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Abstract. Let f ∈ Q[X1, . . . , Xn] be a polynomial of degree D. Com-

puting the set of generalized critical values of the mapping ef : x ∈ Cn →
f(x) ∈ C (i.e. {c ∈ C | ∃(xk)k∈N f(xk) → c and ||xk||.||dxkf || →
0 when k → ∞}) is an important step in algorithms computing sam-
pling points in semi-algebraic sets defined by a single inequality.
A previous algorithm allows us to compute the set of generalized crit-
ical values of ef . This one is based on the computation of the critical
locus of a projection on a plane P . This plane P must be chosen such
that some global properness properties of some projections are satisfied.
These properties, which are generically satisfied, are difficult to check in
practice. Moreover, choosing randomly the plane P induces a growth of
the coefficients appearing in the computations.
We provide here a new certified algorithm computing the set of genera-
lized critical values of ef . This one is still based on the computation of
the critical locus on a plane P . The certification process consists here in
checking that this critical locus has dimension 1 (which is easy to check
in practice), without any assumption of global properness. Moreover, this
allows us to limit the growth of coefficients appearing in the computations
by choosing a plane P defined by sparse equations. Additionally, we prove
that the degree of this critical curve is bounded by (D−1)n−1−d where
d is the sum of the degrees of the positive dimensional components of
the ideal 〈 ∂f

∂X1
, . . . , ∂f

∂Xn
〉.

We also provide complexity estimates on the number of arithmetic op-
erations performed by a probabilistic version of our algorithm.
Practical experiments at the end of the paper show the relevance and
the importance of these results which improve significantly in practice
previous contributions.

1 Introduction

Consider f ∈ Q[X1, . . . , Xn] of degree D and the mapping f̃ : x ∈ Cn → f(x).
The set of generalized critical values of f̃ is defined as the set of points c ∈ C



such that there exists a sequence of points (xk)k∈N such that f(xk) → c and
||xk|||dxk

f ||| → 0 when k tends to ∞ (see [20]). From [14, 20], this set of points
contains:

– the classical set of critical values, i.e. the set of roots of the polynomial
generating the principal ideal: 〈f − T, ∂f

∂X1
, . . . , ∂f

∂Xn
〉 ∩Q[T ];

– the set of asymptotic critical values which is the set of complex numbers
for which there exists a sequence of points (xk)k∈N ⊂ Cn such that ||xk||
tends to ∞ and

∣∣∣∣∣∣(Xi
∂f

∂Xj

)
(xk)

∣∣∣∣∣∣ tends to 0 when k tends to ∞ for all
(i, j) ∈ {1, . . . , n} × {1, . . . , n}.

In this paper, we provide an efficient algorithm allowing us to compute the set
of generalized critical values of the polynomial mapping f̃ .

Motivation and description of the problem. The interest of computing asymp-
totic critical values of a polynomial mapping comes from the following result
which is proved in [28]: Let f ∈ Q[X1, . . . , Xn], and e ∈]0, e0[ where e0 is less
than the smallest positive generalized critical value of the mapping x → f(x).
If there exists x ∈ Rn such that f(x) = 0 then each connected component of
the semi-algebraic set defined by f > 0 contains a connected component of the
real algebraic set defined by f − e = 0. Thus, computing generalized critical val-
ues is a preliminary step of efficient algorithms computing sampling points in a
semi-algebraic set defined by a single inequality, testing the positivity of a given
polynomial, etc. In [28], the computation of generalized critical values is also
used to decide if a given hypersurface contains real regular points. Once gen-
eralized critical values are computed, it remains to compute at least one point
in each connected component in a real hypersurface which can be tackled using
algorithms relying on the critical point method introduced in [13] (see also [26]
and [25] for recent developments leading to practical efficiency).

Given A ∈ GLn(C), we denote by fA the polynomial f(AX). In [28], the
following result is proved (see [28, Theorem 3.6]): There exists a Zariski-closed
subset A ( GLn(C) such that for all A ∈ GLn(Q) \ A, the set of asymptotic
critical values of x → f(x) is contained in the set of non-properness of the
projection on T restricted to the Zariski-closure of the constructible set defined
by fA − T = ∂fA

∂X1
= · · · = ∂fA

∂Xn−1
= 0, ∂fA

∂Xn
6= 0.

