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Abstract

Deciding efficiently the emptiness of a real algebraic set defined
by a single equation is a fundamental problem of computational real
algebraic geometry. We propose an algorithm for this test. We find,
when the algebraic set is non empty, at least one point on each semi-
algebraically connected component. The problem is reduced to decid-
ing the existence of real critical points of the distance function and
computing them.

1 Introduction

The first algorithms for deciding the truth of a first order formula over the
reals, and, as a particular case, deciding the emptiness of a semi-algebraic
set, follow from Tarski and Seidenberg’s work [30, 29]. The complexity of
their algorithms was not elementary recursive.

The Cylindrical Algebraic Decomposition of Collins [8] has much better
complexity (polynomial in the degrees and number of polynomials, doubly
exponential in the number of variables). It is the first algorithm deciding
the truth of a first order formula over the reals, and, as a particular case,
deciding the emptiness of a semi-algebraic set, to have been implemented.
This algorithm is based on the elimination of the variables one after the other
and is considered as inefficient in practice when the number of variables is
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greater than 2 or 3. Other implementations based on the algorithms of
Weipsfenning [32, 33, 34] are being developed.

Grigoriev and Vorobjov [15] proposed an algorithm which decides the
emptiness of a semi-algebraic set with single exponential complexity in the
number of variables. Rather than making iterated projections, their method
is based on the computation of a finite number of points, the critical points
of a well chosen function. Several other algorithms with single exponential
complexity, based on variants of the critical point method, have been pro-
posed more recently [21, 6, 16, 2, 3]. However, these algorithms are inefficient
in practice due to the introduction of several infinitesimals. Ideas to improve
the practical complexity appear in [17] and have been developed in [24] (see
also [7, 9]).

The strategy we propose for efficiently solving systems of inequalities over
the reals is based on the progressive construction of the following subroutines
[28, 14, 25]:

• a) find real solutions of univariate polynomials,

• b) find real solutions of systems of equations which have only a finite
number of complex solutions,

• c) find real points on every semi-algebraically connected component of
a real algebraic set defined by a single equation, using the critical point
method,

• d) find real points on every semi-algebraically connected component of
a real algebraic set defined by several equations,

• e) find real points on every semi-algebraically connected component of
a semi-algebraic set.

Typically, for example, problem b) can be reduced to problem a) by a
convenient Rational Univariate Representation using a separating element
(see [1, 24, 25, 14]).

Problem c) can be reduced to problem b) by various techniques (see for
example [2, 3, 28, 24, 4]) using infinitesimals. The reduction of d) to c) is
done by taking sums of squares [2]. The theoretical complexity of taking sums
of squares is good but the method is not adapted to practical computations
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since the degrees and the size of coefficients are multiplied by 2, singularities
are introduced and infinitesimals are systematically needed for the reduction
of c) to b). Other techniques are proposed in [9, 26].

The aim of the present paper is to design a new efficient algorithm for
solving the problem c): testing whether the zero set of a polynomial has real
points and if it does compute a point at least on every semi-algebraically
connected component.

This problem can be reduced to problem b) by studying the critical points
of the projection function on a coordinate (see [2, 3, 28]). In these papers,
at least two infinitesimals are introduced to deform the hypersurface so that
there are a finite number of critical points for this coordinate. Then tech-
niques for polynomial system solving have to be used in a ring with these
infinitesimals.

To obtain an efficient algorithm in practice, we keep in mind that integer
arithmetic is critical for :

• a) very efficient implementations of Gröbner basis (see [11, 12]),

• b) efficient implementation of Rational Univariate Representation which
is, in part, based on a modular guess of a separating element (see
[24, 25]),

• c) efficient real root counting and description of the real roots of a
univariate polynomial [27].

Thus, we try to limit the use of infinitesimals in our algorithms. We
use them only for special cases, rare in practice, and we use at most one
infinitesimal.

Our main algorithm, described in section 3, presents a variant of the
critical point method, coming back to a classical idea of Seidenberg [29].
We search the critical points of the distance function, getting a point in
every connected component, even unbounded ones. We introduce only one
infinitesimal, and only when the number of singular points is infinite.

Since the resolution of zero-dimensional systems is essential (from a prac-
tical and a theoretical point of view) for the algorithm that we design, we
recall in section 2 some basic results about them and in particular the defi-
nition and the properties of the Rational Univariate Representation.

In section 4, we present an algorithm to detect the real bounded roots of
univariate polynomials with infinitesimal coefficients.
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In section 5, we present various improvements of computations with in-
finitesimals.

In section 6, we present some experimental results of our algorithm.
We would like to thank R. Rioboo for updating his implementation of

CAD for these computations and R. Pollack for his help in the proof of
Lemma 4.6.

2 Zero-dimensional systems

The resolution of zero-dimensional systems is a key point in our algorithms.
This section is devoted to the description of the tools we use in practice. In
this section, we introduce and recall some basic results about zero-dimensional
systems.

In all the paper K is an ordered field, R is a real closed field containing
the ordered field K and C = R[i] is an algebraically closed field containing
the field K. It is helpful to think of K, R, C as the fields of rational, real and
complex numbers.

A polynomial system S in K[X1, . . . , Xk], is a finite subset of K[X1, . . . , Xk],
〈S〉 denotes the ideal generated by S,

Z(S) = {X ∈ Ck | ∀P ∈ S P (x) = 0}

the solutions of S in Ck and

Z(S) = {X ∈ Rk | ∀P ∈ S P (x) = 0}

the solutions of S in Rk.
A zero-dimensional polynomial system of S in K[X1, . . . , Xk], is a finite

subset of K[X1, . . . , Xk] with a finite number of solutions in Ck.

In the algorithms described in this paper, we need black boxes for dif-
ferent purposes :

• GröbnerCompute computes a Gröbner basis for the ideal generated
by a polynomial system S in K[X1, . . . , Xk] (for any admissible order
on the monomials) (see an efficient version in [12]) .
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• Test-Dim takes as input a Gröbner basis and returns false if it is not
zero-dimensional, else it returns true.

• Test-Radical tests if the ideal generated by a zero-dimensional poly-
nomial system is radical,

• RUR takes as input a zero-dimensional Gröbner basis G with coef-
ficients in K, and returns a representation of the solutions of G in C
(this will be detailed in the remainder of this section).

• RealRootCount which counts and describes the roots in R of a
univariate polynomial with coefficients in K (see the various existing
methods in [27, 28]).

The second item follows easily from a Gröbner basis of I = 〈S〉 for any
admissible monomial ordering. If G denotes such a Gröbner basis, it is well
known (see [10] for example) that S is zero-dimensional if and only if for each
i = 1 . . . k there exists a polynomial g in G such that its leading monomial
is in the form Xni

i where ni is a positive integer.
If S is zero-dimensional and I = 〈S〉 , the quotient algebra K[X1, . . . , Xk]/I

is a K-vector space whose dimension is equal to the number of solutions of
S in Ck counted with multiplicities. Consequently, the third item can be
done by comparing the dimensions of the finite dimensional K-vector spaces
K[X1, . . . , Xk]/I and K[X1, . . . , Xk]/

√
I. The dimension of K[X1, . . . , Xk]/I

can be computed from a Gröbner basis G of I for any admissible monomial
ordering : it is equal to the number of monomials that cannot be reduced
modulo G. The dimension of the K-vector space K[X1, . . . , Xk]/

√
I is equal

to the number of distinct solutions of S in Ck which can be explicitly and
efficiently (see [24, 14]) computed knowing G by constructing and reducing
Hermite’s quadratic form: its rank is exactly equal to the number of solutions
of S in Ck.

A convenient representation of the solutions of a zero- dimensional is
given by the Rational Univariate Representation (RUR) (see [25, 14]).

Let S be a zero-dimensional polynomial system in K[X1, . . . , Xk], for any
x = (x1, . . . , xk) ∈ Z(S), we denote by µ(x) the multiplicity of x (i.e. the
dimension of the localization of C[X1, . . . , Xk]/I at x, with I = 〈S〉).

Proposition 2.1 Given any u ∈ K[X1, . . . , Xk] we define:
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• fu(T ) =
∏

x∈Z(S)

(T − u(x))µ(x)

• g0(T ) =
∑

x∈Z(S)

µ(x)
∏

y∈Z(S),u(y)6=u(x)

(T − u(y))

• gi(T ) =
∑

x∈Z(S)

µ(x)xi

∏

y∈Z(S),u(y)6=u(x)

(T − u(y))

for i = 1, . . . , k.

