
Real Root Finding for Determinants of Linear

Matrices

Didier Henrion

CNRS; LAAS; 7 avenue du colonel Roche, F-31400 Toulouse; France.
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Abstract

Let A0, A1, . . . , An be given square matrices of size m with rational coefficients. The paper
focuses on the exact computation of one point in each connected component of the real determi-
nantal variety {x ∈ Rn : det(A0 + x1A1 + · · ·+ xnAn) = 0}. Such a problem finds applications
in many areas such as control theory, computational geometry, optimization, etc. Under some
genericity assumptions on the coefficients of the matrices, we provide an algorithm solving this
problem whose runtime is essentially polynomial in the binomial coefficient

(
n+m

n

)
. We also

report on experiments with a computer implementation of this algorithm. Its practical perfor-
mance illustrates the complexity estimates. In particular, we emphasize that for subfamilies of
this problem where m is fixed, the complexity is polynomial in n.
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1. Introduction

1.1. Problem statement

Let A0, A1, . . . , An be given square matrices of size m with coefficients in the field of
rationals Q. Consider the affine map defined as

x = (x1, . . . , xn) 7→ A(x) = A0 + x1A1 + · · ·+ xnAn.

Consistently with the technical literature, we use the terminology linear matrix to refer
to A(x), even though the constant term A0 is not necessarily zero. The determinant of
A(x), denoted by detA(x), lies in the polynomial ring Q[x] and it has degree at most m.
This polynomial defines the complex determinantal variety

D =
{
x ∈ Cn : detA(x) = 0

}
.

In other words, D ⊂ Cn is the set of complex vectors x at which rankA(x) ≤ m− 1. The
goal of this paper is to provide a computer algebra algorithm with explicit complexity
estimates for computing at least one point in each connected component of the real
determinantal variety D ∩ Rn.

1.2. Motivations

First notice that when n = 1 our problem is called the real algebraic eigenvalue
problem (47), and hence that the case n > 1 can be seen as a multivariate generalization.

Non-symmetric square matrices depending linearly on parameters arise in many prob-
lems of systems control and signal processing. For example, the Hurwitz matrix is used
in stability criteria for systems described by linear ordinary differential equations, and
vanishing of the determinant of the Hurwitz matrix corresponds to a bifurcation between
stability and instability, see e.g. (7). Alternatively, finding points on the real determinan-
tal variety of the Hurwitz matrix amounts to finding parameters (e.g. corresponding to
a feedback control law, or to structured uncertainty affecting the system) corresponding
to a system configuration at the border of stability.

Another classical example of non-symmetric square linear matrix arising in signals
and systems is the Sylvester matrix ruling controllability of a linear differential equation.
In this context, vanishing of the determinant of the Sylvester matrix corresponds to a
loss of controllability of the underlying system (34).

Linear matrices and optimization on determinantal varieties arise also in statistics
(14; 30) and in computational algebraic geometry (15).

Under the assumption that the matrices A0, . . . , An are symmetric, the matrix A(x) is
symmetric, and hence it has only real eigenvalues for all x ∈ Rn. The condition A(x) � 0,
meaning that A(x) is positive semidefinite, is called a linear matrix inequality, or LMI.
It is a convex condition on the space of variables x which appears frequently in diverse
problems of applied mathematics and especially in systems control theory, see e.g. (11).
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A classical example is the Lyapunov stability condition for a linear ordinary differential
equation which is an LMI in the parameters of a Lyapunov function (a certificate or
proof of stability) depending quadratically on the system state.

Fig. 1. A spectrahedron (red) with its real determinantal variety.

When the matrix A(x) is symmetric, the set

S =
{
x ∈ Rn

∣∣ A(x) � 0
}

(1)

is called a spectrahedron. Spectrahedra are affine sections of the cone of positive semidef-
inite matrices and they represent closed convex basic semialgebraic sets, i.e. convex sets
that can be defined by the common nonnegativity locus of a finite set of polynomials;
they are the object of active studies mainly in optimization theory, real algebraic geom-
etry and control theory (36; 35; 10). Following a question posed in (39, Section 4.3.1),
the authors of (29) conjectured that every convex semialgebraic set is the projection of
a spectrahedron. On Figure 1 is represented a spectrahedron (for n = 3 and m = 5)
together with its real determinantal variety.

The minimization of a given function, for example a polynomial, over real convex sets
is a central problem in optimization theory. If the function is linear and the set is a
spectrahedron, this is exactly the aim of semidefinite programming (SDP), see (9). If
the input data of a semidefinite program are defined over Q, the solutions are algebraic
numbers, and the authors in (40) investigated their algebraic degree: giving explicit
formulas or bounds for this value is a measure of the complexity of the given program.

Convex LMIs and SDP are also widely used for solving nonconvex polynomial op-
timization problems. Indeed, these optimization problems are linearized in the space of
moments of nonnegative measures (which is infinite-dimensional) and a suitable sequence
of LMI relaxations, or truncations (the so-called Lasserre hierarchy), that can be solved
via SDP, provides the solution to the original problem. The feasible set of every truncated
problem is a spectrahedron in the space of moments, for more details see (36; 35) and
references therein.
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So far, the problem of (deciding the existence and) computing such solutions has been
addressed via several numerical methods, the most successful of which are primal-dual
interior-point algorithms (9) implemented in floating-point arithmetic in different SDP
solvers (38).

In this paper, the problem of computing points on spectrahedra is linked to polynomial
systems solving over the reals. In fact, we are interested in the developement of an exact
computer algebra algorithm to compute real points on hypersurfaces defined by the zero
locus of determinants of affine matrix expressions. By exact algorithm we mean that
we do not content ourselves with approximate floating-point computations. Our main
motivation starts from the geometrical aspects of SDP as explained above: boundaries
of spectrahedra are subsets of determinantal hypersurfaces, and so solving this problem
efficiently is a necessary step to address the associated positivity problem A(x) � 0, since
the rank of the matrix A(x) at a point in the boundary of the spectrahedron S drops
at least by one, while a point in the interior corresponds to a positive definite matrix.
Finding such a point is a certificate of strict feasibility.

1.3. State of the art

Modern computer algebra algorithms for solving our problem require at most mO(n)

arithmetic operations in Q, see (8, Ch.11, Par.6) and references therein. The core idea is to
reduce the input problem to a polynomial optimization problem whose set of optimizers
is expected to be finite and to meet every connected component of the solution set
under study. Such a reduction must be done carefully, especially for unbounded sets or
singular situations. So far, it is an open problem to get a competitive implementation of
the algorithms in (8): unbounded and singular cases imply algebraic manipulations that
have no impact on the complexity class but require to work over Puiseux series fields,
and this increases the constant hidden by the big-O notation in the exponent.

During the past decade, tremendous efforts have been made to obtain algorithms that
are essentially quadratic in mn and linear in the complexity of evaluation of the input
polynomials when dealing with one n-variate polynomial equation of degree m, see e.g. (3;
2; 5; 4; 44). The goal is to get an implementation that reflects the theoretical complexity
gains. Most of these algorithms are probabilistic: some random choices independent of
the input are performed to ensure genericity properties. Our contribution shares these
features and it is inspired by some geometric ideas in (44).

A main limitation is that the algorithms in (44) are dedicated to the smooth case. In
our case, it turns out that D is in general a singular variety – see e.g. (12) and recall
Figure 1 – which makes our problem more difficult from a geometric point of view.

Algorithms in (6) deal with singular situations but do not return sample points in
the connected components that are contained in the singular locus of the variety. As a
consequence, one cannot use them to decide the emptiness of D ∩ Rn. The algorithm
in (43) may be used but it suffers from an extra-cost due to the introduction of an
infinitesimal (see also (33, Section 6.2) for a similar approach).

Moreover, in (22; 24; 25), the authors have developed algorithms and complexity es-
timates to isolate the real solutions of determinantal systems (see also (23) for related
works on a bilinear setting). Beyond the interest of solving our problem for the afore-
mentioned applications, it is of interest to extend these works to the real and positive
dimensional case.

In practice, one can observe that, when a determinantal equation is given as input to
software implementing singly exponential algorithms (42), its behaviour is significantly
different and worse than the one observed on generic equations.
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1.4. Basic definitions

Before describing the main results of this paper and the basic ideas on which they
rely, we need to introduce some notations and basic definitions that are used further. We
refer to (41; 46) for details.

We use the notations Q∗ = Q \ {0} and C∗ = C \ {0}. We also denote Cm the set of
complex vectors of length m and Cm∗ = Cm \ {0}. Given two vectors x, y ∈ Cm, with x′y
we denote their scalar product x1y1 + . . .+ xmym.

A subset V ⊂ Cn is said to be an affine algebraic variety defined over Q if there exists
a system (i.e. a finite set) of polynomials f = (f1, . . . , fp) ∈ Q[x]p such that V is the locus
of their common complex solutions, i.e. V = {x ∈ Cn : f(x) = 0} = {x ∈ Cn : f1(x) =
· · · = fp(x) = 0}. In this case we write V = Z(f) = f−1(0). Algebraic varieties are the
closed sets in the Zariski topology, hence any set defined by a polynomial inequation
f 6= 0 defines an open set for the Zariski topology. We also consider the closure V of a set
V ⊂ Cn for the Zariski topology, that is the smallest algebraic subset of Cn containing
V.

The set of polynomials that vanish on an algebraic set V generates an ideal of Q[x]
associated to V, denoted by I(V). This ideal is radical (i.e. fk ∈ I(V) for some integer
k implies that f ∈ I(V)) and it is generated by a finite set of polynomials, say f =
(f1, . . . , fp), and we write I(V) = 〈f1, . . . , fp〉 = 〈f〉.

Let V ⊂ Cn be an affine algebraic variety. Then the quotient ring C[V] = C[x]/I(V)
is the coordinate ring of the variety V: the elements of C[V] are called regular functions
on V. A map f : V → W ⊂ Cp defined over V with values in W, such that f ∈ C[V]p, is
called a regular map, and if f is a bijection and its inverse is also a regular map, then f
is an isomorphism of affine algebraic varieties.

Let GL(n,Q) denote the set of non-singular matrices of size n with coefficients in Q.
Its identity matrix is denoted by Idn. Given a matrix M ∈ GL(n,Q) and a polynomial
system x ∈ Cn 7→ f(x) ∈ Cp we denote by f ◦M the polynomial system x ∈ Cn 7→
f(Mx) ∈ Cp. If V = Z(f), the image set Z(f ◦M) = {x ∈ Cn : f(Mx) = 0} = {M−1x ∈
Cn : f(x) = 0} is denoted by M−1V.

Let (
∂f

∂xk

)
=


∂f1
∂xk

...

∂fp
∂xk


denote the vector of Q[x]p containing partial derivatives of f w.r.t. variable xk, for some
k = 1, . . . , n. The co-dimension c of V is the maximum rank of the Jacobian matrix

Df =

(
∂f

∂xk

)
k=1,...,n

=


∂f1
∂x1

. . . . . . ∂f1
∂xn

...
...

∂fp
∂x1

. . . . . .
∂fp
∂xn


evaluated at x ∈ V. The dimension of V ⊂ Cn is n− c.

Let V ⊂ Cn be an algebraic set. We say that V is irreducible if it is not the union of
two sets that are closed for the Zariski topology and strictly contained in V. Otherwise
V is the union of finitely many irreducible algebraic sets, its irreducible components.
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Most of the time, we will consider equidimensional algebraic sets: these are algebraic
sets whose irreducible components share the same dimension. An algebraic set V of
dimension d is the union of equidimensional sets of dimensions k = 0, 1, . . . , d: this is the
so-called equidimensional decomposition of V. Suppose that V is d-equidimensional, that
is, equidimensional of dimension d. Given a polynomial system f : Cn → Cp such that
〈f〉 is radical and equidimensional, and a point x ∈ V = Z(f), we say that x is regular if
Df(x) has rank n− d, and singular otherwise. Note that this definition does not depend
on the generators of I(V). An algebraic set whose points are all regular is called smooth,
and singular otherwise. The set of singular points of an algebraic set V is denoted by
sing V, while the set of its regular points is denoted by reg V.

