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Abstract

We give a complete description of the Voronoi diagram, in R3, of three lines in general position,
that is, that are pairwise skew and not all parallel to a common plane. In particular, we show that the
topology of the Voronoi diagram is invariant for three such lines. The trisector consists of four unbounded
branches of either a non-singular quartic or of a non-singular cubic and a line that do not intersect in
real space. Each cell of dimension two consists of two connected components on a hyperbolic paraboloid
that are bounded, respectively, by three and one of the branches of the trisector. We introduce a proof
technique, which relies heavily upon modern tools of computer algebra, and is of interest in its own right.

This characterization yields some fundamental properties of the Voronoi diagram of three lines. In
particular, we present linear semi-algebraic tests for separating the two connected components of each
two-dimensional Voronoi cell and for separating the four connected components of the trisector. This
enables us to answer queries of the form, given a point, determine in which connected component of
which cell it lies. We also show that the arcs of the trisector are monotonic in some direction. These
properties imply that points on the trisector of three lines can be sorted along each branch using only
linear semi-algebraic tests.

1 Introduction

The Voronoi diagram of a set of disjoint objects is a decomposition of the space into cells, one cell per object,
such that the cell associated with an object consists of all points that are closer to that object than to any
other object. In this paper, we consider the Voronoi diagram of lines in R3 under the Euclidean metric.

Voronoi diagrams have been the subject of a tremendous amount of research. For points under the
Euclidean metric, these diagrams and their complexities are well understood and optimal algorithms as well
as robust and e�cient implementations exist for computing them in any dimension (see for instance [2, 4,
21, 36]). Such diagrams, whose bisectors are hyperplanes, are called a�ne diagrams.

Non-a�ne Voronoi diagrams, whose bisectors are curved, are far less well understood. Voronoi diagrams
of points in various dimensions but with additively and multiplicatively weighted metrics, such as Möbius,
Apollonius (or Johnson-Mehl), or anisotropic diagrams, are typical examples (see [5] for a recent survey).
Voronoi diagrams of segments [23] or ellipses [17] in two dimensions are other examples of non-a�ne diagrams.

Voronoi diagrams of lines, segments, and polyhedra in three dimensions are non-a�ne diagrams for which
very little is known. In particular, determining the combinatorial complexity of the Voronoi diagram of n
lines or line segments in R3 is an outstanding open problem. The best known lower bound is Ω(n2) and the
best upper bound is O(n3+ε) [47]. It is conjectured that the complexity of such diagrams is near-quadratic.
In the restricted case of a set of n lines with a �xed number, c, of possible orientations, Koltun and Sharir
have shown an upper bound of O(n2+ε), for any ε > 0 [25].

There are few algorithms for computing exactly the Voronoi diagram of linear objects. Most of this work
has been done in the context of computing the medial axis of a polyhedron, i.e., the Voronoi diagram of the
faces of the polyhedron [11, 33]. Recently, some progress has been made on the related problem of computing
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Figure 1: Voronoi diagram of 3 lines `1, `2, and `3 in general position: (a) Voronoi 2D face of `1 and `2, i.e.,
set of points equidistant to `1 and `2 and closer to them than to `3. (b) Orthogonal projection of a 2D face
on a plane P with coordinate system (X, Y ); the plane's normal is parallel to the common perpendicular of
`1 and `2 and the X and Y -axes are parallel to the two bisector lines (in P) of the projection of `1 and `2
on P. The 2D face is bounded by four branches of a non-singular quartic.

arrangements of quadrics (each cell of the Voronoi diagram is a cell of such an arrangement) [3, 14, 15, 16,
24, 34, 43, 45]. Finally, there have been many papers reporting algorithms for computing approximations of
the Voronoi diagram (see for instance [12, 18, 22, 49]).

In this paper, we address the fundamental problem of understanding the structure of the Voronoi diagram
of three lines. A robust and e�ective implementation of Voronoi diagrams of three-dimensional linear objects
requires a complete and thorough treatment of the base cases, that is the diagrams of three and four lines,
points or planes. We also believe that this is required in order to make progress on complexity issues, and
in particular for proving tight worst-case bounds. We provide here a full and complete characterization of
the geometry and topology of the elementary though di�cult case of the Voronoi diagram of three lines in
general position.

Main results. Our main result, which settles a conjecture of Koltun and Sharir [25], is the following (see
Figure 1).

Theorem 1 The topology of the Voronoi diagram of three pairwise skew lines that are not all parallel to a
common plane is invariant. The trisector consists of four in�nite branches of either a non-singular quartic1

or of a non-singular cubic and a line that do not intersect in P3(R). Each cell of dimension two consists of
two connected components on a hyperbolic paraboloid that are bounded, respectively, by three and one of the
branches of the trisector.

We introduce, for the proof of Theorem 1, a new proof technique which relies heavily upon modern tools
of computer algebra and which is of interest in its own right. We also provide a geometric characterization

1By non-singular quartic, we mean an irreducible curve of degree four with no singular point in P3(C). Recall that a point
p ∈ P3(C) of a surface S is said to be singular if its tangent plane is not de�ned at p, that is, all partial derivatives of the
square-free polynomial de�ning S are zero at p. Similarly, a point p ∈ P3(C) of a curve C de�ned by the two implicit equations
E1 = E2 = 0 is singular if the rank of the Jacobian matrix of C (the matrix of partial derivatives of E1 and E2) is at most
1 when evaluated at p. (Note that the ideal generated by E1 and E2 should contain all the polynomials vanishing on C.) A
curve is said to be singular in P3(C), or simply singular, if it contains at least a singular point in the complex projective space
P3(C). A curve is said to be singular in P3(R) if it contains at least a singular point in the real projective space P3(R).
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of the con�gurations of three lines in general position whose trisector is not generic, that is, consists of a
cubic and a line.

Theorem 2 The trisector of three pairwise skew lines that are not all parallel to a common plane consists of
a cubic and a line if and only if the hyperboloid of one sheet containing the three skew lines is of revolution.

This work enables us to prove some fundamental properties of the Voronoi diagram of three lines which
are likely to be critical for the analysis of the complexity and the development of e�cient algorithms for
computing Voronoi diagrams and medial axes of lines or polyhedra. In particular, we obtain the following
results.

Monotonicity Property Given three pairwise skew lines that are not all parallel to a common plane, there
is a direction in which all four branches of the trisector are monotonic.

Theorem 3 Given a point p that lies on a two-dimensional cell of the Voronoi diagram of three pairwise
skew lines that are not all parallel to a common plane, deciding on which connected component of the cell
point p lies can be done by evaluating the sign of linear forms in the coordinates of p; similarly, if p lies on
the trisector. Furthermore, points on any one branch of the trisector may be ordered by comparing the values
of a linear form in the coordinates of the points. Moreover, if the three input lines have rational coe�cients,
the coe�cients of these linear forms may be chosen rational.

Notice that these tests enable us to answer queries of the form, given a point, determine in which connected
component of which cell it lies. Notice also that these tests should be useful for computing the Voronoi
diagram of n lines since computing the vertices of such diagrams requires locating the points equidistant to
four lines on a Voronoi arc of three of these lines.

Before describing the organization of the paper and of the proofs of our main results, we brie�y recall
some related work at the frontier of computer algebra and computational geometry and position our work
in that context.

There is a large body of work that deals with automated Geometry Theorem Proving which consists in
�nding mechanical means of proving elementary geometry theorems (see for instance [8]). Another topic,
closer to our concerns, deals with the applications of computer algebra to computational geometry; examples
can be found in problems relating to motion planning (see e.g. [27, 44]) or to computing the topology of
algebraic curves (see [7] for a recent reference). Our work is, however, more closely related to computer-
assisted proofs such as the proofs of the four color theorem [1, 38] or the NP-hardness of minimum-weight
triangulation [35]. However, in this paper, we are interested in proving properties on algebraic varieties of
relatively high degree and there exists, up to our knowledge, very few computer-aided proofs for obtaining
such results (see [29, 30] for two such results in geometry).

The rest of the paper is organized as follows. We �rst characterize, in Section 2, the trisector of three lines
in general position, We then present, in Section 3, some fundamental properties of the Voronoi diagram of
three lines and prove the Monotonicity Property (Proposition 18). We then complete the proof of Theorem 1
in Section 4 and give a simple proof of Theorem 2 in Section 5. Finally, in Section 6, we present algorithms
for separating the components of each cell of the Voronoi diagram and prove Theorem 3.

2 Structure of the trisector

We consider three lines in general position, that is, pairwise skew and not all parallel to the same plane.
The idea of the proof of Theorem 1 is to prove that the topology of the trisector is invariant by continuous
deformation on the set of all triplets of three lines in general position which consists of two connected
components. The result will then follow from the analysis of any pair of examples, one from each component.

To prove that the topology of the trisector is invariant by continuous deformation on the set of all triplets
of three lines in general position, we �rst show, in this section, that the trisector of three lines in general
position is always homeomorphic to four lines that do not pairwise intersect. To prove this, we show that
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the trisector is always non-singular in P3(R) and has four simple real points at in�nity. To show that the
trisector is always non-singular in P3(R), we study the type of the intersection of two bisectors, which are
hyperbolic paraboloids.

We use the classical result that the intersection of two quadrics is a non-singular quartic (in P3(C)) unless
the characteristic equation of their pencil has (at least) a multiple root. In order to determine when this
equation has a multiple root, we determine when its discriminant ∆ is zero.

This discriminant has several factors, some of which are trivially always positive. We prove that the
remaining, so-called �gros facteur �, is zero (over the reals) only if a simple polynomial F is zero (see the
Main Lemma in Section 2.2). We provide two proofs of this result. We �rst give a short direct proof in
Section 2.2.1. Although this proof is elegant, it provides no insight into how we discovered the result. We
also present a second proof, in Section 2.2.2, which relies heavily upon sophisticated tools of modern algebra
and does not require any detailed understanding of the geometry of the problem. This longer proof is indeed
how we originally obtained Theorems 1 and 2 and only with the geometric insight gained from this process
were we able to �nd the shorter proof. We believe this longer proof to be of interest in its own right because
it demonstrates a technique which could be applied to other problems.

This proof goes as follows. We �rst show, in Lemma 5, that the gros facteur is never negative using
the RAGLib Maple package [37]. This implies that it is zero only when all its partial derivatives are zero
(Lemma 6). We thus consider, in Section 2.3, the system that consists of the gros facteur and all its partial
derivatives, and compute its Gröbner basis [10]. Recall that the Gröbner basis of a system of polynomials
is a particular set of polynomials that has the same set of roots as the initial system (more precisely, it
generates the same ideal). It also has the property that it consists of exactly one polynomial equal to 1 if
and only if the initial system has no complex root.

The Gröbner basis we compute consists of three polynomials of degree six. We �rst determine the
aforementioned polynomial F by factoring these polynomials. We then consider separately two components
of solutions, one for which F is zero, the other for which F 6= 0. When F 6= 0, some manipulations and
simpli�cations, which are interesting in their own right, yield another Gröbner basis, with the same real
roots, which consists of three equations of degree four. We show that one of these equations has no real
root which implies that the system has no real root and thus that the gros facteur is strictly positive on the
considered component. We can thus conclude that ∆ = 0 only if F = 0 and thus that, when F 6= 0, the
trisector is always a non-singular quartic in P3(R).

Then, when the polynomial F = 0, we show in Section 2.4, by substituting F = 0 in ∆ and by using the
classi�cation of the intersection of quadrics over the reals [15], that the trisector is a non-singular cubic and
a line that do not intersect in P3(R).

We can thus conclude that the trisector is always a non-singular quartic or a non-singular cubic and
a line that do not intersect in real space and thus that the trisector is always non-singular in P3(R). We
then prove that the trisector always contains four simple real points at in�nity and thus that it is always
homeomorphic to four lines that do not pairwise intersect.

