos univsos2
τ1 (bits) t1 (s) τ2 (bits) t2 (s)

1 13 22 682 387 178 0.84 51 992 0.83
3 32 269 958 − − 580 335 2.64
4 22 47 019 1 229 036 2.08 106 797 1.78
5 34 117 307 10 271 899 69.3 265 330 5.21
6 17 26 438 713 865 1.15 59 926 1.03
7 43 67 399 10 360 440 16.3 152 277 11.2
8 22 27 581 1 123 152 1.95 63 630 1.86
9 20 30 414 896 342 1.54 68 664 1.61
10 25 42 749 2 436 703 3.02 98 926 2.76

6. Practical experiments

We provide experimental results for Algorithms intsos, Reznicksos and Putinarsos.
These are implemented in a procedure, called multivsos, and integrated in the RealCertify
library by Magron and Safey El Din (2018b), written in Maple. More details about installation
and benchmark execution are given on the dedicated webpage1. All results were obtained on an
Intel Core i7-5600U CPU (2.60 GHz) with 16Gb of RAM. We use the Maple Convex package2

to compute Newton polytopes. Our subroutine sdp relies on the arbitrary-precision solver SDPA-
GMP by Nakata (2010) and the cholesky procedure is implemented with LUDecomposition
available within Maple. Most of the time is spent in the sdp procedure for all benchmarks. To
decide non-negativity of polynomials, we use either RAGLib or the sdp procedure as oracles. Re-
call that RAGLib relies on critical point methods whose runtime strongly depends on the number
of (complex) solutions to polynomial systems encoding critical points. While these methods are
more versatile, this number is generically exponential in n. Hence, we prefer to rely at first on a
heuristic strategy based on using sdp first (recall that it does not provide an exact answer).

In Table 1, we compare the performance of multivsos for nine univariate polynomials being
positive over compact intervals. More details about these benchmarks are given in (Chevillard
et al., 2011, Section 6) and (Magron et al., 2018, Section 5). In this case, we use Putinarsos.
The main difference is that we use SDP in multivsos instead of complex root isolation in
univsos2. The results emphasize that univsos2 is faster and provides more concise SOS
certificates, especially for high degrees (see e.g. # 5). For # 3, we were not able to obtain a
decomposition within a day of computation with multivsos, as meant by the symbol − in the
corresponding column entries. Large values of d and τ require more precision. The values of ε,
δ and δc are respectively between 2−80 and 2−240, 30 and 100, 200 and 2000.

Next, we compare the performance of multivsos with other tools in Table 2. The two
first benchmarks are built from the polynomial f = (X2

1 + 1)2 + (X2
2 + 1)2 + 2(X1 + X2 + 1)2 −

268849736/108 from (Lasserre, 2001, Example 1), with f12 := f 3 and f20 := f 5. For these two
benchmarks, we apply intsos. We use Reznicksos to handle M20 (resp. M100), obtained as in
Example 15 by adding 2−20 (resp. 2−100) to the positive coefficients of the Motzkin polynomial

1https://gricad-gitlab.univ-grenoble-alpes.fr/magronv/RealCertify
2http://www.home.math.uwo.ca/faculty/franz/convex

28

https://gricad-gitlab.univ-grenoble-alpes.fr/magronv/RealCertify
http://www.home.math.uwo.ca/faculty/franz/convex

Table 2: multivsos vs RoundProject Peyrl and Parrilo (2008) vs RAGLib vs CAD (Reznick).