This result induces a probabilistic algorithm which consists in:

1. choosing randomly a matrix A ∈ GLn(Q) and compute an algebraic repre-
sentation of the Zariski-closure CA of the constructible set defined by:

fA − T =
∂fA

∂X1
= · · · = ∂fA

∂Xn−1
= 0,

∂fA

∂Xn
6= 0

2. Compute the set of non-properness of the projection on T restricted to CA.

Certifying this algorithm is done by checking that for i = 1, . . . , n − 1 the pro-
jection πi : (x1, . . . , xn, t) ∈ Cn+1 → (xn−i+1, . . . , xn, t) ∈ Ci+1 restricted to the



Zariski-closure of the constructible set defined by

fA − T =
∂fA

∂X1
= · · · = ∂fA

∂Xn−i
= 0,

∂fA

∂Xn−i+1
6= 0

is proper.
The above algorithm allows us to deal with non-trivial examples and has

been used to compute sampling points in a semi-algebraic set defined by a single
inequality (see [7] for an application in computational geometry). Nevertheless,
some improvements and theoretical issues could be expected:

1. how to limit the growth of coefficients appearing in the computations which
are induced by the change of variables A ?

2. the certification of the above algorithm can be expensive on some examples;
can we find a way to obtain a certified algorithm whose practical efficiency
is better than the one of [28]?

3. can we improve the degree bounds on the geometric objects considered dur-
ing the computations?

Main contributions. The main result of this paper is the following (see Theorem
3 below): Let f be a polynomial in Q[X1, . . . , Xn]. Suppose that for all i ∈
{1, . . . , n− 1}, the Zariski-closure denoted by Wi of the constructible set defined
by f − T = ∂f

∂X1
= · · · = ∂f

∂Xn−i
= 0, ∂f

∂Xn−i+1
6= 0 has dimension i. Then, the set

of asymptotic critical values of f is contained in the set of non-properness of the
projection (x1, . . . , xn, t) ∈ Cn → t restricted to W1.

Note that this strongly simplifies the certification process of the algorithm
designed in [28] since it is now reduced to compute the dimension of a Zariski-
closed algebraic set. This also allows us to use simpler matrices A (for which
the aforementioned projections πi may be not proper) to avoid a growth of the
coefficients. This result is obtained by using local properness of these projections
πi instead of global properness which is used in the proof of [28, Theorem 3.6].

Additionally, we prove that, There exists a Zariski-closed subset A ( Cn

such that for all (a1, . . . , an) ∈ Cn \ A, the ideal(
〈L ∂f

∂X1
− a1, L

∂f

∂X2
− a2, . . . , L

∂f

∂Xn
− an〉 ∩Q[X1, . . . , Xn]

)
+ 〈f − T 〉

has either dimension 1 in Q[X1, . . . , Xn, T ] or it equals 〈1〉. Moreover, if the
determinant of the Hessian matrix associated to f is not identically null, there
exists a Zariski-closed subset A ( Cn such that the above ideal has dimension 1
(see Proposition 1).

Thus, if the determinant of the Hessian matrix of f is not null, we are able
to apply the aforementioned result by performing linear change of variables to
compute asymptotic critical values by computing a set of non-properness of a
projection restricted to a curve. The degree of this curve is crucial to estimate
the complexity of our algorithm. We prove in Theorem 4 (see below) that it is
bounded by (D − 1)n−1 − d where d is the sum of the degrees of the positive



dimensional irreducible components of the variety associated to 〈 ∂f
∂X1

, . . . , ∂f
∂Xn

〉.
Note that d is an intrinsic quantity. This last result improves the degree bounds
provided in [28].

We describe two versions of this algorithm. The first one is certified and uses
Gröbner bases to perform algebraic elimination. The second one is probabilistic
and uses the geometric resolution of algorithm of [19].

We have implemented the certified version of the algorithm we have obtained
using Gröbner bases. We did experiments comparing

– the algorithm we obtained,
– the one which is designed in [28]
– the one designed in [20]
– an algorithm based on CAD computing the asymptotic critical values of a

polynomial.

It appears that the algorithm we design in this paper is significantly faster than
the previous ones. Compared to the one given [28] which is based on similar
geometric techniques, the gain comes from the fact the growth of the coefficients
appearing in our algorithm is indeed better controlled.

Organization of the paper. Section 2 is devoted to recall basic definitions and
properties about generalized critical values of a polynomial mapping. Section 3
is devoted to the proof of the results presented above. Section 4 is devoted to
present practical experiments showing the relevance of our approach.

2 Preliminaries

In this section, we recall the definitions and basic properties of generalized critical
values which can be found in [20].

Definition 1. A complex number c ∈ C is a critical value of the mapping f̃ :
y ∈ Cn → f(y) if and only if there exists z ∈ Cn such that f(z) = c and
∂f

∂X1
(z) = · · · = ∂f

∂Xn
(z) = 0.

A complex number c ∈ C is an asymptotic critical value of the mapping
f̃ : y ∈ Cn → f(y) if and only if there exists a sequence of points (z`)`∈N ⊂ Cn

such that:

– f(z`) tends to c when ` tends to ∞.
– ||z`|| tends to +∞ when ` tends to ∞.
– for all (i, j) ∈ {1, . . . , n}2 ||Xi(z`)||.|| ∂f

∂Xj
(z`)|| tends to 0 when ` tends to ∞.