If u separates S (i.e. if ∀(x, y) ∈ Z(S)2, x 6= y ⇒ u(x) 6= u(y)), then the
univariate polynomials

{fu(T ), g0(T ), g1(T ), . . . , gk(T )}

define the so called Rational Univariate Representation (RUR) of S associ-
ated to u.

The RUR of S has the following properties (see [25]) :

• fu(T ), g0(T ), g1(T ), . . . , gk(T ) are all elements of K[X1, . . . , Xk]

• the application :
Πu : Ck −→ C

x 7−→ u(x)

defines a bijection between Z(S) and Z(fu), whose reciprocal is given
by :

Π−1
u : Z(fu) −→ Z(S)

a 7−→ (
g1(a)

g0(a)
, . . . ,

gk(a)

g0(a)
)

• Πu preserves the multiplicities (µ(u(x)) = µ(x)).

Moreover, a separating element u for S can be chosen among the elements
of the family

U = {X1 + jX2 + . . . + jk−1Xk, j = 0 . . . kD(D − 1)/2},

where D is the dimension of K[X1, . . . , Xk]/〈S〉 as a K-vector space.
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The point (
g1(a)

g0(a)
, . . . ,

gk(a)

g0(a)
) of Z(S) is associated to the root a of fu.

The computation of a RUR can be decomposed into two steps :

• finding a separating element,

• computing a RUR knowing a separating element.

According to the proposition above, we can proceed as follows for checking
if a given element is separating and finding a separating element of a zero-
dimensional system S of K[X1, . . . , Xk]:

ChecksepElement

• Input : A zero-dimensional system S of K[X1, . . . , Xk], a Gröbner basis G of I = 〈S〉
for any admissible monomial ordering, the number ♯Z(S) of distinct solutions of the
system and an element u ∈ K[X1, . . . , Xk]

• Output : true if u is separating for S and false if it is not.

• Compare the degree of the square-free part of the minimal polynomial of the multi-
plication by u (abusing notation and identifying u and its image in K[X1, . . . , Xk]/I)
and ♯Z(S). If these two numbers are equal return true, otherwise return false.

sepElement

• Input : A zero dimension system S of K[X1, . . . , Xk] and a Gröbner basis G of
I = 〈S〉 for any admissible monomial ordering.

• Output : a separating element for S.

1. Compute ♯Z(S) by constructing and reducing Hermite’s quadratic form.

2. Choose u ∈ U . Remove u from U .

3. Perform ChecksepElement on u. If the output is false, go to step 2 again.

4. Return(u)

In the particular case when I = 〈S〉 is radical, step 1 is not needed since
♯Z(S) is exactly the dimension of the K-vector space K[X1, . . . , Xk]/I.

7



The RUR itself can be computed using different strategies. For example,
when the ideal is known to be radical, a separating element u is a primi-
tive element of K[X1, . . . , Xk]/I, and the computation of a RUR consists in
expressing the coordinates Xi, i = 1 . . . k with respect to the algebraic exten-
sion K[u] (done by inverting the matrix whose columns are the coordinates
of 1, u, . . . , uD−1 in K[X1, . . . , Xk]/I).

In the general case (the ideal is not supposed to be radical), an algo-
rithm for computing a RUR is described (see [25]). All the coefficients of
all the polynomials in the RUR can be deduced from the scalars Trace(ui ·
Xj), i = 0 . . .D, j = 1 . . . n where u is the chosen separating element, and,
Trace(P ), for any P ∈ K[X1, . . . , Xk]/I, is the trace of the K-linear map of
K[X1, . . . , Xk]/I : f 7−→ fṖ . This method allows in particular to choose
an arbitrary element u and check after the computation if u is separating or
not. In the particular case of systems with rational coefficients, an optimized
method, based on modular computations, for the full computation (including
the search of a separating element) is also proposed in [25].

For an efficient use of the existing tools for solving zero-dimensional sys-
tems, one will try as much as possible to deal with radical ideals (separating
element easier to find) and, as much as possible, rational coefficients (the
RUR is easier to compute). In any case, we denote by RUR the following:

RUR

• Input : A zero-dimensional polynomial system S in K[X1, . . . , Xk] and a Gröbner
basis G of 〈S〉.

• Output :A Rational Univariate Representation of S.

1. Construct the multiplication table of K[X1, . . . , Xk]/I.

2. Use sepElement to obtain a separating element.

3. Compute a RUR (fu(T ), g0(T ), g1(T ), . . . , gk(T )) for this separating element.

Finally, counting and describing the solutions of the polynomial system in Rk

is equivalent to counting and describing the roots in R of the first element of
the RUR fu(T ) (see [24, 25]) which is a univariate polynomial with rational
coefficients. This is done by RealRootCount .

The following variant, called ARUR [1], will be useful in the last sections
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of the paper. We suppose we know already a separating element.

Definition 2.2 Given any separating u ∈ K[X1, . . . , Xk] we define:

• fu(T ) =
∏

x∈Z(S)

(T − u(x))µ(x)

• g̃0(T ) =
∑

x∈Z(S)

µ(x)(T − u(x))µ(x)−1
∏

y∈Z(S)\{x}

(T − u(y))µ(y)

• g̃i(T ) =
∑

x∈Z(S)

µ(x)xi(T − u(x))µ(x)−1
∏

y∈Z(S)\{x}

(T − u(y))µ(y)

for i = 1, . . . , k. Note that g̃0 is the derivative of fu.

The univariate polynomials

{fu(T ), g̃0(T ), g̃1(T ), . . . , g̃k(T )}

define the so called Antique Rational Univariate Representation (ARUR) of
S associated to u.

The ARUR of S has the following properties:

• fu(T ), g̃0(T ), g̃1(T ), . . . , g̃k(T ) are all elements of K[X1, . . . , Xk]

• the application :
Πu : Ck −→ C

x 7−→ u(x)

defines a bijection between Z(S) and Z(fu), whose reciprocal is given
by :

Π−1
u : Z(fu) −→ Z(S)

a 7−→ (
g̃

(µ−1)
1 (a)

g̃
(µ−1)
0 (a)

, . . . ,
g̃

(µ−1)
k (a)

g̃
(µ−1)
0 (a)

)

where µ is the multiplicity of a as a root of fu.

All the coefficients of all the polynomials in the ARUR can be deduced
from the scalars Trace(ui · Xj), i = 0 . . .D, j = 1 . . . n.
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3 The main algorithm

In the following, P is a polynomial in K[X1, . . . , Xk], and A = (a1, . . . , ak)
is a point of Kk such that P (A) 6= 0.

We give now an algebraic description of an algebraic set containing the
points of Z(P ) at minimal distance from A.

We consider the polynomial system C(A) defined by

P (M) = 0,
−→

gradM (P )//
−→

AM,

where M = (X1, . . . , Xk). The condition
−→

gradM (P )//
−→

AM is expressed by
setting the (2, 2) determinants of the matrix whose columns are the vectors
−→

gradM (P ) and
−→

AM to 0.
A point M is singular if

P (M) = 0,
−→

gradM (P ) = 0,

so that all singular points belong to Z(C(A)).
It is clear that a semi-algebraically connected component of Z(C(A)) is

contained in a semi-algebraically connected component of Z(P ).

Lemma 3.1 Every semi-algebraically connected component of Z(P ) meets
Z(C(A)).

Proof: Consider a semi-algebraically connected component D of Z(P ) and
denote by M a point of D at minimum distance from A. Let d be the distance

from A to M . If the point M is singular, M ∈ Z(C(A)) since
−→

gradM (P ) =
−→

0 .

If it is regular,
−→

gradM (P ) 6=
−→

0 and there exists a hyperplane H which is
tangent to Z(P ) at M . Since M is a point at minimum distance from the
origin on D, the interior of the sphere of center A and of radius d contains
no point of D. Thus, the sphere of center A and of radius d is tangent to H ,

and
−→

AM //
−→

gradM (P ). 2

3.1 Case 1

Lemma 3.1 gives immediately an algorithm to decide if Z(P ) is empty and to
find a point in every semi-algebraically connected component of Z(P ) when
Z(C(A)) is finite.
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Algorithm 1

• Input: a polynomial P ∈ K[X1, . . . , Xk] and a point A ∈ Kk.

• Output: no answer if Z(C(A)) is infinite, false if Z(P ) is empty, true and at least
one point on each semi-algebraically connected component if Z(P ) is not empty.