Id n d
multivsos RoundProject RAGLib CAD
τ1 (bits) t1 (s) τ2 (bits) t2 (s) t3 (s) t4 (s)

f12 2 12 316 479 3.99 3 274 148 3.87 0.15 0.07
f20 2 20 754 168 113. 53 661 174 137. 0.16 0.03
M20 3 8 4 397 0.14 3 996 0.16 0.13 0.05
M100 3 8 56 261 0.26 12 200 0.20 0.15 0.03
r2 2 4 1 680 0.11 1 031 0.12 0.09 0.01
r4 4 4 13 351 0.14 47 133 0.15 0.32 −

r6 6 4 52 446 0.24 475 359 0.37 623. −

r8 8 4 145 933 0.70 2 251 511 1.08 − −

r10 10 4 317 906 3.38 8 374 082 4.32 − −

r2
6 6 8 1 180 699 13.4 146 103 466 112. 10.9 −

and ri, which is a randomly generated positive definite quartic with i variables. We implemented
in Maple the projection and rounding algorithm from Peyrl and Parrilo (2008) (stated in Sec-
tion 3.4) also relying on SDP, denoted by RoundProject. For multivsos, the values of ε, δ
and δc lie between 2−100 and 2−10, 60 and 200, 10 and 60.

In most cases, multivsos is more efficient than RoundProject and outputs more concise
representations. The reason is that multivsos performs approximate Cholesky’s decomposi-
tions while RoundProject computes exact LDLT decompositions of Gram matrices obtained
after the two steps of rounding and projection. This observation matches with the theoretical
complexity estimates established in Proposition 11 and Theorem 13. Note that we could not
solve the examples of Table 2 with less precision.

We compare with RAGLib Safey El Din (2007a) based on critical point methods (see e.g.
Safey El Din and Schost (2003); Hong and Safey El Din (2012)) and the SamplePoints pro-
cedure Lemaire et al. (2005) (abbreviated as CAD) based on CAD Collins (1975), both available
in Maple. Observe that multivsos can tackle examples which have large degree but a rather
small number of variables (n ≤ 3) and then return certificates of non-negativity. The runtimes
are slower than what can be obtained with RAGLib and/or CAD (which in this setting have polyno-
mial complexity when n ≤ 3 is fixed). Note that the bit size of the certificates which are obtained
here is quite large which explains this phenomenon.

When the number of variables increases, CAD cannot reach many of the problems we con-
sidered. Note that multivsos becomes not only faster but can solve problems which are not
tractable by RAGLib.

Recall that multivsos relies first on solving numerically Linear Matrix Inequalities ; this is
done at finite precision in time polynomial in the size of the input matrix, which, here is bounded
by

(
n+d

d

)
. Hence, at fixed degree, that quantity evolves polynomially in n. On the other hand,

the quantity which governs the behaviour of fast implementations based on the critical point
method is the degree of the critical locus of some map. On the examples considered, this degree
matches the worst case bound which is the Bézout number dn. Besides, the doubly exponential
theoretically proven complexity of CAD is also met on these examples.

These examples illustrate the potential of multivsos and more generally SDP-based meth-
ods: at fixed degree, one can hope to take advantage of fast numerical algorithms for SDP and

29

tackle examples involving more variables than what could be achieved with more general tools.
Recall however that multivsos computes rational certificates of non-negativity in some

“easy” situations: roughly speaking, these are the situations where the input polynomial lies
in the interior of the SOS cone and has coefficients of moderate bit size. This fact is illustrated
by Table 3.

Table 3: multivsos vs RAGLib vs CAD for non-negative polynomials which are presumably not in Σ̊[X].

Id n d
multivsos RAGLib CAD

τ1 (bits) t1 (s) t2 (s) t3 (s)
S 1 4 24 − − 1788. −

S 2 4 24 − − 1840. −

V1 6 8 − − 5.00 −

V2 5 18 − − 1180. −

M1 8 8 − − 351. −

M2 8 8 − − 82.0 −

M3 8 8 − − 120. −

M4 8 8 − − 84.0 −

This table reports on problems appearing enumerative geometry (polynomials S 1 and S 2
communicated by Sottile and appearing in the proof of the Shapiro conjecture Sottile (2000)),
computational geometry (polynomials V1 and V2 appear in Everett et al. (2009)) and in the proof
of the monotone permanent conjecture in Haglund et al. (1999) (M1 to M4).