The set of generalized critical values is the union of the sets of critical values
and asymptotic critical values of f̃ .

In the sequel, we denote by K0(f) the set of critical values of f̃ , by K∞(f)
the set of asymptotic critical values of f̃ , and by K(f) the set of generalized
critical values of f̃ (i.e. K(f) = K0(f) ∪K∞(f)).

In [20], the authors prove the following result which can be seen as a gener-
alized Sard’s theorem for generalized critical values.



Theorem 1. Let f be a polynomial in Q[X1, . . . , Xn] of degree D. The set of
generalized critical values K(f) of the mapping f̃ : x ∈ Cn → f(x) ∈ C is
Zariski-closed in C. Moreover, D]K∞(f) + ]K0(f) ≤ Dn − 1

The main interest of the set of generalized critical values relies on its topo-
logical properties which are summarized below and proved in [20].

Theorem 2. The mapping fC : x ∈ Cn → f(x) ∈ C realizes a locally trivial
fibration in Cn \ f−1

C (K(fC)).
The mapping fR : x ∈ Rn → f(x) ∈ R realizes a locally trivial fibration in
Rn \ f−1

R (K(fR)).

Thus, K(f) is Zariski-closed, degree bounds on K(f) are Bézout-like degree
bounds and its topological properties ensure that there is no topological change
of the fibers of f taken above any interval of R which has an empty intersection
with K(f).

In the sequel, for the sake of simplicity, we identify a polynomial f ∈ Q[X1,
. . . , Xn] with the mapping fC : x ∈ Cn → f(x) ∈ C.

3 Main Results and Algorithms

3.1 Geometric results

In the sequel, we consider maps between complex or real algebraic varieties. The
notion of properness of such maps will be relative to the topologies induced by
the metric topologies of C or R. A map φ : V → W of topological spaces is said
to be proper at w ∈ W if there exists a neighborhood B of w such that f−1(B)
is compact (where B denotes the closure of B). The map φ is said to be proper
if it is proper at all w ∈ W .

The following lemma is used in the proof of the main result of this section.

Lemma 1. Let ∆n−j be the Zariski-closure of the constructible set defined by

∂f

∂X1
= · · · = ∂f

∂Xn−j
= 0,

∂f

∂Xn−j+1
6= 0.

Suppose that for j = 1, . . . , n−1, ∆n−j has dimension j and that its intersection
with the hypersurface defined by ∂f

∂Xn−j+1
= 0 is regular and non-empty.

Consider the projection πn−j+2 : (x1, . . . , xn) ∈ Cn → (xn−j+2, . . . , xn) ∈
Cj−1 and suppose its restriction to ∆n−j to be dominant. There exists a Zariski-
closed subset Z ( Cj−1 such that if α /∈ Z and if there exists a sequence of points
(xk)k∈N ∈ π−1

n−j+2(α) ∩ ∆n−j, such that ∂f
∂Xn−j+1

(xk) → 0 when k → ∞, then

there exists a point in x ∈ ∆n−j such that πn−j+2(x) = α and ∂f
∂Xn−j+1

(x) = 0.

Proof. Let x be a point of ∆n−j+1, which has, by assumption, dimension j − 1.
Then x belongs to an irreducible component of dimension j−1 of the intersection
of a component C ′ of the variety V defined by ∂f

∂X1
= · · · = ∂f

∂Xn−j
= 0 with the



hyperurface H defined by ∂f
∂Xn−j+1

= 0. The component C ′ has thus a dimension
which is less than j + 1. Remark now that each component of V has dimension
greater than j−1 (since it is defined by the vanishing of n−j polynomials). Thus,
C ′ has dimension j and its intersection with the hypersurface H is regular. Then,
C ′ is an irreducible component of ∆n−j . Consider C the union of such irreducible
components containing points of ∆n−j+1.

Finally, each point in ∆n−j+1 lies in C. Thus, it is sufficient to prove that for
a generic choice of α ∈ Cj−1, π−1

n−j+2(α) ∩∆n−j+1 is zero-dimensional and not
isolated in the variety C.

Consider the ideal I = 〈 ∂f
∂X1

, . . . , ∂f
∂Xn−j

〉 : 〈 ∂f
∂Xn−j+1

〉∞ ⊂ Q[X1, . . . , Xn] and

the ideal J = I + 〈 ∂f
∂Xn−j+1

− U〉. Remark that I is equi-dimensional since it

has dimension j and contains 〈 ∂f
∂X1

, . . . , ∂f
∂Xn−j

〉 which has dimension at least j.
Moreover, by assumption, dim(J + 〈U〉) = dim(I)− 1 and πn−j+2 is dominant.
Then, for all k ∈ {1, . . . , n − j + 1} J ∩ Q[Xk, Xn−j+2, . . . , Xn, U ] + 〈U〉 is
generated by a non-constant polynomial Pk. If for all k ∈ {1, . . . , n − j + 1}, α
does not belong to the leading coefficient of Pk seen as a univariate polynomial
in Xk, π−1

n−j+2(α) has a zero-dimensional intersection A with the variety defined
by ∆n−j+1. This intersection lies in C.