1. Set G be the output of GröbnerCompute on C(A).

2. Use Test-Dim on G. If it returns false, then return no answer.

3. Else use RUR on G. Set (fu(T ), g0(T ), g1(T ), . . . , gk(T )) to the output.

4. Use RealRootCount on fu(T ).

3.2 Case 2

When Z(C(A)) is infinite, we consider the system G defined by

P (M) = 0,
−→

gradM (P ) = 0,

the set Z(G) is the set of singular points of Z(P ) In this section, we suppose
that Z(G) is finite.

We say that B = (b1, . . . , bk) ∈ Ck is a good center for P if Z(C(B)) is
finite.

We are going to prove that the set of B ∈ Ck which are not good centers
for P is contained in a strict algebraic subset of Ck. As a consequence, the set
of B ∈ Kk which are not good centers for P is contained in a strict algebraic
subset of Kk.

Let

Q1 = λ
∂P

∂X1

− X1,

...

Qk = λ
∂P

∂Xk

− Xk.

Consider the system C′(B) defined by

P = 0,
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Q1 + b1 = 0,
...

Qk + bk = 0

It is clear that Z(C(B)) = Z(G)∪ π(Z(C′(B))) where π is the projection
of (x1, . . . , xk, λ) on (x1, . . . , xk).

Lemma 3.2 Let P be a polynomial and

H = {(M, λ) ∈ Ck+1 | P (M) = 0,
−→

gradM (P ) 6=
−→

0 }.

A = {B = (b1, . . . , bk) ∈ Ck |
H ∩ Z(Q1 + b1, . . . , Qk + bk, Jac(P, Q1 + b1, . . . , Qk + bk)) 6= ∅}

is contained in a strict algebraic subset of Ck.

Proof: Consider the application F from H to Ck which associates to (M, λ)
Q1(M, λ), . . . , Qk(M, λ). The critical values of F are the points B = (b1, . . . , bk)
of Ck such that Z(Q1 + b1, . . . , Qk + bk, Jac(P, Q1 + b1, . . . , Qk + bk)) 6= ∅.
¿From Sard’s theorem over C [20] and the transfer principle [5] it follows that
A is a constructible set of dimension < k of Ck. 2

Corollary 3.3 A point A /∈ A is a good center for P . Moreover, the zeroes
of C′(A) are simple.

Proof: Let A = (a1, . . . , ak) /∈ A. Since the rank of the Jacobian matrix
is maximal at the solutions of the system C′(A), these solutions are isolated
and non singular. So, Z(C′(A)) is finite and contains only simple zeroes. 2

It is well known that

Lemma 3.4 Let g be a non null polynomial in R[X1, . . . , Xk] of degree d,
one can find a point A in {0, . . . , d}k such that g(A) 6= 0.

Thus, one can choose successive values of B = (b1, . . . , bk) in a box
{0, . . . , d}k and guarantee that for one of these choices the zero set of C′(B) is
composed of a finite number of simple zeroes. Since we do not have a precise
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bound on the degree of the algebraic set defining A, we have to be careful in
the way we exhaust this box.

If Z(C(A)) is infinite and Z(G) is finite, we need to find a point B such

that the system P = 0, λ
−→

gradM (P )//
−→

BM is zero-dimensional.

change-center

• Input: A polynomial P ∈ K[X1, . . . , Xk] such that Z(G) is finite.

• Output: A point B such that C(B) is zero-dimensional, and a Gröbner basis G of
〈C(B)〉

1. Choose a point B in {0, . . . , d}k \ {0, . . . , d − 1}k.

2. Perform GröbnerCompute on C(B). Set G to the output.

3. Use Test-Dim on G. If it returns true, return G.

4. Else, if all the points of {0, . . . , d}k have been tested, take d := d + 1 and go to 1.

Now, we are ready to describe the Algorithm 2 which tests the emptiness
of Z(P ) (and returns at least one point on each semi-algebraically connected
component if it is not empty) in the case where Z(C(A)) is infinite and Z(G)
is finite.

Algorithm 2

• Input: a polynomial P ∈ K[X1, . . . , Xk].

• Output: no answer if Z(G) is infinite, false if Z(P ) is empty, true and at least one

point on each semi-algebraically connected component if Z(P ) is not empty.

1. Perform GröbnerCompute on G. Set G̃ to the output.

2. Use Test-Dim on G̃. If it returns false, then return no answer.

3. Use change-center on P . Then perform RUR on the returned Gröbner basis of
C(B).

4. Perform RealRootCount on the first polynomial of the computed RUR.

Note that any point B taken at random is good, so the change of center part
of the algorithm is not used much in practice.
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3.3 Case 3

Now, we deal with the last case, when Z(G) is infinite.
The idea for this case is to make an infinitesimal deformation of our

algebraic set Z(P ) to get a smooth hypersurface, to solve the problem after
deformation and to come back to the original problem.

We denote by R〈ε〉 (resp. C〈ε〉) the real closed field (resp. algebraically
closed field) of algebraic Puiseux series with coefficients in R (resp. C) (see
[5, 31]). Let α =

∑
i≥i0

aiε
i/q be an element of R〈ε〉 (resp. C〈ε〉 ) where

i0 ∈ Z, q ∈ N and ai ∈ R (resp. C), ai0 6= 0 (by convention, ai = 0 if i < i0).
The rational o(α) = i0/q is the order of α, the initial coefficient in(α) of α
is the coefficient of εO(α) in α. The element α is said to be bounded over
R (resp. C) if o(α) is non negative. The elements of R〈ε〉 (resp. C〈ε〉 )
bounded over R (resp. over C) form a valuation ring Rb〈ε〉 (resp. Cb〈ε〉), the
function lim0, from Rb〈ε〉 to R (resp. Cb〈ε〉 to C) defined by lim0(α) = a0

is a ring homomorphism. The element α is said to be infinitesimal over R
(resp. C) if o(α) is positive. Points x = (x1, . . . , xk) and y = (y1, . . . , yk) in
R〈ε〉k (resp. C〈ε〉k ) are infinitesimally close if for all i = 1, . . . , k, xi − yi is
infinitesimal.

If Sε ⊂ R[ε][X1, . . . , Xk] is a zero-dimensional polynomial system, we
denote by Zb(Sε) ⊂ C〈ε〉k (resp. Zb(Sε) ⊂ R〈ε〉k) the set of bounded solu-
tions of Sε, with coordinates in Rb〈varepsilon〉k (resp. Cb〈ε〉k). Note that
lim0(Zb(Sε)) = lim0(Zb(S−ε)), where S−ε is the polynomial system obtained
by substituting −ε to ε in the elements of Sε. Note also that

lim0(Zb(Sε) ∪ Zb(S−ε)) ⊂ lim0(Z(Sε)) ∩ Rk.

The following result is a well known consequence of Sard’s theorem.

Lemma 3.5 The algebraic sets defined by P − ε = 0 (resp. P + ε = 0) in
Ck are smooth hypersurfaces (i.e. their set of singular points is empty).

We are going to explain how the bounded points of the algebraic sets
defined by P − ε = 0 and P + ε = 0 are related to the algebraic set defined
by P .

Lemma 3.6

lim0(Zb(P − ε) ∪ Zb(P + ε)) = lim0(Zb(P − ε) ∩ Rk =

= {M ∈ Rk | P (M) = 0}.
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Proof: • Take M ∈ Rk such that P (M) = 0. In all the balls of Rk of
center M , there exists a point N such that P (N) 6= 0. So according to
the curve selection lemma, there exists a semi- algebraic function from
[0, 1] to Rk, with φ(0) = M , P 2(φ(x)) > 0 for x ∈]0, 1]. So denoting
by φε the extension of φ to R〈ε〉, and using the intermediate value
theorem, there exists y with P (φε(y))2 = ε2 . Since lim0(P (φε(y))) =
P (φ(lim0(y))) = 0, lim0(y) = 0 and lim0(φε(y)) = M . It is clear that
φε(y) is bounded over R.

• Let N ∈ C〈ε〉k be a bounded point such that P (N) − ε = 0. We
denote M = lim0(N). By applying the ring homomorphism lim0, we
have P (M) = 0.

2

Let Cε(A) be the polynomial system defined by

P = ε,
−→

gradM (P )//
−→

AM .

and Iε,A = 〈Cε(A)〉.

Lemma 3.7 lim0(Zb(Cε)(A)) ∩ Rk meets every semi-algebraically connected
component of Z(P ).

