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Abstract

We design a new algorithm for solving parametric systems of equations having finitely
many complex solutions for generic values of the parameters. More precisely, let f =
( f1, . . . , fm) ⊂ Q[y][x] with y = (y1, . . . , yt) and x = (x1, . . . , xn), V ⊂ Ct × Cn be the
algebraic set defined by the simultaneous vanishing of the fi’s and π be the projection
(y, x) → y. Under the assumptions that f admits finitely many complex solutions when
specializing y to generic values and that the ideal generated by f is radical, we solve the
following algorithmic problem. On input f , we compute semi-algebraic formulas defining
open semi-algebraic sets S1, . . . ,S` in the parameters’ space Rt such that ∪`i=1Si is dense
in Rt and, for 1 ≤ i ≤ `, the number of real points in V∩π−1(η) is invariant when η ranges
over Si.

This algorithm exploits special properties of some well chosen monomial bases in
the quotient algebra Q(y)[x]/I where I ⊂ Q(y)[x] is the ideal generated by f in Q(y)[x]
as well as the specialization property of the so-called Hermite matrices which represent
Hermite’s quadratic forms. This allows us to obtain “compact” representations of the
semi-algebraic sets Si by means of semi-algebraic formulas encoding the signature of a
given symmetric matrix.

When f satisfies extra genericity assumptions (such as regularity), we use the theory
of Gröbner bases to derive complexity bounds both on the number of arithmetic opera-
tions in Q and the degree of the output polynomials. More precisely, letting d be the max-
imal degrees of the fi’s andD = n(d−1)dn, we prove that, on a generic input f = ( f1, . . . , fn),
one can compute those semi-algebraic formulas using O˜((

t+D
t

)
23t n2t+1d3nt+2(n+t)+1

)
arith-

metic operations in Q and that the polynomials involved in these formulas have degree
bounded by D.

We report on practical experiments which illustrate the efficiency of this algorithm,
both on generic parametric systems and parametric systems coming from applications
since it allows us to solve systems which were out of reach on the current state-of-the-art.
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1. Introduction

1.1. Problem statement and motivations
In the whole paper, Q, R and C denote respectively the fields of rational, real and

complex numbers.
Let f = ( f1, . . . , fm) be a polynomial sequence in Q[y][x] where the indeterminates y =

(y1, . . . , yt) are considered as parameters and x = (x1, . . . , xn) are considered as variables.
We denote by V ⊂ Ct × Cn the (complex) algebraic set defined by f1 = · · · = fm = 0 and
by VR its real trace V∩Rt+n. We consider also the projection on the parameter space y

π :
Ct × Cn → Ct,

(y, x) 7→ y.

Further, we say that f satisfies Assumption (A) when the following holds.

Assumption A. There exists a non-empty Zariski open subset O ⊂ Ct such that π−1(η)∩V
is non-empty and finite for any η ∈ O.

In other words, assuming (A) ensures that, for a generic value η of the parameters,
the sequence f (η, ·) defines a finite algebraic set and hence finitely many real points. Note
that, it is easy to prove that one can choose O in a way that the number of complex
solutions to the entries of f (η, ·) is invariant when η ranges over O (e.g. using the theory of
Gröbner basis). This is no more the case when considering real solutions whose number
may vary when η ranges over O.

By Hardt’s triviality theorem [27], there exists a real algebraic proper subset R of Rt

such that, for any non-empty connected open set U of Rt \ R and η ∈ U, π−1(η) × U is
homeomorphic with π−1(U).

This leads us to consider the following real root classification problem.

Problem 1 (Real root classification). On input f satisfying Assumption (A), compute
semi-algebraic formulas (i.e. finitely many disjunctions of conjunctions of polynomial
inequalities) defining semi-algebraic sets S1, . . . ,S` such that

(i) The number of real points in V ∩ π−1(η) is invariant when η ranges over Si, for
1 ≤ i ≤ `;

(ii) The union of the Si’s is dense in Rt;

as well as at least one sample point ηi in each Si and the corresponding number of real
points in V ∩ π−1(ηi).

A collection of semi-algebraic formulas sets is said to solve Problem (1) for the input
f if it defines a collection of semi-algebraic sets Si satisfies the above properties (i) and
(ii).

Our output will have the form {(Φi, ηi, ri) | 1 ≤ i ≤ `} where Φi is a semi-algebraic
formula defining the set Si, ηi ∈ Qt is a sample point of Si and ri is the corresponding
number of real roots.

Sesame, and ANR-19-CE40-0018 De Rerum Natura, the joint ANR-FWF ANR-19-CE48-0015 ECARP
project, the PGMO grant CAMiSAdo, the European Union’s Horizon 2020 research and innovative
training network program under the Marie Skłodowska-Curie grant agreement N° 813211 (POEMA)
and the Grant FA8665-20-1-7029 of the EOARD-AFOSR.
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A weak version of Problem (1) would be to compute only a set {η1, . . . , η`} of sample
points for a collection of semi-algebraic sets Si solving Problem (1) and their correspond-
ing numbers of real points in V ∩ π−1(η j).

Problem (1) appears in many areas of engineering sciences such as robotics or medical
imagery (see, e.g., [50, 10, 51, 19, 6]).

In this paper, we design a new algorithm whose arithmetic complexity improves the
previously known bounds and reports on practical experiments showing that its practical
behaviour outperforms the current software state-of-the-art.

Before going further with a description of the prior works and our contributions,
we introduce the complexity model which we use. We measure only the arithmetic
complexity of algorithms, i.e., the number of arithmetic operations +,−,×,÷, in the base
field Q, hence, without taking into account the cost of real root isolation. We use the
Landau notation:

• Let f : R`+ 7→ R+ be a positive function. We let O( f ) denote the class of functions
g : R`+ → R+ such that there exist C,K ∈ R+ such that for all ‖x‖ ≥ K, g(x) ≤ C f (x),
where ‖ · ‖ is a norm of R`.

• The notation O ˜ denotes the class of functions g : R`+ → R+ such that g ∈
O( f logκ( f )) for some κ > 0.

Further, the notation ω always stands for the exponent constant of the matrix multipli-
cation, i.e., the smallest positive number such that the product of two matrices in QN×N

can be done using O (Nω) arithmetic operations in Q. The value of ω can be bounded
from above by 2.37286, which is established in [1].

1.2. Prior works
A first approach to Problem (1) would be to compute a cylindrical algebraic decom-

position (CAD) of Rt×Rn adapted to f using e.g. Collins’ algorithm (and its more recent
improvements) ; see [9]. While, up to our knowledge, there is no clear reference for this
fact, the cylindrical structure of the cells of the CAD will imply that their projection
on the parameters’ space Rt define semi-algebraic sets enjoying the properties needed to
solve Problem (1). However, the doubly exponential complexity of CAD both in terms
of runtime and output size [14, 7] makes it difficult to use in practice.

A more popular approach consists in computing polynomials h1, . . . , hr in Q[y] such
that ∪r

i=1V(hi)∩Rt contains the boundaries of semi-algebraic sets S1, . . . ,S` enjoying the
properties required to solve Problem (1). Next, one needs to compute semi-algebraic
descriptions of the connected components of Rt \ ∪r

i=1V(hi) as well as sample points in
these connected components. This is basically the approach followed by [49] (the hi’s
are called border polynomials) and [35] (the set ∪r

i=1V(hi) is called discriminant variety)
under the assumption that 〈 f 〉 is a radical ideal. Note that both [49] and [35] provide
algorithms that can handle variants of Problem (1) allowing inequalities. In this paper,
we focus on the situation where we only have equations in our input parametric system.

When 〈 f 〉 is radical and the restriction of π to V ∩ Rt × Rn is proper, one can easily
prove using a semi-algebraic version of Thom’s isotopy lemma [11] that one can choose
∪r

i=1V(hi) to be the set of critical values of the restriction of π to V (see e.g. [6]). If f is a
regular sequence (hence m = n), the critical set of the restriction of π to V is defined as
the intersection of V with the hypersurface defined by the vanishing of the determinant
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of the Jacobian matrix of f with respect to the variables x. When d dominates the
degrees of the entries of f , Bézout’s theorem allows us to state that the degree of this
set is bounded above by n(d − 1)dn.

It is worth noticing that, usually, this approach is used only to solve the aforemen-
tioned weak version of Problem (1) as getting a semi-algebraic description of the con-
nected components of Rt \ ∪r

i=1V(hi) through CAD is too expensive when t ≥ 4 (still,
because of the doubly exponential complexity of CAD). Under the above assumptions
and notation, the output degree of the polynomials in such formulas would be bounded
by (n(d − 1)dn)2O(t) .

An alternative would be to use parametric roadmap algorithms to do such computa-
tions using e.g. [4, Chap. 16] to compute semi-algebraic representations of the connected
components of Rt \ ∪r

i=1V(hi). Under the above extra assumptions, this would result
in output formulas involving polynomials of degree bounded by (n(d − 1)dn)O(t3) using
(n(d − 1)dn)O(t4) arithmetic operations (see [4, Theorem 16.13]). Note that the output de-
grees are by several orders of magnitude larger than n(d − 1)dn which bounds the degree
of the set of critical values of the restriction of π to V.

Hence, one topical algorithmic issue is to design an efficient algorithm for solving
Problem (1) which would output semi-algebraic formulas of degree bounded by n(d−1)dn

(using a number of arithmetic operations polynomial in this quantity). At this stage
of our exposition, this is not clear that it is doable. Actually, admittedly “folklore”
algorithms in symbolic computation already allow one to achieve such a result.

Using the (probabilistic) algorithm of [44], one can compute a rational parametriza-
tion ofV = V( f ) with respect to the x-variables, i.e. a sequence of polynomials (w, v1, . . . , vn)
in Q(y)[u] where u is a new variable, such that the constructible set Z ⊂ Ct ×Cn of every
point (

η,
v1

∂w/∂u
(η, ϑ), . . . ,

vn

∂w/∂u
(η, ϑ)

)
,

where (η, ϑ) ∈ Ct ×C such that w(η, ϑ) = 0 and η does not cancel ∂w/∂u and any denomi-
nator of (w, v1, . . . , vn), is Zariski dense in V, i.e., the Zariski closure of Z coincides with
V.

The bi-rational equivalence between Z and its projection on the (u, y)-space implies
that semi-algebraic formulas solving Problem (1) can be obtained through the computa-
tion of the subresultant sequence associated to

(
w, ∂w
∂u

)
(see e.g. [4, Chap. 4]). Combining

the complexity results of [44] to compute a rational parametrization of V with those
of [4, Chap. 4] for computing subresultants we obtain that this algorithm uses

O ˜((
t + 2d2n

t

)
25t d5nt+3n

)
arithmetic operations in Q, and that the semi-algebraic formulas computed by this algo-
rithm involve polynomials in Q[y] of degree bounded by 2d2n. Recall that the degree of
the critical locus of the restriction of π to V is bounded by n(d− 1)dn. Hence, computing
semi-algebraic formulas solving Problem (1) involving polynomials of degrees in O(dn)
through an efficient algorithm reflecting this complexity gain is still an open problem.
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1.3. Main results
Basically, our main result is to provide a new algorithm solving Problem (1) when

〈 f 〉 is radical and assumption (A) holds. Under some genericity assumptions, we prove
that it outputs formulas involing polynomials of degree in O(dn) with a better arithmetic
complexity than what was previously known.

Theorem I. Let C[x, y]d be the set of polynomials in C[x, y] having total degree bounded
by d and set D = n(d − 1)dn.

There exists a non-empty Zariski open set F ⊂ C[x, y]n
d such that for f = ( f1, . . . , fn) ∈

F ∩Q[x, y]n, the following holds:

i) There exists an algorithm that computes a solution for the weak-version of Problem
(1) within

O ˜((
t +D

t

)
23t n2t+1d2nt+n+2t+1

)
.

arithmetic operations in Q.

ii) There exists a probabilistic algorithm that returns the formulas of a collection of
semi-algebraic sets solving Problem (1) within

O ˜((
t +D

t

)
23t n2t+1d3nt+2(n+t)+1

)
arithmetic operations in Q in case of success.

iii) The semi-algebraic descriptions output by the above algorithm involves polynomials
in Q[y] of degree bounded by D.

We note that the binomial coefficient
(

t+D
t

)
is bounded from above by Dt ' ntdnt+t.

Therefore, the complexities given in the items i) and ii) of Theorem I can be bounded
by O ˜(

23t n3td3nt
)

and O ˜(
23t n3td4nt

)
respectively.

We also implemented this algorithm to illustrate its practical behaviour and compare
it with the state-of-the-art software within the Maple packages RootFinding[Parametric]
and RegularChains[ParametricSystemTools]. We report on experiments showing that
our implementation outperforms these packages, which is justified by our complexity
result.

The key ingredient on which one relies to obtain these results is a set of well-known
properties of Hermite quadratic forms to count the real roots of zero-dimensional ideals.
The use of such quadratic forms for counting the number of real solutions was introduced
in [30] and then later on generalized by [38] and used in [39]. We refer to [4, Theorem
4.102] for the explicit relation between the number of real roots of a zero-dimensional
algebraic set and the signature of these quadratic forms and to [4, Algo. 8.43] for an
algorithm computing these signatures.

We first slightly extend the definition of Hermite’s quadratic forms and Hermite’s
matrices to the context of parametric systems; we call them parametric Hermite quadratic
forms and parametric Hermite matrices. This is easily done since the ideal of Q(y)[x]
generated by f , considering Q(y) as the base field, has dimension zero. We also establish
natural specialization properties for these parametric Hermite matrices.
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Hence, a parametric Hermite matrix, similar to its zero-dimensional counterpart,
allows one to count respectively the number of distinct real and complex roots at any
parameters outside a strict algebraic sets of Rt by evaluating the signature and rank of
its specialization.

Based on this specialization property, we design two algorithms for solving Prob-
lem (1) and also its weak version for the input system f which satisfies Assumption (A)
and generates a radical ideal.

Our algorithm for the weak version of Problem (1) reduces to the following main
steps.

(a) Compute a parametric Hermite matrix H associated to f ⊂ Q[y][x].