We were not able to compute certificates of non-negativity for these problems which we pre-
sume do not lie in the interior of the SOS cone. This illustrates the current theoretical limitation
of multivsos. These problems are too large for CAD but RAGLib can handle them. Note that
some of these examples involve 8 variables ; we observed that the Bézout number is far above
the degree of the critical loci computed by the critical point algorithms in RAGLib. This explains
the efficiency of such tools on these problems. Recall however that RAGLib did not provide a
certificate of non-negativity.

This whole set of examples illustrates first the efficiency and usability of multivsos as well
as its complementarity with other more general and versatile methods. This shows also the
need of further research to handle in a systematic way more general non-negative polynomials
than what it does currently. For instance, we emphasize that certificates of non-negativity were
computed for Mi (1 ≤ i ≤ 4) in Kaltofen et al. (2009) (see also Kaltofen et al. (2008)).

Finally, we compare the performance of multivsos (Putinarsos) on positive polynomials
over basic compact semi-algebraic sets in Table 4. The first benchmark is from (Lasserre, 2001,
Problem 4.6). Each benchmark fi comes from an inequality of the Flyspeck project Hales (2013).
The three last benchmarks are from Muñoz and Narkawicz (2013). The maximal degree of the
polynomials involved in each system is denoted by d. We emphasize that the degree D = 2k of
each Putinar representation obtained in practice with Putinarsos is very close to d, which is in
contrast with the theoretical complexity estimates obtained in Section 5. The values of ε, δ and
δc lie between 2−30 and 2−10, 60 and 200, 10 and 30.
As for Table 2, RAGLib and multivsos can both solve large problems (involving e.g. 8 vari-
ables) but note that multivsos outputs certificates of emptiness which cannot be computed with
implementations based on the critical point method. In terms of timings, multivsos is some-

30

Table 4: multivsos vs RoundProjectPutinar vs RAGLib vs CAD (Putinar).

Id n d
multivsos RoundProject RAGLib CAD

k τ1 (bits) t1 (s) τ2 (bits) t2 (s) t3 (s) t4 (s)
p46 2 4 3 45 168 0.17 230 101 0.19 0.15 0.81
f260 6 3 2 251 411 2.35 5 070 043 3.60 0.12 −

f491 6 3 2 245 392 4.63 4 949 017 5.63 0.01 0.05
f752 6 2 2 23 311 0.16 74 536 0.15 0.07 −

f859 6 7 4 13 596 376 299. 2 115 870 194 5339. 5896. −

f863 4 2 1 12 753 0.13 30 470 0.13 0.01 0.01
f884 4 4 3 423 325 13.7 10 122 450 16.1 0.21 −

f890 4 4 2 80 587 0.48 775 547 0.56 0.08 −

butcher 6 3 2 538 184 1.36 8 963 044 3.35 47.2 −

heart 8 4 2 1 316 128 3.65 35 919 125 14.1 0.54 −

magnetism 7 2 1 19 606 0.29 16 022 0.28 434. −

times way faster (e.g. magnetism, f859) but that it is hard here to draw some general rules. Again,
it is important to keep in mind the parameters which influence the runtimes of both techniques.
As before, for multivsos, the size of the SDP to be solved is clearly the key quantity. Also, it
is important to write the systems in an appropriate way also to limit the size of those matrices
(e.g. write 1 − x2 ≤ 0 to model −1 ≤ x ≤ 1). For RAGLib, it is way better to write −1 ≤ x
and x ≤ 1 to better control the Bézout bounds governing the difficulty of solving systems with
purely algebraic methods. Note also that the number of inequalities increase the combinatorial
complexity of those techniques.