Proof: Let D be a semi-algebraically connected component of Z(P ) and M
be the subset of points of D at minimal distance from the origin. Let r > 0
be small enough so that the closed and bounded semi algebraic set

T = {x ∈ Rk | ∃y ∈ M dist(x,M) ≤ r}

does not intersect Z(P ) \ D. According to Lemma 3.6, there exists N ∈
Zb(P

2 − ε2) with lim0(N) ∈ M. Denoting

T ′ = {x ∈ Rk | ∃y ∈ M dist(x,M) = r}

we notice that the points of Zb(P
2 − ε2) ∩ T ′ are infinitesimally closed of

points of Z(P ) ∩ T ′ which are not at minimal distance from A. So the
minimal distance from A to Z(P 2 − ε2)∩ T is not obtained on T ′. Thus this
minimal distance is obtained at a bounded point N which is a critical point
of the distance function to A on Z(P 2 − ε2). It is clear that lim0(N) ∈ M.
2
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According to the preceding results, if we find a point A such that Cε(A) is
zero-dimensional and design a black box which computes lim0(Zb(Cε(A))) ∩
Rk, we get a point in every semi-algebraically connected component of the
zero set of P .

We denote by DetectBounded Roots Algo the following blackbox :

• It takes as input Sε a zero-dimensional polynomial system of K[ε][X1, . . . , Xk]
and a Gröbner basis Gε of Iε = 〈Sε〉 for any admissible monomial or-
dering.

• It returns a list of Rational Univariate Representations with coefficients
in K, counts and describes the solutions in R of their first polynomial.

The set of points associated in Ck to these RUR is lim0(Zb(Sε)), while the
set of points associated in Rk to these RUR is equal to lim0(Zb(Sε)) ∩ Rk.

In section 4, we design a version of this black box. It is optimized in
section 5.3. Modulo these blackboxes we have the following algorithm.

Algorithm 3

• Input: a polynomial P ∈ K[X1, . . . , Xk].

• Output: false if Z(P ) is empty, true and at least one point on each semi-algebraically

connected component if Z(P ) is not empty.

1. Perform GröbnerCompute on G, defined by

P (M) = 0,
−→

gradM (P ) = 0.

Set G̃ to the output. Use Test-Dim on G̃. If it returns false, go to 3.

2. Use change-center . Then perform RUR on the returned Gröbner basis. Use
RealRootCount on the first polynomial of the computed RUR.

3. Use change-center with input P − ε, return a good center B and a Gröbner basis
Gε of Iε,B.

4. Use DetectBounded Roots Algo on Cε(B).
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4 Computing limits of bounded solutions

In this section we describe an algorithm performing DetectBounded Roots

Algo. An optimized version of this black box is designed in the next section.
Let Sε be a zero-dimensional polynomial system in K[ε][X1, . . . , Xk] and

Aε = K(ε)[X1, . . . , Xk]/〈Sε〉.
We are going to explain how to compute a list of Rational Univariate

Representations with coefficients in K, such that the set of points associated
in Ck to these RUR will be lim0(Zb(Sε)), while the set of points associated
in Rk to these RUR will be equal to lim0(Zb(Sε)) ∩ Rk.

We give full details about this blackbox in this paper since the algorithms
designed to solve this problem [3, 28] are not correct.

Note that since u is with coefficients in K, the image by u of bounded
elements of Z(Sε) in C〈ε〉k are bounded. We denote by Z = lim0(Zb(Sε)).

Definition 4.1 A well separating element u =
∑

i=1,...,k uiXi, ui ∈ K for Sε

is a separating element such that u is a bijection from Z to the bounded roots
of fu(ε, T ).

In order to illustrate the phenomena that can appear in the lim0 process,
we consider the following examples :

• Example 1 : Consider the polynomial system XY = 1, X = ε, the
only solution is

(ε,
1

ε
)

which is unbounded, u = X sends this solution to ε which is bounded,
so X is separating.

• Example 2 : Consider the polynomial system X2 + Y 2 − 1 = 0, εY =
X, the only solutions are

(
ε

(1 + ε2)1/2
,

1

(1 + ε2)1/2
), (

−ε

(1 + ε2)1/2
,

−1

(1 + ε2)1/2
)

which are bounded and not infinitesimally close, u = X sends these
solutions to

ε

(1 + ε2)1/2
,

−ε

(1 + ε2)1/2
,

which are infinitesimally close. So fu(ε, T ) has one single bounded root
while Z has two points.
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In examples 1 and 2, X is not well separating while Y is.

We explain now how to find a well separating element.
A rational function f in K(ε) can be uniquely written under the form

εo(f) a(ε)

b(ε)
with ν ∈ Z, a(0)b(0) 6= 0. The integer number o(f) is the order of

f . We denote by Kb(ε) the ring of elements of K(ε) with a positive order.
Let u = u1X1 + . . . + ukXk, ui ∈ K, be a separating element of Sε. Since

the polynomial system Sε is contained in K[ε][X1, . . . , Xk], the polynomials

(fu(ε, T ), g̃0(ε, T ), g̃1(ε, T ), . . . , g̃k(ε, T ))

of the ARUR associated to u are elements of K(ε)[T ]. Note that fu(ε, T ) is
monic. Let ν be the smallest integer such that ενfu(ε, T ) to Kb(ε)[T ], We
define

(Fu(ε, T ), G0(ε, T ), G1(ε, T ), . . . , Gk(ε, T )),

the Normalized Rational Univariate Representation (NRUR) as

(ενfu(ε, T ), εν g̃0(ε, T ), ενg̃1(ε, T ), . . . , εν g̃k(ε, T )).

This NRUR describes the same points as the initial RUR.
Note that G0(ε, T ) is the derivative of Fu(ε, T ) = ενfu(ε, T ), so G0(ε, T ) ∈

Kb(ε)[T ] while it may happen that some Gi(ε, T ) do not belong to Kb(ε)[T ].
In example 1

G0(ε, T ) = 1, G1(ε, T ) = ε, G2(ε, T ) =
1

ε.

Similarly to separating element (see last item of Proposition 2.1), well
separating elements can be chosen in a set U ′ defined in advance.

Lemma 4.2 A well separating element u for Sε can be chosen among the
elements of the family

U ′ = {X1 + jX2 + . . . + jk−1Xk, j = 0 . . . (k − 1)D2}.

Proof : Define

1. W1, of cardinality ≤ D(D − 1)/2, to be the set of vectors x− y with x
and y distinct solutions of Sε in C〈ε〉k,
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2. W2, of cardinality ≤ D, to be the set of vectors c = (c1, . . . , ck) with ci

the coefficient of εmini=1,...,k(o(xi)) in xi,

3. W3, of cardinality ≤ D(D − 1)/2, to be the set of vectors lim0(x) −
lim0(y) with x and y distinct non infinitesimally close bounded solutions
of Sε in C〈ε〉k,

4. W = W1 ∪W2 ∪W3. Note that W is of cardinality ≤ D2.

Since o(u(x)) = mini=1,...,k(o(xi)) for every x ∈ Z(Sε) implies that the
polynomials G1(ε, T ), . . . , Gk(ε, T ) belong to Kb(ε)[T ], an element u = X1 +
. . . + jk−1Xk is well separating if for every w ∈ W, w1 + . . . + jk−1wk 6= 0.
For a fixed w ∈ W, there are at most k − 1 elements of U ′ which satisfy
w1 + . . . + jk−1wk = 0. This is because an element X1 + jX2 + . . . + jk−1Xk

satisfying w1 + . . . + jk−1wk = 0 is such that Pw(j) = 0, with Pw(T ) =
w1 + Tw2 + . . . + T k−1wk and Pw(T ) , which is non zero, has at most k − 1
roots. So the result is clear by the pigeon-hole principle. 2

We relate now roots of fu(ε, T ) in C〈ε〉 and roots of Fu(0, T ) when u is
well separating.

Lemma 4.3 Let u be a well separating element for Sε.

• The polynomial fu(ε, T ) has unbounded roots in C〈ε〉 if and only if
degT (Fu(0, T )) < degT (fu(ε, T )),

• ν =
∑

j=ℓ+1,...,p −o(αj)µj where αℓ+1, . . . , αp are the unbounded roots of
fu(ε, T ) with negative orders o(αj) and multiplicities µj,

• if α is a root of f(ε, T ) in C〈ε〉 bounded over C, then a = lim0(α) is a
root of Fu(0, T ) .