Given a polynomial system f : Cn → Cp defining a radical and equidimensional
ideal, suppose that V = Z(f) ⊂ Cn is a smooth d-equidimensional algebraic set, and let
g : Cn → Cm be a polynomial system. Then the set of critical points of the restriction of
g to V is defined by the zero set of f and the minors of size n− d+m of the matrixDf

Dg


and we denote it by crit(g, f). In particular, the critical points of the restriction to V of
the projection map πi : (x1, . . . , xn) 7→ (x1, . . . , xi) is the zero set of f and the minors of
size n− d of the truncated Jacobian(

∂f

∂xk

)
k=i+1,...,n

obtained by removing the first i columns in the Jacobian of f . The same definition applies
to the equidimensional components of a generic algebraic set.

1.5. Data representation and genericity assumptions

1.5.1. Input
We assume that the linear matrix A(x) = A0 + x1A1 + · · · + xnAn is described via

the square matrices A0, A1, . . . , An of size m with coefficients in Q, which can also be
understood as a point in Q(n+1)m2

. To refer to this input we use the short-hand notation
A.

1.5.2. Output
Our goal is to compute exactly sample points in each connected component of the

real variety D ∩ Rn. Our algorithm consists of reducing the initial problem to isolating
the real solutions of an algebraic set Z ⊂ Cn of dimension at most 0. To this end,
we compute a rational parametrization of Z that is given by a polynomial system q =
(q0, q1, . . . , qn, qn+1) ∈ Q[t]n+2 such that q0, qn+1 are coprime (i.e. with constant greatest
common divisor), Z is in one-to-one correspondence with the roots of qn+1 and

Z =

{
x =

(
q1(t)

q0(t)
, · · · , qn(t)

q0(t)

)
∈ Cn : qn+1(t) = 0

}
.

This allows to reduce real root counting isolation to a univariate problem. Note also
that the cardinality of Z is the degree of polynomial qn+1, provided it is square-free; we
denote it by deg q.
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Note that since q0 and qn+1 are co-prime, one can obtain a rational parametrization

with q0 = 1, but as observed in (1), choosing q0 equal to the derivative of qn+1 leads,

most of the time, to rational parametrizations to coefficients of smaller size in q1, . . . , qn.

Given a polynomial system defining a finite algebraic set Z ⊂ Cn, there exist many

algorithms for computing such a parametrization of Z. In the experiments reported in

Section 6, we use implementations of algorithms based on Gröbner bases (17; 18) and

the so-called change of ordering algorithms (21; 20) because they have the current best

practical behavior. Nevertheless, our complexity analyses are based on the geometric

resolution algorithm given in (28).

1.6. Genericity assumptions

1.6.1. Singular locus of the determinant

Throughout the paper, we suppose that the singular locus of the algebraic set D =

{x ∈ Cn : detA(x) = 0} is included in the set {x ∈ Cn : rankA(x) ≤ m − 2}, that is if

x ∈ D is such that rankA(x) = m− 1, then Dx detA 6= 0 at x. This property is generic

in the space of input matrices Cm2(n+1). This fact can be proved easily via Bertini’s

theorem (see for example the proof of (10, Theorem 5.50)).

In the sequel, we say that A satisfies G1 if the singular locus of detA is exactly the

set of points at which the rank deficiency of this matrix is greater than 1.

1.6.2. Smoothness and equidimensionality

We define

f(A) : Cn+m → Cm

(x, y) 7→ A(x)y

as a polynomial system of size m in the variables x = (x1, . . . , xn) and y = (y1, . . . , ym).

Given u = (u1, . . . , um, um+1) ∈ Cm+1 with um+1 6= 0, define

f(A, u) : Cn+m → Cm+1

(x, y) 7→ (A(x)y, u′(y,−1))

where u′(y,−1) = u1y1 + · · ·+ umym− um+1 denotes the inner product of vectors u and

(y,−1) ∈ Cm+1, and let V(A, u) = Z(f(A, u)) ⊂ Cn+m.

In the sequel, we will assume that the system f(A, u) satisfies the following assumption

G2.

Assumption G2. We say that a polynomial system f ∈ Q[x]p satisfies G2 if

• 〈f〉 is radical, and

• Z(f) is either empty or smooth and equidimensional of co-dimension p.

We also say that a linear map A satisfies G2 if the polynomial system f(A, u) satisfies

G2 for all u ∈ Cm∗ . We will prove later that for a generic choice of A, this property holds.

We say that A (or equivalently f(A, u)) satisfies G when A satisfies G1 and f(A, u)

satisfies G2.
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1.7. Main results and organization of the paper

The main result of the paper is sketched in the following. Its detailed statement is in
Proposition 5 and it will be proved in Section 2.3.

Let A0, A1, . . . , An be square matrices of size m with coefficients in Q satsifying the
above genericity assumptions. There exists a probabilistic exact algorithm with input
A0, A1, . . . , An and output a rational parametrization encoding a finite set of points with
non-empty intersection with each connected component of D ∩ Rn.

In case of success, the complexity of the algorithm is within

O˜

(
n2m2(n+m)5

(
n+m

n

)6
)

arithmetic operations, where O (̃s) = O(s logk s) for some k ∈ N.
We also analyze the practical behaviour of a first implementation of this algorithm.

Our experiments show that it outperforms the state-of-the-art implementations of general
algorithms for grabbing sample points in real algebraic sets.

The paper is organized as follows.
Section 2 contains a detailed description of the algorithm and of its subroutines. More-

over, its formal description is provided. Section 2.2 contains all regularity results, that
is Propositions 1, 2 and 3, proved in the following sections. It also contains the proof of
correctness of the algorithm (Theorem 4). As already mentioned, the proof of the main
result is given in Section 2.3. Section 3 contains the proof of Proposition 1. Section 4 con-
tains the proof of Proposition 2. Section 5 contains the proof of Proposition 3. Finally,
Section 6 contains numerical data of practical experiments and some examples.

2. Algorithm: correctness and complexity

2.1. Description of the algorithm

Our algorithm is guaranteed to return an output under some genericity assumptions
on the input. If the genericity assumptions are not satisfied, the algorithm raises an error.
The algorithm consists of computing critical points of the restriction of linear projections
to a given algebraic variety after a randomly chosen linear change of variables. These
points are the solutions of a Lagrange system to be defined in this section.

2.1.1. Notations

Before giving an overview of the algorithm, we need to introduce some notations that
partly extend those introduced in Subsection 1.6.2.

Change of variables. We denote by A ◦ M the affine map x 7→ A(Mx) obtained by
applying a change of variables with matrix M ∈ GL(n,C). In particular A = A ◦ Idn.

Incidence variety. Given a matrix M ∈ GL(n,C), define

f(A ◦M) : Cn+m → Cm

(x, y) 7→ A(Mx)y
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as a polynomial system of size m in the variables x = (x1, . . . , xn) and y = (y1, . . . , ym).
Given u = (u1, . . . , um, um+1) ∈ Cm+1 with um+1 6= 0, define

f(A ◦M,u) : Cn+m → Cm+1

(x, y) 7→ (A(Mx)y, u′(y,−1))

where u′(y,−1) = u1y1 + · · ·+ umym− um+1 denotes the inner product of vectors u and
(y,−1) ∈ Cm+1, and let V(A ◦M,u) = Z(f(A ◦M,u)) ⊂ Cn+m. We will see that under
some genericity assumptions, the algebraic variety V = V(A ◦M,u) is equidimensional
and smooth. Remark finally that, by definition, for all M ∈ GL(n,C), the projection of
V(A ◦M,u) on the x−space is included in the determinantal hypersurface M−1D.

Fibers. Given w ∈ C, define

fw(A ◦M,u) : Cn+m → Cm+2

(x, y) 7→ (A(Mx)y, u′(y,−1), x1 − w)

and let Vw(A ◦M,u) = Z(fw(A ◦M,u)) ⊂ Cn+m.
We also define Aw the matrix obtained by instantiating x1 to w in A. The hypersurface

defined by detAw = 0 is denoted by Dw.

Lagrange system. Given v ∈ Cm+1, let J(x, y) = D1f(A ◦M,u) denote the matrix of
size m + 1 by n + m − 1 obtained by removing the first column of the Jacobian matrix
of f(A ◦M,u), and define

l(A ◦M,u, v) : Cn+2m+1 → Cn+2m+1

(x, y, z) 7→ (A(Mx)y, u′(y,−1), J(x, y)′z, v′z − 1)

where variables z = (z1, . . . , zm+1) stand for Lagrange multipliers, and let

Z(A ◦M,u, v) = Z(l(A ◦M,u, v)) ⊂ Cn+2m+1.

2.1.2. Formal description

The algorithm takes as input A which is assumed to satisfy G. Then, it chooses ran-
domly M ∈ GL(n,Q), v ∈ Qm+1 and w ∈ Q and computes a rational parametrization
of Z(A ◦M,u, v) ⊂ Cn+2m+1. Its projection on the (x, y)-space is expected to be the set
of critical points of the restriction to V(A ◦M,u) of the projection on the x1-coordinate.
Next, a recursive call is performed with input A ◦M where the x1-coordinate is instanti-
ated to w. The new input should satisfy the same genericity properties as the one satisfied
by A. Before giving a detailed description of the algorithm, we describe basic subroutines
required by our algorithm.

Main subroutines. The algorithm uses the following subroutines:
• IsSing: it takes as input the polynomial system f(A◦M,u) and it returns false if A◦M

satisfies G. It returns true otherwise;
• RatPar: it takes as input a polynomial system with coefficients in Q defining a finite

set and it returns a rational parametrization of the set, as defined in Section 1.5.2.
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It also uses the following subroutines that perform basic operations on rational paramet-
rizations of finite sets:
• Image: it takes as input a rational parametrization of a finite set Z ⊂ CN and a matrix
M ∈ GL(N,C) and it returns a rational parametrization of the image set M−1Z
corresponding to a change of variables;

• Union: it takes as input two rational parametrizations of finite sets Z1,Z2 and returns
a rational parametrization of Z1 ∪ Z2;

• Project: it takes as input a rational parametrization of a finite set Z and a subset of
variables, and it computes a rational parametrization of the projection of Z on the
linear subspace generated by these variables;

• Lift: it takes as input a rational parametrization of a finite set Z ⊂ CN and a number
w ∈ C, and it returns a rational parametrization of Z ′ = {(x,w) : x ∈ Z} ⊂ CN+1.
We can now describe more precisely our algorithm RealDet. It uses a recursive subrou-

tine RealDetRec that takes as input A satisfying G, and returns a rational parametrization
of a finite set which meets all connected components of D ∩ Rn.

The main algorithm RealDet checks that the input satisfies G, in which case it calls
RealDetRec. Using the Jacobian criterion (16, Theorem 16.19), this check is easily done
by verifying that the complex solution set to f(A, u) and the maximal minors of its
Jacobian matrix is empty.

RealDet(A):
(1) Choose randomly u ∈ Qm+1;
(2) If IsSing(f(A, u)) = true then output an error message saying that the genericity

assumptions are not satisfied;
(3) else return RealDetRec(A).

RealDetRec(A):
(1) If n = 1 then return (1, t,detA(t));
(2) Choose randomly
• M ∈ GL(n,Q)
• v ∈ Qm+1

• w ∈ Q;
(3) P = Project(RatPar(l(A ◦M,u, v)), (x1, . . . , xn));
(4) Q = RealDetRec(Substitute(x1 = w,A ◦M)));
(5) Q = Lift(Q, w);
(6) return Image(Union(Q,P),M−1).

2.2. Proof of correctness

It is immediate that it is sufficient to prove the correctness of RealDetRec to obtain
the correctness of RealDet. This algorithm takes as input an affine map A satisfying G.

The result below shows that Assumption G is generic in the sense that there a exists a
non-empty Zariski open set of Cm2(n+1) contained in the set of linear matrices satisfying
G. It is also useful to ensure that recursive calls are valid, i.e. the inputs in recursive calls
satisfy the genericity assumption. The proof is given in Section 3.

Proposition 1. Let u = (u1, . . . , um+1) ∈ Qm+1 such that um+1 6= 0. Then:

(1) There exists a non-empty Zariski open set A ⊂ Cm2(n+1) such that for all A ∈ A ,
f(A, u) satisfies G.
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(2) If f(A, u) satisfies G then there exists a non-empty Zariski open set W ⊂ C such
that for any w ∈ W fw(A, u) satisfies G.