(b) Compute a set of sample points {η1, . . . , η`} in the connected components of the
semi-algebraic set of Rt defined by w , 0 where w is derived from H .
This is done through the so-called critical point method (see e.g. [4, Chap. 12] and
references therein) which are adapted to obtain practically fast algorithms following
[41]. We will explain in detail this step in Section 3.
This algorithm takes as input s polynomials of degree D involving t variables and
computes sample points per connected components in the semi-algebraic set defined
by the non-vanishing of these polynomials using

O ˜((
D + t

t

)
st+123tD2t+1

)
.

(c) Compute the number ri of real points in V ∩ π−1(ηi) for 1 ≤ i ≤ `.
This is done by simply evaluating the signature of the specialization of H at each
ηi.

It is worth noting that, in the algorithm above, we obtain through parametric Hermite
matrices a polynomial w that plays the same role as the discriminant varieties of [35] or
the border polynomials of [48]. We will see in the section reporting experiments that our
approach outperforms the other two on every example we consider.

To return semi-algebraic formulas, our routine is basically the same except instead of
computing sample points in the set {w , 0}, one needs to consider all principal minors of
the matrix H and compute sample points outside the union of the vanishing sets of all
these polynomials.

Another contribution of this paper is to make clear how to perform the step (a).
For this, we rely on the theory of Gröbner bases. More precisely, we use specialization
properties of Gröbner bases, similar to those already proven in [32]. This leaves some
freedom when running the algorithm: since we rely on Gröbner bases, one may choose
monomial orderings which are more convenient for practical computations. In particular,
the monomial basis of the quotient ring Q(y)[x]/I where I is the ideal generated by
f in Q(y)[x] depends on the choice of the monomial ordering used for Gröbner bases
computations. We describe the behavior of our algorithm when choosing the graded
reverse lexicographical ordering whose interest for practical computations is explained in
[5]. Further, we denote by grevlex(x) the graded reverse lexicographical ordering applied
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to the sequence of the variables x = (x1, . . . , xn) (with x1 � · · · � xn). Further, we also
denote by �lex the lexicographical ordering.

We report, at the end of the paper, on the practical behavior of this algorithm. We
compare with two Maple packages RootFinding[Parametric] and RegularChains[Para-
metricSystemTools] which respectively implement the algorithms of [35] and [49]. In
particular, our algorithm allows us to solve instances of Problem (1) which were not
tractable by the state-of-the-art as well as the actual degrees of the polynomials in the
output formula which are bounded by n(d − 1)dn.

We actually prove such a statement under some generic assumptions. Our main
complexity result is stated below. Its proof is given in Subsection 6.2, where the generic
assumptions in use are given explicitly.

Organization of the paper. Section 2 reviews fundamental notions of algebraic geometry
and the theory of Gröbner bases that we use further. Next, we present a dedicated
algorithm for computing at least one point per connected component of a semi-algebraic
defined by a list of inequations in Section 3. Section 4 lies the definition and some useful
properties of parametric Hermite matrices. In Section 5, we describe our algorithm for
solving the real root classification problem using this parametric Hermite matrix. The
complexity analysis of the algorithms mentioned above is given in Section 6. Finally,
in Section 7, we report on the practical behavior of our algorithms and illustrate its
practical capabilities.

2. Preliminaries

In the first paragraph, we fix some notations on ideals and algebraic sets and recall
the definition of critical points associated to a given polynomial map. Next, we give the
definitions of regular sequences, Hilbert series, Noether position and proper maps, which
are used later in Subsection 6.1. The fourth paragraph recalls some basic properties of
Gröbner bases and quotient algebras of zero-dimensional ideals. We refer to [12] for an
introductory study on the algorithmic theory of Gröbner bases. In the last paragraphs,
we recall respectively the definitions of zero-dimensional parametrizations and rational
parametrizations which go back to [33] and is widely used in computer algebra (see e.g.
[24, 26, 25]) to represent finite algebraic sets.

Algebraic sets and critical points. We consider a sub-field F of C. Let I be a polynomial
ideal of F[x1, . . . , xn], the algebraic subset of Cn at which the elements of I vanish is de-
noted by V(I). Conversely, for an algebraic set V ⊂ Cn, we denote by I(V) ⊂ C[x1, . . . , xn]
the radical ideal associated to V. Given any subset A of Cn, we denote by A the Zariski
closure of A, i.e., the smallest algebraic set containing A.

A map ϕ between two algebraic sets V ⊂ Cn and W ⊂ Cs is a polynomial map if
there exist ϕ1, . . . , ϕt ∈ C[x1, . . . , xn] such that the ϕ(η) = (ϕ1(η), . . . , ϕs(η)) for η ∈ V.

An algebraic set V is equi-dimensional of dimension t if it is the union of irreducible
algebraic sets of dimension t. Let ϕ be a polynomial map from V to another algebraic set
W. The morphism ϕ is dominant if and only if the image of every irreducible component
V′ of V by ϕ is Zariski dense in W, i.e. ϕ(V′) =W.
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Let φ ∈ C[x1, . . . , xn] which defines the polynomial function

φ :
Cn → C,

(x1, . . . , xn) 7→ φ(x1, . . . , xn)

and V ⊂ Cn be a smooth equi-dimensional algebraic set. We denote by crit(φ,V) the set
of critical points of the restriction of φ to V. If c is the codimension of V and ( f1, . . . , fm)
generates the vanishing ideal associated to V, then crit(φ,V) is the subset of V at which
the Jacobian matrix associated to ( f1, . . . , fm, φ) has rank less than or equal to c (see, e.g.,
[42, Subsection 3.1]).

Regular sequences & Hilbert series. Let F be a field and ( f1, . . . , fm) ⊂ F[x] where
x = (x1, . . . , xn) and m ≤ n be a homogeneous polynomial sequence. We say that
( f1, . . . , fm) ⊂ F[x] is a regular sequence if for any i ∈ {1, . . . ,m}, fi is not a zero-divisor in
F[x]/〈 f1, . . . , fi−1〉.

The notion of regular sequences is the algebraic analogue of complete intersection. In
this paper, we focus particularly on the Hilbert series of homogeneous regular sequences,
which are recalled below.

Let I ⊂ F[x] be a homogeneous ideal. We denote by F[x]r the set of every homogeneous
polynomial whose degree is equal to r. Then F[x]r and I∩F[x]r are two F-vector spaces of
dimensions dimF(F[x]r) and dimF(I ∩F[x]r) respectively. The Hilbert series of I is defined
as

HSI(z) =
∞∑

r=0

(dimF(F[x]r) − dimF(I ∩ F[x]r)) · zr.

We now consider the affine polynomial sequences. Note that one can define affine
regular sequences by simply removing the homogeneity assumption of ( f1, . . . , fm) from
the above definition. However, as explained in [2, Sec 1.7], many important properties
that hold for homogeneous regular sequences are no longer valid for the affine ones.
Therefore, in this paper, we use [2, Definition 1.7.2] of affine regular sequences, which is
more restrictive but allows us to preserve similar results as the homogeneous case. We
recall that definition below.

For p ∈ F[x1, . . . , xn], we denote by H p the homogeneous component of largest degree
of p. A polynomial sequence ( f1, . . . , fm) ⊂ F[x1, . . . , xn], not necessarily homogeneous, is
called a regular sequence if and only if (H f1, . . . , H fm) is a homogeneous regular sequence.

Noether position & Properness. Let F be a field and f = ( f1, . . . , fn) ⊂ F[x1, . . . , xn+t].
The variables (x1, . . . , xn) are in Noether position with respect to the ideal 〈 f 〉 if their
canonical images in the quotient algebra F[x1, . . . , xn+t]/〈 f 〉 are algebraic integers over
F[xn+1, . . . , xn+t] and, moreover, F[xn+1, . . . , xn+t] ∩ 〈 f 〉 = 〈0〉.

From a geometric point of view, Noether position is strongly related to the notion of
proper map below (see [3]).

Let V be the algebraic set defined by f ∈ R[y1, . . . , yt, x1, . . . , xn]. The restriction of
the projection π : (y, x) 7→ y to V∩Rt+n is said to be proper if the inverse image of every
compact subset of π(V ∩ Rt+n) is compact. If the variables x = (x1, . . . , xn) is in Noether
position with respect to 〈 f 〉, then the projection π : V ∩ Rt+n → Rt, (y, x) 7→ y is proper.

A point η ∈ Rt is a non-proper point of the restriction of π to V if and only π−1(U)∩
V ∩ Rt+n is not compact for any compact neighborhood U of η in Rt.
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Gröbner bases and zero-dimensional ideals. Let F be a field and F be its algebraic closure.
We denote by F[x] the polynomial algebra in the variables x = (x1, . . . , xn). We fix an
admissible monomial ordering � (see Section 2.2, [12]) over F[x]. For a polynomial
p ∈ F[x], the leading monomial of p with respect to � is denoted by lm�(p).

Given an ideal I ⊂ F[x], the initial ideal of I with respect to the ordering � is the ideal
〈lm�(p) | p ∈ I〉. A Gröbner basis G of I with respect to the ordering � is a generating
set of I such that the set of leading monomials {lm�(g) | g ∈ G} generates the initial ideal
〈lm�(p) | p ∈ I〉.

For any polynomial p ∈ F[x], the remainder of the division of p by G using the
monomial ordering � is uniquely defined. It is called the normal form of p with respect
to G and is denoted by NFG(p). A polynomial p is reduced by G if p coincides with its
normal form in G. A Gröbner basis G is said to be reduced if, for any g ∈ G, all terms of
g are reduced modulo the leading terms of G.

An ideal I is said to be zero-dimensional if the algebraic set V(I) ⊂ F
n

is finite and
non-empty. By [12, Sec. 5.3, Theorem 6], the quotient ring F[x]/I is a F-vector space of
finite dimension. The dimension of this vector space is also called the algebraic degree of
I; it coincides with the number of points of V(I) counted with multiplicities [4, Sec. 4.5].
For any Gröbner basis of I, the set of monomials in F[x] which are irreducible by G forms
a monomial basis, which we call B, of this vector space. For any p ∈ F[x], the normal
form of p by G can be interpreted as the image of p in F[x]/I and is a linear combination
of elements of B (with coefficients in F). Therefore, the operations in the quotient algebra
F[x]/I such as vector additions or scalar multiplications can be computed explicitly using
the normal form reduction.

In this article, while working with polynomial systems depending on parameters in
Q[y][x], we frequently take F to be the rational function field Q(y) and treat polynomials
in Q[y][x] as elements of Q(y)[x].

Zero-dimensional parametrizations. A zero-dimensional parametrization R of coefficients
in Q consists of (a1, . . . , an) ∈ Qn and a sequence of polynomials (w, v1, . . . , vn) ∈ (Q[u])n+1

where u =
∑n

i=1 aixi such that w is square-free. The solution set of R, defined as

Z(R) =
{(

v1(ϑ)
w′(ϑ)

, . . . ,
vn(ϑ)
w′(ϑ)

)
∈ Cn | ϑ ∈ C such that w(ϑ) = 0

}
,

is finite.
A finite algebraic setV ∈ Cn is said to be represented by a zero-dimensional parametriza-

tion R if and only if V coincides with Z(R). Note that the cardinality of V is the same
as the degree of w ; we also call it the degree of the zero-dimensional parametrization.

Note that it is possible to retrieve a polynomial parametrization by inverting the
derivative w′ modulo w. Still, this rational parametrization whose denominator is the
derivative of w is known to be better for practical computations as it usually involves
coefficients with smaller bit size (see [13]).

3. Computing sample points in semi-algebraic sets defined by the non-vanishing of poly-
nomials

In this section, we study the following algorithmic problem. Given (g1, . . . , gs) in
Q[y1, . . . , yt], compute at least one sample point per connected component of the semi-
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algebraic set S ⊂ Rt defined by

g1 , 0, . . . , gs , 0.

Such sample points will be encoded with zero-dimensional parametrizations which we
described in Section 2.

The main result of this section which will be used in the sequel of this paper is the
following.

Theorem II. Let (g1, . . . , gs) in Q[y1, . . . , yt] with D ≥ max1≤i≤s deg(gi) and S ⊂ Rt be the
semi-algebraic set defined by

g1 , 0, . . . , gs , 0.

There exists a probabilistic algorithm which on input (g1, . . . , gs) outputs a finite family
of zero-dimensional parametrizations R1, . . . ,Rk, all of them of degree bounded by (2D)t,
which encode at most (2sD)t points such that ∪k

i=1Z(Ri) meets every connected component
of S using

O ˜((
D + t

t

)
st+123tD2t+1

)
.

arithmetic operations in Q.

The rest of this section is devoted to the proof of this theorem.

Proof. By [19, Lemma 1], there exists a non-empty Zariski open set A×E ⊂ Cs ×C such
that for (a = (a1, . . . , as), e) ∈ A × E ∩ Rs × R, the following holds. For I = {i1, . . . , i`} ⊂
{1, . . . , s} and σ = (σ1, . . . , σs) ∈ {−1, 1}s, the algebraic sets VI,σa,e ⊂ Ct defined by

gi1 + σi1 ai1 e = · · · = gi` + σi`ai`e = 0

are, either empty, or (t−`)-equidimensional and smooth, and the ideal generated by their
defining equations is radical.

Note that by the transfer principle, one can choose instead of a scalar e an infinites-
imal ε so that the algebraic sets VI,σa,ε and their defining set of equations satisfy the
above properties. When, in the above equations, one leaves ε as a variable, one ob-
tains equations defining an algebraic set in Ct+1. We denote by VI,σa,ε the union of the
(t + 1 − `)-equidimensional components of this algebraic set.

Further we also assume that the ai’s are chosen positive.
Denote by S(ε) the extension of the semi-algebraic set S to R〈ε〉t ; similarly, the

extension of any connected component C of S to R〈ε〉t is denoted by C(ε).
Now, remark that any connected component C(ε) of S(ε) contains a connected compo-

nent of the semi-algebraic set S(ε)
a defined by:

(−a1ε ≥ g1 ∨ g1 ≥ a1ε) ∧ · · · ∧ (−asε ≥ gs ∨ gs ≥ asε)

Hence, we are led to compute sample points per connected component of S(ε)
a . These will

be encoded with zero-dimensional parametrizations with coefficients in Q[ε].
By [4, Proposition 13.1], in order to compute sample points per connected component

in S(ε)
a , it suffices to compute sample points in the real algebraic sets VI,σa,ε ∩ Rt. To do

that, since the algebraic sets VI,σa,ε satisfy the above regularity properties, we can use the
10



algorithm and geometric results of [41]. To state these results, one needs to introduce
some notation.