Remark now that C is equi-dimensional since I is equi-dimensional, so that
the points in A are not isolated in C. ut

Theorem 3. Let f be a polynomial in Q[X1, . . . , Xn]. Suppose that for all i ∈
{1, . . . , n− 1}, the Zariski-closure denoted by Wi of the constructible set defined
by f − T = ∂f

∂X1
= · · · = ∂f

∂Xn−i
= 0, ∂f

∂Xn−i+1
6= 0 has dimension i. Then, the set

of asymptotic critical values of f is contained in the set of non-properness of the
projection (x1, . . . , xn, t) ∈ Cn → t restricted to W1.

The proof is based on similar arguments than the one of [28, Theorem 3.6]. We
consider below the projections: Πi : (x1, . . . , xn, t) 7→ (xn−i+2, . . . , xn, t) (for
i = n, . . . , 2).

Proof. Given an integer j in {n+1, . . . , 2}, we say that property Pj is satisfied if
and only if the following assertion is true: let c ∈ K∞(f), there exists a sequence
of points (z`)`∈N such that for all ` ∈ N, z` ∈ Wj−1; f(z`) → c when ` → ∞;
||z`|| tends to ∞ when ` tends to ∞; and ||z`||.||dz`

f || → 0 when ` →∞.
Suppose now Pj+1 is true. We show below that this implies Pj . Since Pj+1

is supposed to be true, then there exists a sequence of points (z`)`∈N such that
for all ` ∈ N, z` ∈ Wj , f(z`) → c when ` → ∞, ||z`|| tends to ∞ when ` tends
to ∞ and ||z`||.||dz`

f || → 0 when ` →∞.
We prove below that one can choose such a sequence (z`)`∈N in Wj−1.
Consider the mapping φ : Wj ⊂ Cn+1 → C2j+1 which associates to a point

x = (x1, . . . , xn, t) ∈ Wj the point:xn−j+2, . . . , xn, t,
∂f

∂Xn−j+1
(x),

xn−j+r

n∑
k=n−j+1

|| ∂f

∂Xk
(x)||


r=1,...,j





Remark that using the isomorphism between Cn and R2n, it is easy to prove
that φ is a semi-algebraic map. Denote by

(an−j+2, . . . , an, an+1, a0,n−j+1, an−j+1,n−j+1, . . . , an,n−j+1)

the coordinates of the target space of φ.
By assumption, the restriction of Πj to Wj has finite fibers. Then, there

exists a semi-algebraic subset Z ( C2j+1 ' R4j+2 such that specializing the
coordinates (an−j+2, . . . , an, a0,n−j+1, an−j+1,n−j+1) of the target space of φ to
a point

αn−j+2, . . . , αn, α0,n−j+1, αn−j+1,n−j+1

outside Z defines a finite set of points in the image of φ. Indeed, these points
are the images of the points in Wj such that their Xi coordinate (for i = n −
j + 2, . . . , n) equals αi and Xn−j+1

∑n
k=n−j+1 ||

∂f
∂Xk

|| equals αn−j+1,n−j+1.
Given a point α = (αn−j+2, . . . , αn) ∈ Cj−1 and a complex number θ =

(η1) ∈ C, such that (αn−j+2, . . . , αn, η1) /∈ Z, we denote by y(α, β) a point
in the image of φ obtained by specializing the first (j − 1) coordinates (corre-
sponding to xn−j+2, . . . , xn) to α and the j + 2-th coordinate (corresponding to
xn−j+1

∑n
k=n−j+1 ||

∂f
∂Xk

||). We also denote by x(α, θ) a point in the pre-image
of y(α, θ) by φ.

Consider c ∈ K∞(f). Then, since Pj+1 is supposed to be true, there exists
a sequence of points (z`)`∈N ⊂ Cn in the Zariski-closure of the constructible set
defined by: ∂f

∂X1
= · · · = ∂f

∂Xn−j
= 0, ∂f

∂Xn−j+1
6= 0 such that f(z`) tends to c

when ` tends to ∞, ||z`|| tends to ∞ when ` tends to ∞, and ||z`||.||dz`
f || tends

to 0 when ` tends to ∞.
Consider the images by φ of the points (z`, f(z`)) and their first j − 1 co-

ordinates α` and θ` of their j + 2-th coordinate. We consider now the double
sequence (αi, θ`)(i,`)∈N×N.