Proof : Let α1, . . . , αℓ be the bounded roots of fu(ε, T ), with multiplicities
µj. We have

fu(ε, T ) =
ℓ∏

j=1

(T − αj)
µj

p∏

j=ℓ+1

(T − αj)
µj ∈ K(ε)[T ],

and it is clear that the order of the coefficient of T
Pℓ

j=1 µj in fu(ε, T ) is exactly∑p
j=ℓ+1 µjo(αj), and that the order of any other coefficient of fu(ε, T ) is
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smaller than
∑p

j=ℓ+1 µjo(αj). Denoting εj = ε−o(αj) (for j = ℓ + 1, . . . , p), it
is clear that

Fu(ε, T ) =

p∏

j=ℓ+1

(εjT − εjαj)
µj

ℓ∏

j=1

(T − αj)
µj ∈ Kb(ε)[T ].

Denoting aj = lim0(αj) for j = 1, . . . , ℓ, c =

p∏

j=ℓ+1

(−in(αj))
µj ,

Fu(0, T ) = c
ℓ∏

j=1

(T − aj)
µj .

2

Lemma 4.4 If u = u1X1 + . . . + ukXk, ui ∈ K, is separating, such that
ενg1(ε, T ) . . . , ενgk(ε, T ) ∈ Kb(ε)[T ], and u is injective on the bounded zeros
of Sε in C〈ε〉k, then u is well separating for Sε.

More precisely if t is a root of Fu(0, T ) with multiplicity n then, there
exists a root τ of fu(ε, T ) in C〈ε〉 with lim0(α) = a. Moreover for every
bounded τ root of fu(ε, T ) in C〈ε〉 of multiplicity µ with lim0(α) = a,

lim0

(
gµ−1

i (ε, α)

gµ−1
0 (ε, α)

)
=

g
(n−1)
i (0, a)

g
(n−1)
0 (0, a)

.

Proof : With the same notation as above,

G0(0, T ) = c(

l∑

j=1

µj(T − aj)
µj−1

∏

m∈{1,...,ℓ}\{j}

(T − am)µm).

Suppose that a = lim0(α1) = . . . = lim0(αs), a 6= lim0(αj), j > s, then

G
(n−1)
0 (0, a) = c.n!

ℓ∏

j=n+1

(a − aj),

where n = µ1 + . . . + µs.
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Denoting by ξj the unique point of Z(Sε) such that u(ξj) = αj, and ξij

the i-th coordinate of ξj, we have also

g̃i(ε, T ) =

p∑

j=1

ξijµj(T − αj)
µj−1

∏

m∈{1,...p}\{j}

(T − αm)µm

Gi(ε, T ) =

ℓ∑

j=1

ξijµj(T −αj)
µj−1

∏

m∈{1,...ℓ}\{j}

(T −αm)µm

p∏

m=ℓ+1

(εmT −εmαm)µm

+

ℓ∏

m=1

(T−αm)µm(

p∑

j=ℓ+1

εjξijµj(εjT−εjαj)
µj−1

∏

m∈{ℓ+1,...p}\{j}

(εmT−εmαm)µm).

It is clear that

A =

ℓ∑

j=1

ξijµj(T−αj)
µj−1

∏

m∈{1,...ℓ}\{j}

(T−αm)µm

p∏

m=ℓ+1

(εmT−εmαm)µm ∈ Cb〈ε〉[T ].

Since Gi(ε, T ) ∈ Kb(ε)[T ],
ℓ∏

m=1

(T − αm)µm ∈ Cb〈ε〉[T ] is monic,

Gi(ε, T ) = A +
ℓ∏

m=1

(T − αm)µmB

with B ∈ Cb〈ε〉[T ]. So that

Gi(0, T ) = Ā +

ℓ∏

m=1

(T − am)µmB̄,

with lim0(αj) = aj , Ā and B̄ the polynomials of C[T ], obtained by replacing
each coefficient c of A and B by lim0(c). So, since a = lim0(α1) = . . . =
lim0(αs), a 6= lim0(αj), j > s, denoting by x = lim0(ξ1) = . . . = lim0(ξs),
with u(ξi) = αi,

G
(n−1)
i (0, a) = c.n!xi

ℓ∏

j=n+1

(a − aj),
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where n = µ1 + . . . + µs and finally

xi =
G

(n−1)
i (0, a)

G
(n−1)
0 (0, a)

.

2

The following naive-and inefficient- algorithm can be used to find a well
separating element :

Naivewell-sepElement

• Input : A zero-dimensional Sε of K[ε][X1, . . . , Xk] and a Gröbner basis Gε of the
ideal Iε generated by Sε, for any admissible monomial ordering.

• Output : a well separating element u of Sε, a square free decomposition of Fu(0, T )
and

(G0(0, T ), G1(0, T ), . . . , Gk(0, T ))

the NRUR for u.

1. For every u ∈ U ′

• Check if u is separating using ChecksepElement.

• Compute the NRUR associated to u

(Fu(ε, T ), G0(ε, T ), G1(ε, T ), . . . , Gk(ε, T )),

keep u only if the NRUR belongs to Kb(ε)[T ].

2. Choose among elements of U ′ kept in Step 1 u such that the degree of the square-free
part of Fu(0, T ) is maximum.

3. Compute the square free decomposition of Fu(0, T )

Fu(0, T ) = f1f
2
2 . . . fm

m .

4. Return (u, f1, . . . , fm) and

(G0(0, T ), G1(0, T ), . . . , Gk(0, T )).

The multiplicity of a point x of Z is the sum of the multiplicities of the
points ξ ∈ Z(Sε) such that lim0(ξ) = x.
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Lemma 4.5 Let u = u1X1 + . . . + ukXk, ui ∈ K, be such that the NRUR
belongs to Kb(ε)[T ]. Let hi(ε, Λi) be the characteristic polynomial of the map
of multiplication by Xi in Aε, and Hi ∈ Kb(ε)[Λi], Hi /∈ εKb(ε)[Λi] a conve-
nient multiple of hi, called a normalized characteristic polynomial of Xi. Let
Fu(0, T ) = f1f

2
2 . . . fm

m , with all fn square free, be the square-free decomposi-
tion of Fu(0, T ). The element u is well separating if and only if, defining

Ki(Λi) =

m∏

n=1

Res(G0(0, T )(n−1)Λi − Gi(0, T )(n−1), fn)n,

Ki divides Hi(0, Λi).

Proof : If u is well separating, the roots of Ki are roots of the form

xi =
G

(n−1)
i (0, a)

G
(n−1)
0 (0, a)

where a is a root of fn (i.e. a root of multiplicity n of Fu(0, T )) and u(x) = a.
So the roots of Ki are roots of Hi(0, Λi) with the same multiplicities.

Conversely, if u is not well separating, there exists a root a of G(0, T )
with x1, . . . , xs elements of Z of multiplicities n1, . . . , ns and u(x1) = . . . =
u(xs) = a. Let n = n1 + . . . + ns, then it is clear from the definitions that

G
(n−1)
i (0, a)

G
(n−1)
0 (0, a)

=
n1x1 + . . . + nsxs

n
.

So the s-tuple x1, . . . , xs is replaced by the barycenter b of the points xi with
weights ni. We can conclude using next lemma that there exists a root xi of
some Hi(0, Λi) of multiplicity n whose multiplicity in Ki is > n. 2

Lemma 4.6 Let Z be a finite multiset consisting of points x ∈ Ck with
multiplicities µ(x). We denote by Πi(Z) the multiset obtained by projecting
points of Z on their i-th coordinate (adding the multiplicities if points have
the same i-th coordinate). Let Z ′be a multiset obtained by replacing finite
disjoint subsets of Z by their barycenter (taking into account multiplicities).
Then Z 6= Z ′ if and only if there exists an i such that Πi(Z) 6= Πi(Z

′).

23



Proof : Suppose that Z 6= Z ′ and denote by W the subset of points of Z
that are no more in Z ′, and let H be the convex hull of W . Let x be any
extreme point of H , and i such that xi is distinct from the i-th coordinate of
the barycenter replacing it. Since a barycenter of points is contained in the
interior of the convex hull of these points, the multiplicity of Πi(Z

′) at xi is
strictly smaller that the multiplicity of Πi(Z) at xi. It follows that there is
a point y such that the multiplicity of Πi(Z

′) at yi is strictly bigger than the
multiplicity of Πi(Z) at yi. 2

According to the above Lemmas, the following well-sepElement Algo

can be used for producing a well separating element.
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well-sepElement Algo

• Input : A zero-dimensional Sε of K[ε][X1, . . . , Xk] and a Gröbner basis Gε of the
ideal generated by Sε, for any admissible monomial ordering.

• Output : a well separating element u of Sε, a square free decomposition of Fu(0, T )
and

(G0(0, T ), G1(0, T ), . . . , Gk(0, T ))

the NRUR for u.