Let Q be a real field, R be a real closure of Q and C be an algebraic closure of R.
For an algebraic set V ⊂ Ct defined by h1 = · · · = h` = 0 (hi ∈ Q[y] with y = (y1, . . . , yt))
and M ∈ GLt(R), we denote by V M the set {M−1 · x | x ∈ V} and, for 1 ≤ i ≤ `, by hi

M the
polynomial hi(M · y) and by πi the canonical projection (y1, . . . , yt) 7→ (y1, . . . , yi) (π0 will
simply denote (y1, . . . , yt) 7→ {•}). By slightly abusing notation, we will also denote by πi

projections from VI,σa,ε to the first i coordinates (y1, . . . , yi).
We will consider the set of critical points of the restriction of πi to V and will denote

this set by crit(πi,V) for 1 ≤ i ≤ `. By [41, Theorem 2], for a generic choice of M ∈ GLt(R),
the union of V M ∩ π−1

t−`(0) with the sets crit(πi,V M) ∩ π−1
i−1(0) (for 1 ≤ i ≤ t − `) is finite

and meets all connected components of V M ∩Rt. Because V satisfies the aforementioned
regularity assumptions, crit(πi,V M) ∩ π−1

i−1(0) is defined as the projection on the y-space
of the solution set to the polynomials

hM , (λ1, . . . , λ`). jac(hM , i), u1λ1 + · · · + u`λ` = 1, y1 = · · · = yi−1 = 0,

where h = (h1, . . . , h`), λ1, . . . , λ` are new variables (called Lagrange multipliers), jac(hM , i)
is the Jacobian matrix associated to hM truncated by forgetting its first first i columns
and the ui’s are generically chosen (see also [42, App. B]).

Assume that D is the maximum degree of the h j’s and let E be the length of a straight-
line program evaluating h. Observe now that, setting the y j’s to 0 (for 1 ≤ j ≤ i− 1), and
using [43, Theorem 1] combined with the degree estimates in [43, Section 5], we obtain
that such systems can be solved using

O

((t − i
`

)
D`(D − 1)t−(i−1)−`

)2

(E + (t + `)D + (t + `)2)(t + `)


arithmetic operations in Q and have at most(

t − i
`

)
D`(D − 1)t−(i−1)−`

solutions.
Going back to our initial problem, one then needs to solve polynomial systems which

encode the set crit(πi,V
I,σ
a,ε ) of critical points of the restriction of πi to VI,σa,ε . Note that these

systems have coefficients in Q[ε]. To solve such systems, we rely on [44], which consists in
specializing ε to a generic value v ∈ Q and compute a zero-dimensional parametrization of
the solution set to the obtained system (within the above arithmetic complexity over Q)
and next use Hensel lifting and rational reconstruction to deduce from this parametriza-
tion a zero-dimensional parametrization with coefficients in Q(ε). By [44, Corollary 1]
and multi-homogeneous bounds on the degree of the critical points of πi to VI,σa,ε as in
[43, Section 5], this lifting step has a cost

O ˜((t + `)4 + (t + ` + 1)E)
((

t − i
`

)
D`(D − 1)t−(i−1)−`

)2 .
Hence, all in all computing one zero-dimensional parametrization for one critical locus
uses

O ˜((t + `)4D + (t + ` + 1)E)
((

t − i
`

)
D`(D − 1)t−(i−1)−`

)2
11



arithmetic operations in Q. Note that, following [44], the degrees in ε of the numerators
and denominators of the coefficients of these parametrizations are bounded by

(
t
`

)
D`(D−

1)t−`.
Summing up for all critical loci and using

t−∑̀
i=0

(
t − i
`

)
=

(
t + 1
` + 1

)
,

the computation for a fixed VI,σa,ε uses

O ˜((t + `)4D + (t + ` + 1)E)
(
t + 1
` + 1

)2 (
D`(D − 1)t−`

)2


arithmetic operations in Q. Also, the number of points computed this way is dominated
by (

t + 1
` + 1

) (
D`(D − 1)t−`

)
.

Note that the above quantity is upper bounded by (2D)t and bounds the degree of the
output zero-dimensional parametrizations.

Taking the sum for all possible algebraic sets VI,σa,ε and remarking that

• the sum of number of indices of cardinality ` for 0 ≤ ` ≤ t is bounded by st;

• the number of sets σ for a given ` is bounded by 2t;

• the sum
∑t
`=0

(
t+1
`+1

)2
equals 2

(
2t+1

t

)
− 1

one deduces that all these zero-dimensional parametrizations can be computed within

O ˜(
st2t

(
2t + 1

t

) (
(2t)4D + (2t + 1)Γ

)
D2t

)
arithmetic operations in Q (recall that Γ bounds the length of a straight line program
evaluating all the polynomials defining our semi-algebraic set S) which we simplify to

O ˜(
Γ st 23t D2t+1

)
.

Similarly, using the above simplifications, the total number of points encoded by these
zero-dimensional parametrizations is bounded above by (2sD)t.

At this stage, we have just obtained zero-dimensional parametrizations with coeffi-
cients in Q(ε).

The above bound on the number of returned points is done but it remains to show how
to specialize ε in order to get sample points per connected components in S. To do that,
given a parametrization Rε = (w, v1, . . . , vt) ⊂ Q(ε)[u]t+1, we need to find a specialization
value e for ε to obtain a parametrization Re such that

• the number of real roots of the zero set associated to Re is the same as the number
of real roots of the zero set associated to Rε;

12



• when η ranges over the interval ]0, e] the signs of the gi’s at the zero set associated
to η does not vary.

To do that, it suffices to choose e such that it is smaller than the smallest positive root of
the resultant associated to

(
w, ∂w
∂u

)
and the smallest positive roots of the resultant asso-

ciated to w and gi

(
v1
∂w/∂u , . . . ,

vt
∂w/∂u

)
. The algebraic cost (i.e. the resultant computations)

are dominated by the complexity estimates of the previous step.
Finally, note that Γ can be bounded by s

(
D+t

t

)
when the gi’s are given in an expanded

form in the monomial basis. Therefore, the arithmetic complexity for computing sample
points of the semi-algebraic set defined by g1 , 0, . . . , gs , 0 can be bounded by

O ˜((
D + t

t

)
st+1 23t D2t+1

)
.

Remark 2. Observe that since the coefficients of the rational parametrizations with coef-
ficients in Q[ε] have bit size depending both on the maximum bit size τ of the coefficients
of the input polynomials g1, . . . , gs and the bit size of the generically chosen ai’s.

When substituting ε by a small enough rational number e, one obtains zero-dimensional
parametrizations with coefficients in Q of bit size depending on the one of e also. Admis-
sible values for e depend on the magnitude of the real roots of the univariate resultant
we exhibit in the above proof. Because we start with rational parametrizations of degree
bounded by O(D)t, assuming that the bit size of the ai’s is bounded by O(D)t (following
reasonings like the one in [15]), one could show using standard quantitative results that
the bit size of e may be τ DO(t) (because e is obtained through the isolation of real roots
of a univariate polynomial of degree DO(t)). However, this is a worst case analysis and
most of the time, we observe in practice that one can choose for e values of reasonable
bit size.

We end this section with a Corollary which is a consequence of the proof of [4,
Theorem 13.18]. Basically, once we have the parametrizations computed by the algorithm
on which Theorem II relies, one can compute sample points per connected components of
the semi-algebraic set S within the same arithmetic complexity bounds. The idea is just
to evaluate the gi’s at these rational parametrizations and use bounds on the minimal
distance between two roots of a univariate polynomial such as [4, Prop. 10.22]. Hence,
the proof of the corollary below follows mutatis mutandis the same steps as the one of
[4, Theorem 13.18].

Corollary 3. Let (g1, . . . , gs) in Q[y1, . . . , yt] with D ≥ max1≤i≤s deg(gi) and S ⊂ Rt be the
semi-algebraic set defined by

g1 , 0, . . . , gs , 0.

There exists a probabilistic algorithm which on input (g1, . . . , gs) outputs a finite set of
points P in Qt of cardinality at most (2sD)t points such that P meets every connected
component of S using

O ˜((
D + t

t

)
st+123tD2t+1

)
.

arithmetic operations in Q.
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Note that the main difference, by contrast with Theorem II, the above Corollary
shows how to obtain output points with coordinates in Q.

4. Parametric Hermite matrices

In this section, we adapt the construction encoding Hermite’s quadratic forms, also
known as Hermite matrices to the context of parametric systems and describe an algo-
rithm for computing those parametric Hermite matrices.

4.1. Definition
Let K be a field and I ⊂ K[x] be a zero-dimensional ideal. Recall that the quotient

ring AK = K[x]/I is a K-vector space of finite dimension [12, Section 5.3, Theorem 6].
For p ∈ K[x], we denote by Lp the multiplication map q ∈ AK 7→ p · q, ∈ AK.

Note that the map Lp is an endomorphism of AK as a K-vector space. The Hermite
quadratic form associated to I is defined as the bilinear form that sends (p, q) ∈ AK × AK
to the trace of Lp·q as an endomorphism of AK.

We refer to [4, Chap. 4] for more details about Hermite quadratic forms.
Now, let f = ( f1, . . . , fm) be a polynomial sequence in Q[y][x]. We take the rational

function field Q(y) as the base field K and denote by 〈 f 〉K the ideal generated by f in
K[x]. We require that the system f satisfies Assumption (A).

This leads to the following well-known lemma, which is the foundation for the con-
struction of our parametric Hermite matrices.

Lemma 4. Assume that f satisfies Assumption (A). Then the ideal 〈 f 〉K is zero-dimensional.

Proof. Assume that there exists a coordinate xi for 1 ≤ i ≤ n such that 〈 f 〉∩C[y, xi] = 〈0〉.
We denote respectively by πi and π̃i the projections (y, x) 7→ (y, xi) and (y, xi) 7→ y. By
the assumption above, πi(V) is the whole space Ct+1. Then, we have the identity

Ct+1 =
(
π̃i
−1(O) ∪ π̃i

−1(Ct \ O)
)
∩ πi(V),

where O be the dense Zariski open subset of Ct required in Assumption (A).
Since π̃i is a map from Ct+1 to Ct, its fibers are of dimension at most 1. Therefore,

we have that dim π̃i
−1(Ct \ O) ≤ 1 + dim(Ct \ O) ≤ t. As Assumption (A) holds and

dim π̃−1
i (Ct \ O) ≤ t, we have that dim π̃i

−1(O) ∩ πi(V) = t. This contradicts to the identity
above. We conclude that, for 1 ≤ i ≤ n, 〈 f 〉 ∩ C[y, xi] , 〈0〉.

On the other hand, by Assumption (A), the Zariski-closure of π(V) is the whole
parameter space Ct. Thus, we have that 〈 f 〉 ∩ C[y] = 〈0〉. Since 〈 f 〉 ∩ C[y] = (〈 f 〉 ∩
C[y, xi]) ∩ C[y] for every 1 ≤ i ≤ n, there exists a polynomial pi ∈ 〈 f 〉 ∩ C[y, xi] whose
degree with respect to xi is non-zero. Clearly, pi is an element of the ideal 〈 f 〉K. Thus,
there exists di such that xdi

i is a leading term in 〈 f 〉K. Hence, 〈 f 〉K is a zero-dimensional
ideal.

Lemma 4 allows us to apply the construction of Hermite matrices described in [4,
Chap. 4] to parametric systems as follows.

Since the ideal 〈 f 〉K is zero-dimensional by Lemma 4, its associated quotient ring
AK = K[x]/〈 f 〉K is a finite dimensional K-vector space. Let δ denote the dimension of AK
as a K-vector space.

14



We consider a basis B = {b1, . . . , bδ} of AK, where the bi’s are taken as monomials in
the variables x. Such a basis can be derived from Gröbner bases as follows. We fix an
admissible monomial ordering � over the set of monomials in the variables x and compute
a Gröbner basis G with respect to the ordering � of the ideal 〈 f 〉K. Then, the monomials
that are not divisible by any leading monomial of elements of G form a basis of AK.

Recall that, for an element p ∈ K[x], we denote by p the class of p in the quotient
ring AK. A representative of p can be derived by computing the normal form of p by the
Gröbner basis G, which results in a linear combination of elements of B with coefficients
in Q(y).

Assume now the basis B of AK is fixed. For any p ∈ K[x], the multiplication map Lp

is an endomorphism of AK. Therefore, it admits a matrix representation with respect to
B, whose entries are elements in Q(y). The trace of Lp can be computed as the trace of
the matrix representing it. Similarly, the Hermite’s quadratic form of the ideal 〈 f 〉K can
be represented by a matrix with respect to B. This leads to the following definition.

Definition 5. Given a parametric polynomial system f = ( f1, . . . , fm) ⊂ Q[y][x] satisfying
Assumption (A). We fix a basis B = {b1, . . . , bδ} of the vector space K[x]/〈 f 〉K. The
parametric Hermite matrix associated to f with respect to the basis B is defined as the
symmetric matrix H = (hi, j)1≤i, j≤δ where hi, j = trace(Lbi·b j ).

It is important to note that the definition of parametric Hermite matrices depends
both on the input system f and the choice of the monomial basis B.

4.2. Gröbner bases and parametric Hermite matrices
In the previous subsection, we have defined parametric Hermite matrices assuming

one knows a Gröbner basis G with respect to some monomial ordering of the ideal 〈 f 〉K
where K = Q(y) and 〈 f 〉K is the ideal of K[x] generated by f .

Computing such a Gröbner basis may be costly as this would require to perform
arithmetic operations over the field Q(y) (or Z/pZ(y) where p is a prime when tackling
this computational task through modular computations). In this paragraph, we show
that one can obtain parametric Hermite matrices by considering some Gröbner bases of
the ideal 〈 f 〉 ⊂ Q[y, x] (hence, enabling the use of efficient implementations of Gröbner
bases such as the F4/F5 algorithms [17, 18]).