Note that random choices are performed by algorithm RealDetRec at Step 2. These are
needed to ensure some genericity properties. The first one ensures that set Z(A◦M,u, v)
is finite; it is proved in Section 4.

Proposition 2. Assume that A ∈ A (see Section 1.6.1) and u 6= 0. Then there exist non-
empty Zariski open sets M1 ⊂ GL(n,C) and V ⊂ Cm+1 such that for allM ∈M1∩Qm×m
and v ∈ V ∩Qm+1, the following properties hold:

(1) Z(A ◦M,u, v) is a finite set;
(2) the Jacobian matrix Dl(A◦M,u, v) has maximal rank at any point of Z(A◦M,u, v);
(3) the projection of Z(A◦M,u, v) on the (x, y)-space contains the set of critical points

of the restriction to V(A ◦M,u) of the projection on the x1-coordinate.

The proposition below states that, for M ∈ GL(n,Q) generically chosen, and for any
connected component C of D∩Rn, πi(M

−1C) is closed for i = 1, . . . , n−1. This is proved
in Section 5.

Proposition 3. Assume that A ∈ A . Then there exist two non-empty Zariski open sets
M2 ⊂ GL(n,C) and U ⊂ Cm such that for any M ∈M2 ∩ Qn×n, u ∈ (U ∩ Qm) × Q∗
and any connected component C of D ∩ Rn, the following holds:

(1) for i = 1, . . . , n− 1, πi(M
−1C) is closed for the Euclidean topology;

(2) for any w ∈ R lying on the boundary of π1(M−1C), π−11 (w) ∩M−1C is finite and
there exists (x, y) ∈ Rn × Rm such that (x, y) ∈ V(A ◦M,u) and π1(x, y) = w.

Note that, starting with an n-variate affine map, there are n calls to RealDetRec,
among which n− 1 are recursive.

The random choices performed at Step 2 of every recursive call to RealDetRec can be
organized in an array(

(M (1), v(1), w(1)), . . . , (M (n−1), v(n−1), w(n−1))
)

(2)

where the upperscripts indicate the depth of the recursion. There are n − 1 choices
of these data because when n = 1 the recursive subroutine directly returns a rational
parametrization without making such a choice. To ensure the correctness of RealDetRec,
we need to assume that these choices are random enough so that data (M (j), v(j), w(j))
lie in some prescribed non-empty Zariski open set O(j) for j = 1, . . . , n− 1 as suggested
by the previous propositions. Because of the recursive calls, a priori the set O(j) depends
on the previous choices. This is formalized by the following assumption.

Assumption H. We use the notations for sets introduced in Propositions 1, 2, 3, with
the upperscript (j) to indicate the depth of recursion. We say that H holds if the array
(2) satisfies the following conditions:
• A satisfies assumption G;

• M (j) ∈M
(j)
1 ∩M

(j)
2 ∩Qn×n, for j = 1, . . . , n− 1;

• u ∈ (U (j) ×Q∗) ∩Qm+1 for j = 1, . . . , n− 1;
• v(j) ∈ V (j) ∩Qm+1, for j = 1, . . . , n− 1;
• w(j) ∈ W (j) ∩Q, for j = 1, . . . , n− 1.
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We can now prove the following correctness statement.

Theorem 4. Assume that A ∈ A and that H holds. Then, RealDet(A) returns a rational
parametrization encoding a finite set of points with non-empty intersection with each
connected component of D ∩ Rn.

Proof. Our reasoning is by induction on n, the number of variables. We start with the
initialization. When n = 1, D ⊂ C is finite. Then a rational parametrization of D is
the triple (1, t,detA(t)), which is the output result. Now, our induction assumption is
that for any linear map x 7→ A(x) = A0 + x1A1 + · · · + xn−1An−1 that satisfies G, the
algorithm RealDetRec returns a correct answer provided that H holds.

Now, let A be a linear map and let C be a connected component of D ∩ Rn. We let
M,v and w be respectively the matrix, vector and rational number chosen at Step 2 of
RealDetRec, with input A.

First assume that the projection on the x1-coordinate of M−1C is the whole x1-axis.
Since A satisfies G, we deduce that A ◦M satisfies G. Since H holds, we conclude by
Proposition 1 that fw(A◦M,u) generates a radical ideal and defines an algebraic variety
which is either empty or smooth (n − 2)-equidimensional. Moreover the singular locus
of the determinant of the matrix A(n−1) obtained by instantiating x1 to w in A ◦M ,
is exactly the set of points at which the rank deficiency is greater than 1. Hence fw
satisfies G and by the induction hypothesis, RealDetRec returns one point per connected
component of D(n−1)∩Rn−1 where D(n−1) = {x ∈ Rn−1 : detA(n−1)(x) = 0}. The claim
is proved in this case.

Now, assume that the projection π1 on the x1-coordinate of M−1C is not the whole
x1-axis. Since H is satisfied, we deduce by Proposition 3 that π1(M−1C) is closed for
the Euclidean topology. Since π1(M−1C) 6= R by assumption and since π1(M−1C) is
closed, there exists x = (x1, . . . , xn) ∈ M−1C such that w = x1 lies in the boundary of
π1(M−1C). Without loss of generality, we assume below that π1(M−1C) is contained in
[w,+∞[.

Recall that H holds. Then, by Proposition 3, π−11 (w) ∩ M−1C is finite and for all
x ∈ π−11 (w) ∩M−1C there exists y ∈ Rm such that (x, y) ∈ V(A ◦M,u).

Below, we reuse the notations of the algorithm and we prove that there exists z ∈ Cm+1

such that (x, y, z) is a point lying in Z(A ◦M,u, v). Combined with Proposition 2, we
also deduce that the above polynomial system defines a finite set which contains (x, y, z).
Thus, the calls to RatPar and Project are valid and (x, y, z) lies in the finite set of points
computed at Step 3 of RealDetRec. Correctness of the algorithm follows straightforwardly.

Thus, it remains to prove that there exists z ∈ Cm+1 such that (x, y, z) lies in Z(A ◦
M,u, v). Let M−1C′ be the connected component of V(A ◦M,u)∩Rn+m which contains
(x, y). We claim that w = π1(x, y) lies on the boundary of π1(M−1C′).

Indeed, assume by contradiction that this is not the case, i.e. w ∈ π1(M−1C′) but does
not lie in the boundary of π1(M−1C′). This implies that there exists ε > 0 such that the
interval (w− ε, w+ ε) lies in π1(M−1C′). As a consequence, there exists (x′, y′) ∈M−1C′
such that that π1(x′, y′) < w. Moreover, since (x′, y′) ∈M−1C′ and M−1C′ is connected,
we deduce that there exists a continuous semi-algebraic function τ : [0, 1]→M−1C′ with
τ(0) = (x, y) and τ(1) = (x′, y′). Let πx be the projection map πx(x, y) = x. Since πx and
τ are continuous semi-algebraic functions, γ = πx ◦ τ is continuous and semi-algebraic
(since it is the composition of semi-algebraic continuous functions). Finally, note that
γ(0) = x and γ(1) = x′; we deduce that x′ ∈ M−1C with π1(x′) < w = π1(x). This
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contradicts the fact that w lies in the boundary of π1(M−1C) and that π1(M−1C) lies in
[w,+∞[. We conclude that w = π1(x, y) lies on the boundary of π1(M−1C′).

As a consequence of the implicit function theorem (8, Section 3.5), and since A satisfies
G, we deduce that (x, y) is a critical point of the restriction of the projection π1 to M−1C′.
Since M−1C′ is a connected component of V(A ◦M,u)∩Rn and since the input satisfies
G2, we deduce that the truncated Jacobian matrix D1f(A ◦M,u) (defined jointly with
the Lagrange system in paragraph 2.1.1) is rank defective at (x, y) (see (45, Sections
2.1.4 and 2.1.5)). Moreover, since H holds, we deduce by Proposition 2 that (x, y) lies in
the projection of Z(A ◦M,u, v). Thus, there exists z ∈ Cm+1 such that (x, y, z) lies in
Z(A ◦M,u, v) as requested. 2

2.3. Complexity analysis and degree bounds

In this section, we estimate the complexity of the algorithm RealDet and we give
an explicit formula for a bound on the number of complex solutions computed by the
algorithm.

We assume that G holds, so that we do not need to estimate the complexity of the
subroutine IsSing and we focus on the complexity of the algorithm RealDetRec.

We assume in the sequel that H holds. On input A satisfying G, RealDetRec computes
a rational parametrization of the solutions set of l(A ◦M,u, v) (Step 3) and performs a
recursive call with input Substitute(x1 = w,A ◦M) (Step 4). On input l(A ◦M,u, v), our
routine for computing rational parametrization of its solution set starts by building an
equivalent system.

The complexity results stated below depend on degrees of geometric objects defined by
systems which are equivalent to the Lagrange systems we consider. We need to introduce
some notations.

The sequence of linear matrices considered during the recursive calls is denoted by
A(0), . . . , A(n−1), where A(i) is a linear matrix in n − i variables; the systems f(A(i) ◦
M (i), u(i)) for 0 ≤ i ≤ n− 1 are respectively denoted by

fi = (fi,1, . . . , fi,m+1)

where fi,m+1 : y 7→ y′u(i)− 1. Note that the fi involve n+m− i variables. The Lagrange
systems l(A(i) ◦M (i), u(i), v(i)) are denoted by

li = (fi, gi,1, . . . , gi,n+m−i)

where gi,n+m−i : z 7→ v(i)zn+m−i+1 − 1.
Using fi,m+1, one can eliminate one of the y-variables, say ym, in fi. We denote by

f̃i = (f̃i,1, . . . , f̃i,m)

the polynomial system obtained this way. Recall that the polynomials gi,1, . . . , gi,n+m−i
express that there is a nonzero vector in the left kernel of the truncated Jacobian matrix
D1fi. Hence, one can equivalently express the existence of a non-zero vector in the left
kernel of the truncated Jacobian matrix D1f̃i. This yields a new polynomial system

l̃i = (f̃i,1, . . . , f̃i,m, g̃i,m+1, . . . , g̃i,n−i−1, g̃i,n−i, . . . , g̃i,n+2m−i−2).

Note that since we have assumed that H holds, one can deduce using Proposition 2 that
the Jacobian matrix Dl̃i has maximal rank at any complex solution of l̃i.

This new polynomial system contains:
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• m polynomials which are bilinear in (x1, . . . , xn) and (y1, . . . , ym−1);
• m− 1 polynomials which are bilinear in (x1, . . . , xn) and (z1, . . . , zm−1);
• n− 1 polynomials which are bilinear in (y1, . . . , ym−1) and (z1, . . . , zm−1).
In the sequel, we denote by Vi,j the algebraic set defined by

f̃i,1, . . . , f̃i,j , when 1 ≤ j ≤ m

and
f̃i,1, . . . , f̃i,m, g̃i,m+1, . . . , g̃i,j when m+ 1 ≤ j ≤ n+ 2m− i− 2.

The algebraic set Wi,j is the subset of Vi,j at which the Jacobian matrix of its above
defining system has maximal rank. For 0 ≤ i ≤ n− 1, we denote by

δi = max{degWi,j : 1 ≤ j ≤ n+ 2m− i− 2}

and by δ the maximum of the δi. Remark that since H holds, Proposition 2 implies that
Wi,n+2m−i−2 = Z(l̃i).

We start by estimating the complexity of the main subroutines called by RealDetRec.
We prove the following result.

Proposition 5. Assume that H holds. Then, RealDetRec outputs a rational parametriza-
tion whose real zero locus meets each connected component of D ∩ Rn within

O˜
(
n2m2(n+m)5δ2

)
arithmetic operations in Q with δ ≤

(
n+m
m

)3
and O (̃s) = O(s · logk(s)) for some k ∈ N.

Assume that A satisfies G and that M , u and v lies in the non-empty Zariski open
sets defined in Propositions 2 and 3.

Lemma 6. Under the above notations and assumptions, there exists a probabilistic
algorithm which, on input li, computes a rational parametrization of the complex solution
set of it within

O˜
(
n2m2(n+m)5δ2

)
arithmetic operations in Q with δ ≤

(
n+m
m

)3
.