Finally, note that CAD can only solve 3 benchmarks out of 10 and all in all multivsos and
RAGLib solve a similar amount of problems; the latter one however does not provide certificates
of emptiness. As for Table 2, multivsos and RoundProjectPutinar yield similar perfor-
mance, while the former provides more concise output than the latter.

7. Conclusion and perspectives

We designed and analyzed new algorithms to compute rational SOS decompositions for sev-
eral sub-classes of non-negative multivariate polynomials, including positive definite forms and
polynomials positive over basic compact semi-algebraic sets. Our framework relies on SDP
solvers implemented with interior-point methods. A drawback of such methods, in the context
of unconstrained polynomial optimization, is that we are restricted to non-negative polynomials
belonging to the interior of the SOS cone. We shall investigate the design of specific algorithms
for the sub-class of polynomials lying in the border of the SOS cone. We also plan to adapt our
framework, either for problems involving non-commutative polynomial data, or for alternative
certification schemes, e.g. in the context of linear/geometric programming relaxations.

Appendix A. Appendix

Let f ∈ Z[X1, . . . , Xn] of degree d and τ be the maximum bit size of the coefficients of f in
the standard monomial basis.

31

Let V ⊂ Cn be the algebraic set defined by

f =
∂ f
∂X2

= · · · =
∂ f
∂Xn

= 0 (A.1)

By the algebraic version of Sard’s theorem (see e.g. (Safey El Din and Schost, 2017, Appendix
B)), when V is equidimensional and has at most finitely singular points, the projection of the set
V ∩ Rn on the X1-axis is finite (and hence a real algebraic set of R); we denote it by ZR. Hence,
it is defined by the vanishing of some polynomial in Z[X1].

The goal of this Appendix is to provide a proof of Proposition 6 which states that under
the above notation and assumption, there exists a polynomial w ∈ Z[X1] of degree ≤ dn with
coefficients of bit size ≤ τ · (4d + 2)3n such that its set of real roots contains ZR. To prove
Proposition 6, our strategy is to rely on algorithms computing sample points in real algebraic
sets: letting C ⊂ V be a finite set of points which meet all connected components of V ∩Rn, it is
immediate that the projection of C on the X1-axis contains ZR.
From the computation of an exact representation of such a set C, one will be able to analyze
the bit size of a polynomimal whose set of roots contains ZR. We focus on algorithms based on
the critical point method. Those yield the best complexity estimates which are known in theory
and practical implementations reflecting these complexity gains have been obtained in Safey El
Din (2007a) from e.g. Safey El Din and Schost (2003); Hong and Safey El Din (2012). Here,
we focus on (Basu et al., 2006, Algorithm 13.3) since it is the more general one and it does not
depend on probabilistic choices which make it easy to analyze from a bit complexity perspective.
It starts by computing the polynomial

g = f 2 +

(
∂ f
∂X2

)2

+ · · · +

(
∂ f
∂Xn

)2

.

Observe that the set of real solutions of g = 0 coincides with V ∩ Rn. Next, one introduces two
infinitesimals ε and η (see (Basu et al., 2006, Chap. 2) for an introduction on Puiseux series and
infinitesimals). Consider the polynomial:

g1 = g +
(
η(X2

1 + · · · + X2
n+1) − 1

)2
.

Its vanishing set over R〈η〉n+1 corresponds to the intersection of the lifting of the vanishing set of
g in Rn with the hyperball of R〈η〉n+1 centered at the origin of radius 1

η
.

Let di be the degree of g1 in Xi. Without loss of generality, up to reordering the variables, we
assume that d1 ≥ d2 ≥ · · · ≥ dn ; we assume that after this process X1 has been sent to Xk. Now,
we let

h = g1(1 − ε) + ε(X2(d1+1)
1 + · · · + X2(dn+1)

n + X6
n+1 − (n + 1)ζd+1)

We finally focus on the polynomial system:

h =
∂h
∂X2

= · · · =
∂h

∂Xn+1
= 0

The rationale behind the last infinitesimal deformation is twofold (see (Basu et al., 2006, Chap.
12 and Chap. 13)):

• the algebraic set defined by the vanishing of h is smooth ;
32

• the above polynomial system is finite and forms a Gröbner basis G for any degree lexico-
graphical ordering with X1 � · · · � Xn+1.