2.1 Preliminaries

Let `1, `2, and `3 be three lines in general position, i.e., that are pairwise skew and not all parallel to a
common plane. Refer to Figure 2. Let (X, Y, Z) denote a Cartesian coordinate system. Without loss of
generality, we assume that `1 and `2 are both parallel to XY -plane, pass through (0, 0, 1) and (0, 0,−1)
respectively, and have directions that are symmetric with respect to the XZ-plane. More precisely, we
assume that the line `1 is de�ned by point p1 = (0, 0, 1) and vector v1 = (1, a, 0), and the line `2 is de�ned
by the point p2 = (0, 0,−1) and vector v2 = (1,−a, 0), a ∈ R. Moreover, since the three lines are not all
parallel to a common plane, `3 is not parallel to the plane z = 0, and so we can assume that the line `3 is
de�ned by point p3 = (x, y, 0) and vector v3 = (α, β, 1), x, y, α, β ∈ R.

We denote by Hi,j the bisector of lines `i and `j and by Vij the Voronoi cell of lines `i and `j , i.e., the set
of points equidistant to `i and `j and closer to them than to `k, k 6= i, j. We recall that the three-dimensional
Voronoi cells are connected and that the bisector of two skew lines is a right hyperbolic paraboloid, that is,
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Figure 2: Three lines in general position.

has equation of the form Z = γ X Y , γ ∈ R?, in some orthogonal coordinate system (see for instance [25]);
for completeness we present a proof of this fact.

Lemma 4 The bisector of two skew lines is a right hyperbolic paraboloid.

Proof. The bisector of two lines `i and `j is the set of points p satisfying the equation

‖(p− pi)× vi‖2

‖vi‖2
=
‖(p− pj)× vj‖2

‖vj‖2
. (1)

If su�ces to prove the lemma for the two lines `1 and `2. For these lines, the above equation simpli�es into
the following equation of a right hyperbolic paraboloid:

Z = − a

1 + a2
X Y. (2)

�

The trisector of our three lines is the intersection of two right hyperbolic paraboloids, say H1,2 and H1,3.
The intersection of two arbitrary hyperbolic paraboloids may be singular; it may be a nodal or cuspidal
quartic, two secant conics, a cubic and a line that intersect, a conic and two lines crossing on the conic, etc.
We show here that the trisector is always non-singular in P3(R) by studying the characteristic polynomial
of the pencil of H1,2 and H1,3.

Let Q1,2 and Q1,3 be matrix representations of H1,2 and H1,3, i.e., the Hessian of the quadratic form
associated with the surface (see, for instance, [14]). The pencil of Q1,2 and Q1,3 is the set of their linear
combinations, that is, P (λ) = {λQ1,2 + Q1,3, ∀λ ∈ R ∪ {∞}}. The characteristic polynomial of the pencil
is the determinant, D(λ) = det(P (λ)), which is a degree four polynomial in λ. The intersection of any two
quadrics is a non-singular quartic, in P3(C), if and only if the characteristic equation of the corresponding
pencil does not have any multiple roots (in C) [46] (see also [15]). A non-singular quartic of P3(C) is, in
P3(R), either empty or a non-singular quartic. Thus, since the trisector of our three lines cannot be the
empty set in R3, the trisector is a smooth quartic in P3(R) if and only if the characteristic equation of the
pencil does not have any multiple roots (in C).

The characteristic polynomial of the pencil is fairly complicated (roughly one page in the format of
Eq. (3)). However, by a change of variable λ → 2 λ (1 + α2 + β2) and by dividing out the positive factor
(1+a2)2(1+α2 +β2)3, the polynomial simpli�es, without changing its roots, to the following, which we still
denote by D(λ) for simplicity.
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D(λ)=(α2+β2+1)a2λ4−2 a(2 aβ2+ayβ+aα x−β α+2 a+2 aα2−β α a2)λ3

+(β2+6 a2β2−2 β xa3−6 β α a3+6 yβ a2−6 aβ α−2 aβ x+6 α xa2+y2a2−2 aα y+x2a2−2 yα a3+6 a2α2+a4α2+4 a2)λ2

−2 (xa−ya2−2 β a2−β+2 aα+α a3)(xa−y−β+aα)λ+(1+a2)(xa−y−β+aα)2 (3)

Let ∆ be the discriminant of the characteristic polynomial D(λ) (with respect to λ). Recall that ∆ = 0
if and only if D(λ) admits a multiple root, that is, if and only if the trisector is not a smooth quartic. The
discriminant ∆, computed with Maple [32], is equal to

16 a4 (a x− y − β + aα)2 (y + a x− aα− β)2 (4)

times a factor that we refer to as the gros facteur which is a rather large polynomial, of degree 18 in 5
variables with 253 monomials, of which we only show 2 out of 22 lines:

gros_facteur =8 a8α4y2+7 a4β2x4−4 aβ3x+16 a8β4x4+32 a4α2y2+2 a6α2β4x2+38 a8α2x2+2 y4β2a4α2+44 a8α2β2x2

···+22 a4y2β2x2+y6a6+α2y6a6−2 β xα y5a6+x6a6+10 β x3a7α2+2 yα3a7x2−32 a3α2y2β x+28 a3β2x2α y−24 a2β3yα x. (5)

In the sequel, all polynomials are considered over the reals, that is for λ, a, α, β, x, y in R, unless speci�ed
otherwise.

All the computations were performed on a PC Intel(R) Xeon(TM) CPU 3.20GHz with 4 GBytes of RAM.

2.2 The Main Lemma

We �nd in this section simple algebraic constraints that are satis�ed when discriminant ∆ is equal to zero.
Precisely, we prove the following lemma.

Main Lemma The discriminant ∆ is equal to zero only if y + aα = 0 or a x + β = 0.

Note that the problem is to prove this lemma but also to obtain these two simple equations which is a
di�cult problem since ∆ is a fairly large polynomial. As discussed in the overview of the proof, we �rst
present a short direct proof of the Main Lemma and then present our original proof.

2.2.1 Direct proof of the Main Lemma

Note �rst that the discriminant ∆ is equal to zero if and only if the gros facteur is zero. Indeed, the
polynomial (4) is not equal to zero under our general position assumption: a = 0 is equivalent to saying that
lines `1 and `2 are parallel and the two other factors of (4) are equal to the square of det(pi − p3, vi, v3), for
i = 1, 2, and thus are equal to zero if and only if `i and `3 are coplanar, for i = 1, 2.

Now, it can be easily veri�ed (using, for instance, Maple) that the gros facteur is, in fact, the discriminant
of the characteristic polynomial of the 3 × 3 top-left submatrix of the matrix representation of the quadric
containing `1, `2 and `3 (which is a hyperboloid of one sheet by the general position assumption);2 this 3× 3
submatrix corresponds to the quadratic part of the quadric and thus the discriminant is zero if and only if
two eigenvalues are equal that is if the hyperboloid is of revolution (since a hyperboloid of one sheet has a

canonical equation of the form X2

δ2
1

+ Y 2

δ2
2
− Z2

δ2
3
− 1 = 0). This directly proves that the gros facteur is zero if

and only if the hyperboloid containing `1, `2 and `3 is of revolution. Furthermore, this is equivalent to the
fact that trisector contains a line; indeed, if the hyperboloid is of revolution then its axis of revolution is on
the trisector and, conversely, if the trisector contains a line, the gros facteur is zero (since the intersection
of the two bisectors is not a non-singular quartic).

2The equation of the hyperboloid containing `1, `2 and `3 can easily be computed by solving a linear system obtained by
writing that three points on each of the three lines lie on the quadric.
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We can now prove the Main Lemma. Notice that if the hyperboloid containing `1, `2 and `3 is of revolution
then its center of symmetry, O, is equidistant to the three lines. Point O can easily be computed as the
intersection of the three planes P1, P2, and P3 where P1 is the bisecting plane of `1 and the line parallel
to `1 and transversal to `2 and `3, and P2 and P3 are de�ned similarly (note that O is the center of the
parallelepiped shown in Figure 3 and that O can also be easily computed as the point at which the gradient
of the equation of the hyperboloid is zero). The constraint that point O is equidistant to lines `1 and `2 then
reduces into (y + aα) (a x + β) = 0, which concludes the proof of the Main Lemma.

Note that the above characterization of the gros facteur provides a direct proof of Lemma 5, which
essentially states that the gros facteur is non-negative, because it is the discriminant of a polynomial whose
roots are all real (since it is the characteristic polynomial of a real symmetric matrix). Alternatively, this
also implies that the gros facteur is a sum of squares [28] and thus non-negative.3

2.2.2 Computational proof of the Main Lemma

We now present our original proof of the Main Lemma which relies upon modern tools of computer algebra
and does not require any speci�c insight on the geometric meaning of the gros facteur and of the polynomials
that appear in the Main Lemma.

Lemma 5 The discriminant ∆ is never negative.

Proof. We prove that the real semi-algebraic set S = {χ = (a, x, y, α, β) ∈ R5 | ∆(χ) < 0} is empty using
the RAGLib Maple package [37] which is based on the algorithm presented in [40]. The algorithm computes
at least one point per connected component of such a semi-algebraic set and we observe that, in our case,
this set is empty. Before presenting our computation, we �rst describe, in the next two paragraphs, the
general idea of this algorithm. (This description uses non-elementary notions of algebraic geometry which
are not used elsewhere in the paper and can reasonably be skipped.)

Suppose �rst that S 6= R5 and let C denote any connected component of S. We consider here ∆ as a
function of all its variables χ = (a, x, y, α, β) ∈ R5. The algorithm �rst computes the set of generalized
critical values4 of ∆ (see [40] for an algorithm computing them). The image by ∆ of C is an interval whose
endpoints5 are zero and either a negative generalized critical value or −∞. For any v in this interval, there
is a point χ0 ∈ C such that ∆(χ0) = v, and the connected component containing χ0 of the hypersurface
∆(χ) = v is included in the connected component C. Hence, a point in C can be found by computing a
point in each connected component of ∆(χ) = v. It follows that we can compute at least a point in every
connected component of the semi-algebraic set S de�ned by ∆(χ) < 0 by computing at least one point in
every connected component of the real hypersurface de�ned by ∆(χ) = v where v is any value smaller than
zero and larger than the largest negative generalized critical value, if any. Now, when S = R5, that is,
∆(p) < 0 for all p in R5, the above computation returns an empty set of points, so we choose a random point
p in R5 and return it if ∆(p) < 0.

Notice that computing at least one point in every connected component of a hypersurface de�ned by
∆(χ) = v can be done by computing the critical points of the distance function between the surface and a

3At the time of the submission, we did not succeed to �nd even an approximation of this sum of squares using SOSTOOLS [48].
However, at the time we wrote the �nal version of the paper, E. Kaltofen, L. Zhi, and Z. Zhang succeeded to decompose the
gros facteur into a sum of squares. They �rst succeeded to get a numerical approximation of the sum of squares by taking
advantage of the structure of the polynomial and reducing the size of the matrices involved in the semide�nite programming
(SVD). They were also able to reconstruct the rational coe�cients from the approximation using SVD.

4Recall that the (real) critical values of ∆ are the values of ∆ at its critical points χ, i.e., the points χ at which the gradient
of ∆ is zero. The asymptotic critical values are similarly de�ned as, roughly speaking, the values taken by ∆ at critical points
at in�nity, that is, the values c ∈ R such that the hyperplane z = c is tangent to the surface z = ∆(χ) at in�nity (this de�nition
however only holds for two variables, i.e., χ ∈ R2). More formally, the asymptotic critical values were introduced by Kurdyka
et al. [26] as the limits of ∆(χk) where (χk)k∈N is a sequence of points that goes to in�nity while ‖χk‖ · ‖gradχk

∆(χk)‖ tends
to zero. The generalized critical values are the critical values and asymptotic critical values. The set of generalized critical
values contains all the extrema of function D, even those that are reached at in�nity.