Proof of Proposition 5. Through its recursive calls, the algorithm RealDetRec computes
rational parametrizations of the solution sets of the Lagrange systems l0, . . . , ln−1.

Lemma 6 shows that these computations are done within

O˜
(
(n+m)2(nm2 + (n+m)3)δ2

)
arithmetic operations in Q with δ ≤

(
n+m
m

)3
. Since there are n Lagrange systems to solve,

all these parametrizations are computed within

O˜
(
n2m2(n+m)5δ2

)
arithmetic operations in Q. Note that in all systems l0, . . . , ln−1 the number of variables
is bounded by n+ 2m+ 1 and the cardinality of their solution set is bounded by δ.

Following (45, Lemma 10.1.3), the call to the routine Project at Step 3 requires at
most O (̃(n+m)δ2) arithmetic operations in Q.

Next, by (45, Lemma 10.1.1 and Lemma 10.1.3), the calls to the routines Image and
Union and in Step 6 require respectively at most O (̃(n+m)2δ + (n+m)3) and O (̃(n+
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m)δ2) arithmetic operations in Q. Summing up all these complexity estimates yields to
the announced complexity bounds. 2

Proof of Lemma 6. It is sufficient to describe the proof for l = l0 only. We use the
geometric resolution algorithm given in (28) to compute a rational parametrization of
the complex solution set of the system l̃ obtained following the construction in Paragraph
2.3. Note that since H holds by assumption, we deduce that l̃ is a reduced regular system,
in the sense defined in the introduction of (28).

Note that all polynomials of l̃ have degree ≤ 2 and that evaluating l̃ requires O (̃nm2)
arithmetic operations.

Thus, one can apply (28, Theorem 1). When l̃ is a reduced regular sequence, it states
that one can compute a rational parametrization of the complex solution set of l̃ in
probabilistic time

O (̃ñ2(õ+ ñ3)δ2)

where
• ñ = n+ 2m− 2 is the total number of variables involved in l̃,
• õ is the complexity of evaluating l̃,
• and δ is the quantity introduced in Paragraph 2.3.
We obtain that one can compute a rational parametrization of the complex solution set
of l̃ in probabilistic time

O (̃(n+m)2(nm2 + (n+m)3)δ2).

Our conclusion follows and the bound on δ is proved in the following lemma. 2

Lemma 7. Under the above notations and assumptions the following inequality holds:

δ ≤
(
n+m

m

)3

.

Proof. To prove degree bounds on δ, we take into account the multi-linear structure in
x, y, z of the intermediate systems

f̃i,1, . . . , f̃i,t, for 1 ≤ j ≤ t

and
f̃i,1, . . . , f̃i,m, g̃i,m+1, . . . , g̃i,m+t for 1 ≤ t ≤ n+ 2m− i− 2.

We define ∆(m,n; t) as follows:
• when 1 ≤ t ≤ m, ∆(m,n; t) is the sum of the coefficients of the polynomial (s1 + s2)t

modulo the ideal generated by (sn+1
1 , sm2 );

• when m+1 ≤ t ≤ n+m−1, ∆(m,n; t) is the sum of the coefficients of the polynomial
(s1 + s2)m(s1 + s3)t−m modulo the ideal generated by (sn+1

1 , sm2 , s
m
3 );

• when n+m ≤ t ≤ n+2m−2, ∆(m,n; t) is the sum of the coefficients of the polynomial
(s1 + s2)m(s1 + s3)n−1(s3 + s2)t−m−n+1 modulo the ideal generated by (sn+1

1 , sm2 , s
m
3 ).

By (45, Proposition 10.1.1), the degrees of their components of highest dimension is
bounded by ∆(m,n; t). Immediate computations show that the following holds:

∆(m,n; t) =


∑min(n,t)
i=0

(
t
i

)
t ∈ {1, . . . ,m},∑

(i,j)∈Ft

(
m
i

)(
t−m
j

)
t ∈ {m+ 1, . . . , n+m− 1},∑

(i,j,`)∈Ft

(
m
i

)(
n−1
j

)(
t−m−n+1

`

)
t ∈ {n+m, . . . , n+ 2m− 2}.
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for every m and n, where:

Ft =


(i, j) ∈ {1, . . . ,m} × {0, . . . , n− 1},
1 ≤ i ≤ min(m,n),

max(0, t− 2m+ 1) ≤ j ≤ min(t−m, i− 1),

if t ∈ {m+ 1, . . . , n+m− 1}, and

Ft =


(i, j, `) ∈ {1, . . . ,m} × {0, . . . , n− 1} × {0, . . . , t−m− n+ 1},
max(0, t− 2m+ 1) ≤ j + ` ≤ n− 1,

max(1, t− 2m+ 2) ≤ i+ ` ≤ min(n, t− n+ 1).

if t ∈ {n + m, . . . , n + 2m − 2}. Let us remark that relations defining Fn+2m−2 become

linear contraints, which yields the following equality for the case t = n+ 2m− 2:

∆(m,n;n+ 2m− 2) =

m−1∑
i=0

(
m

n− i

)(
n− 1

i

)(
m− 1

i

)
. (3)

One can easily check that for all k ∈ N(
n+m

n

)k
=

n∑
i1,...,ik=0

(
m

i1

)(
n

i1

)
· · ·
(
m

ik

)(
n

ik

)
.

Moreover, for all m,n and for t ∈ {1, . . . ,m}, ∆(m,n; t) ≤ ∆(m,n; t+1), and ∆(m,n;m)

is bounded by
(
n+m
n

)
because of the previous formula.

Let t ∈ {m+ 1, . . . , n+m− 1}. Then ∆(m,n; t) =
∑min(m,n)
i=1 ai

(
m
i

)
where

ai =
∑

j:(i,j)∈Ft

(
t−m
j

)
=

min(t−m,i−1)∑
j=max(0,t−2m+1)

(
t−m
j

)
≤

n∑
j=0

(
n

i

)(
m

j

)(
n

j

)
.

and so ∆(m,n; t) ≤
(
n+m
n

)2
for all t ∈ {m+ 1, . . . , n+m− 1}.

Finally, for t ∈ {n+m, . . . , n+ 2m− 2}, one gets

∆(m,n; t) ≤
∑n
i,j,`=0

(
m
i

)(
n−1
j

)(
t−m−n+1

`

)
≤
∑n
i,j,`=0

(
m
i

)(
n
j

)(
m
`

)
≤
(
n+m
n

)3
.

2

2.3.1. Complexity of Project.

According to (45, Lemma 9.1.6), given a rational parametrization q defining a zero-

dimensional set Z ⊂ CN , there exists a probabilistic algorithm computing a rational

parametrization q′ of the projection πi(Z) whose complexity is within O∼(Ndeg q2)

operations. We remark here that deg q is the cardinality of Z provided that q is square-

free; if not, it is an upper bound. In the case of Z(A ◦M,u, v), we obtain from Lemma

7 that deg q ≤
(
n+m
n

)3
.
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Lemma 8. The complexity of Project in RealDetRec is

O∼

(
(n+ 2m− 2)

(
n+m

n

)6
)
.

Proof. It follows from the bound for δ of Lemma 7 and from (45, Lemma 9.1.6). 2

2.3.2. Complexity of Image, Union.
By (45, Lemma 9.1.1), given a rational parametrization q and a matrix M ∈ GL(N,Q),

there exists an algorithm computing a rational parametrization q′ such that Z(q′) =
M−1Z(q) using O∼(N2δ +N3) operations. Moreover, by (45, Lemma 9.1.3) if q1, q2 are
rational parametrizations with degree sum bounded by δ, a rational parametrization of
Z(q1) ∪ Z(q2) can be computed in O∼(Nδ2) operations.

Lemma 9. The complexity of Image and Union in RealDetRec is

O∼

(
(n+ 2m− 2)2

(
n+m

n

)3

+ (n+ 2m− 2)3 + (n+ 2m− 2)

(
n+m

n

)6
)
.

Proof. The proof of this fact follows straightforwardly from (45, Lemma 9.1.1), (45,
Lemma 9.1.3) and Lemma 7. 2

2.3.3. A bound on the degree of the output
Let A be a n−variate linear matrix of size m and apply algorithm RealDet to A.

Recall that the number ∆(m,n, n+ 2m− 2) computed in (3) is a bound on the number
of complex solutions computed by the first call of RealDetRec.

The following result, whose proof is straightforward, counts the maximum number of
complex solutions computed by RealDet.

Lemma 10. The number of complex solutions computed by RealDet with input a linear
matrix A satisfying Assumption G, is upper-bounded by the number

b(m,n) =

n∑
j=1

∆(m, j, j + 2m− 2) =

n∑
j=1

m−1∑
i=0

(
m

j − i

)(
j − 1

i

)(
m− 1

i

)
.

We remark the following facts:
• ∆(m, j, j + 2m− 2) = 0 if j ≥ 2m;
• if m = m0 is fixed, n 7→ b(m0, n) is constant if n ≥ 2m0.

3. Regularity properties of the incidence variety

The aim of this section is to prove Proposition 1. We start with G1.
Indeed, the genericity of G1 is already established in the proof of (10, Theorem 5.50)

using Bertini’s theorem (see Subsection 1.6.1). We denote by A1 ⊂ Cm2(n+1) a non-empty
Zariski open set such that for any A ∈ A , A satisfies G1.

Moreover, Sard’s theorem implies that for a generic w, a point in Dw is regular if and
only if it is regular in D. We deduce that at any singular point of Dw the rank deficiency
of Aw is greater than 1. We denote by W1 a non-empty Zariski open set such that for
any w ∈ W , Aw satisfies G1.
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We focus on G2 which requires more technical proofs. To identify the linear map

x 7→ A(x) = A0 + x1A1 + · · · + xnAn with a point in Cm2(n+1), we denote by al,i,j the

entry of matrix Al at row i and column j, for l = 0, 1, . . . , n and i, j = 1, . . . ,m.

Consider the polynomial map

p : Cn+m × Cm2(n+1) −→ Cm+1

(x, y,A) 7−→ f(A, u)

and, for a given A ∈ Cm2(n+1), the induced map

pA : Cn+m −→ Cm+1

(x, y) 7−→ p(x, y,A).

Our proof consists of distinguishing whether Z(p) is empty or not. When Z(p) is not

empty, we first prove that 0 is a regular value of p and using Thom’s Algebraic Weak

Transversality theorem (45, Sect. 4.2), we deduce the existence of a non-empty Zariski

open set with the requested properties.

Proof of the first point of Proposition 1. Assume first that Z(p) is empty. This is equiv-

alent to saying that, for any A ∈ Cm2(n+1), V(A, u) = Z(f(A, u)) is empty. By the Null-

stellensatz (13, Chap. 8), this implies that for any A ∈ Cm2(n+1), the ideal I(V(A, u)) =

〈f(A, u)〉 = 〈1〉 is radical. We define A2 = C(n+1)m2

and conclude by taking A = A1∩A2.

Assume that Z(p) is non-empty. We prove below that there exists a non-empty Zariski

open set A2 ⊂ Cm2(n+1) such that for any A ∈ A2, the Jacobian matrix Df(A, u) has

maximal rank at any point in Z(pA). This is sufficient to establish the requested property

G2 since by the Jacobian criterion (16, Theorem 16.19) this implies that

• the ideal 〈f(A, u)〉 is radical;

• the algebraic set V(A, u) is either empty or smooth and equidimensional of co-dimen-

sion m+ 1 in Cn+m.

To prove the existence of the aforementioned non-empty Zariski open set A2, we first

need to prove that 0 is a regular value of p, i.e. at any point of the fiber Z(p) the

Jacobian matrix Dp with respect to variables x, y and a`,i,j has maximal rank. Take

(x, y,A) ∈ Z(p). It suffices to prove that there exists a maximal minor of Df(A, u) which

is not zero at (x, y,A).

Remark that, since y is a solution of the equation u′(y,−1) = 0 and um+1 6= 0, there

exists 1 ≤ s ≤ m such that ys 6= 0. Moreover, since (u1, . . . , um) 6= 0 (otherwise V = ∅),
there exists 1 ≤ ` ≤ m such that u` 6= 0. Now consider the submatrix of Df(A, u)

obtained by selecting

• the partial derivatives with respect to y` where ` is as above;

• the partial derivatives with respect to a0,r,s for all 1 ≤ r ≤ m and for s as above.