Note that, by construction, θ` tends to 0 when ` tends to ∞ and that the
last j + 1 coordinates of y(αi0 , θ`) tend to zero when i0 is fixed and ` tends to
∞ if Xn−j+1(x(αi0 , θ`)) does not tend to 0 when ` tends to ∞.

If for all ` ∈ N, ∂f
∂Xn−j+1

(z`) = 0 the result is obtained. Else, one can suppose

that for all ` ∈ N, ∂f
∂Xn−j+1

(z`) 6= 0.
Remark that without loss of generality, we can do the assumption: for all

(i, j) ∈ N× N, x(αi, θ`) is not a root of ∂f
∂Xn−j+2

and (αi, θ`) /∈ Z.
Moreover, if j = n remark that the set of non-properness of Πn restricted to

the hypersurface defined by f−T = 0 is defined as the set of complex solutions of
the leading coefficient of f seen as a univariate polynomial in X1. Thus, without
loss of generality, one can suppose that for all i and for all t ∈ C, (αi, t) does not
belong to this set of non-properness. Else, up to a linear change of variables on
the variables Xn−j+2, . . . , Xn, one can suppose that the assumptions of Lemma 1
are satisfied and then we choose αi outside the Zariski-closed subset Z exhibited
in Lemma 1.

Remark that, since φ is semi-algebraic, Xn−j+1(x(α, θ)) is a root of a univari-
ate polynomial with coefficients depending on α and θ. Then, for a fixed integer



i0, since θ` tends to (0) when ` tends to ∞, Xn−j+1(x(αi0 , θ`)) has either a finite
limit or tends to ∞ when ` tends to ∞.

In the sequel, we prove that for i0 ∈ N, y(αi0 , θ`) has a finite limit in C2n+1

when ` tends to ∞. Suppose first that Xn−j+1(x(αi0 , θ`)) has a finite limit when
` tends to ∞. Then, f(x(αi0 , θ`)) remains bounded (since Xn−j+1(x(αi0 , θ`)) has
a finite limit and since ∂f

∂X1
, . . . , ∂f

∂Xn−j
vanish at x(αi0 , θ`)). Thus, it has conse-

quently a finite limit. Moreover, without loss of generality, one can suppose that
Xn−j+1(x(αi0 , θ`)) does not tend to 0 which implies that ∂f

∂Xn−j+1
(x(αi0 , θ`))

tends to 0 when ` tends to ∞.
Suppose now that Xn−j+1(x(αi0 , θ`)) tends to ∞ when ` tends to ∞. This

immediately implies that ∂f
∂Xn−j+1

(x(αi0 , θ`)) tends to 0 when ` tends to∞. Since

Xn−j+1(x(αi0 , θ`)) tends to∞ when ` tends to∞, and
(
Xk

∂f
∂Xn−j+1

)
(x(αi0 , θ`))

tends to 0 when ` (for k ∈ {n− j +1, . . . , n}) tends to ∞, using [28, Remark 2.2]
and the curve selection Lemma at infinity (see [20, Lemma 3.3, page 9], this
implies there exists a semi-algebraic arc γi0 : [0, 1[→ Rn such that:

– γi0([0, 1[) is included in the intersection of Wj and of the linear subspace
defined by Xk = Xk(αi0) for k = n− j + 2, . . . , n, which implies that

n∑
p=1

(
Xp

∂f

∂Xp

)
(γi0(ρ)) =

(
Xn−j+1

∂f

∂Xn−j+1

)
(γi0(ρ))

– ||γi0(ρ)|| → ∞ and ||Xn−j+1(γi0(ρ))||.|| ∂f
∂Xn−j+1

(γi0(ρ))|| → 0 when ρ

tends to 1.

From Lojasiewicz’s inequality at infinity [4, 2.3.11, p. 63], this implies that
there exists an integer N ≥ 1 such that: ∀ρ ∈ [0, 1[, || ∂f

∂Xn−j+1
(γi0(ρ)))|| ≤

||Xn−j+1(γi0(ρ))||−1− 1
N . Following the same reasoning as in [20, Lemma 3.4,

page 9], one can re-parametrize γi0 such that γi0 becomes a semi-algebraic func-
tion from [0,+∞[ to Rn and limρ→1 ||γ̇i0(ρ)|| = 1. Thus, the following yields:
∀p ∈ [0,+∞[, || ∂f

∂Xn−j+1
(γi0(ρ))||.||γ̇i0(ρ)|| ≤ ||Xn−j+1(γi0(ρ))||−1− 1

N .||γ̇i0(ρ)||
and there exists B ∈ R such that

∫∞
0
||γi0(ρ)||−1− 1

N .||γ̇i0(ρ)||dρ ≤ B.. Since∫ ∞

0

||γi0(ρ)||−1− 1
N .||γ̇i0(ρ)||dρ ≥

∫ ∞

0

||Xn−j+1(γi0(ρ))||−1− 1
N .||γ̇i0(ρ)||dρ

and
∫∞
0
|| ∂f

∂Xn−j+1
(γi0(ρ))||.||γ̇i0(ρ)||dρ ≥ ||

∫∞
0

∂f
∂Xn−j+1

(γi0(ρ)).γ̇i0(ρ)dρ||, one

has finally ||
∫∞
0

∂f
∂Xn−j+1

(γi0(ρ)).γ̇i0(ρ)dρ|| ≤ B. Thus, the restriction of f is
bounded along γi0 .