Since the graded reverse lexicographical ordering (grevlex for short) is known for
yielding Gröbner bases of relatively small degree comparing to other orders, we prefer
using this ordering to construct our parametric Hermite matrices. Further, we will use
the notation grevlex(x) for the grevlex ordering among the variables x (with x1 � · · · � xn)
and grevlex(x) � grevlex(y) (with y1 � · · · � yt) for the elimination ordering. We denote
respectively by lmx(p) and lcx(p) the leading monomial and the leading coefficient of
p ∈ K[x] with respect to the ordering grevlex(x).

Lemma 6. Let G be the reduced Gröbner basis of 〈 f 〉 with respect to the elimination
ordering grevlex(x) � grevlex(y). Then G is also a Gröbner basis of 〈 f 〉K with respect to
the ordering grevlex(x).

Proof. Since G is a Gröbner basis of the ideal 〈 f 〉, every polynomial fi of f can be written
as fi =

∑
g∈G cg · g where cg ∈ Q[x, y]. Therefore, any element of 〈 f 〉K can also be written
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as a combination of elements of G with coefficients in Q(y)[x]. In other words, G is a set
of generators of 〈 f 〉K.

Let p be a polynomial in K[x], p is contained in 〈 f 〉K if and only if there exists
a polynomial q ∈ Q[y] such that q · p ∈ 〈 f 〉. Thus, the leading monomial of p as an
element of K[x] with respect to the grevlex ordering grevlex(x) is contained in the ideal
〈lmx(g) | g ∈ G〉. Therefore, G is a Gröbner basis of 〈 f 〉K.

Hereafter, we denote by G the reduced Gröbner basis of 〈 f 〉 with respect to the
elimination ordering grevlex(x) � grevlex(y). Let B be the set of all monomials in x that
are not reducible by G, which is finite by Lemmas 4 and 6. The set B actually forms a
basis of the K-vector space K[x]/〈 f 〉K. Then, we denote by H the parametric Hermite
matrix associated to f with respect to this basis B.

We consider the following assumption on the input system f .

Assumption B. For g ∈ G, the leading coefficient lcx(g) does not depend on the parameters
y.

As the computations in the quotient ring AK are done through normal form reductions
by G, the lemma below is straight-forward.

Lemma 7. Under Assumption (B), the entries of the parametric Hermite matrix H are
elements of Q[y].

Proof. Since Assumption (B) holds, the leading coefficients lcx(g) do not depend on
parameters y for g ∈ G. The normal form reduction in AK of any polynomial in Q[y][x]
returns a polynomial in Q[y][x]. Thus, each normal form can be written as a linear
combination of B whose coefficients lie in Q[y]. Hence, the multiplication map Lbi·b j

for 1 ≤ i, j ≤ δ can be represented by polynomial matrices in Q[y] with respect to the
basis B. As an immediate consequence, the entries of H , as being the traces of those
multiplication maps, are polynomials in Q[y].

The next proposition states that Assumption (B) is satisfied by a generic system f .
It implies that the entries of the parametric Hermite matrix of a generic system with
respect to the basis B derived from G completely lie in Q[y]. We postpone the proof of
Proposition 8 to Subsection 6.1 where we prove a more general result (see Proposition 20).

Proposition 8. Let C[x, y]d be the set of polynomials in C[x, y] having total degree
bounded by d. There exists a non-empty Zariski open subset FC of C[x, y]n

d such that
Assumption (B) is satisfied by any f ∈ FC ∩Q[x, y]n.

4.3. Specialization property of parametric Hermite matrices
Recall that G is the reduced Gröbner basis of 〈 f 〉 with respect to the ordering

grevlex(x) � grevlex(y) and B is the basis of K[x]/〈 f 〉K derived from G as discussed
in the previous subsection. Then, H is the parametric Hermite matrix associated to f
with respect to the basis B.

Let η ∈ Ct and φη : C(y)[x] → C[x], p(y, x) 7→ p(η, x) be the specialization map that
evaluates the parameters y at η. Then f (η, ·) = (φη( f1), . . . , φη( fm)). We denote by H(η)
the specialization (φη(hi, j))1≤i, j≤δ of H at η.
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Recall that, for a polynomial p ∈ C(y)[x], the leading coefficient of p considered as a
polynomial in the variables x with respect to the ordering grevlex(x) is denoted by lcx(p).
In this subsection, for p ∈ C[x], we use lm(p) to denote the leading monomial of p with
respect to the ordering grevlex(x).

Let W∞ ⊂ Ct denote the algebraic set ∪g∈GV(lcx(g)). In Proposition 10, we prove
that, outside W∞, the specialization H(η) coincides with the classic Hermite matrix of
the zero-dimensional ideal f (η, ·) ⊂ Q[x]. This is the main result of this subsection.

Since the operations over the K-vector space AK rely on normal form reductions by the
Gröbner basis G of 〈 f 〉K, the specialization property of H depends on the specialization
property of G. Lemma 9 below, which is a direct consequence of [32, Theorem 3.1],
provides the specialization property of G. We give here a more elementary proof for this
lemma than the one in [32].

Lemma 9. Let η ∈ Ct \ W∞. Then the specialization G(η, ·) B {φη(g) | g ∈ G} is a
Gröbner basis of the ideal 〈 f (η, ·)〉 ⊂ C[x] generated by f (η, ·) with respect to the ordering
grevlex(x).

Proof. Since η ∈ Ct \ W∞, the leading coefficient lcx(g) does not vanish at η for every
g ∈ G. Thus, lmx(g) = lm(φη(g)).

We denote by M the set of all monomials in the variables x and

MG B {m ∈ M | ∃g ∈ G : lmx(g) divides m} = {m ∈ M | ∃g ∈ G : lm(φη(g)) divides m}.

For any p ∈ 〈 f 〉 ⊂ Q[x, y], we prove that lm(φη( f )) ∈ MG. If p is identically zero, there
is nothing to prove. So, we assume that p , 0, p is then expanded in the form below:

p =
∑

m∈MG

cm · m +
∑

m∈M\MG

cm · m,

where the cm’s are elements of Q[y]. Since p is not identically zero, there exists m ∈ MG
such that cm , 0.

Since G is a Gröbner basis of 〈 f 〉K, any monomial in MG can be reduced by G to a
unique normal form in K[x]. These divisions involve denominators, which are products
of some powers of the leading coefficients of G with respect to the variables x. We write

NFG(p) =
∑

m∈MG

cm · NFG(m) +
∑

m∈M\MG

cm · m.

As p ∈ 〈 f 〉K, we have that NFG(p) = 0, which implies∑
m∈M\MG

cm · m = −
∑

m∈MG

cm · NFG(m).

Therefore, we have the identity

p =
∑

m∈MG

cm · (m − NFG(m))

Since η does not cancel any denominator appearing in NFG(m), we can specialize the
identity above without any problem:

φη(p) =
∑

m∈MG

φη(cm) · (m − φη(NFG(m))).
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If at least one of the φη(cm) does not vanish, then the leading monomial of φη( f ) is in
MG. Otherwise, if all the φη(cm) are canceled, then φη(p) is identically zero, and there is
not any new leading monomial appearing either. So, the leading monomial of any p ∈ 〈 fη〉
is contained in MG, which means G(η, ·) is a Gröbner basis of 〈 f (η, ·)〉 with respect to
grevlex(x).

Proposition 10. For any η ∈ Ct \W∞, the specialization H(η) coincides with the classic
Hermite matrix of the zero-dimensional ideal 〈 f (η, ·)〉 ⊂ C[x].

Proof. As a consequence of Lemma 9, each computation in AK derives a corresponding
one in C[x]/〈 f (η, ·)〉 by evaluating y at η in every normal form reduction by G. This
evaluation is allowed since η does not cancel any denominator appearing during the com-
putation. Therefore, we deduce immediately the specialization property of the Hermite
matrix.

Using Proposition 10 and [4, Theorem 4.102], we obtain immediately the following
corollary that allows us to use parametric Hermite matrices to count the root of a spe-
cialization of a parametric system.

Corollary 11. Let η ∈ Ct \W∞, then the rank of H(η) is the number of distinct complex
roots of f (η, ·). When η ∈ Rt \W∞, the signature of H(η) is the number of distinct real
roots of f (η, ·).

Proof. By Proposition 10,H(η) is a Hermite matrix of the zero-dimensional ideal 〈 f (η, ·)〉.
Then, [4, Theorem 4.102] implies that the rank (resp. the signature) of H(η) equals to
the number of distinct complex (resp. real) solutions of f (η, ·).

We finish this subsection by giving some explanation for what happens above W∞,
where our parametric Hermite matrix H does not have good specialization property.

Lemma 12. Let W∞ defined as above. Then W∞ contains all the following sets:

• The non-proper points of the restriction of π toV (see Section 2 for this definition).

• The set of points η ∈ Ct such that the fiber π−1(η) ∩V is infinite.

• The image by π of the irreducible components of V whose dimensions are smaller
than t.

Proof. The claim for the set of non-properness of the restriction of π to V is already
proven in [35, Theorem 2]. We focus on the two remaining sets.

Using the Hermite matrix, we know that for η ∈ Ct \W∞, the system f (η, ·) admits a
non-empty finite set of complex solutions. On the other hand, for any η ∈ Ct such that
π−1(η) ∩V is infinite, f (η, ·) has infinitely many complex solutions. Therefore, the set of
such points η is contained in W∞.

Let V>t be the union of irreducible components of V of dimension greater than t. By
the fiber dimension theorem [45, Theorem 1.25], the fibers of the restriction of π to V>t

must have dimension at least one. Similarly, the components of dimension t whose images
by π are contained in a Zariski closed subset of Ct also yield infinite fibers. Therefore, as
proven above, all of these components are contained in π−1(W∞).
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We now consider the irreducible components of dimension smaller than t. Let V≥t

and V<t be respectively the union of irreducible components of V of dimension at least
t and at most t − 1. We have that V = V≥t ∪ V<t. Let I ⊂ Q[x, y] denote the ideal
generated by f . Using the primary decomposition of I (see e.g. [12, Sec. 4.8]), we have
that I is the intersection of two ideals I≥t and I<t such that V(I≥t) = V≥t and V(I<t) = V<t.
We write

I = I≥t ∩ I<t.

We denote by R the polynomial ring Q(y)[x]. Then, the above identity is transferred into
R:

I · R = (I≥t · R) ∩ (I<t · R).

Since dim(π(V<t)) ≤ t − 1, then there exists a non-zero polynomial p ∈ I<t ∩Q[y]. As p is
a unit in Q(y), the ideal I<t · R is exactly R. So,

I · R = I≥t · R.

Note that, by Lemma 6, G is a Gröbner basis of I ·R, then it is also a Gröbner basis of I≥t ·R.
Therefore, the Hermite matrices associated to I and I≥t (with respect to the basis derived
from G) coincide. So, for η <W∞, the ranks of those matrices are equal and so are the
numbers of complex points in π−1(η)∩V and π−1(η)∩V≥t. As π−1(η)∩V≥t ⊂ π

−1(η)∩V,
we have that π−1(η) ∩V = π−1(η) ∩V≥t. This leads to

π−1(Ct \W∞) ∩V≥t = π
−1(Ct \W∞) ∩V.

Then, π−1(Ct \ W∞) ∩ V<t = ∅ or equivalently, V<t ⊂ π
−1(W∞), which concludes the

proof.

4.4. Computing parametric Hermite matrices
Given f = ( f1, . . . , fm) ∈ Q[y][x] satisfying Assumption (A). We keep denoting K =

Q(y). Let G be the reduced Gröbner basis of 〈 f 〉 with respect to the ordering grevlex(x) �
grevlex(y) and B be the set of all monomials in the variables x which are not reducible
by G. The set B then forms a basis of the K-vector space K[x]/〈 f 〉K.

In this subsection, we focus on the computation of the parametric Hermite matrix
associated to f with respect to the basis B.

Note that one can design an algorithm using only the definition of parametric Hermite
matrices given in Subsection 4.1. More precisely, for each bi · b j ∈ B (1 ≤ i, j ≤ δ), one
computes the matrix representing Lbi·b j in the basis B by computing the normal form of
every bi · b j · bk for 1 ≤ k ≤ δ. Therefore, in total, this direct algorithm requires O(δ3)
normal form reductions of polynomials in K[x].

In Algorithm 1 below, we present another algorithm for computing H . We call to the
following subroutines successively:

• GrobnerBasis that takes as input the system f and computes the reduced Gröbner
basis G of 〈 f 〉 with respect to the ordering grevlex(x) � grevlex(y) and the basis
B = {b1, . . . , bδ} ⊂ Q[x] derived from G.
Such an algorithm can be obtained using any general algorithm for computing
Gröbner basis, which we refer to F4/F5 algorithms [17, 18].
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• ReduceGB that takes as input the Gröbner basis G and outputs a subset G′ of G
which is still a Gröbner basis of 〈 f 〉K with respect to the ordering grevlex(x).
This subroutine aims to remove the elements in G that we do not need. Even though
G is reduced as a Gröbner basis of 〈 f 〉 with respect to grevlex(x) � grevlex(y), it is
not necessarily the reduced Gröbner basis of 〈 f 〉K with respect to grevlex(x). Using
[12, Lemma 3, Sec. 2.7], we can design ReduceGB to remove all the elements of G
which have duplicate leading monomials (in x). We obtain as output a subset G′
of G which is also a Gröbner basis G′ for 〈 f 〉K with respect to grevlex(x). Note that
this tweak reduces not only the cardinal of the Gröbner basis in use but also the size
of the set W∞ introduced in Subsection 4.3 (as we have less leading coefficients).

• XMatrices that takes as input (G′,B) and computes the matrix representation of
the multiplication maps Lxi (1 ≤ i ≤ n) with respect to B.
This computation is done directly by reducing every xi · b j (1 ≤ i ≤ n, 1 ≤ j ≤ δ) to
its normal form in K[x]/〈 f 〉K using G′.