Checking that this submatrix has maximal rank at (x, y,A) is straightforward since

• the partial derivatives of the entries of A(x)y with respect to a0,r,s for 1 ≤ r ≤ m is

the diagonal matrix with ys 6= 0 on the diagonal;

• the partial derivative of the polynomial u′(y,−1) with respect to y` is u` 6= 0, while

the partial derivatives of that polynomial with respect to a0,r,s are 0.
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Thus, up to reordering the columns of this submatrix, it is triangular with non-zero
entries on the diagonal. Finally, we conclude that 0 is a regular value of p. By Thom’s
Algebraic Weak Transversality theorem (45, Section 4.2) there exists a non-empty Zariski

open set A2 ⊂ Cm2(n+1) such that, for every A ∈ A2, 0 is a regular value of the map pA.
Taking again A = A1 ∩A2 concludes the proof. 2

Proof of the second point of Proposition 1. Let A ∈ A and consider the map

π1 : V(A, u) → C

(x, y) 7→ x1.

which is the restriction to V(A, u) of the projection on the first variable. Since A ∈ A ,
the variety V(A, u) is either empty or smooth and equidimensional and by Sard’s Lemma
((45, Section 4.2)) the image by π1 of the set of critical points of π1 is contained in an
algebraic hypersurface of C (that is, a finite set). This implies that there exists a non-
empty Zariski open set W2 ⊂ C such that if w2 ∈ W , at least one of the following fact
holds:
• the set π−11 (w) = {(x, y) ∈ V(A, u) | x1 = w} is empty: this fact implies that the

system fw(A, u) defines the empty set, and that 〈fw(A, u)〉 = 〈1〉, which is a radical
ideal;

• for all (x, y) ∈ π−11 (w), (x, y) is not a critical point of π1; this fact implies that the
Jacobian matrix of fw(A, u) has full rank at each point (x, y) in the zero set of fw(A, u),
and so by the Jacobian criterion (16, Theorem 16.19) that fw(A, u) defines a radical
ideal and its zero set is a smooth equidimensional algebraic set of codimension m+ 2
in Cn+m.

By this, we conclude that if w ∈ W2, the system fw(A, u) satisfies G2 as requested. We
conclude by taking W = W1 ∩W2. 2

Example 11. Consider the linear matrix

A(x) =


1 x1 x2

x1 1 x3

x2 x3 1


whose real determinantal variety is the Cayley cubic surface with its four singular points
(x1, x2, x3) ∈ {(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)}, see Example 2 and Figure 3
in (40). When evaluated at these points, A has rank one. The following Macaulay2 code
shows that the incidence variety is smooth.

MyRand = () -> (((-1)^(random(ZZ)))*(random(QQ)))

R = QQ[x_1,x_2,x_3]

A = matrix{{1,x_1,x_2},{x_1,1,x_3},{x_2,x_3,1}}

D = ideal det A

dim D, degree D

SingD = ideal singularLocus D

dim SingD, degree SingD

S = QQ[x_1,x_2,x_3,y_1,y_2,y_3]

Y = matrix{{y_1},{y_2},{y_3}}
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V = ideal(sub(A,S)*Y) + ideal(1-sum(3,i->MyRand()*(y_(i+1))))

dim V, degree V

SingV = ideal singularLocus V

dim SingV, degree SingV

The incidence variety in this example has dimension 2 and degree 7.

Fig. 2. The smooth quartic curve of Example 12 with its two nested ovals.

Example 12. Consider the linear matrix

A(x) =


1 + x1 x2 0 0

x2 1− x1 x2 0

0 x2 2 + x1 x2

0 0 x2 2− x1


whose real determinantal variety is a smooth quartic curve, the union of two nested ovals,
see Figure 2. Here the incidence variety is a smooth variety of dimension 6 and degree
10.

4. Dimension properties of Lagrange systems

The goal of this section is to prove Proposition 2. First we provide a local description
of the incidence variety V(A ◦M,u) depending on the rank of the matrix A(x), which
induces a local description of the Lagrange system Z(A ◦M,u, v). We actually use this
local description to prove that, generically, the solutions (x, y, z) of the Lagrange system
are such that the rank of A(x) is m−1. This property is used to exploit a local description
of the solutions to the Lagrange system which make easier the proof of Proposition 2.
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Then we give a proof of it in Section 4.2. Recall that the hypotheses of Proposition 2
includes the fact that A ∈ A , where these Zariski open sets have been defined respectively
in Proposition 1 and Section 1.6.1.

In the sequel, for f ∈ Q[x], we denote by Q[x]f the localized polynomial ring.

4.1. Local description

Let A(x) = A0 + x1A1 + . . . + xnAn ∈ Q[x]m×m be a linear matrix on (x1, . . . , xn),
and suppose that N = N(x) ∈ Q[x]r×r is the upper-left r × r submatrix of A:

A =

 N Q

P ′ R


with Q ∈ Q[x]r×(m−r), P ′ ∈ Q[x](m−r)×r and R ∈ Q[x](m−r)×(m−r). Consider the equa-
tions Ay = 0 and u′y− um+1 = 0 defining the incidence variety. In the following lemma,
local equations are derived for the incidence variety V, relying on the above block de-
composition of A.

Lemma 13. LetA,N,Q, P,R be as above, and u 6= 0. Then there exist {qi,j}1≤i≤r,1≤j≤m−r ⊂
Q[x]detN and {q′i,j}1≤i,j≤m−r ⊂ Q[x]detN such that the constructible set V ∩ {(x, y) :
detN 6= 0} is defined by the equations

yi − qi,1(x)yr+1 − . . .− qi,m−r(x)ym = 0 i = 1, . . . , r

q′i,1(x)yr+1 + . . .+ q′i,m−r(x)ym = 0 i = 1, . . . ,m− r
u′y − um+1 = 0.

Proof. Consider the polynomial equations Ay = 0 with y ∈ Cm. Localizing at detN 6= 0,
that is looking at these equations in the local ring Q[x, y]detN , similarly to the proof of
(45, Proposition 3.2.7), one has that Ay = 0 is equivalent to

0′ = y′

N ′ P
Q′ R′

 = y′

N ′ P
Q′ R′

N ′−1 0

0 Idm−r

 Idr −P

0 Idm−r


which equals

0′ = y′

 Idr 0

Q′N ′−1 R′ −Q′N ′−1P

 that is 0 =

 Idr N−1Q

0 Sch(N)

 y
where Sch(N) = R − P ′N−1Q is the Schur complement of N in A. Denoting with qi,j
the entries of −N−1Q and with q′i,j the entries of −Sch(N) ends the proof. 2

We let Ã be the matrix

Ã =

 Idr N−1Q

0m−r,r Sch(N)


and p′ = [p1 . . . pm]

′
= Ã [y1 . . . ym]

′
the new equations given by Lemma 13. One deduces

[p1 . . . pr]
′

= [y1 . . . yr]
′
+ (N−1Q) · [yr+1 . . . ym]

′

[pr+1 . . . pm]
′

= Sch(N) · [yr+1 . . . ym]
′
.
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We deduce that modulo 〈p1, . . . , pr〉 one can express y1, . . . , yr as functions of x and
yr+1, . . . , ym. By this, the system defining V in the open set defined by detN 6= 0 can be
re-written in the local ring Q[x, y]detN

Sch(N) · [yr+1 . . . ym]
′

= 0

q(u, yr+1, . . . , ym) = 0

where q is a linear form on yi, i = r + 1, . . . ,m, parametrized by u, and whose coef-
ficients belong to Q[x, y]detN , obtained by substituting in u′y − 1 = 0 the expressions
for y1, . . . , yr. Since q is linear w.r.t. yr+1, . . . , ym, one deduces that one can eliminate
another variable among yr+1, . . . , ym, say w.l.o.g. yr+1 = `(x, yr+2 . . . ym), in the local-
ization of Q[x, y]detN to e(x) 6= 0, where e(x) ∈ Q[x, y]detN is the coefficient of yr+1 in
the polynomial q. Finally, the system defining V, in the local ring Q[x, y](detN)·e can be
re-written as

Sch(N) · [`(yr+2 . . . ym), yr+2, . . . , ym]
′

= 0.

We call F this new system. Consider the polynomial system

[z1 . . . zm−r]DxF = w′ (4)

with w = (w1, . . . , wn) ∈ Cn. Next, we prove that, up to genericity assumptions on the
vector w defining the projection map πw : x→ w1x1 + · · ·+wnxn, the projection of the
solutions of the above system on the x−space is contained in the locus of maximal rank
m−1 (hence, in the set of regular points of D). The proof is local and relies on the above
block decomposition of A.

Lemma 14. Suppose that r ≤ m−2. There exists a non-empty Zariski open set W ⊂ Cn
such that if w ∈ W , the system (4) defines the empty set.

Proof. Let C ⊂ Cn+2(m−r)−1 be the Zariski closure of the constructible set defined by
(4), detN(x) 6= 0 and rankA(x) = r. Consider the projections π1 : C → Cn defined
by π1(x, y, z, w) = x and π2 : C → Cn defined by π2(x, y, z, w) = w. The image π1(C)
is dense in the set {x ∈ Cn : rankA(x) ≤ r} and so has dimension ≤ n − (m − r)2

when A is generic. The fiber of π1 over a generic point x ∈ π1(C) is the graph of the
functions w1, . . . , wn of (y, z), and so it has co-dimension n and dimension [n + (m −
r) + m − r − 1] − n = 2(m − r) − 1. By the Theorem of the Dimension of Fibers
(46, Sect. 6.3, Theorem 7) one concludes that C has dimension less than or equal to
n − (m − r)2 + 2(m − r) − 1 = n − (m − r − 1)2 and since r ≤ m − 2 this dimension is
≤ n− 1. Therefore π2(C) ⊂ Cn is a set whose Zariski closure has dimension ≤ n− 1 and
is contained in a hypersurface H ⊂ Cn. Setting W = Cn \H ends the proof. 2

We recall in what follows the global definition of Lagrange system for the restriction
of the projection πw : (x, y)→ w′x to the incidence variety V(A, u) = V(A ◦ Idn, u). The
set V(A, u) is defined by f(A, u) which consists in the entries of A(x)y and u′y − um+1

with um+1 6= 0. We suppose that A ∈ A . The associated Lagrange system consists in
the polynomial entries of

f(A, u), (g, h) = [z1 . . . zm+1, z•]

 Dxf Dyf

w1 . . . wn 0

 , m+1∑
i=1

vizi − 1 (5)
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where g = (g1, . . . , gn) and h = (h1, . . . , hm). We denote by Ww(A, u, v) the zero set of

(5). Over a solution of (5), z• 6= 0, since A ∈ A and f satisfies Assumption G2. The

polynomial system (5) consists of n + 2m + 2 polynomials in n + 2m + 2 variables. We

prove in the next lemma that, up to genericity assumption, system (5) defines a finite set

and satisfies property G2, and that its solutions contain the critical points of πw restricted

to V. This is done relying on the local description of V and on techniques similar to those

used in the proof of Proposition 1.

Lemma 15. Let A ∈ A (see 1.6.1) and u 6= 0. There exist non-empty Zariski open sets

W ⊂ Cn and V ⊂ Cm+1 such that, if w ∈ W and v ∈ V the following holds:

(1) the Jacobian matrix of (5) has maximal rank at any point of Ww(A, u, v) and

Ww(A, u, v) is finite;

(2) the projection of Ww(A, u, v) in the space of x, y contains the critical points of

πw : (x, y)→ w′x restricted to V(A, u).

Proof of Assertion (1) of Lemma 15. The Lagrange system (5) has a local description,

as shown above, when we look at its equations in the local ring Q[x, y, z]detN where N

is a given square submatrix of A(x). If W ′ ⊂ Cn is the non-empty Zariski open set given

by Lemma 14, when w ∈ W ′ then if (x, y, z) is a solution of (5), one deduces that the

rank of A(x) is m− 1. Without loss of generality, we can assume to work in the open set

detN 6= 0 where N is the (m − 1) × (m − 1) upper-left submatrix of A(x) and work in

the local ring Q[x, y, z]detN .