Finally, we have proved that y(αi0 , θ`) tends to a point whose j + 1-th coor-
dinates is null.

Let yi0 be the limit of y(αi0 , θ`) and let pi0 ∈ Cn be (αi0 , ci0) and p` ∈ Cn

be the point whose coordinates are the j-first coordinates of y(αi0 , θ`).



We prove now that yi0 belongs to the image of φ. If j = n this is a consequence
of the fact that (αi0 , ci0) does not belong to the set of non-properness of Πn

restricted to the vanishing set of f − T = 0. If j < n this is an immediate
consequence of Lemma 1.

Thus, Π−1
j+1(pi0) ∩Wj−1 6= ∅ and one can extract a converging subsequence

from (x(αi0 , θ`))`∈N and let xi0 be the limit of the chosen converging subsequence.
It remains to prove that:

– (f(xi0))i0∈N tends to c when i0 tends to ∞
–

(
Xi

∂f
∂Xj

)
(xi0) for (i, j) ∈ {1, . . . , n} tends to 0 when i0 tends to ∞.

which is a consequence of the continuity of the polynomials f and Xi
∂f

∂Xj
for

i = 2, . . . , n, and the definition of the sequence of points x(αi, θ`).
ut

Proposition 1. Let f ∈ Q[X1, . . . , Xn] be a polynomial of degree D ≥ 2. There
exists a Zariski-closed subset A ( Cn such that for all (a1, . . . , an) ∈ Cn \A, the
ideal(

〈L ∂f

∂X1
− a1, L

∂f

∂X2
− a2, . . . , L

∂f

∂Xn
− an〉 ∩Q[X1, . . . , Xn]

)
+ 〈f − T 〉

has either dimension 1 in Q[X1, . . . , Xn, T ] or it equals 〈1〉. Moreover, if the
determinant of the Hessian matrix associated to f is not identically null, there
exists a Zariski-closed subset A ( Cn such that the above ideal has dimension 1.

Proof. This is an immediate consequence of Sard’s theorem (see [4, Theorem
2.5.11 and 2.5.12]) applied to the mapping (x, `) ∈ Cn×C →

(
` ∂f

∂X1
, . . . , ` ∂f

∂Xn

)
ut

Theorem 4. Let d be the sum of the degrees of the positive-dimensional primes
associated to the ideal 〈 ∂f

∂X1
, . . . , ∂f

∂Xn
〉. The degree of the curve associated to the

ideal
(
〈L ∂f

∂Xn
− 1, ∂f

∂X1
, . . . , ∂f

∂Xn−1
〉 ∩Q[X1, . . . , Xn]

)
+ 〈f − T 〉 is dominated by

(D − 1)n−1 − d.

Proof. From [9], the sum of the degrees of the prime ideals associated to the
radical of the ideal I = 〈 ∂f

∂X2
, . . . , ∂f

∂Xn
〉 is dominated by (D − 1)n−1. Consider

the intersection P of these primes which contain ∂f
∂X1

. Remark now that P +
〈 ∂f

∂Xn
〉 = P and then, that the variety associated to P + 〈 ∂f

∂Xn
〉 is the union

of the irreducible components of positive dimension associated to the radical of
the ideal 〈 ∂f

∂X1
, . . . , ∂f

∂Xn
〉. Note now that the degree of the curve defined by the

ideal J = 〈L ∂f
∂Xn

− 1, ∂f
∂X1

, . . . , ∂f
∂Xn−1

〉 ∩Q[X1, . . . , Xn] is bounded by the one of
I : P∞ and then is bounded by (D− 1)n−1 − d since d is the sum of the degrees
of the primes associated to P. At last, note that J + 〈f−T 〉 has the same degree
than the one of J .



3.2 Algorithms and complexity

Our algorithm takes as input a polynomial f ∈ Q[X1, . . . , Xn] and outputs
a non-zero univariate polynomial in Q[T ] whose set of roots contains the set
of generalized critical values of the mapping x ∈ Cn → f(x). We focus on the
computation of the asymptotic critical values, the case of the critical values being
already investigated in [28]. Our procedure makes use of algebraic elimination
algorithms to represent algebraic varieties defined as the Zariski-closure of the
constructible sets defined by fA − T = ∂fA

∂X1
= · · · = ∂fA

∂Xn−1
= 0, ∂f

∂Xn
6= 0.