• BMatrices that takes as input the matrices representing (Lx1 , . . . ,Lxn ) and B and
computes the matrices representing the Lbi ’s (1 ≤ i ≤ δ) in the basis B.
We design BMatrices in a way that it constructs the matrices of Lbi ’s inductively
in the degree of the bi’s as follows.
At the beginning, we have the multiplication matrices of 1 and the xi’s; those are
the matrices of the elements of degree zero and one. Note that, for any element b
of B. At the step of computing the matrix of an element b ∈ B, we remark that
there exist a variable xi and a monomial b′ ∈ B such that b = xi · b′ and the matrix
of b′ is already computed (as deg(b′) < deg(b). Therefore, we simply multiply the
matrices of Lxi and Lb′ to obtain the matrix of Lb.

• TraceComputing that takes as input the multiplication matrices Lb1 , . . . ,Lbδ and
computes the matrix (trace(Lbi·b j ))1≤i≤ j≤δ. This matrix is in fact the parametric
Hermite matrix H associated to f with respect to the basis B. To design this
subroutine, we use the following remark given in [39].
Let p, q ∈ K[x]. The normal form p of p by G can be written as p =

∑δ
i=1 ci · bi

where the ci’s lie in K. Then, we have the identity

trace(Lp·q) =
δ∑

i=1

ci · trace(Lq·bi ),

Hence, by choosing p = bi ·b j and q = 1, we can compute hi, j using the normal form
bi · b j and trace(Lb1 ), . . . , trace(Lbδ ).
Note that trace(Lbi ) is easily computed from the matrix of the map Lbi . On the
other hand, the normal form bi · b j can be read off from the j-th row of the matrix
representing Lbi , which is already computed at this point.
It is also important to notice that there are many duplicated entries in H . Thus,
we should avoid all the unnecessary re-computation. This is done easily be keeping
a list for tracking distinct entries of H .
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The pseudo-code of Algorithm 1 is presented below. Its correctness follows simply
from our definition of parametric Hermite matrices.

Beside the parametric Hermite matrix H , we return a polynomial w∞ which is the
square-free part of lcmg∈G(lcx(g)) for further usage. Note that V(w∞) =W∞.

Algorithm 1: DRL-Matrix
Input: A parametric polynomial system f = ( f1, . . . , fm)
Output: A parametric Hermite matrix H associated to f with respect to the

basis B
1 G,B ← GröbnerBasis( f , grevlex(x) � grevlex(y))
2 G′ ← ReduceGB(G)
3 w∞ ← sqfree(lcmg∈G(lcx(g)))
4 (Lx1 , . . . ,Lxn )← XMatrices(G′,B)
5 (Lb1 , . . . ,Lbδ )← BMatrices((Lx1 , . . . ,Lxn ),B)
6 H ← TraceComputing(Lb1 , . . . ,Lbδ )
7 return [H ,w∞]

Removing denominators. Note that, through the computation in the quotient ring AK,
the entries of our parametric Hermite matrix possibly contains denominators that lie in
Q[y]. As the algorithm that we introduce in Section 5 will require us to manipulate the
parametric Hermite matrix that we compute, these denominators can be a bottleneck
to handle the matrix. Therefore, we introduce an extra subroutine RemoveDenominator
that returns a parametric Hermite matrix H ′ of f without denominator.

• RemoveDenominator that takes as input the matrix H computed by DRL-Matrix
and outputs a matrix H ′ which is the parametric Hermite matrix associated to f
with respect to a basis B′ that will be made explicit below.
As we can freely choose any basis of form {ci · bi | 1 ≤ i ≤ δ} where the ci’s are
elements of Q[y], we should use a basis that leads to a denominator-free matrix.
To do this, we choose ci as the denominator of trace(Lbi ) (which lies in the first
row of the matrix H computed by TraceComputing). Then, for the entry of H
that corresponds to bi and b j, we can multiply it with ci · c j. The output matrix
H ′ is the parametric Hermite matrix associated to f with respect to the basis
{ci · bi | 1 ≤ i ≤ δ}.
We observe in many examples that this subroutine returns either a denominator-
free matrix or a matrix with smaller degree denominators. Thus, it facilitates
further computations on the output matrix.

Evaluation & interpolation scheme for generic systems. Here we assume that the input
system f satisfies Assumption (B). By Lemma 7, the entries of H are polynomials in
Q[y]. Suppose that we know beforehand a value Λ that is larger than the degree of any
entry of H , we can compute H by an evaluation & interpolation scheme as follows.

We start by choosing randomly a set E of
(

t+Λ
t

)
distinct points in Qt. Then, for

each η ∈ E, we use DRL-Matrix (Algorithm 1) on the input f (η, ·) to compute the
classic Hermite matrix associated to f (η, ·) with respect to the ordering grevlex(x). These
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computations involve only polynomials in Q[x] and not in Q(y)[x]. Finally, we interpolate
the parametric Hermite matrix H from its specialized images H(η) computed previously.

Since Assumption (B) holds, then W∞ is empty. By Proposition 10, the Hermite
matrix of f (η, ·) with respect to grevlex(x) is the image H(η) of H . Therefore, the above
scheme computes correctly the parametric Hermite matrix H .

We also remark that, in the computation of the specializations H(η), we can replace
the subroutine XMatrices in DRL-Matrix by a linear-algebra-based algorithm described
in [16]. That algorithm constructs the Macaulay matrix and carries out matrix reductions
to obtain simultaneously the normal forms that XMatrices requires.

In Section 6, we will estimate the complexity of this evaluation & interpolation scheme
when the input system f satisfies some generic assumptions.

5. Algorithms for real root classification

We present in this section two algorithms targeting the real root classification problem
through parametric Hermite matrices. The one described in Subsection 5.1 aims to solve
the weak version of Problem (1). The second algorithm, given in Subsection 5.2 outputs
the semi-algebraic formulas of the cells Si that solves Problem (1). Further, in Section 6,
we will see that, for a generic sequence f , the semi-algebraic formulas computed by this
algorithm consist of polynomials of degree bounded by n(d − 1)dn. Up to our knowledge,
this improves all previously known bounds.

Throughout this section, our input is a parametric polynomial system f = ( f1, . . . , fm) ⊂
Q[y][x]. We require that f satisfies Assumptions (A) and that the ideal 〈 f 〉 is radical.

Let G be the reduced Gröbner basis of the ideal 〈 f 〉 ⊂ Q[x, y] with respect to the
ordering grevlex(x) � grevlex(y). Let K denote the rational function field Q(y). We recall
that B ⊂ Q[x] is the basis of K[x]/〈 f 〉K derived from G and H is the parametric Hermite
matrix associated to f with respect to the basis B.

5.1. Algorithm for the weak-version of Problem (1)
From Subsection 4.3, we know that, outside the algebraic set W∞ B ∪g∈GV(lcx(g)),

the parametric matrix H possesses good specialization property (see Proposition 10).
We denote by w∞ the square-free part of lcmg∈Glcx(g). This polynomial w∞ is returned
as an output of Algorithm 1. Note that V(w∞) =W∞.

Lemma 13. When Assumption (A) holds and the ideal 〈 f 〉 is radical, the determinant of
H is not identically zero.

Proof. Recall that K denotes the rational function field Q(y). We prove that the ideal
〈 f 〉K ⊂ K[x] is radical.

Let p ∈ K[x] such that there exists n ∈ N satisfying pn ∈ 〈 f 〉K. Therefore, there exists
a polynomial q ∈ Q[y] such that q · pn ∈ 〈 f 〉. Then, (q · p)n ∈ 〈 f 〉. As 〈 f 〉 is radical, we
have that q · p ∈ 〈 f 〉. Thus, p ∈ 〈 f 〉K, which concludes that 〈 f 〉K is radical.

By Lemma 4, 〈 f 〉K is a radical zero-dimensional ideal in Q(y). Since H is also a
Hermite matrix (in the classic sense) of 〈 f 〉K, H is full rank. Therefore, det(H) is not
identically zero.
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Let wH B n/ gcd(n,w∞) where n is the square-free part of the numerator of det(H).
We denote by WH the vanishing set of wH . By Lemma 13, WH is a proper Zariski
closed subset of Ct. Our algorithm relies on the following proposition.

Proposition 14. Assume that Assumption (A) holds and the ideal 〈 f 〉 is radical. Then,
for each connected component S of the semi-algebraic set Rt \ (W∞ ∪WH ), the number
of real solutions of f (η, ·) is invariant when η varies over S.

Proof. By Lemma 12, W∞ contains the following sets:

• The non-proper points of the restriction of π to V.

• The point η ∈ Ct such that the fiber π−1(η) ∩V is infinite.

• The image by π of the irreducible components of V whose dimensions are smaller
than t.

Now we consider the set K(π,V) B sing(V) ∪ crit(π,V). Let ∆ B jac( f , x) be the
Jacobian matrix of f with respect to the variables x. The ideal generated by the n × n-
minors of ∆ is denoted by I∆. Note that, since f is radical, K(π,V) is the algebraic set
defined by the ideal 〈 f 〉 + I∆.

By Proposition 10, for η ∈ Ct \W∞, 〈 f 〉 is a zero-dimensional ideal and the quotient
ring C[x]/〈 f (η, ·)〉 has dimension δ. Moreover, if η ∈ Ct \ (W∞ ∪WH ), the system f (η, ·)
has δ distinct complex solutions as the rank of H(η) is δ. Therefore, every complex root
of f (η, ·) is of multiplicity one (we use the definition of multiplicity given in [4, Sec. 4.5]).

Now we prove that, for such a point η, the fiber π−1(η) does not intersect K(π,V).
Assume by contradiction that there exists a point (η, χ) ∈ Ct+n lying in π−1(η) ∩ K(π,V).
Note that χ is a solution of f (η, ·), i.e., f (η, χ) = 0.

As (η, χ) ∈ K(π,V), then it is contained in V(I∆). Hence, as the derivation in ∆ does
not involve y, χ cancels all the n × n-minors of the Jacobian matrix jac( f (η, ·), x). [4,
Proposition 4.16] implies that χ has multiplicity greater than one. This contradicts to
the claim that f (η, ·) admits only complex solutions of multiplicity one.

Therefore, we conclude that, for η ∈ Ct\(W∞∪WH ), π−1(η) does not intersect K(π,V).
So, using what we prove above and Lemma 12, we deduce that, for η ∈ Rt\(W∞∪WH ),

then there exists an open neighborhood Oη of η for the Euclidean topology such that
π−1(Oη) does not intersect K(π,V) ∪ π−1(W∞).

Therefore, by Thom’s isotopy lemma [11], the projection π realizes a locally trivial
fibration over Rt \ (W∞ ∪WH ). So, for any connected component C of Rt \ (W∞ ∪WH )
and any η ∈ C, we have that π−1(C)∩V∩Rt+n is homeomorphic to C× (π−1(η)∩V∩Rt+n).

As a consequence, the number of distinct real solutions of f (η, ·) is invariant when η
varies over each connected component of Rt \ (W∞ ∪WH ).

To describe Algorithm 2, we need to introduce the following subroutines:

• CleanFactors which takes as input a polynomial p ∈ Q[y, x] and the polynomial
w∞. It computes the square-free part of p with all the common factors with w∞
removed.

• Signature which takes as input a symmetric matrix with entries in Q and evaluates
its signature.
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• SamplePoints which takes as input a set of polynomials g1, . . . , gs ∈ Q[y] and com-
putes a finite subset R of Qt that intersects every connected component of the
semi-algebraic set defined by ∧s

i=1gi , 0. An explicit description of SamplePoints is
given in the proof of Theorem II in Section 3.

The pseudo-code of Algorithm 2 is below. Its proof of correctness follows immediately
from Proposition 14 and Corollary 11.

Algorithm 2: Weak-RRC-Hermite
Input: A polynomial sequence f ∈ Q[y][x] such that 〈 f 〉 is radical and

Assumptions (A) holds.
Output: A set of sample points and the corresponding numbers of real solutions

solving the weak version of Problem (1)
1 [H ,w∞]← DRL-Matrix( f )
2 wH ← CleanFactors(numer(det(H)),w∞)
3 L← SamplePoints(wH , 0 ∧ w∞ , 0)
4 for η ∈ L do
5 rη ← Signature(H(η))
6 end
7 return {(η, rη) | η ∈ L}

Remark 15. As we have seen, Algorithm 2 obtains a polynomial which serves similarly as
discriminant varieties [35] or border polynomials [49] through computing the determinant
of parametric Hermite matrices. Whereas, the two latter strategies rely on algebraic
elimination based on Gröbner bases to compute the projection of crit(π,V) on the y-space.
Since it is well-known that the computation of such a Gröbner basis could be heavy, our
algorithm has a chance to be more practical. In Section 7, we provide experimental
results to support this claim.

Remark 16. It is worth noticing that, even though the design of Algorithm 2 employs
the grevlex monomial ordering where x1 � · · · � xn, we can replace it by any grevlex
ordering with another lexicographical order among the x’s. For instance, we can use the
monomial ordering grevlex(xn � · · · � x1). While every theoretical claim still holds for
this ordering, the practical behavior could be different.

5.2. Computing semi-algebraic formulas
By Corollary 11, the number of real roots of the system f (η, ·) for a given point

η ∈ Rt \ W∞ can be obtained by evaluating the signature of the parametric Hermite
matrix H . We recall that the signature of a matrix can be deduced from the sign
pattern of its leading principal minors. More precisely, we recall the following criterion,
introduced by [46] and [31] (see [23] for a summary on these works).

Lemma 17. [23, Theorem 2.3.6] Let S be a δ × δ symmetric matrix in Rδ×δ and, for
1 ≤ i ≤ δ, S i be the i-th leading principal minor of S , i.e., the determinant of the sub-
matrix formed by the first i rows and i columns of S . By convention, we denote S 0 = 1.

We assume that S i , 0 for 0 ≤ i ≤ δ. Let k be the number of sign variations between
S i and S i+1. Then, the numbers of positive and negative eigenvalues of S are respectively
δ − k and k. Thus, the signature of S is δ − 2k.
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This criterion leads us to the following idea. Assume that none of the leading principal
minors of H is identically zero. We consider the semi-algebraic subset of Rt defined by
the non-vanishing of those leading principal minors. Over a connected component S′ of
this semi-algebraic set, each leading principal minor is not zero and its sign is invariant.
As a consequence, by Lemma 17 and Corollary 11, the number of distinct real roots of
f (η, ·) when η varies over S′ \W∞ is invariant.