5Since S 6= R5, the boundary of C is not empty and consists of points χ such that D(χ) = 0. The image of the connected
set C by the continuous function D is an interval. Hence, zero is an endpoint of the interval D(C). The other endpoint is either
an extremum of D (and thus a generalized critical value) or −∞.
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> Gamma:=(2*a*(y*alpha-x*beta)-(a^2-1))^2+3*(a*x+beta)^2+3*a^2*(y+a*alpha)^2+3*(a^2+1)^2;

Γ := (2 a (α y − β x)− a2 + 1)2 + 3 (x a + β)2 + 3 a2 (y + a α)2 + 3 (1 + a2)2

> [gros_fact, op(convert(grad(gros_fact,[a,x,y,alpha,beta]),list)),
> 1-u*(y+a*alpha), 1-v*(a*x+beta),1-w*(1+alpha^2+beta^2),1-t*Gamma)]:
> fgb_gbasis_elim(%,0,[u,v,w,t],[a,x,y,alpha,beta]);

pack_fgb_call_generic: "FGb: 965.76 sec Maple: 975.98 sec"

[1]

Table 1: For the proof of the Main Lemma.

point, say the origin, that is, by solving the system ∆(χ) = v, χ×grad(∆)(χ) = 0. This conceptually simple
approach, developed in [39], is, however, not computationally e�cient. The e�cient algorithm presented
in [40] computes instead critical points of projections, combining e�ciently the strategies given in [42]
and [41].

The computation of at least one point in every connected component of S, using the RAGLib Maple
package,6 gives the empty set, implying that ∆(χ) > 0 for all χ ∈ R5. �

We now prove that the zeros of ∆ are the singular points (that is, the points where all partial derivatives
are zero) of the gros facteur.

Lemma 6 The discriminant ∆ is equal to zero if and only if the gros facteur and all its partial derivatives
are equal to zero.

Proof. As we have seen in the direct proof of the Main Lemma, the discriminant ∆ is equal to zero if
and only if the gros facteur is zero. Furthermore, by Lemma 5, the gros facteur is never negative, thus, if
there exists a point where the gros facteur vanishes, it is a local minimum of the gros facteur and thus all
its partial derivatives (with respect to {a, x, y, α, β}) are zero. �

We now present a simple and direct computational proof of the Main Lemma. As we will see, this proof
is, however, based on some polynomials whose origins are discussed in Section 2.3.

Proof of the Main Lemma. By Lemma 6, ∆ is zero if and only if the gros facteur and all its partial
derivatives are zero. We prove below that this implies that (y + aα) (a x + β) (1 + α2 + β2) Γ = 0, where

Γ =
(
2 a (yα− β x)− a2 + 1

)2
+ 3 (ax + β)2 + 3 a2 (y + aα)2 + 3

(
1 + a2

)2
. (6)

As the two terms (1 + α2 + β2) and Γ clearly do not have any real solutions, this proves the lemma. (We
discuss later how we found these terms.)

Consider the system in the variables {a, x, y, α, β, u, v, w, t} that consists of the gros facteur, its partial
derivatives, and the four equations

1− u (y + aα) = 0, 1− v (a x + β) = 0, 1− w (1 + α2 + β2) = 0, 1− t Γ = 0. (7)

The gros facteur and its partial derivatives have a common zero (real or complex) such that (y + aα) (a x +
β) (1 + α2 + β2) Γ 6= 0 if and only if this system has a solution. This follows immediately from the fact that
the equations (7) are linear in u, v, w, t.

The Gröbner basis of our system is reduced to the polynomial 1 (see Table 1) and thus the system has
no solution (over the complex numbers). This concludes the proof. �

The real di�culty in this proof of the Main Lemma is, of course, to �nd the equations (7) that rule out
all the components of the set of singular points of the gros facteur. Computing these components is the

6It should be noted that such computations can be fairly time consuming on a polynomial of the size of ∆: the computations
initially took about 10 hours of elapsed time; they however only took roughly 20 minutes with the version of the package at the
time we wrote the �nal version of the paper.
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actual key of the computational proof. We believe that the technique we used can be of some interest to the
community as it is rather generic and could be applied to other problems. We thus describe in Section 2.3
how these components were computed before �nishing the study of the algebraic structure of the trisector,
in Section 2.4.

2.3 About the computational proof of the Main Lemma

We show in this section how we computed, for the proof of the Main Lemma, the equations of (7) which
correspond to hypersurfaces containing the zeros of the discriminant.

We proceed as follows. We start from the system of equations consisting of the gros facteur and all
its partial derivatives and use the following techniques to study its set of solutions, or, more precisely, to
decompose it into components de�ned by prime ideals.7 This could theoretically be done by a general
algorithm computing such a decomposition, however, no currently available software is capable of handling
our particular problem and this is, indeed, a signi�cant research challenge in computer algebra.

If the (reduced) Gröbner basis of some system contains a polynomial which has a factor, say F , the
solutions of the system splits into two components, one of which such that F = 0, the other such that F 6= 0.
We study separately the two components. One is obtained by adding the equation F to the system and the
other is obtained by adding the equation 1− t F and eliminating the variable t; indeed, there is a one-to-one
correspondence between the solutions of the initial system such that F 6= 0 and the solutions of the system
augmented by 1− t F . Sometimes, frequently in our case, the component F 6= 0 is empty, which corresponds
to the situation where the elimination of t results in the polynomial 1 (inducing the equation 1 = 0). Note
that in some cases the system contains a polynomial which is a square, say F 2, thus the component such that
F 6= 0 is obviously empty and we can add F to the system without changing its set of solutions (this however
changes the ideal). This operation of adding F to the system frequently adds embedded components to the
variety of solutions which explains why, later on in the process, empty components are frequently encountered
when splitting into two components.

Our computations, presented in Table 2 in the appendix, are performed in Maple [32] using the Gröbner
basis package FGb developed by J.-C. Faugère [20] . We use two functions,

fgb_gbasis(sys,0,vars1,vars2) and fgb_gbasis_elim(sys,0,var1,var2)8,
that compute Gröbner bases of the system sys; the �rst uses a degree reverse lexicographic order (DRL) by
blocks on the variables of vars1 and vars2 (where vars2 is always the empty set in our computation) and
the second one eliminates the variable vars1 and uses a reverse lexicographic order on the variables of vars2.
(The second parameter of the functions refer to the characteristic of the �eld, here 0.)

We do not show in Table 2 the Gröbner bases which are too large to be useful, except in the case where
the basis is reduced to 1 (when the system has no solution). We instead only report the �rst operand of
each polynomial of the base; an operand ? means that the polynomial is the product of at least two factors;
an operand � means that the polynomial is a power of some polynomial; an operand + means that the
polynomial is a sum of monomials.

Our computation goes as follows. We �rst simplify our system by considering a = 2 because otherwise the
Gröbner basis computations are too slow and use too much memory to be performed successfully.9 We �rst
see after computing, bs1, the Gröbner basis of our system, that y +2α appears as a factor of one polynomial.
This splits the solutions into those such that y + 2α = 0 and the others. We will study separately (in
Lemma 8) the former set of solutions and we only consider here the solutions such that y + 2α 6= 0. This
is done by adding the polynomial 1− u (y + 2α) to the system, where u is a new variable; indeed there is a
one-to-one correspondence between the solutions of the initial system such that y +2α 6= 0 and the solutions
of the resulting system.

7An ideal I is prime if PQ ∈ I implies P ∈ I or Q ∈ I.
8The function gbasis(sys,DRL(var1,var2),elim) with or without the optional last argument elim can also be used alternatively

of these two functions.
9The choice of specializing variable a follows from the observation that all the polynomials are almost homogeneous in

the other variables and from our experience that Gröbner computations are usually much easier with homogeneous or almost
homogeneous systems.
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The term y + 2α corresponds fairly clearly to the polynomial y + aα with a = 2, and because of the
symmetry of our problem we also study separately the solutions such that a x + β = 0. Since we assumed
a = 2, we only consider here the solutions such that 2 x + β 6= 0, by adding to the system the polynomial
1 − v (2 x + β). Finally, we also add 1 − w (1 + α2 + β2) to the system, without changing its set of real
roots; we do this because the term 1 + α2 + β2 appears in the leading coe�cient of D(λ) which suggests
that some component of solutions (without any real point) might be included in 1 + α2 + β2 (it should be
noted that adding this polynomial to the system changes the resulting Gröbner basis, which shows that this
indeed removes some imaginary component from the system). We compute the Gröbner basis, bs2, of that
system, eliminating the variables u, v, w, which gives a system of four polynomials of degree six.

We then compute the Gröbner basis of bs2, eliminating the variable x. This gives a basis bs3 which is
reduced to one polynomial of the form P 2. We thus add P to the system bs2 (we do not add it to bs3 since
bs3 does not depend on x). The Gröbner basis, bs4, of the new system contains several polynomials that
are products of factors. We see that if we add to the system the constraint that the third factor of the �rst
polynomial is not zero, the resulting system has no solution. We thus add this factor to the system and
compute its Gröbner basis bs5. We operate similarly to get bs6. The basis bs6 contains no product or power
and we compute its Gröbner basis, bs7, eliminating y (eliminating x gives no interesting basis). The last
polynomial of bs7 is a power and we proceed as before to get bs8. We proceed similarly until we get to the
basis bs12. (Note that the factor y + 2α reappears in bs10 and is removed similarly as in the beginning of
the process.)

The basis bs12 consists of three polynomials of degree four (which is a simpli�cation over bs2 which
consists of four polynomials of degree six). We observe that the last polynomial of bs12 is

Γ2 = (4 y α− 4 β x− 3)2 + 3 (2x + β)2 + 12 (y + 2 α)2 + 75,

which is always positive over the reals.
We have thus proved that all the complex solutions, such that a = 2, of the initial system (the gros

facteur and all its partial derivatives) satisfy (1 + α2 + β2) (y + 2α) (2x + β) Γ2 = 0.
Finally, to get the polynomial Γ of Formula (6), we performed the same computation with a = 3 and

a = 5 and guessed Γ as an interpolation of the polynomials Γ2, Γ3, and Γ5.
Note that all the computation for a �xed a takes roughly eight minutes of elapsed time.

Remark 7 All the computations from bs2 to bs12 amounts to �nding polynomials that have a power which
is a combination of the elements of bs2 (i.e., which are in the radical of the ideal generated by bs2

10).
Thus these computations would be advantageously replaced by a program computing the radical of an ideal.
Unfortunately, all available such programs fail on the ideal generated by bs2 either by exhausting the memory
or by running unsuccessfully during several days and ending on an error. It is therefore a challenge to
improve these programs in order to do this computation automatically.

2.4 Structure of the trisector: conclusion

We proved in the Main Lemma that the discriminant ∆ is equal to zero only if y + aα = 0 or a x + β = 0.
We prove in this section that if ∆ = 0, the trisector is a non-singular cubic and a line that do not intersect.
We then show that the trisector always contains four simple real points at in�nity and conclude that the
trisector is always homeomorphic to four lines that do not pairwise intersect.

Lemma 8 The discriminant ∆ is equal to zero if and only if

y = −aα and x =
β (2 a2 + 1)± 2

√
a2 (1 + a2) (α2 + β2 + 1)

a
, or (8)

x = −β

a
and y =

α (2 + a2)± 2
√

(1 + a2) (α2 + β2 + 1)
a

. (9)

10The radical of an ideal I is the ideal {P | P n ∈ I for some n ∈ N}.
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Proof. We refer to Table 3, in the appendix, for the computations. By the Main Lemma, ∆ = 0 implies
y + aα = 0 or a x + β = 0. Substituting y by −aα in ∆ gives an expression of the form f0 f2

1 . Similarly,
substituting x by −β/a in ∆ gives an expression of the form g0 g2

1 (recall that a 6= 0 since the lines are not
coplanar, by assumption). It follows that ∆ = 0 if and only if y + aα = fi = 0 or a x + β = gi = 0, for
i = 0 or 1.