Hence, let N be the (m− 1)× (m− 1) upper-left submatrix of A(x). By Lemma 13,

the local equations of Vr in Q[x, y]detN are of the form

yi − qi(x)ym = 0, i = 1, . . . ,m− 1 Sch(N)ym = 0 u′y − um+1 = 0.

for some qi ∈ Q[x, y]detN .

We prove by contradiction that ym 6= 0; hence assume that ym = 0. By the first m− 1

equations one deduces that y = 0, which is a contradiction with u′y − um+1 = 0 and

um+1 6= 0. Then one can suppose ym = 1. Moreover, since N has size m − 1, its Schur

complement is exactly Sch(N) = det(A) ·det(N−1) = det(A)/ det(N), and so in the local

ring Q[x, y]detN the equation Sch(N)ym = 0 is equivalent to det(A) = 0. So one obtains

that the incidence variety V(A, u) has the following local description:

det(A) = 0 yi − qi(x) = 0, i = 1, . . . ,m− 1 ym − 1 = 0.

We call f = (f1, . . . , fm+1) these local equations. The Jacobian of f reads

Df = [Dxf Dyf ] =

Dx det(A) 01×m

? Idm


and the local equations of the associated Lagrange system are

f = 0, (g, h) = [z1 . . . zm+1, z•]

Dxf Dyf

w 0

 , m+1∑
i=1

v1zi − 1 = 0,
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which is also a square system with n+ 2m+ 2 polynomials and variables. Now, consider
the map

p : Cn+2m+2 × Cn × Cm+1 −→ Cn+2m+2

(x, y, z, w, v) 7−→ (f, g, h,
∑
vizi − 1).

and its section map

pv,w : Cn+2m+2 −→ Cn+2m+2

(x, y, z) 7−→ (f, g, h,
∑
vizi − 1).

for given v ∈ Cm+1, w ∈ Cn. Remark that p−1v,w(0) =Ww(A, u, v) for all v, w. Now, there
are two cases: either Z(p) = ∅ or Z(p) 6= ∅.

In the first case, this means in particular that for all v, w, Ww(A, u, v) = ∅, which
implies Assertion (1) with W = Cn and V = Cm+1.

Suppose now that Z(p) 6= ∅. We claim that 0 is a regular value for p. Indeed, by
Thom’s Algebraic Weak Transversality theorem (45, Sect. 4.2) there exist non-empty
Zariski open sets W ⊂ Cn and V ′ ⊂ Cm+1 such that if v ∈ V ′ and w ∈ W ′, zero is a
regular value of the map pv,w. The regularity property of pv,w at 0 implies that the rank
of (5) is maximal (and equal to n + 2m + 2) at each point of Ww(A, u, v) and, by the
Jacobian Criterion (16, Theorem 16.19), that Ww(A, u, v) is empty or finite, implying
that Assertion (1) is true.

We prove that 0 is a regular value for p. Let (x, y, z, w, v) ∈ p−1(0) and let Dp be the
jacobian matrix of the map p at (x, y, z, w, v). Remark that:
• since rankA(x) = m− 1 and A ∈ A , then x is a regular point of det(A) = 0;
• since A ∈ A then z• 6= 0;
• since z1, . . . , zm+1 verifies

∑
vizi = 1 then there exists ` ∈ {1, . . . ,m + 1} such that

z` 6= 0;
• polynomial entries of h have the form (h1, . . . , hm) = (z2, . . . , zm+1).
We consider the submatrix of Dp made by the following independent square blocks:
• the derivative ∂

∂xj
detA which is non-zero at x;

• the derivatives of yi − qi(x), i = 1, . . . ,m− 1 and ym − 1 with respect to y1, . . . , ym;
• the derivatives of g w.r.t. w1, . . . , wn give a non-singular diagonal matrix z•Idn;
• the derivatives of h w.r.t. z2, . . . , zm+1 give a non-singular diagonal matrix Idm;
• the derivative of

∑
vizi − 1 with respect to v` with ` as above is z` 6= 0.

So one obtains that Dp has a non-singular maximal minor of size n+ 2m+ 2 and so
it has full rank. By the genericity of the point (x, y, z, w, v) ∈ p−1(0) one deduces the
claimed property. 2

Proof of Assertion (2) of Lemma 15. Suppose first that Ww(A, u, v) = ∅ for all w ∈
Cn, v ∈ Cm+1. Fix w ∈ Cn, (x, y) ∈ V(A, u) and suppose that (x, y) is a critical point of
πw restricted to V(A, u). Then, since V(A, u) is equidimensional, there exists z 6= 0 such
that (x, y, z) verifies the equations z′Df = [w, 0]. Since z 6= 0, there exists v ∈ Cm+1 such
that v′z = 1. So we conclude that (x, y, [z, 1]) ∈ Ww(A, u, v), which is a contradiction.

Suppose now that A ∈ A , u 6= 0, Z(p) is non-empty and that w ∈ W . By (45, Sect.
3.2), the set of critical points of πw restricted to V(A, u) is the projection πx,y on x, y of
the constructible set:

S = {(x, y, z) : f = g = h = 0, z 6= 0}
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where f, g, h have been defined in (5). One can easily prove with the same techniques as in
the proof of Assertion (1) that S has dimension 1. Moreover, for each (x, y) in πx,y(S), the
fiber π−1x,y(x, y) has dimension 1 (because of the homogeneity of the z-variables). By the
Theorem on the Dimension of Fibers (46, Sect. 6.3, Theorem 7), we deduce that πx,y(S)
is finite. Fix now (x, y) ∈ πx,y(S) and let V(x,y) ⊂ Cm+1 be the non-empty Zariski open
set of v such that the hyperplane v′z− 1 = 0 intersects transversely π−1x,y(x, y), and recall
that V ′ ⊂ Cm+1 has been defined in the proof of Assertion (1). By defining

V = V ′
⋂

(x,y)∈πx,y(S)

V(x,y)

one concludes the proof. 2

4.2. Proof of Proposition 2

We prove now Proposition 2. We use Lemma 15 to show that, up to a generic change
of variables, the set of critical points is finite.

Proof of Proposition 2. Let M1 ⊂ GL(n,C) be the set of invertible matrices M such
that the first row w′ of M−1 lies in the set W given in Lemma 15. This is a non-empty
Zariski open set of GL(n,C) since the entries of M−1 are rational functions of the entries
of M . Let V ⊂ Cm+1 be the non-empty Zariski open set given by Lemma 15 and let
v ∈ V . Let e′1 = (1, 0, . . . , 0) ∈ Qn and for all M ∈ GL(n,C), let

M̃ =


M 0 0

0 Idm 0

0 0 Idm+1

 .

Remark that for any M ∈M1 the following identity holds:Df(A ◦M,u)

e′1 0 · · · 0

 =

Df(A, u) ◦M

w′ 0 · · · 0

M 0

0 Idm

 .

We conclude that the set of solutions of the systemf(A, u), z′

Dxf Dyf

w′ 0 · · · 0

 ,

m+1∑
i=1

vizi − 1

 (6)

is the image by the map (x, y, z) 7→ M̃−1(x, y, z) of the set S of solutions of the systemf(A ◦M,u), z′

Df(A ◦M,u)

e′1 0 · · · 0

 ,

m+1∑
i=1

vizi − 1

 . (7)

Now, let π be the projection that forgets the last coordinate of z, that is z•. Remark that
π(S) = Z(A ◦M,u, v) and that π is a bijection. Moreover, it is an isomorphism of affine
algebraic varieties, since if (x, y, z) ∈ S, then its z•-coordinate is obtained by evaluating
a polynomial at (x, y, z1 . . . zm+1).

Thus, Assertion (1) of Lemma 15 implies that S and π(S) = Z(A ◦M,u, v) are finite
which proves Assertion (1) of Proposition 2.
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Assertion (1) of Lemma 15 also implies that the Jacobian matrix associated to (7) has

maximal rank at any point of S. Since we already observed that π(S) = Z(A ◦M,u, v)

and that the map is an isomorphism, Assertion (2) follows.

Assertion (3) is a straightforward consequence of Assertion (2) of Lemma 15. 2

5. Closure properties of projection maps

The goal of this section is to prove Proposition 3. We start by introducing some

notations.

Notations 16. For an algebraic set Z ⊂ Cn of dimension d, we denote by Ωi(Z) the

i-equidimensional component of Z, for i = 0, 1, . . . , d.

We denote by S (Z) the union of the following sets:

• Ω0(Z) ∪ · · · ∪ Ωd−1(Z)

• the set sing (Ωd(Z)) of singular points of Ωd(Z)

and by C (πi,Z) the Zariski closure of the union of the following sets:

• Ω0(Z) ∪ · · · ∪ Ωi−1(Z);

• the union for r ≥ i of the sets crit (πi, reg (Ωr(Z))) of critical points of the restriction

of πi to the regular locus of Ωr(Z).

Now, take M ∈ GL(n,C) and fix Z ⊂ Cn algebraic set of dimension d. We define the

collection of algebraic sets {Oi(M−1Z)}0≤i≤d with

• Od(M−1Z) = M−1Z;

• Oi(M−1Z) = S (Oi+1(M−1Z)) ∪ C (πi+1,Oi+1(M−1Z)) ∪ C (πi+1,M
−1Z) for i =

0, . . . , d− 1.

The proof of Proposition 3 consists essentially in showing closedness properties of

projections of the above geometric constructions in generic coordinates. This is proved

using a relationship between closedness properties and Noether position properties. We

start by stating the Noether position properties we are interested in.

Property P(Z). Let Z ⊂ Cn be an algebraic set of dimension d. We say that M ∈
GL(n,C) satisfies P(Z) when for all i = 0, 1, . . . , d

(1) Oi(M−1Z) has dimension ≤ i;
(2) Oi(M−1Z) is in Noether position with respect to X1, . . . , Xi.

Note that Point (2) of P(Z) implies Point (1) (this is an immediate consequence of

(46, Chap. 1.5.3)). The following result shows that Property P(Z) holds for a generic

choice of the matrix M and it will be proved later on.

Proposition 17. Let Z ⊂ Cn be an algebraic set of dimension d. There exists a non-

empty Zariski open set M2 ⊂ GL(n,C) such that for all M ∈ M2 ∩ Qn×n, M satisfies

P(Z).

Because of its length, the proof of the above result is postponed to the end of this

section. We express now the closedness properties we are interested in.
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Property Q. Let Z be an algebraic set of dimension d and 1 ≤ i ≤ d. We say that Z
satisfies Qi if for any connected component C of Z∩Rn the boundary of πi(C) is contained
in πi(Oi−1(Z)∩C). We say that Z satisfies Q if it satisfies Q1, . . . ,Qd. When Z is explicit
we just say that Q holds.

The following result states closedness properties properties of projections of the con-
nected components of the real counterpart of an algebraic set when property P(Z) holds.

Proposition 18. Let Z ⊂ Cn be an algebraic set of dimension d and M ∈ GL(n,C) ∩
Qn×n. If M satisfies P(Z), then M−1Z satisfies Q.

The relationship between Noether position and closedness properties of connected
components of real counterparts in algebraic sets and critical points is already exhibited
and exploited in (44). Actually, Propositions 17 and 18 are already proved in (44) under
the assumption that Z is smooth and equidimensional. We cannot make this assumption
in our context to prove Proposition 3 since D is generically singular. Thus, this Section
can be seen as a strict generalization of (44).

As in (44), we use the notion of proper map. A map p : U ⊂ Cn → Ci is proper at
y ∈ Ci if and only if there exists a neighbourhood B of y such that p−1(B) ∩ U is closed
and bounded where B is the closure of B for the strong topology. We simply say that p
is proper when it is proper at any point of Ci.

Proof of Proposition 18. To keep notations simple, we suppose that Idn satisfies P(Z).
Our reasoning is by decreasing induction on the index i. In the whole proof we also define
the following function on Z: we associate to y ∈ Z the value

J(y) = min
{
j | y ∈ Oj

}
.