1. Compute for every i Hi a normalized characteristic polynomials of Xi in Aε.

2. Choose u ∈ U ′. Remove u from U ′.

3. Check if u is separating, using ChecksepElement.

4. Compute the NRUR

(Fu(ε, T ), G0(ε, T ), G1(ε, T ), . . . , Gk(ε, T )),

if it is not in Kb(ε)[T ], go to 2.

5. Compute the square free-decomposition

Fu(0, T ) = f1f
2
2 . . . fm

m .

Compute

Ki(Λi) =

m∏

n=1

Res(G0(0, T )(n−1)Λi − Gi(0, T )(n−1), fn)n,

If there exists i such that Ki does not divide Hi(0, Λi), go to 1.

6. Return(u, , f1, . . . , fm) and

(G0(0, T ), G1(0, T ), . . . , Gk(0, T )).

In example 2, when u = X, Fu(ε, T ) = (1 + ε2)T 2 − ε2 is square-free and
Fu(0, T ) = T 2. The normalized characteristic polynomial H2(ε, Λ2) of the
multiplication by Y is (1+ε2)Λ2

2−1, so H2(0, Λ1) = Λ2
2−1, while G0(ε, T ) =

2(1 + ε2)T , G0(0, T ) = 2T , G1(ε, T ) = 2ε2 G2(0, T ) = 0, K2(0, Λ2) = Λ2
2.

So we can conclude (without looking at the roots) that u = X is not a well
separating element.

Now, we explain how Z = lim0(Zb(Sε)) can be computed from a well
separating element.
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Detect-Bounded Roots Algo

• Input : Sε be a zero-dimensional polynomial system of K[ε][X1, . . . , Xk] and Gε a
Gröbner basis of the ideal Iε generated by Sε for any admissible monomial ordering.

• Output :A list of real solutions of rational univariate representations containing the
limits of the bounded roots in R〈ε〉 of Iε.

• Use well-sepElement Algo.

• Return(listrurs = {(fn, G0(0, T )(n−1), G1(0, T )(n−1) . . . , Gk(0, T )(n−1))}),
• For every element of listrurs use RealRootCount on its first polynomial.

Example 3. We are going to prove that the zero set of the equation
Y 2 +(XY −1)2 is empty by studying Y 2 +(XY −1)2 −ε. It is easy to check
that the variable X is a separating element For the polynomial system

P (X, Y ) = ε,
−→

gradX,Y (P )//(X, Y ).

Its characteristic polynomial is

F (ε, X) = εX10 + (4ε − 1)X8 + (−3 − 2ε2 + 4ε)X6 + (10ε − 1 − 4ε2)X4

+(10ε − 7 + ε3 − 4ε2)X2 − ε2 + 2ε − 1

We have :

G0(ε, X) = 10εX9 + 8(4ε − 1)X7 + 6(−3 − 2ε2 + 4ε)X5

+4(10ε − 1 − 4ε2)X3 + 2(10ε − 7 + ε3 − 4ε2)X,

G1(ε, X) = 10εX8 + (16ε − 8)X6 + (4ε2 − 10ε − 4)X4

+(−8ε2 − 4ε + 12)X2 + 2(ε − 1)(ε2 − 2ε + 1),

G2(ε, X) = (−8ε + 2)X8 + (12 + 8ε2 − 16ε)X6 + (−60ε + 6 + 24ε2)X4

+(−80ε + 56 − 8ε3 + 32ε2)X2 + 10ε2 − 20ε + 10.

So, we have :

F (0, X) = −X8 − 3X6 − X4 − 7X2 − 1

G0(O, X) = −8X7 − 18X5 − 4X3 − 14X

G1(0, X) = −8X6 − 4X4 + 12X2 − 2

G2(0, X) = 2X8 + 12X6 + 6X4 + 56X2 + 10
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The normalized characteristic polynomial H1(ε, Λ1) is equal to :

H1(ε, Λ1) = Λ10
1 −εΛ8

1+(−2ε−2)Λ6
1+(2ε+1+2ε2)Λ4

1+(ε2−2ε+1)Λ2
1−ε−ε3+2ε2

and
H1(0, Λ1) = Λ10

1 − 2Λ6
1 + Λ4

1 + Λ2
1.

Now, we can compute K1(Λ1) and K2(Λ2) to check if the variable X is a
well separating element.

K1(Λ1) is proportional to − Λ8
1 + 2Λ4

1 − Λ2
1 − 1

K2(Λ2) = F (0, Λ2).

Since K1 divides H1(0, Λ1) and K2 = H1(0, Λ1), X is a well separating ele-
ment.

Since F (0, X) has no real roots, one can conclude that Y 2 + (XY − 1)2

has no real roots.

5 Optimizations

We improve now Algorithm 3 in Section 3 to avoid as much as possible
computations with infinitesimals.

5.1 Computing a Gröbner basis in R〈ε〉[X1, . . . , Xk]

We need a Gröbner basis of the ideal generated by Cε(B) in R〈ε〉[X1, . . . , Xk]
in order to decide if B is a good center for P − ε and to compute a Rational
Univariate Representation of Z(Cε(B)).

Since Cε(B) ⊂ K[ε][X1, . . . , Xk] we can proceed as follows.

Definition 5.1 An E-specialization Φ is a homomorphism

Φ : R[E] −→ R,

it is defined by the image e of E by Φ.

We consider an order eliminating the variables X1, . . . , Xk on the monomials
of R[E, X1, . . . , Xk] (i.e. E is smaller than all the Xi), and the restriction of
this order to X1, . . . , Xk, we denote by lmX1,...,Xk

(P ) the leading monomial
of P for this order and by ltX1,...,Xk

(P ) the leading term.
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Definition 5.2 For all P in R[E, X1, . . . , Xk], we define,

P = lc(P )XA + Q

with lc(P ) ∈ R[E] and lmX1,...,Xk
(Q) < lmX1,...,Xk

(P ) = XA. Then, if e ∈ R
is not a root of lc(P ), denoting c = lc(P (e)) ,

lmX1,...,Xk
(Pe) = XA

lt(Pe) = cXA.

Given a zero-dimensional polynomial system Sε in K[ε][X1, . . . , Xk], denote
by L the polynomials in the variable E which are the coefficients of the leading
monomials of the Groebner basis of IE = 〈SE〉 for an order eliminating
X1, . . . , Xk.

Lemma 5.3 [13] Let Φ be the E-specialization which sends E to e, and G a
Gröbner basis (according to an elimination order of X1, . . . , Xk) of IE. If e
is not a root of a polynomial in L, then Φ(G) is a Gröbner basis for Φ(IE).

ε-Gröbner Compute

• Input: a polynomial system in K[ε][X1, . . . , Xk], and an elimination order for E.

• Output: a non-reduced Gröbner basis in K(ε)[X1, . . . , Xk] for the polynomial sys-
tem.

1. Replace the input system by the system obtained by substituting to ε a new variable
E.

2. Compute a Gröbner basis for the preceding system with respect to an order eliminat-
ing X1, . . . , Xk.

3. Specialize the variable E to ε in the obtained Gröbner basis.

We easily deduce from this εTest-Dim which tests if a polynomial system
with coefficients in K[ε] is zero-dimensional.
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5.2 Finding a separating element and a good center

In the Rational Univariate Representation , we find a separating element
by choosing an element in U and checking whether it is separating. Our
input polynomials are now in K[ε][X1, . . . , Xk], but we are going to chose
a separating element performing computations exclusively in K[X1, . . . , Xk].
When K is the field of rational numbers, the use of modular arithmetic for
checking that an element is separating is particularly efficient.

Suppose that the polynomial system Sε ⊂ K[ε][X1, . . . , Xk] is zero-dimensional
and denote Iε = 〈Sε〉. Denote by Se (e ∈ K) the polynomial system obtained
by substituting e to ε in Sε and denote Ie = 〈Se〉

Using the notations of the last paragraph, an element e of K which
is not a root of a polynomial in L is such that dim(K[X1, . . . , Xk]/Ie) =
dim(K〈ε〉[X1, . . . , Xk]/Iε). Denote by E the set of elements of C which are
not roots of a polynomial in L. It is clear that the complement of E contains
at most a finite number of elements of K.

Lemma 5.4 The following are equivalent
a) Iε is radical,
b) There exists e0 ∈ E ∩ K such that Ie0 is radical,
c) The complement of E ′ = {e ∈ E | Ie is radical,} is finite.