The fi and gi are polynomials of degree two in x and y, respectively. Solving f1 = 0 in terms of x directly
yields that the system

y + aα = f1 = 0 (10)

is equivalent to (8). Similarly, solving g1 = 0 in terms of y yields that the system

a x + β = g1 = 0 (11)

is equivalent to (9).
We now show that the solutions of y + aα = f0 = 0 are included in the set of solutions of (9). The

polynomial f0 is the sum of two squares. It follows that y + aα = f0 = 0 if and only if

y + aα = a2α2 − 1 + aβ x = ax + β = 0. (12)

We show below that the polynomials of (11) are included in the ideal generated by the polynomials of (12).
This implies that (11) is, roughly speaking, less constrained than (12) and that the set of solutions of (11)
contains the solutions of (12). Hence the solutions of y +aα = f0 = 0 are contained in the set of solutions
of (11) and thus in the set of solutions of (9).

We prove that the polynomials of (11) are included in the ideal generated by the polynomials of (12)
by showing that the normal form of every polynomial of (11) with respect to the Gröbner basis of the
polynomials of (12) is zero. This is done using the function normalf (of Maple) which computes the normal
form of a polynomial with respect to a Gröbner basis.

We prove similarly that the solutions of a x + β = g0 = 0 are included in the set of solutions of (10)
and thus of (8), which concludes the proof. �

Remark 9 Note that by symmetry with respect to the XY -plane and by changing the sign of a, α, and β,
the set of three input lines `1, `2, `3 is invariant, the two components of (8) exchange (i.e., the components
corresponding to +2√ and −2√ exchange), and the two components of (9) exchange.

Similarly, by exchanging the X and Y -coordinates, x and y, α and β, and changing a into 1/a, the set
of three input lines is also invariant and each component of (8) is changed to a component of (9), and
conversely.

Lemma 10 If ∆ = 0, the trisector of `1, `2, and `3 consists of a non-singular cubic and a line that do not
intersect in real space.

Proof. By Lemma 8, ∆ = 0 if and only if System (8) or (9) is satis�ed. By symmetry of the problem (see
Remark 9), we only need to consider one of the components of (8) and (9). Hence, it is su�cient to show
that

y = −aα, x =
β (2 a2 + 1)

a
+ 2

√
(1 + a2) (α2 + β2 + 1) (13)

implies that the trisector consists of a non-singular cubic and a line that do not intersect. We assume in the
following that ∆ = 0 and that System (13) is satis�ed. We refer to Table 4 for the computations.

We �rst show that the characteristic polynomial of the pencil generated by the bisectors is always strictly
positive. Note �rst that the characteristic polynomial is not always negative (see [31]). It is thus su�cient
to prove that it is never zero, or equivalently, that its product with its algebraic conjugate (obtained by
changing the sign of

p
(1 + a2) (α2 + β2 + 1)) is never zero. This product is a polynomial T in a, α, β, λ which

can easily be factored in the square of a degree-two polynomial in λ; furthermore, this degree two polynomial
has no real root because its discriminant is the product of a negative term (−(1+a2)2(1+α2 +β2)) and a term
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whose sum and product with its algebraic conjugate (obtained, as above, by changing the sign of the square
root) is a strictly positive sum of squares. Note that we can also prove that T is always strictly positive by
computing, similarly as in the proof of Lemma 5, at least one point per connected component of the real
semi-algebraic set {χ = (a, α, β, λ) ∈ R4 | T (χ) − 1

2 < 0}; the resulting set of points is empty, hence T (χ)
is always greater or equal to 1/2. It thus follows that the characteristic polynomial of the pencil is always
strictly positive.

Since the characteristic polynomial D(λ) is always strictly positive and its discriminant ∆ is zero, D(λ)
admits two (conjugate) double imaginary roots. Let λ1 and λ2 denote these two roots. Recall that D(λ) =
det P (λ) with P (λ) = λQ1,2 + Q1,3 where Qi,j is the matrix associated with the hyperbolic paraboloid Hi,j .
It follows from the classi�cation of the intersection of quadrics [15, Table 1] that either (i) P (λ1) and P (λ2)
are of rank 3 and the trisector H1,2 ∩ H1,3 consists of a cubic and a line that do not intersect or (ii) P (λ1)
and P (λ2) are of rank 2 and the trisector consists of two secant lines.

We now prove that P (λ1) and P (λ2) are of rank 3. We compute the Gröbner basis of all the 3×3 minors
of P (λ) and of the polynomial 1− tΨ with

Ψ = (1 + a2) (1 + α2 + β2) (a x− y − β + aα) (y + a x− aα− β).

The basis is equal to 1, thus the 3× 3 minors of P (λ) are not all simultaneously equal to zero when Ψ 6= 0.
Furthermore, Ψ 6= 0 for any x, y, a, α, β in R such that the lines `1, `2, and `3 are pairwise skew (see (4) and
the proof of Lemma 6). Thus the rank of P (λ) is at least 3. The rank of P (λi), i = 1, 2, is thus equal to 3
since det P (λi) = 0. We can thus conclude that when ∆ = 0 the trisector consists of a cubic and a line that
do not intersect in real space.

It remains to argue that the cubic is non-singular. First, note that the cubic cannot be planar since, in
that case, it would be a conic (the planar section of a quadric). The result follows from the well-known fact
every skew cubic is non-singular, which we prove again for completeness. Consider a singular cubic and a
plane de�ned by (one of) its singular point(s) and any two other of its points. The cubic intersects this plane
in at least these three points, that is in at least four points counted with multiplicity, which implies that the
cubic is contained in the plane. �

We now state a proposition that shows that the trisector admits four asymptotes that are pairwise skew
and gives a geometric characterization of their directions.

Proposition 11 The trisector of `1, `2, and `3 intersects the plane at in�nity in four real simple points.
Furthermore, the four corresponding asymptotes are parallel to the four trisector lines of three concurrent
lines that are parallel to `1, `2, and `3, respectively.

Proof. The trisector is the intersection of two hyperbolic paraboloids. Any hyperbolic paraboloid contains
two lines at in�nity. Hence the intersection, at in�nity, of any two distinct hyperbolic paraboloids is the
intersection of two pairs of lines. The intersection of these two pairs of lines consists of exactly four simple
real points unless the point of intersection of the two lines in one pair lies on one line of the other pair. We
show that this cannot happen under our assumptions.

The intersection with the plane at in�nity of the bisector of lines `1 and `2 consists of the lines at in�nity
in the pair of planes of equation XY = 0 (the homogeneous part of highest degree in Eq. (2)). This pair of
plane is the bisector of the two concurrent lines that are parallel to `1 and `2, respectively. Note that the
lines at in�nity in this pair of planes are invariant by translation of the planes. We thus get that the lines
at in�nity of the bisector of any two lines `i and `j are the lines at in�nity in the pair of planes that is the
bisector to any two concurrent lines that are parallel to `i and `j , respectively.

It follows that the points at in�nity on the trisector of `1, `2, and `3 are the points at in�nity on the
trisector lines (the intersection of bisector planes) of three concurrent lines that are parallel to `1, `2, and `3,
respectively. It remains to show that this trisector consists of four distinct lines.

Let `′1, `′2, and `′3 be the three concurrent lines through the origin that are parallel to `1, `2, and `3,
respectively, and suppose, for a contradiction, that their trisector does not consist of four distinct lines. This
implies that the line of intersection of the two bisector planes of two lines, say `′1 and `′2, is contained in one
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of the bisector planes of two other lines, say `′1 and `′3. The intersection of the bisector planes of `′1 and `′2 is
the Z-axis. It follows that one of the bisector planes of `′1 and `′3 is vertical, hence `′1 and `′3 are symmetric
with respect to a vertical plane and thus `′3 is contained in the XY -plane. Therefore, `′1, `′2, and `′3 lie in
the XY -plane, contradicting the general position assumption, which concludes the proof. �

Theorem 12 The trisector of three lines in general position consists of four in�nite smooth branches of a
non-singular quartic or of a non-singular cubic and a line that do not intersect in real projective space.

Proof. As mentioned in the beginning of Section 2.2, the trisector of three lines consists of a smooth
quartic unless the discriminant ∆ is zero. Lemma 10 and Proposition 11 thus yield the result. �

3 Properties of the Voronoi diagram

We present here some fundamental properties of the Voronoi diagram. We will show how the four branches
of the trisector of three lines can be labeled and then present two fundamental properties of the trisector.

3.1 Preliminaries

We start with the following important proposition. Recall �rst that the set of triplets of pairwise skew lines
admits two connected components [13]. We prove here that this result also holds for the set of labeled triplets
of lines in general position (that is, pairwise skew and not all parallel to a common plane).

Proposition 13 The set of labeled triplets of lines in general position admits two connected components.
Moreover, the triplets in one component are mirror images of the triplets in the other component.

Proof. We prove this proposition by proving that there is a one-to-one correspondence between the set
of labeled triplets of lines in general position and the set of a�ne frames, which admits two components, the
set of frames with positive orientations and those with negative orientations.

Consider three lines `1, `2, and `3 in general position and refer to Figure 3. For the three choices of
pairs of lines `i, `j , consider the plane containing `i and parallel to `j , the plane containing `j and parallel
to `i, and the region bounded by these two parallel planes. The general position assumption implies that
these regions have non-empty interiors and that no three planes are parallel. The intersection of these three
regions thus de�nes a parallelepiped. By construction, each of the lines `1, `2, and `3 contains an edge of
that parallelepiped. These lines are pairwise skew thus exactly two vertices of the parallelepiped are not on
the lines. Each of these two points induces an a�ne frame centered at the point and with basis (w1, w2, w3),
the three edges of the parallelepiped oriented from the point to the lines `1, `2, and `3, in this order. We
consider the frame such that wi is parallel to `i+1 (modulo 3). Conversely, a frame (C,w1, w2, w3) de�nes
uniquely a parallelepiped and three lines `1, `2, and `3 such that `i goes through the vertex C + wi and is
parallel to wi−1 (modulo 3). �

We consider in the following any three lines `1, `2, and `3 in general position (pairwise skew and not all
parallel to a common plane) and an associated Cartesian coordinate system (X, Y, Z) such that the Z-axis
is the common perpendicular of `1 and `2, the origin is the point on the Z-axis equidistant to `1 and `2, and
such that the X and Y -axes are the two bisector lines, in the plane through the origin and perpendicular
to the Z-axis, of the projection of `1 and `2 onto this plane. Note that the orientations of the axes are not
speci�ed (except for the fact that the frame has a positive orientation) and that the X and Y -axes can be
exchanged.
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Figure 3: Two instances of parallelepipeds formed by `1, `2, and `3 and of the associated frames
(C,w1, w2, w3).

3.2 Labeling of the four branches of the trisector

We prove here the following proposition which states two properties, one on the asymptotes of the trisector
and one on the incidence relations between cells, which, together, yield an unambiguous labeling of the
components of the trisector.

Let Vij denote the two-dimensional Voronoi cell of lines `i and `j and let Uij and Tij denote the connected
components of Vij that are bounded by one and three arcs of the trisector, respectively (see Figure 4(a)).

Proposition 14 Exactly one of the four branches of the trisector of three lines in general position admits
only one asymptote. Let C0 denote this branch. Each cell Uij is bounded by a branch distinct from C0 and
every such branch bounds a cell Uij. Let Ck, k = 1, 2, 3, denote the branches of the trisector that bound the
component Uij, i, j 6= k. The labeling of the four branches of the trisector by C0, . . . , C4 is unambiguous.

Note that di�erentiating between C1 and C2 cannot be done, as far as we know, by only looking at the cell
V12 (see Figure 4(a)) but can be done by looking at the other cells V13 and V23. More precisely, di�erentiating
between C1 and C2 on Figure 4(a) can be done by computing (as described in the proof of Lemma 16) a
vertical ordering of the sheets of the components Uij and Tij ; the branch Ck is then characterized as the
branch for which Uij appears only on one of its sides (see Figure 4(b)).

We prove two lemmas that, together, prove Proposition 14.

Lemma 15 Exactly one of the four branches of the trisector of three lines in general position admits only
one asymptote.