However, this approach does not apply directly if one of the leading principle minors
ofH is identically zero. We bypass this obstacle by picking randomly an invertible matrix
A ∈ GLδ(Q) and working with the matrix HA B AT ·H · A. The lemma below states that,
with a generic matrix A, all of the leading principal minors of HA are not identically zero.

Lemma 18. There exists a Zariski dense subset A of GLδ(Q) such that for A ∈ A, all of
the leading principal minors of HA B AT · H · A are not identically zero.

Proof. For 1 ≤ r ≤ δ, we denote by Mr the set of all r × r minors of H .
Let η ∈ Qt \ W∞ ∪WH . We have that H(η) is a full rank matrix in Qδ×δ and, for

A ∈ GLδ(R), HA(η) = AT · H(η) · A.
We prove that there exists a Zariski dense subsetA of GLδ(Q) such that, for A ∈ A, all

of the leading principal minors ofHA(η) are not zero. Then, as an immediate consequence,
all the leading principal minors of HA are not identically zero.

We consider the matrix A = (ai, j)1≤i, j≤δ where a = (ai, j) are new variables. Then, the
r-th leading principal minor Mr(a) of AT · H(η) · A can be written as

Mr(a) =
∑
m∈Mr

am ·m(η),

where the am’s are elements of Q[a].
As H(η) is a full rank symmetric matrix by assumption, there exists a matrix Q ∈

GLδ(R) such that QT · H(η) · Q is a diagonal matrix with no zero on its diagonal. Hence,
the evaluation of a at the entries of Q gives Mr(a) a non-zero value. As a consequence,
Mr(a) is not identically zero.

Let Ar be the non-empty Zariski open subset of GLδ(Q) defined by Mr(a) , 0. Then,
the set of the matrices A ∈ Ar such that the r × r leading principal minor of AT · H(η) · A
is not zero.

Taking A as the intersection of Ar for 1 ≤ r ≤ δ, then, for A ∈ A, none of the leading
principal minors of AT · H(η) · A equals zero. Consequently, each leading principal minor
of AT · H · A is not identically zero.

Our algorithm (Algorithm 3) for solving Problem (1) through parametric Hermite
matrices is described below. As it depends on the random choice of the matrix A,
Algorithm 3 is probabilistic. One can easily modify it to be a Las Vegas algorithm by
detecting the cancellation of the leading principal minors for each choice of A.
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Algorithm 3: RRC-Hermite
Input: A polynomial sequence f ⊂ Q[y][x] such that the ideal 〈 f 〉 is radical and

f satisfies Assumption (A)
Output: The descriptions of a collection of semi-algebraic sets Si solving

Problem (1)
1 H ,w∞ ← DRL-Matrix( f )
2 Choose randomly a matrix A in Qδ×δ
3 HA ← AT · H · A
4 (M1, . . . ,Mδ)← LeadingPrincipalMinors(HA)
5 L← SamplePoints

(
w∞ ∧

(
∧δi=1Mi , 0

))
6 for η ∈ L do
7 rη ← Signature(H(η))
8 end
9 return {(sign (M1(η), . . . ,Mδ(η)), η, rη) | η ∈ L}

Proposition 19. Assume that f satisfies Assumptions (A) and that the ideal 〈 f 〉 is radical.
Let A be a matrix in GLδ(Q) such that all of the leading principal minors M1, . . . ,Mδ of
HA B AT ·H ·A are not identically zero. Then, Algorithm 3 computes correctly a solution
for Problem (1).

Proof. Note that for η ∈ Rt \ W∞, we have that HA(η) = AT · H(η) · A. Therefore, the
signature of H(η) equals to the signature of HA(η).

Let M1, . . . ,Mδ be the leading principal minors of HA and S be the algebraic set
defined by ∧δi=1Mi , 0. Over each connected component S′ of S, the sign of each Mi is
invariant and not zero. Therefore, by Lemma 17, the signature of HA(η), and therefore
of H(η), is invariant when η varies over S′ \W∞. As a consequence, by Corollary 11, the
number of distinct real roots of f (η, ·) is also invariant when η varies over S′ \W∞. We
finish the proof of correctness of Algorithm 3.

6. Complexity analysis

6.1. Degree bound of parametric Hermite matrices on generic input
In this subsection, we consider an affine regular sequence f = ( f1, . . . , fn) ⊂ Q[y][x]

according to the variables x, i.e., the homogeneous components of largest degree in x of
the fi’s form a homogeneous regular sequence (see Section 2). Additionally, we require
that f satisfies Assumptions (A) and (B).

Let d be the highest value among the total degrees of the fi’s. Since the homogeneous
regular sequences are generic among the homogeneous polynomial sequences (see, e.g.,
[2, Proposition 1.7.4] or [37]), the same property of genericity holds for affine regular
sequences (thanks to the definition we use).

As in previous sections, G denotes the reduced Gröbner basis of 〈 f 〉 with respect
to the ordering grevlex(x) � grevlex(y). Let δ be the dimension of the K-vector space
K[x]/〈 f 〉K where K = Q(y). By Bézout’s inequality, δ ≤ dn. We derive from G a basis
B = {b1, . . . , bδ} of K[x]/〈 f 〉K consisting of monomials in the variables x. Finally, the
parametric Hermite matrix of f with respect to B is denoted by H = (hi, j)1≤i, j≤δ.
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For a polynomial p ∈ Q[y, x], we denote by deg(p) the total degree of p in (y, x) and
degx(p) the partial degree of p in the variables x.

As Assumption (B) holds, by Lemma 7, the entries of the parametric Hermite matrix
H associated to f with respect to the basis B are elements of Q[y]. To establish a degree
bound on the entries of H , we need to introduce the following assumption.

Assumption C. For any g ∈ G, we have that deg(g) = degx(g).

Proposition 20 below states that Assumption (C) is generic. Its direct consequence
is a proof for Proposition 8.

Proposition 20. Let C[x, y]d be the set of polynomials in C[x, y] having total degree
bounded by d. There exists a non-empty Zariski open subset FD of C[x, y]n

d such that
Assumption (C) holds for f ∈ FD ∩Q[x, y]n.

Consequently, for f ∈ FD ∩Q[x, y]n, f satisfies Assumption (B).

Proof. Let yt+1 be a new indeterminate. For any polynomial p ∈ Q[x, y], we consider the
homogenized polynomial ph ∈ Q[x, y, yt+1] of p defined as follows:

ph = ydeg(p)
t+1 p

(
x1

yt+1
, . . . ,

xn

yt+1
,

y1

yt+1
, . . . ,

yt

yt+1

)
.

Let C[x, y, yt+1]h
d be the set of homogeneous polynomials in C[x, y, yt+1] whose degrees

are exactly d. By [47, Corollary 1.85], there exists a non-empty Zariski subset F h
D of(

C[x, y, yt+1]h
d

)n
such that the variables x is in Noether position with respect to fh for

every fh ∈ F h
D.

For fh ∈ F h
D, let Gh be the reduced Gröbner basis of fh with respect to the grevlex

ordering grevlex(x � y � yt+1). By [3, Proposition 7], if the variables x is in Noether
position with respect to fh, then the leading monomials appearing in Gh depend only on
x.

Let f and G be the image of fh and Gh by substituting yt+1 = 1. We show that G is a
Gröbner basis of f with respect to the ordering grevlex(x � y).

Since Gh generates 〈 fh〉, G is a generating set of 〈 f 〉. As the leading monomials of
elements in Gh do not depend on yt+1, the substitution yt+1 = 1 does not affect these
leading monomials.

For a polynomial p ∈ 〈 f 〉 ⊂ Q[x, y], then p writes p =
∑n

i=1 ci · fi, where the ci’s lie
in Q[x, y]. We homogenize the polynomials ci · fi on the right hand side to obtain a
homogeneous polynomial Ph ∈ 〈 fh〉. Note that Ph is not necessarily the homogenization
ph of p but only the product of ph with a power of yt+1. Then, there exists a polynomial
gh ∈ Gh such that the leading monomial of gh divides the leading monomial of Ph. Since
the leading monomial of gh depends only on x, it also divides the leading monomial of
ph, which is the leading monomial of p. So, the leading monomial of the image of gh in
G divides the leading monomial of p. We conclude that G is a Gröbner basis of f with
respect to the ordering grevlex(x � y) and the set of leading monomials in G depends
only on the variables x.

Let FD be the subset of C[x, y]n
d such that for every f ∈ FD, its homogenization fh

is contained in F h
D. Since the two spaces

(
C[x, y, yt+1]h

d

)n
and C[x, y]n

d are both exactly
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C(d+n+t
n+t )×n (by considering each monomial coefficient as a coordinate), FD is also a non-

empty Zariski open subset of C[x, y]n
d.

Assume now that the polynomial sequence f belongs to FD. We consider the two
monomial orderings over Q[x, y] below:

• The elimination ordering grevlex(x) � grevlex(y) is abbreviated by O1. The leading
monomial of p ∈ Q[x, y] with respect to O1 is denoted by lm1(p). The reduced
Gröbner basis of f with respect to O1 is G.

• The grevlex ordering grevlex(x � y) is abbreviated by O2. The leading monomial of
p ∈ Q[x, y] with respect to O2 is denoted by lm2(p). The reduced Gröbner basis of
f with respect to O2 is denoted by G2.

As proven above, the set {lm2(g2) | g2 ∈ G2} does not depend on y. With this property,
we will show, for any g2 ∈ G2, there exists a polynomial g ∈ G such that lm1(g) divides
lm2(g2).

By definition, lm2(g2) is greater than any other monomial of g2 with respect to the
ordering O2. Since lm2(g2) depends only on the variables x, it is then greater than
any monomial of g2 with respect to the ordering O1. Hence, lm2(g2) is also lm1(g2).
Consequently, since G is a Gröbner basis of f with respect to O1, there exists a polynomial
g ∈ G such that lm1(g) divides lm1(g2) = lm2(g2).

Next, we prove that for every g ∈ G, lm1(g) is also lm2(g). For this, we rely on the
fact that G is reduced. Assume by contradiction that there exists a polynomial g ∈ G
such that lm1(g) , lm2(g). Thus, lm2(g) must contain both x and y. Let tx be the part in
only variables x of lm2(g). Note that lm1(g) is greater than tx with respect to O1. There
exists an element g2 ∈ G2 such that lm2(g2) divides lm2(g). Since lm2(g2) depends only on
the variables x, we have that lm2(g2) divides tx. Then, by what we proved above, there
exists g′ ∈ G such that lm1(g) divides lm2(g2), so lm1(g) divides tx. This implies that G is
not reduced, which contradicts the definition of G.

So, lm1(g) = lm2(g) for every g ∈ G and, consequently, deg(g) = degx(g). We conclude
that there exists a non-empty Zariski open subset FD (as above) of C[x, y]n

d such that
Assumption (C) holds for every f ∈ FD ∩Q[x, y]n.

Additionally, one easily notices that Assumption (C) implies Assumption (B). As a
consequence, f also satisfies Assumption (B) for any f ∈ FD ∩Q[x, y]n.

Recall that, when Assumption (B) holds, by Lemma 7, the trace of any multiplication
map Lp is a polynomial in Q[y] where p ∈ Q[y][x]. We now estimate the degree of
trace(Lp). Since the map p 7→ trace(Lp) is linear, it is sufficient to consider p as a
monomial in the variables x.

Proposition 21. Assume that Assumption (C) holds. Then, for any monomial m in the
variables x, the degree in y of trace(Lm) is bounded by deg(m). As a consequence, the
total degree of the entry hi, j = trace(Lbi·b j ) of H is at most the sum of the total degrees
of bi and b j, i.e.,

deg(hi, j) ≤ deg(bi) + deg(b j).

Proof. Let m be a monomial in Q[x]. The multiplication matrix Lm is built as follows.
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For 1 ≤ i ≤ δ, the normal form of bi · m as a polynomial in Q(y)[x] writes

NFG(bi · m) =
δ∑

j=1

ci, j · b j.

Note that this normal form is the remainder of the successive divisions of bi · m by
polynomials in G. As Assumption (C) holds, Assumption (B) also holds. Therefore,
those divisions do not introduce any denominator. So, every term appearing during
these normal form reductions are polynomials in Q[y][x].

Let p ∈ Q[y][x]. For any g ∈ G, by Assumption (C), the total degree in (y, x) of every
term of g is at most the degree of lmx(g). Thus, a division of p by g involves only terms
of total degree deg(p). Thus, during the polynomial division of p to G, only terms of
degree at most deg(p) will appear. Hence the degree of NFG(p) is bounded by deg(p).

Note that trace(Lm) =
∑δ

i=1 ci,i. As the degree of ci,i · bi is bounded by deg(bi)+ deg(m),
the degree of ci,i is at most deg(m). Then, we obtain that deg(trace(Lm)) ≤ deg(m).

Finally, the degree bound of hi, j follows immediately:

deg(hi, j) = deg(trace(Lbi·b j )) ≤ deg(bi · b j) = deg(bi) + deg(b j).

Lemma 22. Assume that f satisfies Assumption (C). Then the degree of a minor M
consisting of the rows (r1, . . . , r`) and the columns (c1, . . . , c`) of H is bounded by

∑̀
i=1

(
deg(bri ) + deg(bci )

)
.

Particularly, the degree of det(H) is bounded by 2
∑δ

i=1 deg(bi).

Proof. We expand the minors M into terms of the form (−1)sign (σ)hr1,σ(c1) . . . hr` ,σ(c`), where
σ is a permutation of {c1, . . . , c`} and sign (σ) is its signature. We then bound the degree
of each of those terms as follows using Proposition 21:

deg

∏̀
i=1

hri,σ(ci)

 = ∑̀
i=1

deg(hri,σ(ci)) ≤
∑̀
i=1

(
deg(bri ) + deg(bσ(ci))

)
=

∑̀
i=1

(
deg(bri ) + deg(bci )

)
.