Below, we show how to use Gröbner bases or the geometric resolution algorithm
in our procedures computing the set of asymptotic critical values of f .

Using Gröbner bases. From Proposition 1, if the determinant of the Hessian
matrix of f is not zero, the set of matrices A such that the Zariski-closure CA

of the complex solution set of fA−T = ∂fA

∂X1
= · · · = ∂fA

∂Xn−1
= 0, ∂fA

∂Xn
6= 0 has

dimension 1 is Zariski-opened in GLn(C). From Theorem 3, it suffices to find A ∈
GLn(Q) such that CA has dimension 1 and to compute the set of non-properness
of the restriction to CA of the projection π : (x1, . . . , xn, t) → t. The computation
of the set of non-properness requires as input a Gröbner basis encoding the
variety to which the considered projection is restricted. Such a routine is shortly
described in [28] (see also [26] or [16] for a complete description); it is named
SetOfNonProperness in the sequel.

Algorithm computing K∞(f) using Gröbner bases

– Input: a polynomial f in Q[X1, . . . , Xn].
– Output: a univariate polynomial P ∈ Q[T ] such that its zero-

set contains K∞(f).

– Let D = det(Hessian(f)). If D = 0 then return 1
– Choose A ∈ GLn(C).
– Compute a Gröbner basis G the ideal generated by

fA − T,
∂fA

∂X1
, . . . ,

∂fA

∂Xn−1
, L

∂fA

∂Xn
− 1

and its dimension d. If d 6= 1 then return to the previous step.
– Return SetOfNonProperness(G, {T})

In the above algorithm, one can first choose matrices A performing a sparse
linear change of variables in order to reduce the height of the integers appearing
in the computations. Nevertheless, the use of Gröbner bases as a routine of alge-
braic elimination does not allow us to obtain a complexity which is polynomial
in the quantity bounding the degree of the curve defined as the Zariski-closure
of the complex solution set of fA − T = ∂fA

∂X1
= · · · = ∂fA

∂Xn−1
= 0 ∂fA

∂Xn
− 1 6= 0.



Using the geometric resolution algorithm. To this end, we consider the geometric
resolution algorithm (see [11], [12, 19] and references therein). This algorithm is
probabilistic and returns a rational parametrization of the complex solution set
of the input (see [29] for situations where the input contains a parameter). Here
is how it can be used to compute the set of asymptotic critical values of the
mapping x ∈ Cn → f(x) ∈ C.

Probabilistic Algorithm computing K∞(f) using the
Geometric Resolution Algorithm

– Input: a polynomial f in Q[X1, . . . , Xn].
– Output: a univariate polynomial P ∈ Q[T ] such that its zero-

set contains K∞(f).

– Consider T as a parameter in the polynomial system fA−T =
∂fA

∂X1
= · · · = ∂fA

∂Xn−1
= 0, ∂fA

∂Xn
6= 0 and compute a geometric

resolution.
– Return the least common multiple of the denominators in the

coefficients of the polynomial q.

Using Theorem 4 and Proposition 1, one obtains the following complexity
result as a by-product of the complexity estimates given in [19].

Theorem 5. The above probabilistic algorithm computing K∞(f) performs at
most O(n7δ4n) arithmetic operations in Q where δ is bounded by (D − 1)n−1 −
d, where d denotes the sum of the degrees of the positive dimensional primes
associated to the radical of the ideal generated by 〈 ∂f

∂X1
, . . . , ∂f

∂Xn
〉.

The above complexity estimate improves the one of [28, Theorem 4.3]. Re-
mark that d is intrinsic.

4 Practical Results

We have implemented the algorithm presented in the preceding section using
Gröbner bases. The Gröbner engine which is used is FGb, release 1.26, [8] which
is implemented in C by J.-C. Faugère. Computing rational parametrization of the
complex roots of a zero-dimensional ideal from a Gröbner basis is done by RS,
release 2.0.37, [21] which is implemented in C by F. Rouillier. Isolation of real
roots of univariate polynomials with rational coefficients is done by RS using
the algorithm provided in [23].

The resulting implementation is a part of the RAGLib Maple library (release
2.24) [24].

All the computations have been performed on a PC Intel Pentium Centrino
Processor 1.86 GHz with 2048 Kbytes of Cache and 1024 MB of RAM.



4.1 Description of the test-suite.

Our test-suite is based on polynomials coming from applications. Most of the
time, the user-question is to decide if the considered polynomial has constant sign
on Rn or to compute at least one point in each connected component outside its
vanishing set. As explained in the introduction, the computation of generalized
critical values is a preliminary step of efficient algorithms dealing with these
problems.