Proof: b) implies c): Obviously, E ′ is not empty because e0 ∈ E ′. Let e be an
element of E ′. Since Ie is radical, all the solutions of Ie are simple solutions.
Moreover, in a neighborhood U of e, the dimension of the quotient is fixed
for every e′ ∈ U . Thus, the solutions vary continuously. So, there exists a
neighborhood of e in which the solutions are simple solutions. Thus, we have
proved that E ′ is an open set for the euclidean topology. Moreover, since it
can be described by a first order formula, E ′ is constructible for the Zariski
topology. The complement of E ′ is a subset of C which is constructible and
closed, thus finite.
c) implies a): Since the complement of E ′ is finite, there exists an open
interval of the type (0, α) (where α ∈ R) such that ∀e ∈ (0, α), e is an
element of E ′. Thus, if we denote by E ′ the extension of E ′ to R〈ε〉, ε ∈ E ′.
a) implies b): The extension of the open constructible set E ′ = {e ∈ E | Ie is radical}
to C〈ε〉 contains ε and is non empty. Thus the complement of E ′ is finite
and E ′ ∩ K is non empty. 2
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Let e0 ∈ E ∩ K, such that Se0 is 0-dimensional and Ie0 is radical . Let u
be a separating element for Se0 .

Lemma 5.5 The ideal Iε is radical and u is a separating element for Sε.

Proof: Since the zeroes of Ie0 are simple, and the zeroes of Ie remain simple
and vary continuously for e ∈ E in a neighborhood of e0, if u is separating
for Se0, then u remains a separating element for Se in a neighborhood of e.

Consider

E ′′ = {e ∈ E ′ | Ie is radical, u is separating forSe}.

The set E ′′ is a non empty and open set for the euclidean topology. It is
constructible for the Zariski topology as defined by a first order formula.
Thus, the complement of E ′′ which is closed and constructible is a finite set
of points. So, ε ∈ E ′′. Then Iε is a radical ideal and u is a separating element
for Sε. 2

Finally we have an improved way of checking that a given element is
separating for Sε in a special case.

ε-ChecksepElement

• Input : A zero-dimensional system Sε of K[ε][X1, . . . , Xk], a Gröbner basis Gε of
Iε = 〈Sε〉 for any admissible monomial ordering, an element e ∈ K such that Ie is
radical, dim(K[X1, . . . , Xk]/Ie) = dim(K〈ε〉[X1, . . . , Xk]/Iε), Ge is a Gröebner basis
of Ie, and an element u ∈ K[X1, . . . , Xk].

• Output : true if u is separating for S and false if it is not.

• Use ChecksepElement on Se.

A good pair (B, e) ∈ Rk × R for P is such that :

• the polynomial system Cε(B) defined by P − ε,
−→

gradM (P )//
−→

BM is
zero-dimensional,

• the polynomial system Ce(B) P−e,
−→

gradM (P )//
−→

BM is zero-dimensional
and the ideal IB,e = 〈Ce(B)〉, is radical,

30



• dim(K[X1, . . . , Xk]/IB,e) = dim(K〈ε〉[X1, . . . , Xk]/IB,ε) where IB,ε =
〈Cε(B)〉.

Note that a pair (B, e) chosen at random is good.
According to the preceding results and results of section 2, the following

strategy finds a good center for P − ε.

ε change-center

• Input: P ∈ K[X1, . . . , Xk] such that Z(G) is infinite.

• Output: A good center B for P − ε, a Gröbner basis Gε of IB,ε, an element e such
that IB,e is radical, dim(K[X1, . . . , Xk]/IB,e) = dim(K〈ε〉[X1, . . . , Xk]/IB,ε) and Ge

is a Gröbner basis of IB,e.

1. Initialize d = 1.

2. For B ∈ {0, . . . , d}k, e = d and B ∈ {0, . . . , d}k \ {0, . . . , d − 1}k, e ∈ {1, . . . , d − 1},
use Test-dim and Test-radical to test if Ce(B) is zero-dimensional and IB,e radical.

3. Check that Cε(B) is zero-dimensional by using εTest-Dim .

4. As soon as a pair (B, e) is good, return this pair and the corresponding Gröebner
basis of IB,e, Ge.

5. If there is no good pair, increase d by 1 , and return to 2.

6. Return B, a Gröbner basis Gε of IB,ε, and e.

5.3 Using infinitesimals with a fixed precision

In the algorithms described before, ε is treated as an independent variable.
Since ε is an infinitesimal, there are steps of the computation where the

terms of high degree in ε are not used for the final result. It is then possible
to truncate the computation by setting εp = 0 for a convenient p. In most
cases, setting ε2 = 0 is sufficient. For any h(ε, T ) ∈ K[ε][X1, . . . , Xk] , we
note :

• h(ε, T ) =
∑degreeε(h)

i≥0 hiε
i

• h(ε, T ) =
∑min(degreeε(h),p)

i≥0 hiε
i.
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If Gε ⊂ K[ε][X1, . . . , Xk] we define Ḡε = {P̄ | P ∈ Gε}.
Using such a fixed precision is not possible for the Gröbner basis com-

putation since it could create errors when deciding whether ideals are zero-
dimensional. In any case, if the algorithm described in [12] is used for the
Gröbner basis computation, the costly part is the Rational Univariate Rep-
resentation of the ideal Iε generated by Sε.

So we compute the Gröbner basis Gε ⊂ K[ε][X1, . . . , Xk] of the ideal Iε.
We obtain, inspecting the Gröbner basis, a precision p0 such that p0 is the
smallest integer p so that fixing εp = 0 the staircase of Gε and of Ḡε coincide.

The fixed precision can be used inside DetectBounded Roots Algo

computation as we explain now.
We denote by (Fu(ε, T ), G0(ε, T ), . . . , Gk(ε, T )) the NRUR of Iε. If p < ν,

the computation of the RUR with fixed precision fails because a division by
zero appears somewhere in the computation. So we need to take the precision
equal at least to ν.

This gives a new algorithm for the computation of the representation of
the bounded solutions of a zero-dimensional system Sε of K[ε][X1, . . . , Xk]
which improves the blackbox DetectBounded Roots Algo.

We start by improving the blackbox which find a well separating element.
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FixedPrecisionwell-sepElement Algo

• Input : A zero-dimensional polynomial system Sε and a Gröbner basis Gε of the
ideal Iε generated by Sε for any admissible monomial ordering, an element e ∈ K
such that Ie is radical, dim(K[X1, . . . , Xk]/Ie) = dim(K〈ε〉[X1, . . . , Xk]/Iε), Ge is a
Gröebner basis of Ie.

• Output : a well separating element of Sε, a precision p, a square free decomposition
of Fu(0, T ) and

(Ḡ0(0, T ), Ḡ1(0, T ), . . . , Ḡk(0, T ))

the NRUR for u and the precision p.

1. Compute the initial precision p0 from the Gröbner basis, set p = p0, so that εp = 0.

2. Compute for every i H̄i where Hi is a normalized characteristic polynomial of the
multiplication by Xi in Aε.

3. If the computation fails because a division by 0 was needed, set p := p + 1, fix the
new precision εp = 0, go to 2.

4. Choose u ∈ U ′. Remove u from U ′.

5. Check if u is separating, using ε-ChecksepElement .

6. Compute the NRUR for this precision

(F̄u(ε, T ), Ḡ0(ε, T ), Ḡ1(ε, T ), . . . , Ḡk(ε, T )).

7. If the computation fails because a division by 0 was needed, set p := p + 1, fix the
new precision εp = 0, go to 6.

8. If the NRUR is not in Kb(ε)[T ], go to 4.

9. Compute the square free-decomposition

F̄u(0, T ) = f1f
2
2 . . . fm

m .

Compute

Ki(Λi) =

m∏

n=1

Res(Ḡ
(n−1)
0 (0, T )Λi − Ḡi(0, T )(n−1), fn)n,

If there exists i such that Ki does not divide H̄i(0, Λi), go to 2.

10. Return(u, f1, . . . , fm) and

(Ḡ0(0, T ), Ḡ1(0, T ), . . . , Ḡk(0, T )),

Finally we have the following algorithm :
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FixedPrecision Detect-Bounded Roots Algo

• Input : Sε be a zero-dimensional system of K[ε][X1, . . . , Xk], Gε a Gröbner basis of
the ideal Iε generated by Sε for any admissible monomial ordering, an element e ∈ K
such that Ie is radical, dim(K[X1, . . . , Xk]/Ie) = dim(K〈ε〉[X1, . . . , Xk]/Iε), Ge is a
Gröebner basis of Ie.