Besides, (Basu et al., 2006, Prop. 13.30) states that taking the limits (when infinitesimals tend
to zero) of projections on the (X1, . . . , Xn)-space of a finite set of points meeting each connected
component of the real algebraic set defined by h = 0 provides a finite set of points in the real
algebraic set defined by g = 0.
In our situation, we do not need to to go into such details. We only need to compute a non-zero
polynomial w ∈ Z[Xk] whose set of real roots contains ZR. Using Stickelberger’s theorem (Basu
et al., 2006, Theorem 4.98) and the process for computing limits in (Basu et al., 2006, Algoroithm
12.14) and Rouillier et al. (2000), it suffices to compute the characteristic polynomial of the
multiplication operator by Xk in the ring of polynomials with coefficients in Q[η, ζ] quotiented
by the ideal 〈G〉. This is done using (Basu et al., 2006, Algorithm 12.9).
In order to analyze the bit size of the coefficients of the output characteristic polynomial, we need
to bound the bit size of the entries in the matrix output by (Basu et al., 2006, Algorithm 12.9).
Following the discussion in the complexity analysis of (Basu et al., 2006, Algorithm 13.1), we
deduce that the coefficients of these entries have bit size dominated by τ (2(2d + 1))2n. Besides,
this matrix has size bounded by (2(2d + 1))2n. We deduce that the coefficients of its characteristic
polynomial have bit size bounded by (2(2d + 1))3n.

References

Artin, E., 1927. Über die Zerlegung definiter Funktionen in Quadrate. Abhandlungen aus dem Mathematischen Seminar
der Universität Hamburg 5 (1), 100–115.

Bachoc, C., Vallentin, F., 2008. New upper bounds for kissing numbers from semidefinite programming. Journal of the
AMS 21 (3), 909–924.

Bai, Z., Demmel, J., McKenney, A., 1989. On Floating Point Errors in Cholesky. Tech. rep., (LAPACK Working Note
14).

Bank, B., Giusti, M., Heintz, J., Mbakop, G.-M., 2001. Polar varieties and efficient real elimination. Mathematische
Zeitschrift 238 (1), 115–144.

Bank, B., Giusti, M., Heintz, J., Pardo, L.-M., 2005. Generalized polar varieties: Geometry and algorithms. Journal of
complexity.

Bank, B., Giusti, M., Heintz, J., Safey El Din, M., 2014. Intrinsic complexity estimates in polynomial optimization.
Journal of Complexity 30 (4), 430–443.

Bank, B., Giusti, M., Heintz, J., Safey El Din, M., Schost, É.., 2010. On the geometry of polar varieties. Applicable
Algebra in Engineering, Communication and Computing 21 (1), 33–83.

Barber, C. B., Dobkin, D. P., Huhdanpaa, H., 1996. The Quickhull Algorithm for Convex Hulls. ACM Trans. Math.
Softw. 22 (4), 469–483.

Basu, S., Pollack, R., Roy, M.-F., 1998. A new algorithm to find a point in every cell defined by a family of polynomials.
In: Quantifier elimination and cylindrical algebraic decomposition. Springer-Verlag.

Basu, S., Pollack, R., Roy, M.-F., 2006. Algorithms in Real Algebraic Geometry (Algorithms and Computation in Math-
ematics). Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Blekherman, G., 2006. There are significantly more nonegative polynomials than sums of squares. Israel Journal of
Mathematics 153 (1), 355–380.