We start by establishing that Qd holds. Let x ∈ Rd be on the boundary of πd(C).
By (32, Lemma 3.10), Property P(Z) implies that the map πd restricted to Od(Z) is
proper, and so closed. We deduce that the restriction of πd to Od(Z)∩C∩Z = Od(Z)∩C
is closed and that x ∈ πd(Od(Z) ∩ C). Let y ∈ Od(Z) ∩ C such that πd(y) = x. If
J(y) ≤ d − 1 our conclusion follows immediately. Suppose now that J(y) = d. This
implies that y ∈ reg Ωd(Z). By the Implicit Function Theorem we conclude that y is a
critical point of πd and that y ∈ crit (πd, reg (Ωd(Z))) ⊂ C (πd,Z) ⊂ Od−1(Z), which is
a contradiction since we assumed J(y) = d.

Suppose now that Qi+1 holds. We proceed in two steps:
(1) First, we prove that the boundary of πi(C) is included in πi(Oi(Z) ∩ C). Indeed,

let x ∈ Ri be on the boundary of πi(C). Let p : Ri+1 → Ri be the map sending
(x1, . . . xi+1) to (x1, . . . xi), so that πi = p ◦ πi+1. For r > 0, let Br be the ball
of center x and radius r in Ri and B′r = p−1(Br). We claim that B′r meets both
πi+1(C) and its complementary in Ri+1.

Indeed this is a consequence of the following immediate equalities

π−1i (Br) ∩ C = π−1i+1 ◦ p
−1(Br) ∩ C = π−1i+1(B′r) ∩ C

and π−1i (Br) ∩ C 6= ∅ and Br ∩ {Ri \ πi(C)} 6= ∅. Since B′r is connected, B′r meets
also the boundary of πi+1(C). Since Qi+1 holds, for every r > 0 there exists yr ∈
Oi(Z) ∩ C such that πi+1(yr) ∈ B′r, and so πi(yr) ∈ Br. Thus, x lies in the closure
of the image by πi of the set Oi(Z)∩C. This image is closed and our claim follows.
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(2) Second, we prove that Qi holds. Let x ∈ Ri be on the boundary of πi(C). From
(1), we deduce that there exists y ∈ Oi(Z) ∩ C such that πi(y) = x. Suppose by
contradiction that for all y as above, J(y) = i. Fix y ∈ Oi(Z) \ Oi−1(Z) such
that πi(y) = x. In particular, y ∈ Oi(Z) \ S (Oi(Z)), and thus, we deduce that
y ∈ reg (Ωi(Oi)). Next, since x ∈ πi(Ωi(Oi)∩C) and lies on the boundary of πi(C),
we deduce that x lies on the boundary of πi(Ωi(Oi) ∩ C). Finally, by the Implicit
Function Theorem, we deduce that y ∈ crit (πi, regOi) ⊂ C (πi,Oi) ⊂ Oi−1, which
is a contradiction since we assumed that J(y) = i.

We conclude that Qi holds, and so all statements Q1, . . . ,Qd hold. 2

The following lemma is the last ingredient we need to prove Proposition 3. It shows
that, if M satisfies P(Z), the fiber over a point lying on the boundary of the projection
π1(M−1C) is finite, and it can be obtained by computing the set O0(M−1Z).

Lemma 19. Let Z ⊂ Cn be an algebraic set. Let M ∈ GL(n,C) be such that M
satisfies P(Z). Let M−1C be a connected component of M−1Z ∩ Rn and w ∈ R be on
the boundary of π1(M−1C). Then π−11 (w)∩M−1C is a non-empty finite set contained in
O0(M−1Z) ∩M−1C.

Proof of Lemma 19. By Proposition 18 we deduce that if w ∈ R belongs to the boundary
of π1(C), there exists x ∈ O0(M−1Z) ∩M−1C such that π1(x) = w. So (O0(M−1Z) ∩
M−1C) ∩ (π−11 (w) ∩M−1C) 6= ∅. Now, we prove that π−11 (w) ∩M−1C ⊂ O0(M−1Z) ∩
M−1C. Since M satisfies P(Z), O0(M−1Z) is finite and we also deduce that π−11 (w) ∩
M−1C is finite.

We use again the definition of the function x 7→ J(x) over Z used in the proof of
Proposition 18. Suppose that there exists x ∈ π−11 (w)∩M−1C such that J(x) = j > 0; this
implies that x ∈ Oj(Z) \ Oj−1(Z). In particular, we deduce that x ∈ reg (Ωj(Oj(Z))) ∩
M−1C. Since w = π1(x) is on the boundary of π1(M−1C), we conclude that πj(x) is on
the boundary of πj(Ωj(Oj(M−1Z))∩M−1C). Moreover, since x ∈ reg Ωj(Oj(M−1Z))∩
M−1C, we conclude by the Implicit Function Theorem that x is a critical point of the
restriction of πj to Oj(M−1Z). So x ∈ crit (πj ,Oj(M−1Z)) ⊂ C (πj ,Oj(M−1Z)) ⊂
Oj−1(M−1Z). We conclude that contradiction J(x) ≤ j−1 which is a contradiction. 2

We are now able to prove Proposition 3.

Proof of Proposition 3. Let M2 ⊂ GL(n,C) be the non-empty Zariski open set of matri-
ces satisfying Property P(D) defined in Proposition 17, and let M ∈M2. Let M−1C be
a connected component of M−1D ∩ Rn, and let 1 ≤ i ≤ n− 1. Then, applying Proposi-
tion 18, we conclude that M−1D satisfies Qi. In particular the boundary of πi(M

−1C) is
contained in πi(Oi−1(DM )∩M−1C) ⊂ πi(M−1C) which implies that πi(M

−1C) is closed.
This proves Assertion (1).

We prove now Assertion (2). Take w ∈ R that lies in the frontier of π1(M−1C). By
Lemma 19, π−11 (w) ∩M−1C is a finite set, and thus there exists x ∈ M−1D ∩ Rn such
that x ∈ M−1C and π1(x) = w. For all such x, the matrix A(x) is rank defective. Fix
x ∈ π−11 (w) ∩M−1C and let r ≤ m− 1 be the rank of A(x). Consider the linear system
y 7→ f(A, u) parametrized by the vector u. This system has at least one solution y if and
only if

rank

 A(x)

u1 · · · um

 = rank

 A(x) 0

u1 · · · um um+1

 .
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Now, the second matrix has rank r + 1 since um+1 6= 0, and the first matrix has rank
r + 1 if and only if (u1, . . . , um) does not lie in the space generated by the rows of A.
So there exists a non-empty Zariski open set UC,x such that if (u1, . . . , um) ∈ UC,x the
linear system has at least one solution.

We conclude the proof by taking

U =
⋂

C⊂D∩Rn

⋂
x∈π−1

1 (w)∩M−1C

UC,x

which is non-empty and Zariski open because of the finiteness of π−11 (w)∩M−1C and of
the number of connected components of D ∩ Rn. 2

The remainder of this Section is dedicated to the proof of Proposition 17. We start by
introducing some notations.

Notations 20. Let B be an n-by-n matrix of indeterminates. For f ∈ Q[x1, . . . , xn], let
f ◦ B ∈ Q(B)[x1, . . . , xn] denote the polynomial such that (f ◦ B)(x) = f(Bx), and if
V ⊂ Cn is defined by the ideal I = 〈f1, . . . , fs〉, let B−1V be the algebraic set defined by
I ◦B = 〈f1 ◦B, . . . , fs ◦B〉 ⊂ Q(B)[x1, . . . , xn].

For all i = 0, 1, . . . , d, we denote by Ii, Ii ◦M and Ii ◦ B the ideals associated to the
algebraic sets Oi(Z),Oi(M−1Z) and Oi(B−1Z), see Notations 16.

Lemma 21. Let Z ⊂ Cn be an algebraic set of dimension d and 0 ≤ i ≤ d. Let P be
one of the components of the prime decomposition of I ◦ Bi and let r = dimP. Then
r ≤ i and the ring extension Q(B)[x1 . . . xr] −→ Q(B)[x1 . . . xn] /P is integral.

This Lemma is a generalization of (44, Prop.1) to the non-equidimensional case. Its
proof shares similar techniques than those used for proving (44, Prop.1). It exploits the
properties of the geometric objects defined in Notations 16 to retrieve an equidimensional
situation. We sketch below the main differences and will refer to the proof of (44, Prop.
1) for the steps that are identical.

Proof of Lemma 21. Our reasoning is by decreasing induction on the index i.
Suppose first that i = d, so that Id◦B = I(B−1Z) (by definition Od(B−1Z) = B−1Z).

Let P be a prime ideal of the prime decomposition of Id ◦ B, and let r = dimP. Thus,
the algebraic set defined by P is an irreducible component of dimension r ≤ d and then
Z(P) ⊂ Ωr(B

−1Z). By the Noether normalization lemma (37), the statement follows.
Suppose now that the statement is true for i + 1. To simplify notations we write Oi

instead of Oi(B−1Z). In particular, we assume that Oi+1 has dimension ≤ i+1. Consider
the ideal Ii ◦ B; using the definitions of the geometric objects introduced in Notations
16 one obtains the following equalities:

Ii ◦B = I(S (Oi+1)) ∩ I(C (πi+1,Oi+1)) ∩ I(C (πi+1, B
−1Z)).

Now, let P be a prime ideal associated to Ii ◦B. Then, P is a prime ideal associated to
one of the three ideals in the above intersection. We investigate below the three possible
cases:

(1) I(S (Oi+1)) ⊂ P. Let r = dimP. In this case, we obtain

P ⊃ I(Ω0(Oi+1)) ∩ · · · ∩ I(Ωi(Oi+1)) ∩ I(sing (Ωi+1(Oi+1))).

Combined with the fact that P is prime, this implies that
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• either I(Ωj(Oi+1)) ⊂ P, for some 0 ≤ j ≤ i ; then one gets r ≤ i and by the

induction assumption that the extension Q(B)[x1 . . . xr] −→ Q(B)[x1 . . . xn] /P
is integral ;

• or I(sing (Ωi+1(Oi+1))) ⊂ P.
Assume that I(sing (Ωi+1(Oi+1))) ⊂ P. We deduce that

dim(P) ≤ dim(sing (Ωi+1(Oi+1))).

Since dim(Ωi+1(Oi+1)) = i+ 1 by definition, it follows that

dim(sing (Ωi+1(Oi+1))) ≤ i

and we deduce that dim(P) ≤ i. Let f ◦ B = (f1 ◦ B, . . . , fs ◦ B) be a set of
generators of the ideal associated to Ωi+1(Oi+1). Then

I(sing (Ωi+1(Oi+1))) =
√
〈f ◦B, g1, . . . , gN 〉

where g1, . . . , gN are the minors of size (n − i − 1) × (n − i − 1) of the Jacobian
matrix Df ◦B. We prove below by induction on t that for any prime Q associated
to 〈f ◦B, g1, . . . , gt〉, the extension

Q(B)[x1 . . . xr] −→ Q(B)[x1 . . . xn] /Q
is integral. Taking t = N will conclude the proof.

For t = 0, the induction assumption implies that for any prime Q associated to
〈f ◦B〉, the extension Q(B)[x1 . . . xr] −→ Q(B)[x1 . . . xn] /Q is integral.

Assume now that for any prime Q′ associated to 〈f ◦B, g1, . . . , gt〉, the extension

Q(B)[x1 . . . xr] −→ Q(B)[x1 . . . xn] /Q′

is integral.
We prove below that for any prime Q associated to 〈f ◦ B, g1, . . . , gt+1〉, the

extension
Q(B)[x1 . . . xr] −→ Q(B)[x1 . . . xn] /Q

is integral.
Remark that any prime Q associated to 〈f ◦ B, g1, . . . , gt+1〉 is a prime asso-

ciated to Q′ + 〈gt+1〉. Suppose that gt+1 /∈ Q′ (otherwise, the conclusion follows
immediately) and let r′ be the Krull dimension of Q′.

By Krull’s Principal Ideal Theorem, Q′+ 〈gt+1〉 is equidimensional of dimension
r′ − 1. Following mutatis mutandis the same argumentation as in the proof of (44,
Prop. 1), the ideal Q′ + 〈gt+1〉 contains a monic polynomial in xr′ , so that the
extension

Q(B)[x1 . . . xr′−1] −→ Q(B)[x1 . . . xn]
/
Q′ + 〈gt+1〉

is integral. Our claim follows.
(2) I(C (πi+1,Oi+1(B−1Z))) ⊂ P.