• Output :A list of real solutions of rational univariate representations containing the
limits of the bounded solutions in R〈ε〉 of Sε.

• Use FixedPrecisionwell-sepElement Algo.

• Return(listrurs = {(fn, Ḡ0(0, T )(n−1), Ḡ1(0, T )(n−1) . . . , Ḡk(0, T )(n−1))}).
• For every element of listrurs use RealRootCount on its first polynomial.

We are now ready to describe the improved algorithm which deals with
all cases.

The Improved Algorithm

• Input: a polynomial P in K[X1, . . . , Xk].

• Output: false if Z(P ) is empty, true and at least one point on each semi-algebraically

connected component if Z(P ) is non empty.

1. Use Test-Dim for the polynomial system P = 0,
−→

gradM (P ) =
−→

0 . If Z(G) is infinite
go to 3.

2. Use change-center . Then use RUR on the returned Gröbner basis. Use RealRoot-
Count on the first polynomial of the RUR output.

3. Perform ε change-center on P − ε.

4. Use FixedPrecision DetectBounded Roots Algo on Cε(B) and Gε.

6 Some examples

The following computations have been made in order to illustrate our method.
The software we used are preliminary versions of FGb (devoted to Gröbner
basis computations and developped by J.-C. Faugère) and RS (devoted to
the computation of RURs and the study of Real Roots, developped by F.
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Rouillier). We compare our method with the Cylindrical Algebraic Decom-
position implemented in the Axiom Computer Algebra System by R. Rioboo.
This implementation is based on :

• Mc Callum’s projection (see [19, 22]) : at the i-th step of projection,
a list Li of polynomials in R[Xi+1, . . . , Xk] is obtained. The list Li+1

is obtained by taking the square-free basis and the gcd-basis of the list
obtained by computing the discriminants of the polynomials in Li ,
the resultants of pairs of these polynomials and their coefficients (the
polynomials being considered as univariate in the variable Xi+1).

• An implementation of the Real Closure (see [23]) : it is used to perform
the extension step of CAD. Each cell produced by CAD is represented
by a real algebraic number.

Since FGb and RS are very optimized software compared with Axiom,
comparing computation times would make no sense. The fact that there are
examples where with one method the computation ends in few seconds and
with the other method the computation does not end after several hours is
in our opinion a relevant information.

Cylindrical Algebraic Decomposition proceeds by elimination of variables
one after the other and produces many cells. These cells give a lot of infor-
mation, more than what is needed to decide only the emptiness of the real
hypersurface defined by the input polynomial. This additional information
spoils the practical computations since the size of the output is huge. Crit-
ical Point Method has been introduced to avoid this problem of CAD. The
information output is smaller and more specific.

In the following we give the the number of cells obtained by CAD, the
number of points output by our method (as well as the degree of the first
polynomial of the computed RUR) and the computation time for our method.
All the computations have been performed on a PC Bi-Pentium II (2 × 400
MHz) with 512 Meg of RAM from CNRS UMS Medicis.

Example 1

Consider

P:=2*u6^2*u5*u4*u3*u2+4*u6^2*u5*u4*u3+4*u6^2*u5*u4*u2+

4*u6^2*u5*u3*u2-1
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The CAD returns 277 cells and outputs 74 real points on the hypersurface.
Our method outputs 24 real points on the hypersurface. The degree of the
univariate polynomial in the RUR is 150. Our computation time is :

FGb : 0,5 sec., RS : 14 sec.

Example 2

Consider

P:=36*u5^2*u4^2*u3^2*u2^2+88*u5^2*u4^2*u3^2*u2

+32*u5^2*u4^2*u3^2+32*u5^2*u4^2*u3*u2^3

+152*u5^2*u4^2*u3*u2^2-1

The CAD returns 203 cells and outputs 60 real points on the hypersurface.
Our method outputs 20 real points on the hypersurface. The degree of the
univariate polynomial in the RUR is 144. Our computation time is :

FGb : 2 sec., RS : 14 sec.

Example 3

Consider

P:=36*u5^2*u4^2*u3^2*u2^2+88*u5^2*u4^2*u3^2*u2

+32*u5^2*u4^2*u3^2+32*u5^2*u4^2*u3*u2^3

+152*u5^2*u4^2*u3*u2^2+64*u5^2*u4^2*u3*u2

+64*u5^2*u4^2*u2^3+32*u5^2*u4^2*u2^2+32*u5^2*u4*u3^3*u2^2-1

The CAD returns 1399 cells and outputs 394 real points on the hypersur-
face. Our method outputs 18 real points on the hypersurface. The degree of
the univariate polynomial in the RUR is 236. Our computation time is :

FGb : 14 sec., RS : 90 sec.

Example 4
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552*u2*u3^2*u4+62208*u2+1492992*u3+2799360*u4-3*u2^2*u4^2

-7842*u2*u3*u4+420*u2*u3*u4^2-314*u2^2*u3*u4+3*u2^2*u3^2*u4

-62208*u2^2+429*u4^3+20736*u3^2-4*u2^3*u3^2-1157*u2^2*u3^2

-18801*u2^2*u3-83520*u2*u3^2+39744*u2*u3+3*u2*u4^2+864*u2*u4

+17280*u3^2*u4+60912*u4^2-864*u2^2*u4-207*u2^3*u3

+1152*u3^2*u4^2+156*u4^3*u3+18540*u3*u4^2-554688*u3*u4

+8*u2*u3^2*u4^2+2*u2^3*u3*u4-2*u2*u3*u4^3+u4^4-8957952

The projection step of CAD does not end on this example. Our method
outputs 10 real points on the hypersurface. The degree of the univariate
polynomial in the RUR is 84. Our computation time is :

FGb : 1 sec., RS : 26 sec.

Example 5

Consider

P:=110*u5^2*u4*u3+190*u5*u4^2*u3+80*u4^3*u3+80*u5^2*u3^2+

270*u5*u4*u3^2+160*u4^2*u3^2+80*u5*u3^3+80*u4*u3^3-

32*u4*u3^2*u2-32*u3^3*u2-80*u5^2*u2^2-128*u5*u4*u2^2-

160*u5*u3*u2^2-112*u4*u3*u2^2-64*u3^2*u2^2-80*u5*u2^3-

32*u3*u2^3+60*u5^2*u4+220*u5*u4^2+160*u4^3+67*u5*u4*u3+

136*u4^2*u3-24*u5*u3^2-88*u4*u3^2-64*u3^3-100*u5^2*u2+

32*u5*u4*u2+96*u4^2*u2-228*u5*u3*u2-108*u4*u3*u2-

120*u3^2*u2+20*u5*u2^2+96*u4*u2^2-56*u3*u2^2+110*u5*u4+

80*u4^2+48*u4*u3-32*u3^2+30*u5*u2+48*u4*u2-20*u3*u2

The projection step of CAD does not end on this example. Our method
outputs 26 real points on the hypersurface. The degree of the univariate
polynomial in the RUR is 151. Our computation time is :

FGb : 47,2 sec., RS : 1800 sec.

In conclusion, it seems that our algorithm is able to solve some problems
which are not reachable by the Cylindrical Algebraic Decomposition.

Note that in all these examples, only Algorithm 1 has been used (O is a
good center and the set of singular points is not infinite).
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7 Remarks on practical and theoretical com-

plexity

The number of connected components of a real algebraic set defined by poly-
nomials of degree d in k variables is 0(d)k, and this is bound is reached for
some examples [5]. Using Bezout theorem, it is clear that the degrees of the
polynomials we obtained in the RUR are O(d)k. So in terms of the number
of points output, our algorithm has a good behavior.

In terms of computation time, the theoretical complexity of our algorithm
is worse than dO(k) reached in [6, 21, 2]. The reason for that is the need to
find a good center and Gröbner basis computations. As presented above, the
computation time of our algorithm could even be doubly exponential, because
of the Gröbner basis computations. The algorithm can be easily modified
(truncating polynomials to avoid double exponential degrees in Gröbner basis

computations) to get an algorithm with complexity dkO(1)
.

Note that algorithms in [6, 21, 2] were either not implemented or not
efficient in practice. The tricks used in these papers to get a good theoretical
complexity are in conflict with efficient computations. Adding a fixed number
of infinitesimals does not modify the theoretical complexity but spoils the
practical computations.

Developing efficient algorithms in practice and designing algorithms with
good theoretical complexity are two complementary aspects of research in
computer algebra.

We are convinced that in computational real algebraic geometry and in
many other parts of computer algebra, algorithms with good theoretical com-
plexity can and will inspire practical algorithms.
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