Proof. By Proposition 11, the trisector admits four distinct asymptotes, for all triplets of lines in general
position. It follows that the property that exactly one of the branches of the trisector has only one asymptote
is invariant by continuous deformation on the set of triplets of lines in general position. Moreover, if this
property is veri�ed for the trisector of a triplet of lines, it is also veri�ed for a mirror image of the trisector
and thus for the trisector of a mirror image of the three lines. The result thus follows from Proposition 13
and from the observation that the property is veri�ed on one particular example.

This property can be observed on Figure 4(a) and it can easily be proved as follows. Consider any three
lines, in general position, whose trisector consists in a cubic and a line (three such lines exist by Lemmas 8
and 10). The line is one branch of the trisector that admits only one asymptote. On the other hand, since
the cubic consists of only one connected component in projective space and it intersects the plane at in�nity
in three real simple points (by Proposition 11), each of its three branches has two asymptotes. �
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Figure 4: (a) The shaded region is the projection of the two-dimensional Voronoi cell V12 onto the XY -plane.
(b) Vertical ordering of the sheets of the connected components of the two-dimensional Voronoi diagram cells
above each region induced by the projection of the trisector and the silhouette curves of the bisectors; the
ordering over the small cell in the middle is T13 < T13 < T23 < T23 (i.e., a vertical line over that cell intersects
twice T13 and twice T23 in that order).

We denote by C0 the branch of the trisector that admits only one asymptote (see Figure 4(a)).

Lemma 16 Each cell Uij is bounded by a branch of the trisector distinct from C0 and every such branch
bounds a cell Uij.

Proof. This property is invariant by continuous deformation on the set of triplets of lines in general
position. Moreover, similarly as in the previous proof, if this property is veri�ed for the Voronoi diagram of
a triplet of lines, it is also veri�ed for a mirror image of the Voronoi and thus for the Voronoi diagram of a
mirror image of the three lines. By Proposition 13, it is thus su�cient to prove it for any three given lines
in general position, `1, `2, `3, as de�ned in Section 2.1. We consider in the XY -plane the arrangement of the
(orthogonal) projection of the trisector and of the silhouette curves (viewed from in�nity in the Z-direction)
of the bisectors (see Figure 4(b)); these silhouette curves consist of only two parabolas since the bisector of
lines `1 and `2 has no such silhouette (its equation has the form Z = γ X Y -see Eq.(2)- and thus any vertical
line intersects it). By construction, for all vertical lines intersecting one given (open) cell of this arrangement,
the number and ordering of the intersection points between the vertical line and all the pieces of the three
bisectors that are bounded by the trisector is invariant. For any point of intersection, we can easily determine
(by computing distances) whether the point lies on a Voronoi cell Vij . We can further determine whether
the point belongs to the component Uij or Tij by using the linear separation test described in Section 6. We
thus report the ordering of the sheets of the components Uij and Tij above each cell of the arrangement in
the XY -plane for a given example; see Figure 4(b).

We can now observe that there is a one-to-one correspondence between the three branches of the trisector
distinct from C0 and the components U12, U13, and U23 such that the component appears only on one side
of the corresponding branch.11 It follows that each of the branches distinct from C0 bounds a cell Uij . �

Proof of Proposition 14. Lemmas 15 and 16 state the �rst two properties of Proposition 14. Furthermore,
since Uij is, by de�nition, bounded by only one arc of the trisector, Lemmas 15 and 16 directly yield the
labeling of the four branches of the trisector by C0, . . . , C4 is unambiguous. �

11Namely, U13 (resp. U23 and U12) appears on only one side of the lower-right (resp. upper-right and left-most) branch.
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3.3 Properties of the trisector

We now prove two important properties of trisector of the Voronoi diagram of three lines in general position.
In particular, we prove the Monotonicity Property in Proposition 18.

Proposition 17 The orthogonal projection of the trisector of `1, `2, and `3 onto the XY -plane has two
asymptotes parallel to the X-axis and two asymptotes parallel to the Y -axis.

Proof. By Proposition 11, the four asymptotes of the trisector are parallel to the four trisector lines of
three concurrent lines parallel to `1, `2, and `3. The bisector to two lines through the origin and parallel to
`1 and `2 is the pair of planes of equation XY = 0. Hence the asymptotes of the trisector are parallel to lines
that lie in the pair of planes XY = 0. The orthogonal projection of the asymptotes on the XY -plane are
thus parallel to the X or Y -axis. It follows that the number of asymptotes (in projection) that are parallel
to the X-axis (resp. Y -axis) is invariant by continuous deformation on any connected set of triplets of lines
in general position. Moreover, as in the proofs of the two previous lemmas, if this property is veri�ed for
the trisector of a triplet of lines, it is also veri�ed for the trisector of a mirror image of the three lines. The
result thus follows from Proposition 13 and from the fact that, on a particular example (see Figure 4(a)),
there are two asymptotes parallel to the X-axis and two others parallel to the Y -axis. �

We assume in the following that the asymptote of C0 is parallel to the Y Z-plane (as in Figure 4(a)) by
exchanging, if necessary, the role of X and Y .

Proposition 18 Every branch of the trisector of `1, `2, and `3 is strictly monotonic with respect to the
Y -direction (or every branch is strictly monotonic with respect to the X-direction).

Proof. Let P denote any plane parallel to the XZ-plane. The arc C0 intersects plane P an odd number of
times (counted with multiplicity) since C0 has only one asymptote (Proposition 14) which is parallel to the
Y Z-plane. Furthermore, by Proposition 17, the trisector has two other asymptotes parallel to the XZ-plane.
Hence plane P intersects the trisector in two points at in�nity and C0 an odd number of times (in a�ne
space). The trisector thus intersects P in at least three points in real projective space. There are thus four
intersection points (in real projective space) since there are four intersection points in complex space (since
the trisector is of degree four) and if there was an imaginary point of intersection, its conjugate would also be
an intersection point (since the equations of the plane and quadrics have real coe�cients) giving �ve points
of intersection.

Therefore the trisector intersects plane P in two points in R3 (counted with multiplicity), one of which
lies on C0. Since there are an odd number of intersection points on C0, plane P intersects C0 exactly once
and any other branch exactly once (counted with multiplicity). �

4 Topology of the Voronoi diagram

We prove in Theorem 19 that the topology of the Voronoi diagram of three lines in general position is
invariant. Theorem 1 will thus follow from Theorem 12 and from the computation of an example of a two-
dimensional cell of the Voronoi diagram (for instance the one shown in Figure 1). Let S denote the set of
triplets of lines in general position.

Theorem 19 The topology of the Voronoi diagram of three lines in general position is constant. More
precisely, given two triplets of lines in one connected component of S, there is a continuous path in S between
them which induces a continuous deformation of every cell of the Voronoi diagram, preserving the topology
of the cells and the incidence relations between them. Moreover, the Voronoi diagram of three lines in one
connected component of S is a mirror image of the Voronoi diagram of three lines in the other connected
component of S.
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Proof. The general idea of the proof is as follows. Consider three lines in general position and a bisector
of two of them. The bisector is a hyperbolic paraboloid which is homeomorphic to a plane. The trisector lies
on the bisector and it is homeomorphic to four lines that do not pairwise intersect, by Theorem 12. Hence the
topology of the regions that lie on the bisector and are bounded by the trisector is invariant by continuous
deformation on any connected component of S. It follows that the topology of the two-dimensional cells of
the Voronoi diagram is invariant by such a continuous deformation. The Voronoi diagram is de�ned by the
embedding in R3 of its two-dimensional cells, hence its topology is also invariant by continuous deformation
on any connected component of S. Finally, the topology is also invariant over S since, by Proposition 13, the
Voronoi diagram of three lines in one connected component of S is a mirror image of the Voronoi diagram
of three lines in the other connected component of S.

To be more precise, we now show that any continuous path in S between any two triplets of lines in one
connected component of S induces a continuous deformation of every cell of the Voronoi diagram, preserving
the topology of the cells and the incidence relations between them.

Consider two triplets of lines, (`1, `2, `3) and (`′1, `
′
2, `

′
3), in one connected component of S and a homotopy

between them, i.e., a continuous application ϕ : t 7→ ϕ(t) = (`1(t), `2(t), `3(t)) of the interval [0, 1] into S
such that ϕ(0) = (`1, `2, `3) and ϕ(1) = (`′1, `

′
2, `

′
3). Without loss of generality, we may choose for (`1, `2, `3)

the triplet of Figure 1.
Consider now an orthonormal frame F(t) such that the Z-axis is the common perpendicular to `1(t) and

`2(t), the origin of the frame is the point of the Z-axis equidistant to `1(t) and `2(t), and the X and Y -axes
are the bisectors of the projections of `1(t) and `2(t) onto the plane orthogonal to the Z-axis. Note that this
coordinate system is, up to a possible change of orientation of the axes and a possible exchange of the X
and Y -axes, the one we considered in Sections 2 and 3 and which has been used to draw Figure 1. When
the parameter t of the homotopy varies from 0 to 1, the lines vary continuously, and thus the frame F(t)
can be de�ned to vary continuously in terms of t.

By Lemma 15 and Propositions 17 and 18, for any t in [0, 1], each of the branches of the trisector is
monotonic with respect to either the X or the Y -direction, but not both. Furthermore, the set of t for which
each branch is monotonic with respect to the X-direction (resp. the Y -direction) is closed (since the lines
and F(t) vary continuously in terms of t). Hence, each branch of the trisector is monotonic in X for all t
or is monotonic in Y for all t. Therefore, by exchanging, if needed, X and Y in all frames F(t), we may
suppose that each of the four branches of the trisector of `1(t), `2(t) and `3(t) is monotonic with respect to
the Y -direction.

In the coordinate system F(t), the bisector of `1(t) and `2(t) has the equation Z = α(t)XY (see the proof
of Lemma 4). Substituting Z by α(t)XY in the equation of the bisector of `2(t) and `3(t) in the coordinate
system F(t), we get an equation of degree 2 in each of the variables X and Y . Solving it in X, we get a

parameterization of the form X = Υ±(Y, t) with Υ±(Y, t) = −P1(Y,t)±
√

P1(Y,t)2−4P0(Y,t)P2(Y,t)

2P2(Y,t) , where P0, P1

and P2 are polynomials of degree 2 in Y , which depend continuously on t (since the frame F(t) and the
equations, in any �xed frame, of the bisectors depend continuously on t).

Notice �rst that P4(Y, t) = P1(Y, t)2 − 4P0(Y, t)P2(Y, t) is always positive. Indeed, it is always non-
negative since one of the branches of the trisector of `1(t), `2(t) and `3(t) is de�ned for all Y in F(t) (since
each branch is monotonic in Y and one of them has only one asymptote, by Lemma 15). It thus follows from
the fact that the trisector has no real singular point (Theorem 12) that P4(Y, t) is always positive. Notice
also that, for any t in [0, 1], P2(Y, t) has two distinct real roots by Proposition 17.

Since P4(Y, t) is always positive, the branch C0(t) of `1(t), `2(t) and `3(t) (see Proposition 14) is param-
eterized by X = Υ−(Y, t) or by X = Υ+(Y, t) (but not by a combination of both). Thus, by changing, if
needed, the signs of P0, P1 and P2, we may suppose that C0(0) is parameterized by X = Υ−(Y, 0). This
implies, by continuity, that the branch C0(t) is parameterized, in the frame F(t), by X = Υ−(Y, t), while
the other branches are parameterized by X = Υ+(Y, t) and the position of Y with respect to the two roots
of P2(Y, t).

The study of the Voronoi diagram of `1(0), `2(0) and `3(0) (see Figures 1 and 4(a)) thus implies that the
region, denoted R12(t), of the Voronoi diagram consisting in the points which are at the same distance of
the lines `1(t) and `2(t) and closer than to `3(t) consists, when t = 0, in two open semi algebraic sets de�ned
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in F(0) by (i) Z = α(0)XY , X < Υ+(Y, 0), and Y between the two roots of P2 and by (ii) Z = α(0)XY ,
X > Υ−(Y, 0) and, when Y is outside the two roots of P2, X < Υ+(Y, 0).