Blum, L., Cucker, F., Shub, M., Smale, S., 2012. Complexity and real computation. Springer Science & Business Media.
Chevillard, S., Harrison, J., Joldes, M., Lauter, C., 2011. Efficient and accurate computation of upper bounds of approxi-

mation errors. Theoretical Computer Science 412 (16), 1523 – 1543.
Choi, M. D., Lam, T. Y., Reznick, B., 1995. Sums of squares of real polynomials. Vol. 58 of Proc. Sympos. Pure Math.

Amer. Math. Soc., pp. 103–126.
Collins, G. E., 1975. Quantifier elimination for real closed fields by cylindrical algebraic decompostion. In: ATFL 2nd

GI Conf. Kaiserslautern. pp. 134–183.
de Klerk, E., Vallentin, F., 2016. On the Turing Model Complexity of Interior Point Methods for Semidefinite Program-

ming. SIAM Journal on Optimization 26 (3), 1944–1961.

33

Everett, H., Lazard, D., Lazard, S., Safey El Din, M., 2009. The voronoi diagram of three lines. Discrete & Computational
Geometry 42 (1), 94–130.

Golub, G. H., Loan, C. F. V., 1996. Matrix Computations (3rd Ed.). Johns Hopkins University Press, Baltimore, MD,
USA.

Greuet, A., Guo, F., Safey El Din, M., Zhi, L., 2012. Global optimization of polynomials restricted to a smooth variety
using sums of squares. Journal of Symbolic Computation 47 (5), 503 – 518.
URL http://www.sciencedirect.com/science/article/pii/S0747717111001957

Greuet, A., Safey El Din, M., 2014. Probabilistic Algorithm for Polynomial Optimization over a Real Algebraic Set.
SIAM Journal on Optimization 24 (3), 1313–1343.

Grigoriev, D., Vorobjov, N., 1988. Solving systems of polynomials inequalities in subexponential time. Journal of Sym-
bolic Computation 5, 37–64.

Grötschel, M., Lovász, L., Schrijver, A., 1993. Geometric Algorithms and Combinatorial Optimization, second corrected
edition Edition. Vol. 2 of Algorithms and Combinatorics. Springer.

Guo, F., Kaltofen, E. L., Zhi, L., 2012. Certificates of Impossibility of Hilbert-Artin Representations of a Given Degree
for Definite Polynomials and Functions. In: Proceedings of the 37th International Symposium on Symbolic and
Algebraic Computation. ISSAC ’12. ACM, New York, NY, USA, pp. 195–202.
URL http://doi.acm.org/10.1145/2442829.2442859

Guo, F., Safey El Din, M., Zhi, L., 2010. Global optimization of polynomials using generalized critical values and sums
of squares. In: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation. ISSAC
’10. ACM, New York, NY, USA, pp. 107–114.
URL http://doi.acm.org/10.1145/1837934.1837960

Guo, Q., Safey El Din, M., Zhi, L., 2013. Computing rational solutions of linear matrix inequalities. In: Proceedings of
the 38th International Symposium on Symbolic and Algebraic Computation. ISSAC ’13. ACM, New York, NY, USA,
pp. 197–204.

Haglund, J., Ono, K., Wagner, D. G., 1999. Theorems and Conjectures Involving Rook Polynomials with Only Real
Zeros. Springer US, Boston, MA, pp. 207–221.

Hales, T. C., 2013. The flyspeck project.
URL http://code.google.com/p/flyspeck

Henrion, D., Naldi, S., Safey El Din, M., 2016. Exact Algorithms for Linear Matrix Inequalities. SIAM Journal on
Optimization 26 (4), 2512–2539.

Hillar, C., 2009. Sums of squares over totally real fields are rational sums of squares. Proceedings of the American
Mathematical Society 137 (3), 921–930.