The following polynomial appears in a problem of algorithmic geometry
studying the Voronoi Diagram of three lines in R3. In [7], the authors focus
on determining topology changes of the Voronoi diagram of three lines in R3.
The question was first reduced to determining if the zero-set of the discriminant
of the following polynomial with respect of the variable u contains real regular
points.

This discriminant has degree 30. This discriminant is the product of a poly-
nomial of degree 18 and several polynomials up to an odd power whom zero-set
could not contain a real regular point since they are sums of squares. The poly-
nomial of degree 18 is Lazard II. D. Lazard and S. Lazard have also asked
to determine if the following polynomial which is denoted by Lazard I in the
sequel is always positive.
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The following polynomial appears in [15]. The problem consists in determin-
ing the conditions on a, b, c and d such that the ellipse defined by (x−c)2

a2 +
(y−d)2

b2 = 1 is inside the circle defined by x2 +y2−1 = 0. The problem is reduced
to compute at least one point in each connected component of the semi-algebraic
set defined as the set of points at which the polynomial below (which is denoted
by Ellipse-Circle in the sequel) does not vanish.
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The polynomials
∑n

i=1

∏
j 6=i(Xi − Xj) which are called in the sequel LLn

are studied in [18]. They are used as a benchmark for algorithms decomposing
polynomials in sums of squares (see also [30]). In the sequel we consider LL5
(which has degree 4 and contains 5 variables), LL6 (which has degree 5 and
contains 6 variables) and LL7 (which has degree 6 and contains 7 variables).

We also consider polynomials coming from the Perspective-Three-Point Prob-
lem [10] which is an auto-calibration problem. Classifying the number of solutions
on some instances of this problem leads to compute at least one point in each
connected component outside a hypersurface. We consider two instances of this
problem leading to study

– a polynomial denoted by P3Piso of degree 16 having 4 variables and 153
monomials.

– a polynomial denoted P3P of degree 16 having 5 variables and 617 mono-
mials.

These polynomials are too big for being printed here.

4.2 Practical Results

We only report on timings for the computation of asymptotic critical values.
Below, in the column JK we give the timings for computing asymptotic

critical values by using the algorithm of [20]. We obviously use the same Gröbner
engine FGb for both algorithms.

Using similar arguments than the ones used in [1], one can prove that Cylin-
drical Algebraic Decomposition can compute a Zariski-closed set containing the
generalized critical values of the mapping f : x → f(x) by computing a CAD
adapted to f − T (where T is a new variable) and considering T as the smallest
variable. The column CAD contains the timings of an implementation of the
open CAD algorithm in Maple which is due to G. Moroz and F. Rouillier.

The column S07 contains the timings obtained using the probabilistic algo-
rithm described in [28] to compute generalized critical values. In particular, we
don’t count the time required to certify the output of this algorithm.

The column Algo contains the timings obtained with the implementation of
the algorithm described in this paper.

The symbol ∞ means that the computations have been stopped after 2 days
of computations without getting a result.

It appears that on all the considered problems, the algorithm given in [20]
does provide an answer in a reasonable amount of time.

On problems having at most 4 variables, the open CAD algorithm behaves
well (except on polynomials having a big degree) and our implementation has
comparable timings. On problems having more variables, our implementation
ends with reasonable timings while open CAD either does not end after 2 days
of computations or requires too much memory. This is mainly due to the highest
degrees appearing in the projection step of CAD while the degrees of the polyno-
mials appearing during the execution of our algorithms is better controlled. The



same conclusions hold when we take into account the computation of classical
critical values.

In comparison with the algorithm provided in [28], our algorithm performs
better on harder problems. On some problems, we obtain a speed-up of 30. This is
mainly due to the fact that the growth of coefficients appearing in our algorithm
is better controlled than the ones appearing in the algorithm designed in [28]: we
take here advantage of Theorem 3 to choose sparse matrices A. Note nevertheless
that on smaller problems, our algorithm may be slower: this is mainly due to
the search of an appropriate projection (preserving the sparsity of the initial
problem) used for the computation of asymptotic critical values.

Table 1. Computation time obtained on a PC Intel Pentium Centrino Processor, 1.86
GHz with 2048 Kbytes of Cache and 1024 MB of RAM.

BM ]vars Degree JK Algo S07 CAD

Lazard I 6 8 ∞ 14 sec. 2 sec. ∞
Lazard II 5 18 ∞ 192 sec. 3 hours ∞

Ellipse-Circle 4 12 ∞ 0.7 sec. 90 sec. 5 min.

LL5 5 4 ∞ 0.2 sec. 0.1 sec. 20 sec.

LL6 6 5 ∞ 9 sec. 2 sec. ∞
LL7 7 6 ∞ 28 sec. 139 sec. ∞

P3Piso 4 16 ∞ 1000 sec. 2 hours 20 min.

P3P 5 16 ∞ 1100 sec. 7 hours ∞.
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