Recall that C (πi+1,Oi+1(B−1Z)) is the union of crit (πi+1, reg (Ωi+1(Oi+1)))
and of the sets Ωj(B

−1Z) for 0 ≤ j ≤ i. When I(Ωj(B
−1Z)) ⊂ P, one can apply

the induction assumption.
Thus, we focus on the case where I(crit (πi+1, reg (Ωi+1(Oi+1)))) ⊂ P.
The ideal I(crit (πi+1, reg (Ωi+1(Oi+1)))) is built as follows. Suppose that f ◦B =

(f1 ◦ B, . . . , fs ◦ B) defines I(Ωi+1(Oi+1)), that g1, . . . , gN are the square minors
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of size n − i − 1 of the Jacobian matrix of f ◦ B where the first i columns are
eliminated, and that J is the ideal I(sing (Ωi+1(Oi+1))). The following equality is
immediate:

I(crit (πi+1, reg (Ωi+1(Oi+1)))) =
√
f ◦B + 〈g1, . . . , gN 〉 : J∞,

where, if K,L are two ideals in the same ring R, then K : L∞ = {p ∈ R |
LNp ⊂ K, ∃N ∈ N}. We deduce that the ideal P is a prime component of√
f ◦B + 〈g1, . . . , gN 〉 whose zero locus is not included in sing (Ωi+1(Oi+1)). The

integral ring extension property is already proved (by induction) for every compo-
nent of the ideal 〈f ◦B〉; so we proceed as in the first point.

(3) I(C (πi+1, B
−1Z)) ⊂ P.

Again, recall that C (πi+1, B
−1Z) is the union of Ωj(B

−1Z) for 0 ≤ j ≤ i and the
union for r′ ≥ i of the sets crit (πi, reg (Ωr′(Z))) of critical points of the restriction
of πi to the regular locus of Ωr′(B

1Z).
Let r′ ≥ i+ 1, and Ωr′(Z) be the equidimensional component of Z of dimension

r′. So we can assume I(crit (πi+1, reg (Ωr′(B
−1Z)))) ⊂ P. The proof follows exactly

the same argumentation as the one in the second point.
2

The following lemma plays the same role as the one in (44, Prop. 2). It shows that
there exists the integral extension property in Lemma 21 is maintained when specializing
B to a generic matrix M of GL(n,C). The proof of the lemma below is exactly the same
as the one of (44, Prop. 2).

Lemma 22. Let Z ⊂ Cn be an algebraic set of dimension d. There exists a non-empty
Zariski open set M2 ⊂ GL(n,C) such that if M ∈M2 ∩ Qn×n, the following holds. Let
i ∈ {0, 1, . . . , d} and P be a prime component of Ii ◦M and let r = dim(P). Then r ≤ i
and the ring extension C[x1 . . . xr] −→ C[x1 . . . xn] /P is integral.

Now we can prove Proposition 17.

Proof of Proposition 17. Let M2 ⊂ GL(n,C) be the non-empty Zariski open set defined
in Lemma 22. By Lemma 22, for M ∈ M2 and 0 ≤ i ≤ d, any irreducible component
of the algebraic set Oi(M−1Z) is in Noether position with respect to x1, . . . , xi. This
proves Point (2) of P(Z). Now, remark that (46, Chap. 1.5.3) implies that any irreducible
component of Oi(M−1Z) has dimension ≤ i. This proves Point (1) of P(Z). 2

6. Practical experiments

In this section, we report on practical experiments done with a computer implemen-
tation of our algorithm.

We have implemented the algorithm RealDet under Maple. The computation of ra-
tional parametrizations is done using Gröbner bases, see (17; 18; 27; 26; 20). We use the
Gröbner basis library FGb (19) implemented in C by J.-C. Faugère and its interface with
Maple.

We mainly compare our implementation of RealDet with the Real Algebraic Geometry
Library RAGlib (42) implemented by the last author. RAGlib is also a Maple library
implementing algorithms based on the critical point method. It also uses Gröbner bases
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and the library FGb for solving polynomial systems of dimension 0. We use its command
PointsPerComponents to compute sample points in each connected component of the real
counterpart of the hypersurface defined by the vanishing of the determinant of the matrix
under consideration. We also made some tests using implementations of the Cylindrical
Algebraic Decomposition but none of them succeeded to solve the examples we report
on below.

The computations we report on have been performed on an Intel(R) Xeon(R) CPU
E7540@2.00GHz 256 Gb of RAM. The symbol ∞ means that the computation did not
end after 24 hours.

6.1. Simple example

We first illustrate the behavior of our algorithm on the simple planar determinantal
quartic of Example 12. We would like to find at least one point (x1, x2) ∈ R2 in each
connected component of the real variety defined by the equation

det


1 + x1 x2 0 0

x2 1− x1 x2 0

0 x2 2 + x1 x2

0 0 x2 2− x1

 =

x41 + 3x21x
2
2 + x42 − x1x22 − 5x21 − 7x22 + 4 = 0.

With input the previous linear matrix, the algorithm checks that the associated inci-
dence variety V verifies the regularity properties. This is done by computing a Gröbner
basis of the ideal generated by the polynomials defining V and by the maximal minors
of the Jacobian matrix, and verifying that this Gröbner basis is 1.

Then, the algorithm recursively computes rational parametrizations of the zero-dimen-
sional Lagrange systems encoding critical points of the projection on the first variable,
restricted to the incidence varieties (or its sections). To obtain this parametrization, we
use the functions implemented in the Maple package fgbrs given in input a Gröbner basis
of a zero-dimensional ideal, gives in output a rational parametrization of its solution set.

Once a rational parametrization of the desired output is given, we isolate the real
roots which are given by isolating intervals, each of one guaranteed to contain a point on
the curve. To give an idea of the output, we reproduce here one of these points, together
with its approximation to 10 certified digits:

x1 ∈ [ 122156404883928000480132795924333256536504662931063109335249846272 ,
355364086934036023530184499052519
746288013564890365408975272280064 ] ≈ 0.4761755254

x2 ∈ [− 10810534239
4294967296 ,−

345937095647
137438953472 ] ≈ −2.517023645

The eight points are represented on the curve on Figure 3.

6.2. Timings

Table 1 reports on timings obtained with n-variate linear matrices of size m with
rational coefficients chosen randomly. Thus, all matrices satisfy the genericity Assumption
G.
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Fig. 3. The determinantal quartic curve of Example 12 (black) and eight of its points (red) as
returned by RealDet.

m n RealDet RAGlib m n RealDet RAGlib

2 4 0.22 s 2.25 s 4 3 4.16 s 2.15 s

2 10 0.63 s 25.6 s 4 4 110 s 835 s

2 20 1.99 s ' 1 h 4 8 1824 s ∞

3 3 0.49 s 2.8 s 4 16 4736 s ∞

3 9 2.24 s 195 s 4 20 7420 s ∞

3 20 10.5 s ' 7 h 5 2 0.9 s 0.23 s

4 2 0.35 s 0.35 s 5 3 10.2 s 59 s

Table 1. Timings for RealDet applied to random linear matrices

We can observe that our implementation RealDet reflects the complexity gain since,

for example, we are able to solve the problem for dense determinants of degree m = 4

and with n = 16 variables in less than one hour and a half; the same problem cannot be

solved within a day by RAGlib.

Also, when the size m of the matrix is fixed, we observe that the increase of time

needed to perform the computation is well-controlled. Figures 4 and 5 illustrate this:

the black (resp. red) curve represents how the computation time of our implementation

(resp. RAGlib) increases with respect to the number of variables when m is fixed to 3

and 4. Note that our implementation has the ability to solve problems with 20 variables

which are unreachable by RAGlib.
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Fig. 5. Timings for m = 4 and n ≤ 20

6.3. Degree of the output

In Table 2, we report some data on the degrees of the rational parametrizations com-
puted by RealDet. Recall that we have provided degree bounds in Section 2.3.

We conjectured that these bounds are not sharp; these experiments support this
statement. In the column “degree” we report the sum of the degrees of the rational
parametrizations computed by our algorithm for generic n-variate linear matrices of size
m. We remark that if m is fixed, this value is constant when n ≥ 2m − 1. The same
property holds for the multi-linear bound for the degree of the output.
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m n degree bound m n degree bound m n degree bound

2 2 4 5 3 4 33 43 4 3 52 74

2 3 6 7 3 5 39 49 4 4 120 169

2 4 6 7 3 6 39 49 4 6 264 347

2 8 6 7 3 8 39 49 4 7 284 367

2 20 6 7 3 15 39 49 4 15 284 367

3 3 21 28 3 20 39 49 4 20 284 367

Table 2. Degree of the output for the generic case

Example 23. Consider the matrix

A(x) =


x11 x12 . . . x1m

x21
. . .

...
...

xm1 xmm

 .

We remark that, in the context of this paper, A(x) is a linear matrix of size m, with m2

variables, and it is expressed as a linear combination of m2 matrices of rank 1. Allowing

x ∈ Qm2

to vary, the matrix A(x) describes all matrices of size m with entries in Q. Such

matrices arise in statistics as joint probability matrices for two discrete random variables,

cf. (31, Sec. 2).

Let b = (b11 . . . bmm) ∈ Qm2

be a vector of rational numbers. We add the affine

constraint b′x = 1, i.e. we solve the previous linear equation with respect to x11 and we

substitute this value to x11 into A(x).

b all ones m = 2 m = 3 m = 4

degree 5 35 244

b generic m = 2 m = 3 m = 4

degree 6 36 245

Table 3. Matrices with an affine constraint on the entries

In Table 3 we report on some numerical experiments. The two subtables contains the

degree of the output of RealDet and the computational times respectively when b is the

vector of all ones, and when the coordinates of b are random values in Q. We remark

that the values of the degree are smaller than the corresponding values for the “dense”

cases (m,n) = (2, 3), (3, 8) and (4, 15) that are respectively 6, 39 and 284, as shown in

Table 2.
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Example 24. Consider the symmetric matrix

A(x) =


2x11 x12 . . . x1k

x12
. . .

...
...

x1k 2xkk

 .

Matrix A(x) has size m with m(m+ 1)/2 variables and it parametrizes all symmetric
matrices. It is expressed as a linear combination of matrices of rank 1 or 2.

b all ones m = 2 m = 3 m = 4

degree 2 16 122

b generic m = 2 m = 3 m = 4

degree 3 21 136

Table 4. Symmetric matrices with an affine constraint on the entries

We add as above a linear relation b′x = 1 where b ∈ Qm(m+1)/2, and in Table 4 we
report on experimental data. We observe the same behavior as in the previous example.

6.4. Complexity

In Figures 6 and 7, we consider two fundamental subclasses of the problem: when
n = m2 (non-symmetric case) and when n = m(m+ 1)/2 (symmetric case). We estimate
in both cases the order of complexity

C(m,n) = n2m2(n+m)5
(
m+ n

n

)6

of RealDet as computed in Proposition 5. We recall that standard complexity bounds for
these classes of problems are in mO(n).

On Figure 6 we represent in logarithmic scale the ratio of C(m,n) with m10
√
n (where

the relation n = m2 is fixed) as a function of the matrix size m. We remark that we
obtain a bound which is strictly contained in mO(

√
n) since this ratio tends to zero. This

numerical test shows that our complexity bound, significantly improves the previous one.
The same conclusion holds for the second case (Figure 7) where n = (m2+m)/2, which

includes the fundamental family of symmetric linear matrices), where our complexity
is compared with m5n. We also remark that similar results – not reported here for
conciseness – have been obtained by imposing a linear relation between m and n, for
example n = 2m or n = 3m, and allowing m to vary.

To summarize, the complexity of RealDet given by Proposition 5 is such that:
• when m is fixed, the complexity n 7→ C(m,n) is polynomial;
• when n = m2 or n = (m2 +m)/2 or n = αm, its asymptotic behavior when m grows

is well-controlled and improves the state-of-the-art.
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Gröbner bases with sparse multiplication matrices. In Proceedings of the Inter-
national Symposium on Symbolic and Algebraic Computation (ISAAC), 2011.
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