Hence, taking the sum of all those terms, we obtain the inequality:

deg(Mi) ≤
∑̀
i=1

(
deg(bri ) + deg(bci )

)
.

When M is taken as the determinant of H , then

deg(det(H)) ≤ 2
δ∑

i=1

deg(bi).
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Proposition 21 implies that, when Assumption (C) holds, the degree pattern of H
depends only on the degree of the elements of B = {b1, . . . , bδ}. We rearrange B in the
increasing order of degree, i.e., deg(bi) ≤ deg(b j) for 1 ≤ i < j ≤ δ. So, b1 = 1 and
deg(b1) = 0. The degree bounds of the entries of H are expressed by the matrix below

0 deg(b2) . . . deg(bδ)
deg(b2) 2 deg(b2) . . . deg(bδ) + deg(b2)
...

...
. . .

...
deg(bδ) deg(bδ) + deg(b2) . . . 2 deg(bδ)

 .
Moreover, using the regularity of f , we are able to establish explicit degree bounds

for the elements of B and then, for the minors of H .

Lemma 23. Assume that f is an affine regular sequence and let B be the basis defined
as above. Then the highest degree among the elements of B is bounded by n(d − 1) and

2
δ∑

i=1

deg(bi) ≤ n(d − 1)dn.

Proof. For p ∈ K[x], let ph ∈ K[x1, . . . , xn+1] be the homogenization of p with respect to
the variable xn+1, i.e.,

ph = xdegx(p)
n+1 p

(
x1

xn+1
, . . . ,

xn

xn+1

)
.

The dehomogenization map α is defined as:

α : K[x1, . . . , xn+1]→ K[x1, . . . , xn],
p(x1, . . . , xn+1) 7→ p(x1, . . . , xn, 1).

Also, the homogeneous component of largest degree of p with respect to the variables
x is denoted by H p. Throughout this proof, we use the following notations:

• I = 〈 f 〉K and G is the reduced Gröbner basis of I w.r.t. grevlex(x1 � · · · � xn).

• Ih = 〈ph | p ∈ f 〉K and Gh is the reduced Gröbner basis of Ih w.r.t. grevlex(x1 � · · · �

xn+1).

The Hilbert series of the homogeneous ideal Ih writes

HSIh (z) =
∞∑

r=0

(dimK K[x]r − dimK(Ih ∩K[x]r)) · zr,

where K[x]r = {p | p ∈ K[x] : degx(p) = r}
Since f is an affine regular sequence, by definition (see Section 2), H f = (H f1, . . . , H fn)

forms a homogeneous regular sequence. Equivalently, by [47, Proposition 1.44], the homo-
geneous polynomial sequence (( f1)h, . . . , ( fn)h, xn+1) is regular. Particularly, (( f1)h, . . . , ( fn)h)
is a homogeneous regular sequence and, by [36, Theorem 1.5], we obtain

HSIh (z) =

∏n
i=1

(
1 − zdeg( fi)

)
(1 − z)n+1 =

∏n
i=1

(
1 + . . . + zdeg( fi)−1

)
1 − z

.
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On the other hand, as (( f1)h, . . . , ( fn)h, xn+1) is a homogeneous regular sequence, by [3,
Proposition 7], the leading terms of Gh w.r.t. grevlex(x1 � · · · � xn+1) do not depend on
the variables xn+1. Thus, the dehomogenization map α does not affect the set of leading
terms of Gh. Besides, α(Gh) is a Gröbner basis of I with respect to grevlex(x) (see, e.g.,
the proof of [20, Lemma 27]). Hence, the leading terms of Gh coincides with the leading
terms of G.

As a consequence, the set of monomials in (x1, . . . , xn+1) which are not contained in
the initial ideal of Ih with respect to grevlex(x1 � · · · � xn+1) is exactly

{b · x j
n+1 | b ∈ B, j ∈ N}.

As a consequence, dimK K[x]r − dimK(Ih ∩K[x]r) =
∑r

j=0 |B ∩K[x] j|. Let H(z) =
∑∞

r=0 |B ∩

K[x]r | · zr. We have that

(1 − z) · HSIh (z) = (1 − z)
∞∑

r=0

r∑
j=0

|B ∩K[x] j| · zr =

∞∑
r=0

|B ∩K[x]r | · zr = H(z).

Then,

H(z) =
n∏

i=1

(
1 + . . . + zdeg( fi)−1

)
.

As a direct consequence, max1≤i≤δ deg(bi) is bounded by
∑n

i=1 deg( fi) − n ≤ n(d − 1).
Let G1 and G2 be two polynomials in Z[z]. We write G1 ≤ G2 if and only if for any

r ≥ 0, the coefficient of zr in G2 is greater than or equal to the one in G1.
Since deg( fi) ≤ d for every 1 ≤ i ≤ n, then

H(z) =
n∏

i=1

(
1 + . . . + zdeg( fi)−1

)
≤

n∏
i=1

(
1 + . . . + zd−1

)
.

As a consequence, H′(z) =
∑∞

r=1(r |B ∩ K[x]r |) · zr−1 ≤
(∏n

i=1

(
1 + . . . + zd−1

))′
. Expanding

G′(z), we obtain

H′(z) ≤
n
(∑d−1

i=0 zi
)n−1 (∑d−1

i=0 zi − dzd−1
)

1 − z
= n

d−1∑
i=0

zi


n−1 d−2∑

i=0

zi
(
1 + . . . + zd−i−2

)
.

By substituting z = 1 in the above inequality, we obtain

H′(1) ≤ ndn−1
d−2∑
i=0

(d − i − 1) =
n(d − 1)dn

2
.

Thus, we have that
∑δ

i=1 deg(bi) =
∑∞

r=0 r |B ∩K[x]r | = H′(1) ≤ n(d−1)dn

2 .

Corollary 24 below follows immediately from Lemmas 22 and 23.

Corollary 24. Assume that f is a regular sequence that satisfies Assumption (C). Then
the degree of any minor of H is bounded by n(d − 1)dn.
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Remark 25. Note that Assumption (C) requires a condition on the degrees of polynomials
in the Gröbner basis G of 〈 f 〉. We remark that it is possible to establish similar bounds
for the degrees of entries of our parametric Hermite matrix and its minors when the
system f satisfies a weaker property than Assumption (C) (we still keep the regularity
assumption).

Indeed, we only need to assume that, for any g ∈ G, the homogeneous component of
the highest degree in x of g does not depend on the parameters y. Let dy be an upper
bound of the partial degrees in y of elements of G. Under the change of variables xi 7→ xdy

i ,
f is mapped to a new polynomial sequence that satisfies Assumption (C). Therefore, we
easily deduce the two following bounds, which are similar to the ones of Proposition 21
and Corollary 24.

• deg(hi, j) ≤ dy(deg(bi) + deg(b j));

• The degree of any minor of H is bounded by dy n(d − 1)dn.

Even though these bounds are not sharp anymore, they still allow us to compute the
parametric Hermite matrices using evaluation & interpolation scheme and control the
complexity of this computation in the instances where Assumption (C) does not hold.

6.2. Complexity analysis of our algorithms
In this subsection, we analyze the complexity of our algorithms on generic systems.
Let f = ( f1, . . . , fn) ⊂ Q[x, y] be a regular sequence, where y = (y1, . . . , yt) and x =

(x1, . . . , xn), satisfying Assumptions (A) and (C). To simplify the asymptotic complexity,
we assume that n, t and d are greater than or equal to 2.

We denote by G the reduced Gröbner basis of f with respect to the ordering grevlex(x) �
grevlex(y). The basis B is taken as all the monomials in x that are irreducible by G. Then,
H is the parametric Hermite matrix associated of f with respect to B.

We start by estimating the arithmetic complexity for computing the parametric Her-
mite matrix H and its minors. We denote λ B n(d − 1) and D B n(d − 1)dn.

Proposition 26. Assume that f = ( f1, . . . , fn) ⊂ Q[y][x] is a regular sequence that satisfies
Assumptions (A) and (C). Let δ be the dimension of the K-vector space K[x]/〈 f 〉K where
K = Q(y). Let H be the parametric Hermite matrix associated to f constructed using
grevlex(x) ordering. Then, by Lemma 7, the entries of the parametric Hermite matrix H
lie in Q[y].

Using the evaluation & interpolation scheme, one can compute H within

O ˜((
t + 2λ

t

) (
n

(
d + n + t

n + t

)
+ nω+1dωn+1 + d(ω+1)n

))
arithmetic operations in Q, where, by Bézout’s bound, δ is bounded by dn.

Moreover, each minor (including the determinant) of H can be computed using

O ˜((
t +D

t

) (
d2n

(
t + 2λ

t

)
+ dωn

))
arithmetic operations in Q.
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Proof. By Lemma 23 and Proposition 21, the highest degree among the entries of H is
bounded by 2λ = 2n(d − 1). The evaluation & interpolation scheme of Subsection 4.4
requires computing

(
t+2λ

t

)
specialized Hermite matrices. We first analyze the complexity

for computing each of those specialized Hermite matrices.
The evaluation of f at each point η ∈ Qt costs O

(
n

(
d+n+t

n+t

))
arithmetic operations in

Q.
As the highest degree in the Gröbner basis of f (η, ·) w.r.t. the grevlex(x) ordering

is bounded by n(d − 1) + 1, the computation of this Gröbner basis can be done within
O (ndωn) arithmetic operations in Q (see [16, Theorem 5.1]).

Next, we compute the matrices representing the Lxi ’s. Using [16, Algo. 4], we obtain
an arithmetic complexity of O

(
dnω+1δω

)
([16, Prop. 5]) for computing such n matrices,

where ω is the exponential constant for matrix multiplication. Using δ ≤ dn, we obtain
the bound O

(
nω+1dωn+1

)
.

The traces of these matrices are then computed using nδ additions in Q. The subrou-
tine BMatrices consists of essentially δ multiplication of δ × δ matrices (with entries in
Q). This leads to an arithmetic complexity O(δω+1), which is then bounded by O(d(ω+1)n).
Next, the computation of each entry hi, j is simply a vector multiplication of length δ,
whose complexity is O(δ). Doing so for δ2 entries, TraceComputing takes in overall O(δ3)
arithmetic operations in Q.

Thus, as δ ≤ dn, the complexity of the evaluation step lies in

O
((

t + 2λ
t

) (
n

(
d + n + t

n + t

)
+ nω+1dωn+1 + d(ω+1)n

))
.

Finally, we interpolate δ2 entries which are polynomials in Q[y] of degree at most
2λ. Using the multivariate interpolation algorithm of [8], the complexity of this step
therefore lies in O

(
δ2

(
t+2λ

t

)
log2

(
t+2λ

t

)
log log

(
t+2λ

t

))
.

Summing up the both steps, we conclude that the parametric Hermite matrix H can
be obtained within

O ˜((
t + 2λ

t

) (
n

(
d + n + t

n + t

)
+ nω+1dωn+1 + d(ω+1)n

))
arithmetic operations in Q.

Similarly, the minors of H can be computed using the technique of evaluation &
interpolation. By Corollary 24, the degree of every minor of H is bounded by D. We
specializeH at

(
t+D

t

)
points in Qt and compute the corresponding minor of each specialized

Hermite matrix. This step takes

O
((

t +D
t

) (
δ2

(
t + 2λ

t

)
+ δω

))
arithmetic operations in Q. Finally, using the multivariate interpolation algorithm of [8],
it requires

O
((

t +D
t

)
log2

(
t +D

t

)
log log

(
t +D

t

))
arithmetic operations in Q to interpolate the final minor. Therefore, using δ ≤ dn, the
whole complexity for computing each minor of H lies within

O ˜((
t +D

t

) (
d2n

(
t + 2λ

t

)
+ dωn

))
.
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We note that the complexity of computing the matrix H in Proposition 26 is also
bounded by the complexity of computing its minor. Indeed, we have that(

d + n + t
n + t

)
=

(d + n + t) . . . (d + n + 1)(d + n) . . . (d + 1)
(n + t)!

≤
(d + n + t) . . . (d + n + 1)

t!
(d + n) . . . (d + 1)

n!

≤
(D + t) . . . (D + 1)

t!
(2dn) =

(
D + t

t

)
(2dn).

Asymptotically, nωdωn+1 is bounded by O ˜(
d(ω+1)n

)
. For t ≥ 2,

(
t+D

t

)
≥ D2/2 ≥ d(ω−1)n.

Hence, we obtain(
t + 2λ

t

) (
n
(
d + n + t

n + t

)
+ nω+1dωn+1 + d(ω+1)n

)
∈ O ˜((

t + 2λ
t

)(
t +D

t

)
d2n

)
,

which proves our claim above.
Finally, we state our main result, which is Theorem I below. It estimates the arith-

metic complexity of Algorithms 2 and 3.

Theorem I. Let f ⊂ Q[x, y] be a regular sequence such that the ideal 〈 f 〉 is radical and
f satisfies Assumptions (A) and (C). Recall that D denotes n(d − 1)dn. Then, we have
the following statements:

i) The arithmetic complexity of Algorithm 2 lies in

O ˜((
t +D

t

)
23t n2t+1d2nt+n+2t+1

)
.

ii) Algorithm 3, which is probabilistic, computes a set of semi-algebraic descriptions
solving Problem (1) within

O ˜((
t +D

t

)
23t n2t+1d3nt+2(n+t)+1

)
arithmetic operations in Q in case of success.

iii) The semi-algebraic descriptions output by Algorithm 3 consist of polynomials in
Q[y] of degree bounded by D.

Proof. As Assumption (C) holds, we have that w∞ = 1 and wH is the square-free part of
det(H).

Therefore, after computing the parametric Hermite matrix H and its determinant,
whose complexity is given by Proposition 26, Algorithm 2 essentially consists of comput-
ing sample points of the connected components of the algebraic set Rt \ V(det(H)).