Hong, H., Safey El Din, M., 2012. Variant quantifier elimination. Journal of Symbolic Computation 47 (7), 883–901.
J.B. Lasserre, M. Laurent, B. Mourrain, P. Rostalski and P. Trébuchet, 2013. Moment Matrices, Border Bases and Real

Radical Computation. J. Symb. Computation. 51, 63–85.
Jeronimo, G., Perrucci, D., 2010. On the minimum of a positive polynomial over the standard simplex. Journal of

Symbolic Computation 45 (4), 434 – 442.
Kaltofen, E., Yang, Z., Zhi, L., 2009. A Proof of the Monotone Column Permanent (MCP) Conjecture for Dimension 4

via Sums-of-squares of Rational Functions. In: Proceedings of the 2009 Conference on Symbolic Numeric Computa-
tion. SNC ’09. ACM, New York, NY, USA, pp. 65–70.

Kaltofen, E. L., Li, B., Yang, Z., Zhi, L., 2008. Exact certification of global optimality of approximate factorizations
via rationalizing sums-of-squares with floating point scalars. In: Proceedings of the 21st International Symposium on
Symbolic and Algebraic computation. ISSAC ’08. ACM, New York, NY, USA, pp. 155–164.

Kaltofen, E. L., Li, B., Yang, Z., Zhi, L., 2012. Exact certification in global polynomial optimization via sums-of-squares
of rational functions with rational coefficients. Journal of Symbolic Computation 47 (1), 1 – 15.

Laplagne, S., 2018. Facial reduction for exact polynomial sum of squares decompositions. To appear in Mathematics of
Computation, https://arxiv.org/abs//1810.04215.

Lasserre, J.-B., 2001. Global Optimization with Polynomials and the Problem of Moments. SIAM Journal on Optimiza-
tion 11 (3), 796–817.

Laurent, M., 2009. Sums of squares, moment matrices and optimization over polynomials. Springer.
Lemaire, F., Maza, M. M., Xie, Y., Sep. 2005. The RegularChains Library in MAPLE. SIGSAM Bull. 39 (3), 96–97.
Lombardi, H., Perrucci, D., Roy, M.-F., 2018. An elementary recursive bound for effective Positivstellensatz and Hilbert

17-th problem. To appear at Memoirs of the AMS.
Magron, V., Safey El Din, M., 2018a. On Exact Polya and Putinar’s Representations. In: ISSAC’18: Proceedings of the

2018 ACM International Symposium on Symbolic and Algebraic Computation. ACM, New York, NY, USA.
Magron, V., Safey El Din, M., 2018b. RealCertify: a Maple package for certifying non-negativity. In: ISSAC’18: Pro-

ceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation. ACM, New York, NY,
USA.

Magron, V., Safey El Din, M., Schweighofer, M., 2018. Algorithms for weighted sum of squares decomposition of

34

http://www.sciencedirect.com/science/article/pii/S0747717111001957
http://doi.acm.org/10.1145/2442829.2442859
http://doi.acm.org/10.1145/1837934.1837960
http://code.google.com/p/flyspeck
https://arxiv.org/abs//1810.04215

non-negative univariate polynomials. Journal of Symbolic Computation.
Mignotte, M., 1992. Mathematics for Computer Algebra. Springer-Verlag New York, Inc., New York, NY, USA.
Muñoz, C., Narkawicz, A., 2013. Formalization of Bernstein Polynomials and Applications to Global Optimization.

J. Aut. Reasoning 51 (2), 151–196.
Nakata, M., 2010. A numerical evaluation of highly accurate multiple-precision arithmetic version of semidefinite pro-

gramming solver: SDPA-GMP, -QD and -DD. In: CACSD. pp. 29–34.
Nie, J., Ranestad, K., Sturmfels, B., 2010. The algebraic degree of semidefinite programming. Mathematical Program-

ming 122 (2), 379–405.
Nie, J., Schweighofer, M., 2007. On the complexity of Putinar’s Positivstellensatz. Journal of Complexity 23 (1), 135 –