Now, since the objects we are considering depend continuously on t, including the distance from a point to
one of the lines (note that the distance function is de�ned independently of F(t)), the Voronoi region R12(t)
is de�ned, similarly, by the two open semi algebraic sets de�ned in F(t) by (i) Z = α(t)XY , X < Υ+(Y, t),
and Y between the two roots of P2 and by (ii) Z = α(t)XY , X > Υ−(Y, t) and, when Y is outside the two
roots of P2, X < Υ+(Y, t).

Note that, in the case where the trisector is decomposed, for some value of t, into a cubic and a line,
nothing changes in what precedes, the only di�erence being that the square root is a polynomial and that
the parameterization of C0 simpli�es into X = constant.

We thus get that, when t varies, the two-dimensional cells of the Voronoi diagram which are closer to
`1(t) and `2(t) than to `3(t) varies continuously, with a constant topology and constant incidence relations
with the trisector. As the same study may be done, replacing `1(t) and `2(t) by the other pairs of lines, this
proves the theorem for all two-dimensional cells.

Finally, let P be a point of the region of `1(t) (i.e., a point which is closer to `1(t) than the other lines)
and Q its orthogonal projection on `1(t). Then, any point of the segment PQ lies also in the region of `1(t).
It follows that the region of `1(t) is homeomorphic to a solid cylinder and has thus a constant topology.
As this region varies continuously with t, as well as the two-dimensional cells of its border, this �nishes the
proof of the theorem. �

5 Con�gurations of three lines whose trisector contains a line

We present here a simple geometric proof of Theorem 2 which states that the trisector of three pairwise skew
lines that are not all parallel to a common plane consists of a cubic and a line if and only if the hyperboloid
of one sheet containing the three skew lines is of revolution. Note that a computational proof is also given
by the direct proof of the Main Lemma, in which we proved that the trisector contains a line if and only
if the hyperboloid is of revolution, and by Theorem 1, which states that the trisector contains a line if and
only if it is a cubic and line.

Consider three lines `1, `2 and `3 whose trisector includes a line `. Any point p on ` is equidistant to
`1, `2 and `3 so p is the center of a sphere that is tangent to all of `1, `2 and `3. Consider three distinct
such points on ` and the three corresponding spheres. If these spheres have a common intersection, then
this common intersection is a circle (possibly reduced to a point) and all lines tangent to the three spheres
lie in the plane of this circle which contradicts the general position assumption. Otherwise, the set of lines
tangent to the three spheres are the ruling(s) of a single quadric of revolution with symmetry axis the line
through their centers [6, Lemma 7]. Note that this quadric is a hyperboloid of one sheet since it cannot be
a cone or a cylinder by the general position assumption.

Conversely, if three lines lie on a quadric of revolution, any point on the axis of revolution is equidistant
to the three lines. Thus the trisector of the three lines contains a line and, by Theorem 1, the trisector of
three lines in general position is a non-singular quartic or a cubic and a line.

6 Algorithms

In this section, we prove Theorem 3. We start by presenting an algorithm for determining a plane separating
the two components of any two-dimensional Voronoi cell. Refer to Figure 5(a). This plane may be non-
rational; indeed, as we shall see in Proposition 21, it is possible that no rational separating plane exists. We
then show how this algorithm can be modi�ed to produce a rational linear test for this problem when the
three input lines are rational. As we will see, this algorithm leads directly to another rational linear test
for separating the four connected components of the cell of dimension one. Finally, we conclude the proof
of Theorem 3 by showing how points on a branch of the trisector can be ordered using a linear form with
rational coe�cients.
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Figure 5: Separating the two components of a two-dimensional Voronoi cell.

Recall that a regular point (X0, Y0, Z0) on a curve is critical with respect to the X-axis if the multiplicity
of intersection of the curve with the plane X = X0 is at least 2. This means that the plane X = X0 is tangent
to the curve. If the point is at in�nity on an asymptote that lies in the plane X = X0, then the curve and
the plane intersect with a multiplicity that is generically equal to 2. This is consistent with the fact that,
roughly speaking, the curve is tangent to its asymptote at in�nity. We say that a regular point at in�nity
whose asymptote belongs to the plane X = X0 is critical if the multiplicity of intersection of the curve with
the plane X = X0 is at least 3 at this point. Note that if the multiplicity is exactly 3, then the two branches
of the curves are on the same side of the plane. The critical points that are possibly at in�nity are called the
generalized critical points and the corresponding X-coordinates are called the generalized critical values. If
F (X, Y ) = 0 is the equation of the projection of a curve C on the XY -plane, the generalized critical values of
C with respect to the X-axis are roots (in X) of the discriminant of F with respect to Y . (This discriminant
may have more roots corresponding to the singular points of the projected curve, if any.) Recall also that
the asymptotes of C that are parallel to Y Z-plane but not vertical (i.e., not parallel to the Z-axis) lie in
planes X = X0 such that X0 is a root (in X) of the leading coe�cient of F seen as a polynomial in Y .

Determining a linear test for separating the two connected components of a two-dimensional

Voronoi cell.

Input: three lines `1, `2, and `3 in general position and i 6= j ∈ {1, 2, 3}.
Output: a half-space Hij that strictly contains Uij and whose complement strictly contains Tij .

(i) Determine a Cartesian coordinate system (X, Y, Z) such that the Z-axis is parallel to the common
perpendicular of `i and `j and such that the X and Y -axes are parallel to the two bisector lines, in a
plane perpendicular to the Z-axis, of the projection of `i and `j onto that plane.

(ii) In this frame, compute all the generalized critical values of the trisector with respect to the X-axis. If
there is no generalized critical value, exchange the X and Y -axes (and compute the generalized critical
values with respect to the new X-axis).

(iii) Compute the X-values of the two trisector asymptotes that are parallel to the Y Z-plane. If the
minimum of these values is smaller than or equal to the smallest generalized critical value, then change
the orientation of the X-axis. Denote by X1 the smallest generalized critical value (with respect to the
X-axis) of the trisector and by X2 the smallest of the other generalized critical values.

(iv) Pick a value x̃ in the open interval (X1, X2). The half-space, Hij , of equation X < x̃ contains Uij and
the half-space X > x̃ contains Tij .
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Proof of correctness. Assume without loss of generality that i = 1 and j = 2. By Proposition 18, the
trisector has no critical point in the Y -direction after Step (ii).

First note that the asymptotes of the trisector are never vertical (i.e., parallel to the Z-axis) because
otherwise, by Proposition 11 and since `1 and `2 are horizontal, the line `3 would be horizontal (its direction
would be the symmetric of the one of `1 with respect to a vertical plane), contradicting the general position
assumption.

It thus follows, since the directions of the asymptotes, projected on the XY -plane, are parallel to the X
or Y -axis (by Proposition 17), that the oriented directions of the asymptotes of the branches of the projected
trisector are invariant (in the direction ±X or ±Y ) by continuous deformation on the set of triplets of lines
in general position.

It thus follows from Proposition 13 and from the analysis of one con�guration (see Figure 5) that the two
projected asymptotes of the branch C3 have the same oriented direction. Thus C3 has (at least) a critical
point with respect to this direction, which is X since there is no critical point with respect to the Y -axis.
We assume, for now, that the oriented asymptotic direction of the two branches of C3 is the −X direction
(as in Figure 5), by changing, if necessary, the orientation of the axis.

In the sequel of the proof, all the critical points and values are considered generalized and with respect
to the X-axis.

Now, the plane, denoted P, parallel to the Y Z-plane through a critical point of the trisector does not
intersect the trisector in any other point in R3 because the intersection at the critical point has multiplicity
(at least) two, the plane intersects the trisector in two points at in�nity (by Proposition 17), and the trisector
has degree four (it is the intersection of two quadrics). It thus follows that C3 has a unique critical point
and that this critical point is strictly left (i.e., has smaller X-coordinate) of all the other critical points of
the trisector. Furthermore, the plane P through this leftmost critical point, that is the plane of equation
X = X1, separates (strictly, except for the critical point) the branch C3 from the other branches and leaves
C3 on its left. In other words, the half-space X < X1 contains C3 except for its critical point and the
half-space X > X1 contains the other branches. It then follows from the de�nition of X2 that, for any
x̃ ∈ (X1, X2), the half-space X < x̃ contains C3 and the half-space X > x̃ contains the other branches
of the trisector. We thus get that the half-space X < x̃ contains U12 because U12 is bounded by C3 (by
Proposition 14) and lies on a hyperbolic paraboloid of equation Z = γ X Y , γ ∈ R (see Eq. (2)). Similarly,
the half-space X > x̃ contains T12.

It remains to show that the orientation of the X-axis we have considered so far is the orientation obtained
in Step (iii) of the algorithm. Let Xc denote the minimum generalized critical value and Xa the minimum
X-value of the asymptotes parallel to the Y Z-plane, at the end of Step (ii). Recall that the orientation of
the X-axis is changed in Step (iii) if and only if Xa 6 Xc. We show that the orientation of the X-axis is
changed in Step (iii) if and only if the orientation is not as assumed above, that is, if the oriented asymptotic
direction of the two branches of C3 is the +X direction.

We have proved that C3 has as a unique critical value and no asymptote parallel to the Y Z-plane. We
have also shown that if the orientation of the X-axis is as assumed above, then C3 is to the left of plane X = x̃
which is to the left of all the other branches. Thus Xc < Xa and the orientation is not changed in Step (iii).
Conversely, suppose, for a contradiction, that the orientation of the X-axis is not as assumed above and that
Xc < Xa. As before, by analyzing one particular example, we have (by continuity and Proposition 13) that
two of the asymptotes of the branches of C1 and C2 have direction −X (in projection) and the two others
have direction +Y and −Y . The plane X = Xc intersects the trisector at the generalized critical point with
multiplicity (at least) two and at two other points at in�nity (by Proposition 17). Furthermore, since the
generalized critical point is to the left of the vertical asymptotes of C1 ∪C2, the plane X = Xc intersects the
trisector somewhere else (or with higher multiplicity), which is not possible since the trisector has degree
four. Hence, Xa 6 Xc and the orientation of the X-axis is changed in Step (iii). �

The algorithm requires computing the generalized critical values of the trisector with respect to the X
and Y -directions. We proved (in Proposition 18) that the trisector has no critical values in one of these
directions and the proof can easily be extended to show that the trisector has no generalized critical values
in this direction. We show below that the trisector admits at most four generalized critical values with

20



respect to the other direction. We consider below the coordinate system obtained after Step (ii) of the
algorithm above.

Lemma 20 The trisector has three or four generalized critical values with respect to the X-direction. More-
over, the trisector has one generalized critical point on C3, one on C1 ∪ C2, and either two on C0 or C0 is
a line perpendicular to the X-axis.

Proof. We consider here generalized critical points and values with respect to the X-direction. Recall
that we proved in the proof of correctness of the algorithm that C3 has exactly one critical point.

The projection on the XY -plane of the trisector is a curve of degree four (since the trisector is the
intersection of two quadrics). Furthermore, it has degree two in X and degree two in Y because, in the
XY -plane, the curve intersects any line parallel to the X or Y -axis in at most two points since there are
two other points of intersection at in�nity (by Proposition 17). The projected curve thus has equation
A(X) Y 2 + B(X) Y + C(X) = 0 where A, B and C are polynomials of degree two in X. Its generalized
critical values are roots of the discriminant, ∆(X) = B(X)2 − 4A(X)C(X), of this polynomial with respect
to Y . As this discriminant has degree four, there are either 0, 2 or 4 generalized critical values counted with
multiplicity.