150.
P. A. Parrilo, 2000. Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Opti-

mization. Ph.D. thesis, California Inst. Tech.
Peyrl, H., Parrilo, P., 2008. Computing sum of squares decompositions with rational coefficients. Theoretical Computer

Science 409 (2), 269–281.
Putinar, M., 1993. Positive polynomials on compact semi-algebraic sets. Indiana University Mathematics Journal 42 (3),

969–984.
Quarez, R., Dec 2010. Tight bounds for rational sums of squares over totally real fields. Rendiconti del Circolo Matem-

atico di Palermo 59 (3), 377–388.
Reznick, B., 1978. Extremal PSD forms with few terms. Duke Mathematical Journal 45 (2), 363–374.
Reznick, B., Dec 1995. Uniform denominators in Hilbert’s seventeenth problem. Mathematische Zeitschrift 220 (1), 75–

97.
URL https://doi.org/10.1007/BF02572604

Rouillier, F., Roy, M.-F., Safey El Din, M., 2000. Finding at least one point in each connected component of a real
algebraic set defined by a single equation. Journal of Complexity 16 (4), 716–750.

Safey El Din, M., 2007a. RAGlib – A library for real solving polynomial systems of equations and inequalities. http:
//www-polsys.lip6.fr/~safey/RAGLib/distrib.html.

Safey El Din, M., 2007b. Testing sign conditions on a multivariate polynomial and applications. Mathematics in Com-
puter Science 1 (1), 177–207.

Safey El Din, M., Schost, E., 2003. Polar varieties and computation of one point in each connected component of a
smooth real algebraic set. In: ISSAC’03. ACM, pp. 224–231.

Safey El Din, M., Schost, É., 2017. A nearly optimal algorithm for deciding connectivity queries in smooth and bounded
real algebraic sets. Journal of the ACM (JACM) 63 (6), 48.

Safey El Din, M., Zhi, L., Sep. 2010. Computing Rational Points in Convex Semialgebraic Sets and Sum of Squares
Decompositions. SIAM J. on Optimization 20 (6), 2876–2889.
URL http://dx.doi.org/10.1137/090772459

Sottile, F., 2000. Real schubert calculus: Polynomial systems and a conjecture of shapiro and shapiro. Experimental
Mathematics 9 (2), 161–182.
URL https://doi.org/10.1080/10586458.2000.10504644

Sturm, J. F., 1998. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones.
Wütrich, H. R., 1976. Ein entschiedungsverfahren für die theorie der reell-abgeschlossenen körper. In: Lecture Notes in

Computer Science. Vol. 43. pp. 138–162.
Yamashita, M., Fujisawa, K., Nakata, K., Nakata, M., Fukuda, M., Kobayashi, K., Goto, K., 2010. A high-performance

software package for semidefinite programs : SDPA7. Tech. rep., Dept. of Information Sciences, Tokyo Inst. Tech.
URL http://www.optimization-online.org/DB_FILE/2010/01/2531.pdf

35

https://doi.org/10.1007/BF02572604
http://www-polsys.lip6.fr/~safey/RAGLib/distrib.html
http://www-polsys.lip6.fr/~safey/RAGLib/distrib.html
http://dx.doi.org/10.1137/090772459
https://doi.org/10.1080/10586458.2000.10504644
http://www.optimization-online.org/DB_FILE/2010/01/2531.pdf

	Introduction
	Preliminaries
	Exact SOS representations
	Algorithm intsos
	Correctness and bit size of the output
	Bit complexity analysis
	Comparison with the rounding-projection algorithm of Peyrl and Parrilo

	Exact Reznick and Hilbert-Artin's representations
	Exact Reznick's representations
	Exact Hilbert-Artin's representations

	Exact Putinar's representations
	Preliminary results
	Algorithm Putinarsos
	Bit complexity analysis
	Comparison with the rounding-projection algorithm of Peyrl and Parrilo

	Practical experiments
	Conclusion and perspectives
	Appendix