Now, we have that C0 has two identical asymptotes that are perpendicular to the X-axis (by Proposi-
tions 14, 17 and Step (ii) of the algorithm). Suppose �rst that C0 is not entirely critical. Then, C0 has at least
two generalized critical values (the in�mum and supremum values of the X-coordinates of its points) and
this number, counted with multiplicity, is even (it is the number of local extremums of the X-coordinates).
Thus, since C3 has exactly one critical point, C0 has exactly 2 generalized critical values and C1∪C2 exactly
one. It follows that C0 has exactly 2 generalized critical points and C1∪C2 exactly one since none of these
branches is entirely critical. Indeed, C0 is not entirely critical by assumption and neither C1 nor C2 is
entirely critical because they both admit an asymptote whose projection onto the XY -plane is parallel to
the X-axis. Indeed, as argued in the proof of correctness of the algorithm, the direction of each projected
asymptote is invariant by continuous deformation on the set of triplets of lines in general position and it
follows from Proposition 13 and the analysis of one example that, in projection, both C1 and C2 admit an
asymptote that is orthogonal to the one of C0 and thus that is parallel to the X-axis.

Consider now the case where C0 is entirely critical. Then, it projects on the XY -plane to a line per-
pendicular to the X-axis. It is planar and thus contained in the intersection of a plane and a quadric (the
bisector of any two of the input lines). C0 is thus a line or an irreducible conic. The trisector never contains
an irreducible conic (by Theorem 1), thus C0 is a line that is perpendicular to the X-axis (since its projection
on the XY -plane is). The corresponding critical value is, by continuity, a double root of the discriminant
∆(X). Thus, C1 ∪ C2 has, as before, exactly one generalized critical point. �

The following proposition shows that the separating plane computed in the above algorithm may be
non-rational.

Proposition 21 There exist three rational lines for which the two connected components of any two-dimensional
Voronoi cell cannot be separated by a rational plane.

Proof. Let P denote any plane separating Uij and Tij . Since P does not intersect C0, it is necessarily
parallel to the asymptote of C0 (see Proposition 14).

We now exhibit an example of three rational lines such that there exists no rational plane parallel
to an asymptote of their trisector, which will conclude the proof. Consider three lines `1, `2, and `3 in
general position that have direction (1, 0, 0), (1, 1, 0), and (2, 0, 1), respectively. By Proposition 11, the four
asymptotes of their trisector are parallel to the four trisector lines of three concurrent lines (say, through the
origin) with directions those of `1, `2, and `3; let `′1, `

′
2, and `′3 denote these lines.

The pair of bisector planes of `′1 and `′2 has a square root of 2 in its coe�cient: its equation (see Eq. 1)
factors into (X − (1 +

√
2) Y ) (X − (1 −

√
2) Y ), which is the equation of a pair of conjugate planes over

Q(
√

2) (the �eld extension of Q by
√

2). Similarly, the bisector planes of `′1 and `′3 is a pair of conjugate
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planes over Q(
√

5) (it has equation (X − (2 +
√

5) Z) (X − (2 −
√

5) Z)). It follows that the four lines of
intersection of these two pairs of planes are conjugate over Q(

√
2,
√

5).
Furthermore, these four lines are not all parallel to a common plane because the intersection of the two

planes that are conjugate over Q(
√

2) is the Z-axis, which properly intersects each of the two other conjugate
planes; thus, on each of these latter conjugate planes, the two lines of intersection properly intersect and
thus any plane parallel to them is parallel to the plane they de�ne; since the two conjugate planes are not
coplanar, no plane is parallel to the four lines of intersection.

Now, any rational plane that is parallel to one of these four lines is also parallel to the three others (since
a rational plane is invariant by conjugation over Q(

√
2,
√

5)). Since this is not possible, there is no rational
plane that is parallel to the asymptote of C0, which concludes the proof. �

We now present an algorithm for determining a rational linear test for separating the two components of
any two-dimensional Voronoi cell of three rational lines. Refer to Figure 5(b).

Determining a rational linear test for separating the two connected components of a two-

dimensional Voronoi cell.

Input: three rational lines `1, `2, and `3 in general position in a coordinate system (X̃, Ỹ , Z̃) and
i 6= j ∈ {1, 2, 3}.

Output: two rational half-spaces H ′
ij and H ′′

ij such that H ′
ij∩H ′′

ij strictly contains Uij and its complement
strictly contains Tij .
(i-iii) Idem as in the previous algorithm.
(iv) Compute the two Y -values of the two trisector asymptotes that are parallel to the XZ-plane. Let

Y1 < Y2 denote these two values.
(v) Determine a point A with rational coordinates in the original (X̃, Ỹ , Z̃)-frame such that its X, Y , and

Z-coordinates in the (X, Y, Z) frame are in (X1, X2), in (Y1, Y2), and equal to 0, respectively; let XA

denote its X-coordinate in the (X, Y, Z) frame.
(vi) Determine two points B and C with rational coordinates in the original (X̃, Ỹ , Z̃)-frame such that

their X, Y , and Z-coordinates in the (X, Y, Z)-frame are, for B, in (X1, XA), in (−∞, Y1), and equal
to 0, respectively, and for C, in (X1, XA), in (Y2,+∞), and equal to 0, respectively.

(vii) Let Pij (resp. P ′
ij) be the plane through A and B (resp. C) that is parallel to the Z-axis. Let H ′

ij

(resp. H ′′
ij) be the open half-space bounded plane Pij (resp. P ′

ij) that contains the point at in�nity in
the −X-direction.

Remark 22 Note that the transformation from the (X̃, Ỹ , Z̃)-frame to the (X, Y, Z)-frame is not necessarily
rational since the X and Y -axes are not necessarily rational in the (X̃, Ỹ , Z̃)-frame. Hence, the plane through
A and parallel to the Y and Z-axes is not necessarily rational in the (X̃, Ỹ , Z̃)-frame. Nonetheless, the
rational coordinates of the points A, B, and C can easily be computed, using interval arithmetic (see the
proof of correctness for details).

Proof of correctness. We assume without loss of generality that i and j are equal to 1 and 2, respectively.
Notice �rst that point A (and similarly for B and C) can easily be chosen with rational coordinates in the
original (X̃, Ỹ , Z̃)-frame using interval arithmetic. Indeed, the generalized critical values X1 and X2 in the
local (X, Y, Z)-frame are the solutions of a polynomial with not necessarily rational coe�cients (because the
transformation from the original frame to the local frame is not necessarily rational). The X-coordinate
XA of A in the (X, Y, Z)-frame can be chosen anywhere in between X1 and X2. Thus isolating the roots
of this polynomial with interval arithmetic (see e.g., [9]) gives a feasible interval for XA, in between the
intervals for X1 and X2. Similarly for the Y -coordinate of A. Transforming the resulting XY -box back to
the original (X̃, Ỹ , Z̃)-frame yields, with interval arithmetic, another non-empty box from which the point
A can be chosen with rational coordinates in the original frame.

Now, we have seen in the proof of correctness of the previous algorithm that the component C3 has
exactly one critical value with respect to the X-axis, no critical value with respect to the Y -axis, and two
asymptotes in the −Y -direction. The component C3 is thus contained in the region de�ned by X < X1 and
Y1 < Y < Y2. It follows that H ′

ij ∩H ′′
ij contains Uij .
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On the other hand, the complement of H ′
ij ∩H ′′

ij strictly contains Tij because for any value x̃ ∈ (XA, X2),
the half-space X > x̃ contains Tij (as proved above) and this half-space is contained in the complement of
H ′

ij ∩H ′′
ij .

Finally, the plane Pij is rational since A and B and are rational as well as the Z-axis (since it is the
common perpendicular to `i and `j). Similarly, plane P ′

ij is also rational. �

Remark 23 Note that, if the three input lines are not rational, the above algorithm remains valid except for
the fact that the output half-spaces are not necessarily rational anymore (since the common perpendicular to
`i and `j is not necessarily rational).

Separation of the four connected components of the trisector of three lines.

Consider three lines `1, `2, and `3 and the half-space H ′
ij and H ′′

ij obtained by the above algorithm.
Proposition 14 (and Remark 23) directly yields the following result.

Proposition 24 For any point p on the trisector of `1, `2, and `3, if p belongs to both half-spaces H ′
ij and

H ′′
ij for some i 6= j ∈ {1, 2, 3} then p lies on Ck (with k ∈ {1, 2, 3} distinct from i and j), otherwise p lies on

C0. Furthermore, if the three input lines are rational, the coe�cients of H ′
ij and H ′′

ij are rational.

Determining a linear test for ordering points on a branch of the trisector.

Every branch of the trisector of three lines is monotonic in the Y -direction computed in Steps (i-ii) of the
above algorithms (see the proof of correctness of the �rst algorithm). This gives a linear test for ordering
points on each branch of the trisector.

It remains to show that, if the three input lines are rational, we can determine a rational direction in
which every branch of the trisector is monotonic, yielding a rational linear test for ordering points on each
trisector.

Determining a rational linear test for ordering points on a branch Ck of the trisector.

Input: three rational lines `1, `2, and `3 in general position and k ∈ {0, 1, 2, 3}.
Output: a rational direction in which Ck is strictly monotonic.

(0) Choose i 6= j ∈ {1, 2, 3} such that {i, j, k} 6= {1, 2, 3} and initialize α to a small positive value.
(i-ii) Idem as in the previous algorithms. If the Y -axis is rational in the original coordinate system, output it.
(iii) Rotate clockwise the Y -axis about the Z-axis by an angle of at most α and such that the resulting

Y ′-axis is rational in the original coordinate system.
(iv) Compute the critical points of the trisector with respect to the Y ′-axis and determine (see Proposi-

tion 24) if any critical point lies on Ck. If so, divide α by two and recurse Step (iii) after changing the
clockwise/counterclockwise orientation of the rotation. Otherwise, output the Y ′-axis.

Proof of correctness. We can assume without loss of generality that, after Step 0, i, j = 1, 2 and k 6= 3.
As argued before, the coordinate system computed in Step (ii) is such that C0, C1, C2 are strictly monotonic
in the Y -direction. Furthermore, in projection onto the XY -plane, C0 has two (identical) asymptotes parallel
to the Y -axis, and C1 and C2 both have one asymptote parallel to the X-axis and another parallel to the
Y -axis (by Propositions 13, 14, 17 and from the analysis of one con�guration). Hence, each of these branches
is also strictly monotonic in any direction obtained by a su�ciently small rotation of the Y -axis about the
Z-axis in the clockwise or counterclockwise direction (depending on the branch). �

Remark 25 The orientation, clockwise or counterclockwise, of the rotation in Step (iii) can also be deter-
mined as follows. Compute the two X-values of the two trisector asymptotes that are parallel to the Y Z-plane
and choose a strictly larger value X0. Compute the two points of intersection of the trisector with the plane
X = X0; let P+ denote the one with larger Y -coordinate and P− the other one. Determine whether P+

or P− lies on the branch Ck. If P+ lies on Ck, always rotate the Y -axis counterclockwise in Step (iii) (Ck

is the branch C1 in Figure 5(a)). If P− lies on Ck, rotate the Y -axis clockwise (Ck is the branch C2 in
Figure 5(a)). Otherwise, both directions of rotation will work (Ck is the branch C0 in Figure 5(a)).
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We presented, in this section, algorithms for determining linear tests for separating the connected compo-
nents of the Voronoi cells of dimensions one and two and for ordering points on any branch of the trisector.
Moreover, we showed how to determine rational linear tests for these problems in the case where the input
lines are rational. This concludes the proof of Theorem 3.

7 Conclusion

We presented a complete description of the Voronoi diagram of three lines that are pairwise skew and not all
parallel to a common plane. We also presented linear tests for answering queries of the form, given a point
in a one or two-dimensional Voronoi cell, determine in which of its connected components it lies. Finally,
we showed how points on a branch of the trisector can be ordered using linear forms. Moreover, these linear
forms have rational coe�cients if the input lines are rational.

Future work includes the characterization of the topology of the Voronoi diagram of three lines that are
not in general position. Note that, in this case, the topology of the Voronoi diagram does indeed change; for
instance, when three pairwise skew lines are all parallel to a common plane, their bisectors are hyperbolic
paraboloids of the form Z = Fij(X, Y ) and it follows that their trisector consists of two branches (instead
of four) as it is the intersection of one of the bisectors with a hyperbolic cylinder whose axis is parallel to
the Z-axis (of equation F12(X, Y )−F13(X, Y ) = 0). Note also that when two of the lines are coplanar their
bisector is one or two planes and the trisector is thus either the intersection of two such bisectors or the
intersection of one such bisector with a hyperbolic paraboloid.

Another problem is to study Voronoi diagrams of up to six lines; indeed, designing an incremental
algorithm for computing the Voronoi diagrams of n lines would require a thorough understanding of the case
of six lines since the arcs of the diagram are de�ned by �ve lines (three for the trisector and one additional
line for each endpoint). Finally, the two major problems remain the determination of the complexity of
Voronoi diagrams of n lines and the design of e�cient algorithms for computing Voronoi diagrams of lines,
segments, triangles, or polyhedra.
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Appendix: Maple-sheet computations

> sys:=subs(a=2,[gros_fact,op(convert(grad(gros_fact,[a,x,y,alpha,beta]),list))]):

> bs1:=factor(fgb_gbasis(sys,0,[x,y,alpha,beta],[])): map(uu->op(0,uu),%), op(1,bs1[3]);

[+, +, ∗, +, +, +, +, +, +], y + 2 α

> [op(bs1),1-u*(y+2*alpha), 1-v*(2*x+beta),1-w*(1+alpha^2+beta^2)]:
> bs2:=factor(fgb_gbasis_elim(%,0,[u,v,w],[x,y,alpha,beta])): map(uu->op(0,uu),%),map(degree,%);

[+, +, +, +], [6, 6, 6, 6]

> bs3:=factor(fgb_gbasis_elim(bs2,0,[x],[y,alpha,beta])):map(uu->op(0,uu),%);

[ˆ]

> bs4:=factor(fgb_gbasis([op(bs2),op(1,bs3[1])],0,[x,y,alpha,beta],[])):map(uu->op(0,uu),%);

[∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, +, +, +, +]

> fgb_gbasis_elim([op(bs4),1-u*op(3,bs4[1])],0,[u],[x,y,alpha,beta]);

[1]

> bs5:=factor(fgb_gbasis([op(bs4),op(3,bs4[1])],0,[x,y,alpha,beta],[])):map(uu->op(0,uu),%);

[+, +, +, +, +, ∗, +, +, +, +, +, +, ∗, +, +, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, +, +, +, +]

> fgb_gbasis_elim([op(bs5),1-u*op(3,bs5[6])],0,[u],[x,y,alpha,beta]);

[1]

> bs6:=factor(fgb_gbasis([op(bs5),op(3,bs5[6])],0,[x,y,alpha,beta],[])):map(uu->op(0,uu),%);

[+, +, +, +, +, +, +, +, +, +, +, +, +, +, +, +]

> bs7:=factor(fgb_gbasis_elim(bs6,0,[y],[x,alpha,beta])):map(uu->op(0,uu),%);

[∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ˆ]

> bs8:=factor(fgb_gbasis([op(bs6),op(1,bs7[nops(bs7)])],0,[x,y,alpha,beta],[])):map(uu->op(0,uu),%);

[+, +, +, +, +, +, +, +, +, +, · · · , +, +, +, +, +, +, +, +, +, +]

> bs9:=factor(fgb_gbasis_elim(bs8,0,[alpha],[x,y,beta])):map(uu->op(0,uu),%);

[∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, · · · , ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗]
> fgb_gbasis_elim([op(bs9),1-u*op(nops(bs9[1]),bs9[1])],0,[u],[x,y,alpha,beta]);

[1]

> bs10:=factor(fgb_gbasis([op(bs8),op(nops(bs9[1]),bs9[1])],0,[x,y,alpha,beta],[])):
> map(uu->op(0,uu),%),op(2,bs10[3]);

[+, +, ∗, +, +, +, +, +, +, ∗, +, +, +, +, +, · · · , +, +, +, +, +], y + 2 α

> [op(bs10),1-u*(1+alpha^2+beta^2),1-v*(y+2*alpha), 1-w*(2*x+beta)]:
> bs11:=factor(fgb_gbasis_elim(%,0,[u,v,w],[x,y,alpha,beta])):map(uu->op(0,uu),%);

[+, +, +, ∗, +, +, +, +, +, +, +, +, +, +, +]

> fgb_gbasis_elim([op(bs11),1-u*op(2,bs11[4])],0,[u],[x,y,alpha,beta]);

[1]

> bs12:=factor(fgb_gbasis([op(bs11),op(2,bs11[4])],0,[x,y,alpha,beta],[])):map(uu->op(0,uu),%),map(degree,%);

[+, +, +], [4, 4, 4]

> bs12[3];
> Gamma2:=(4*y*alpha-4*x*beta-3)^2+3*(2*x+beta)^2+12*(y+2*alpha)^2+75;
> simplify(Gamma2-bs12[3]);

16 α2 y2 + 84− 32 β x α y + 16 β2 x2 + 12 x2 + 12 y2 + 24 y α + 48 α2 + 36 β x + 3 β2

Γ2 := (4 y α − 4 β x − 3)2 + 3 (2 x + β)2 + 12 (y + 2 α)2 + 75

0
> [op(sys),1-u*(1+alpha^2+beta^2),1-v*(y+2*alpha),1-w*(2*x+beta),1-t*Gamma2]
> fgb_gbasis(%,0,[u,v,w,t],[x,y,alpha,beta]);

[1]

Table 2: About the proof of the Main Lemma.
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> factor(subs(y=-a*alpha,big_fact));

(α4 a4 + 2 β x α2 a3 + x2 a2 + β2 x2 a2 − 2 a2 α2 + 1 + β2)

(β2 − 4 a2 − 4 a2 α2 − 4 a4 − 4 a4 α2 − 2 a β x− 4 β x a3 + x2 a2)2

> f0:=collect(op(1,%),x); f1:=collect(op(1,op(2,%%)),x);

f0 := (a2 β2 + a2) x2 + 2 β x α2 a3 + α4 a4 + 1 + β2 − 2 a2 α2

f1 := x2 a2 + (−2 a β − 4 β a3) x + β2 − 4 a2 − 4 a2 α2 − 4 a4 − 4 a4 α2

> factor(subs(x=-beta/a,big_fact));

(β4 − 2 a2 β2 + a4 + a4 α2 + 2 β2 α a y + α2 y2 a2 + y2 a2)

(4 + 4 β2 + 4 a2 + 4 a2 β2 − a4 α2 + 4 a y α + 2 y a3 α− y2 a2)2

> g0:=collect(op(1,%),y);g1:=collect(op(1,op(2,%%)),y);

g0 := (a2 α2 + a2) y2 + 2 β2 α a y + β4 − 2 a2 β2 + a4 + a4 α2

g1 := −y2 a2 + (4 a α + 2 a3 α) y + 4 + 4 β2 + 4 a2 + 4 a2 β2 − a4 α2

Solutions of f1=0 in x and of g1=0 in y:

> map(uu->factor(uu),[solve(f1,x)]);

[
2 a2 β + β + 2

p
a2 (a2 + 1) (β2 + 1 + α2)

a
,

2 a2 β + β − 2
p

a2 (a2 + 1) (β2 + 1 + α2)

a
]

> map(uu->factor(uu),[solve(g1,y)]);

[
α a2 + 2 α + 2

p
(a2 + 1) (β2 + 1 + α2)

a
,

α a2 + 2 α− 2
p

(a2 + 1) (β2 + 1 + α2)

a
]

f0 is a sum of square:
> (a^2*alpha^2-1+a*beta*x)^2+(a*x+beta)^2;
> simplify(f0-%);

(a2 α2 − 1 + a β x)2 + (x a + β)2

0

a*x+beta and g1 are in the ideal generated by y+a*alpha, x*a+beta, and a^2*alpha^2-1+a*beta*x:
> gbasis([y+a*alpha,x*a+beta,a^2*alpha^2-1+a*beta*x],DRL([a,x,y,alpha,beta])):
> normalf(a*x+beta,%), normalf(g1,%);

0, 0

g0 is a sum of square:
> (a*y*alpha+beta^2-a^2)^2+a^2*(y+a*alpha)^2;
> simplify(g0-%);

(a y α + β2 − a2)2 + a2 (y + a α)2

0

y+a*alpha and f1 are in the ideal generated by x*a+beta, y+a*alpha, and a^2*alpha^2-1+a*beta*x:
> gbasis([x*a+beta,y+a*alpha,a*y*alpha+beta^2-a^2],DRL([a,x,y,alpha,beta])):
> normalf(y+a*alpha,%), normalf(f1,%);

0, 0

Table 3: For the proof of Lemma 8.
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> comp1 := [y = -a*alpha, x =
> (2*beta*a^2+beta)/a+2*sqrt((beta^2+1+alpha^2)*(1+a^2))];

comp1 := [y = −α a, x =
2 β a2 + β

a
+ 2

p
(1 + α2 + β2) (1 + a2)]

We prove that the characteristic equation has no real root on this component.
> factor(subs(comp1,Char_eq));
> irrat:=op(2,%):

a2(4− 4 β2 λ3 + 8 a2 − 4 λ3 + λ4 − 8 λ − 16 α2 λ a2 − 8 β2 λ a2 + 8 α2 + 4 β2 + 12 a2 α2 + 12 a2 β2 + 4 a4 + 8 a4 β2 + 4 a4 α2 − 8 λ a2 − 16 α2 λ

− 8 β2 λ + 8 λ2 + 4 λ2 a2 + 8 a2 α2 λ2 + 4 β2 λ2 a2 + 8 β2 λ2 − 8 β α a3 λ − 8 β α λ a + 8 β α a3 + 8 a β α + 8 α
√

%1− 8 λ a2 α
√

%1 + λ4 β2

+ λ4 α2 + 4 λ2 β
√

%1 a − 8 λ β
√

%1 a + 12 α2 λ2 − 4 α2 λ3 + 8 β
√

%1 a + 8 a2 α
√

%1 + 8 β a3 √%1− 4 λ3 α
√

%1 + 12 λ2 α
√

%1− 16 λ α
√

%1)

%1 := (β2 + 1 + α2) (1 + a2)

Consider the product of the characteristic polynomial with its algebraic conjugate:
> T:=expand(irrat*subs(sqrt((1+a^2)*(alpha^2+beta^2+1))=-sqrt((1+a^2)*(alpha^2
> +beta^2+1)),irrat)):

The real semi-algebraic set de�ned by T-1/2<0 is empty:

> sampling_negative(T-1/2,[a,alpha,beta,lambda]);

Pre-process...............
Computing critical values of a polynomial mapping from C^4 to C
Computing asymptotic critical values of a polynomial mapping from C^4 to C
"************************Enter in internal", [alpha,beta, lambda], [], [], [a]
End of pre-process...............
Computing sampling points in a real hypersurface
Computing Critical Points using FGb (projection on a)
Computing Asymptotic Critical Values of a restricted to a hypersurface
Computing Critical Points using FGb (projection on alpha)
Computing Asymptotic Critical Values of alpha restricted to a hypersurface
Computing Asymptotic Critical Values of alpha restricted to a hypersurface
Computing Critical Points using FGb (projection on beta)
Computing Asymptotic Critical Values of beta restricted to a hypersurface
Computing Critical Points using FGb (projection on lambda)
Isolating real solutions of a zero-dimensional system using RS
Isolating real solutions of a zero-dimensional system using RS
Isolating real solutions of a zero-dimensional system using RS
Isolating real solutions of a zero-dimensional system using RS

[]

Consider all the 3x3 minors of the matrix P (λ) of the pencil:
> ldet:=NULL:
> for i to 4 do for j from i to 4 do
> ldet:=ldet,det(minor(P,i,j)):
> od od:

The rank of P (λ) is always 3 or 4 since there is no common zeros of the minors:
> [ldet,1-t*(1+alpha^2+beta^2)*(1+a^2)*(-beta+y+a*x-a*alpha)*(-beta-y+a*x+a*alpha)]:
> fgb_gbasis_elim(%,0,[],[t,a,x,y,alpha,beta,lambda]);

[1]

Table 4: For the proof of Lemma 10.
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