By Corollary 24, the degree of det(H) is bounded by D. Applying Corollary 3, we
obtain the following arithmetic complexity for this computation of sample points

O ˜((
t +D

t

)
23t
D

2t+1
)
' O ˜((

t +D
t

)
23t n2t+1d2nt+n+2t+1

)
.
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Also by Corollary 3, the finite subset of Qt output by SamplePoints has cardinal bounded
by 2tDt. Thus, evaluating the specializations of H at those points and their signatures
costs in total O

(
2tDt

(
δ2

(
2λ+t

t

)
+ δω+1/2

))
arithmetic operations in Q using [4, Algorithm

8.43].
Therefore, the complexity of SamplePoints dominates the whole complexity of the

algorithm. We conclude that Algorithm 2 runs within

O ˜((
t +D

t

)
23t n2t+1d2nt+n+2t+1

)
arithmetic operations in Q.

For Algorithm 3, we start by choosing randomly a matrix A and compute the matrix
HA = AT ·H ·A. Then, we compute the leading principal minors M1, . . . ,Mδ of HA. Using
Proposition 26, this step admits the arithmetic complexity bound

O ˜(
δ

(
t +D

t

) (
d2n

(
t + 2λ

t

)
+ dωn

))
.

Next, Algorithm 3 computes sample points for the connected components of the
semi-algebraic set defined by ∧δi=1Mi , 0. Since the degree of each Mi is bounded by D,
Corollary 3 gives the arithmetic complexity

O ˜((
t +D

t

)
dnt+n 23t

D
2t+1

)
' O ˜((

t +D
t

)
23t n2t+1d3nt+2(n+t)+1

)
.

It returns a finite subset of Qt whose cardinal is bounded by (2δD)t. The evaluation of
the leading principal minors’ sign patterns at those points has the arithmetic complexity
lying in O

(
2tδt+1D2t

)
' O

(
2tn2td3nt+n+2t

)
.

Again, the complexity of SamplePoints dominates the whole complexity of Algo-
rithm 3. The proof of Theorem I is then finished.

Probability aspect. The main probabilistic source of our algorithms 2 and 3 comes from
the use of the geometric resolution [26] in the computation of sample points per con-
nected components described in Section 3. Since the geometric resolution depends on
the specialization and lifting procedures, it makes use of various random choices. As
explained in [26], the bad choices are enclosed in strict algebraic subsets of certain affine
spaces, which implies that almost any random choice leads to a correct computation. In
general, even though one can check whether the points output by geometric resolution
are solutions of the input system, some solutions can be missing. Thus, the geometric
resolution is not Las Vegas.

Besides, Algorithm 3 depends also on the choice of the matrix Q. By Lemma 18, any
choice of Q from a prescribed dense Zariski open subset of GL(n,C) will work. As the
purpose of choosing Q is to ensure that none of the leading principal minors of QT ·H ·Q
are identically zero. One can check easily whether a good matrix Q is found.

7. Practical implementation & Experimental results

7.1. Remark on the implementation of Algorithm 3
Recall that Algorithm 3 leads us to compute sample points per connected components

of the non-vanishing set of the leading principal minors (M1, . . . ,Mδ). Comparing to
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Algorithm 2 in which we only compute sample points for Rt \ V(Mδ), the complexity of
Algorithm 3 contains an extra factor of dnt due to the higher number of polynomials
given as input to the subroutine SamplePoints. Even though the complexity bounds of
these two algorithms both lie in dO(nt), the extra factor dnt mentioned above sometimes
becomes the bottleneck of Algorithm 3 for tackling practical problems. Therefore, we
introduce the following optimization in our implementation of Algorithm 3.

We start by following exactly the steps (1-4) of Algorithm 3 to obtain the leading
principal minors (M1, . . . ,Mδ) and the polynomial w∞. Then, by calling the subroutine
SamplePoints on the input Mδ , 0∧w∞ , 0, we compute a set of sample points (and their
corresponding numbers of real roots) {(η1, r1), . . . , (η`, r`)} that solves the weak-version of
Problem (1). We obtain from this output all the possible numbers of real roots that the
input system can admit.

For each value 0 ≤ r ≤ δ, we define

Φr = {σ = (σ1, . . . , σδ) ∈ {−1, 1}δ | the sign variation of σ is (δ − r)/2}.

If r . δ (mod 2), Φr = ∅.
For σ ∈ Φr and η ∈ Rt \ V(w∞) such that sign (Mi(η)) = σi for every 1 ≤ i ≤ δ, the

signature of H(η) is r. As a consequence, for any η in the semi-algebraic set defined by

(w∞ , 0) ∧ (∨σ∈Φr (∧
δ
i=1sign (Mi) = σi)),

the system f (η, .) has exactly r distinct real solutions.
Therefore, (Sri )1≤i≤` is a collection of semi-algebraic sets solving Problem (1). Then,

we can simply return {(Φri , ηi, ri) | 1 ≤ i ≤ `} as the output of Algorithm 3 without any
further computation. Note that, by doing so, we may return sign conditions which are
not realizable.

We discuss now about the complexity aspect of the steps described above. For r ≡ δ
(mod 2), the cardinal of Φr is

(
δ

(δ−r−2)/2

)
. In theory, the total cardinal of all the Φri ’s

(1 ≤ i ≤ `) can go up to 2δ−1, which is doubly exponential in the number of variables
n. However, in the instances that are actually tractable by the current state of the
art, 2δ is still smaller than δ3t. And when it is the case, following this approach has
better performance than computing the sample points of the semi-algebraic set defined
by ∧δi=1Mi , 0. Otherwise, when 2δ exceeds δ3t, we switch back to the computation of
sample points.

This implementation of Algorithm 3 does not change the complexity bound given in
Theorem I.

7.2. Implementation infrastructure
To implement our algorithm, we need three main ingredients: (i) Gröbner bases

computations, in order to obtain monomial basis of quotient algebras that we use to
compute our parametrized Hermite matrices, (ii) an implementation of an algorithm
computing sample points connected components of semi-algebraic sets, (iii) a computer
algebra system to manipulate polynomials and matrices.

In our implementation, we use the Maple computer algebra system and its program-
ming language to implement the overall algorithm. We use J.-Ch Faugère’s FGb library
[21], implemented in C, for computing Gröbner bases.
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In order to compute sample points per connected components of semi-algebraic sets,
we use the RAGlib [40] (Real Algebraic Library) package which is implemented using the
Maple programming language and the FGb library. The algorithm implemented therein
is the one of [19] and its complexity remains to be established. Even if they share similar
ingredients, it is not the same as the one of Section 3 which provides the state-of-the-art
complexity result for this problem. Hence, our implementation might not meet the best
promised by complexity results. Still, we see in the experiments below that it already
can tackle problems which are out of reach of the current software state-of-the-art.
7.3. Experiments

This subsection provides numerical results of several algorithms related to the real
root classification. We report on the performance of each algorithm for different test
instances.

The computation is carried out on a computer of Intel(R) Xeon(R) CPU E7-4820
2GHz and 1.5 TB of RAM. The timings are given in seconds (s.), minutes (m.) and
hours (h.). The symbol ∞ means that the computation cannot finish within 120 hours.

Throughout this subsection, the column hermite reports on the computational data
of our algorithms based on parametric Hermite matrices described in Section 5. It uses
the notations below:

- mat: the timing for computing a parametric Hermite matrix H .

- det: the runtime for computing the determinant of H .

- min: the timing for computing the leading principal minors of H .

- sp: the runtime for computing at least one points per each connected component
of the semi-algebraic set Rt \ V(det(H)).

- deg: the highest degree among the leading principal minors of H .

Generic systems. In this paragraph, we report on the results obtained with generic in-
puts, i.e., randomly chosen dense polynomials ( f1, . . . , fn) ⊂ Q[y1, . . . , yt][x1, . . . , xn]. The
total degrees of input polynomials are given as a list d = [deg( f1), . . . , deg( fn)].

We first compare the algorithms using Hermite matrices (Section 5) with the folklore
Sturm-based algorithm sketched in the introduction for solving Problem (1). The column
sturm of Fig. (1) shows the experimental results of the Sturm-based algorithm. It
contains the following sub-columns:

- elim: the timing for computing the eliminating polynomial.

- sres: the timing for computing the subresultant coefficients in the Sturm-based
algorithm.

- sp-s: the timing for computing sample points per connected components of the
non-vanishing set of the last subresultant coefficient.

- deg-s: the highest degree among the subresultant coefficients.
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We observe that the sum of mat-h and min-h is smaller than the sum of elim and sres.
Hence, obtaining the input for the sample point computation in hermite strategy is easier
than in sturm strategy. We also remark that the degree deg-h is much smaller than deg-
s, that explains why the computation of sample points using Hermite matrices is faster
than using the subresultant coefficients.

We conclude that the parametric Hermite matrix approach outperforms the Sturm-
based one both on the timings and the degree of polynomials in the output formulas.

t d hermite sturm
mat min sp total deg elim sres sp-s total deg-

s

2 [2, 2] .07 s .01 s .3 s .4 s 8 .01 s .1 s 2 s 2.2 s 12
2 [3, 2] .1 s .12 s 4.8 s 5 s 18 .05 s .5 s 15 s 16 s 30
2 [2, 2, 2] .3 s .3 s 33 s 34 s 24 .08 s 2 s 8 m 8 m 56
2 [3, 3] .3 s .8 s 3 m 3 m 36 .1 s 3 s 20 m 20 m 72

3 [2, 2] .1 s .02 s 26 s 27 s 8 .07 s .1 s 40 s 40 s 12
3 [3, 2] .2 s .2 s 3 h 3 h 18 .1 s 1 s ∞ ∞ 30
3 [2, 2, 2] .5 s 7 s 32 h 32 h 24 .15 s 10 m ∞ ∞ 56
3 [4, 2] .6 s 12 s 90 h 90 h 32 .2 s 12 m ∞ ∞ 56
3 [3, 3] 1 s 27 s ∞ ∞ 36 .2 s 15 m ∞ ∞ 72

Figure 1: Generic random dense systems

In Fig. (2), we compare our algorithm using parametric Hermite matrices with two
Maple packages for solving parametric polynomial systems: RootFinding[Parametric]
[22] and RegularChains[ParametricSystemTools] [48]. The new notations used in Fig.
(2) are explained below.

• The column rf stands for the RootFinding[Parametric] package. To solve a para-
metric polynomial systems, it consists of computing a discriminant variety D and
then computing an open CAD of Rt \ D. This package does not return explicit
semi-algebraic formulas but an encoding based on the real roots of some polyno-
mials.
This column contains:

- dv : the runtime of the command DiscriminantVariety that computes a set of
polynomials defining a discriminant variety D associated to the input system.

- cad : the runtime of the command CellDecomposition that outputs semi-
algebraic formulas by computing an open CAD for the semi-algebraic set Rt\D.

• The column rc stands for the RegularChains[ParametricSystemTools] package of
Maple. The algorithms implemented in this package is given in [48]. It also contains
two sub-columns:

- bp : the runtime of the command BorderPolynomial that returns a set of
polynomials.
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- rrc : the runtime of the command RealRootClassification. We call this com-
mand with the option output=‘samples’ to compute at least one point per
connected component of the complementary of the real algebraic set defined
by border polynomials.

Note that, in a strategy for solving the weak-version of Problem (1), DiscriminantVa-
riety and BorderPolynomial can be completely replaced by parametric Hermite matrices.

On generic systems, the determinant of our parametric Hermite matrix coincides
with the output of DiscriminantVariety, which we denote by w. Whereas, because of the
elimination BorderPolynomial returns several polynomials, one of them is w.

In Fig. (2), the timings for computing a parametric Hermite matrix is negligible.
Comparing the columns det, dv and bp, we remark that the time taken to obtain w
through the determinant of parametric Hermite matrices is much smaller than using
DiscriminantVariety or BorderPolynomial.

For computing the polynomial w, using parametric Hermite matrices allows us to
reach the instances that are out of reach of DiscriminantVariety, for example, the in-
stances {t = 3, d = [2, 2, 2]}, {t = 3 d = [4, 2]}, {t = 3, d = [3, 3]} and {t = 4, d = [2, 2]}
in Fig. (2) below. Moreover, we succeed to compute the semi-algebraic formulas for
{t = 3, d = [2, 2, 2]}, {t = 3 d = [4, 2]} and {t = 4, d = [2, 2]}. Using the implementation in
Subsection 7.1, we obtain the semi-algebraic formulas of degrees bounded by deg(w).

Therefore, for these generic systems, our algorithm based on parametric Hermite ma-
trices outperforms DiscriminantVariety and BorderPolynomial for obtaining a polynomial
that defines the boundary of semi-algebraic sets over which the number of real solutions
are invariant. Moreover, using the minors of parametric Hermite matrices, we can com-
pute semi-algebraic formulas of problems that are out of reach of CellDecomposition and
RealRootClassification.

t d hermite rf rc
mat det sp to-

tal
deg dv cad to-

tal
bp rrc to-

tal

2 [2, 2] .07
s

.01
s

.3 s .4 s 8 .1 s .3 s .4 s .1 s 1 s 1.1
s

2 [3, 2] .1 s .2 s 4.8
s

5 s 18 1 m 5 s 1 m .3 s 12 s 12 s

2 [2, 2, 2] .3 s .3 s 33 s 34 s 24 17m 32 s 17m 23 s 2 m 2 m
2 [3, 3] .3 s .8 s 3 m 3 m 36 2 h 4 m 2 h 8 s 4 m 4 m

3 [2, 2] .1 s .02
s

26 s 27 s 8 1 s 35 s 36 s .2 s 12m 12m

3 [3, 2] .2 s .2 s 3 h 3 h 18 2 h 84 h 86 h 3 s 37 h 37 h
3 [2, 2, 2] .5 s 7 s 32 h 32 h 24 ∞ ∞ ∞ 20m ∞ ∞

3 [4, 2] .6 s 12 s 90 h 90 h 32 ∞ ∞ ∞ 12m ∞ ∞

3 [3, 3] .7 s 27 s ∞ ∞ 36 ∞ ∞ ∞ 15m ∞ ∞

4 [2, 2] .2 s .1 s 8 m 8 m 8 4 s ∞ ∞ 1 s ∞ ∞

Figure 2: Generic random dense systems

In what follows, we consider the systems coming from some applications as test in-
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stances. These examples allow us to observe the behavior of our algorithms on non-
generic systems.

Kuramoto model. This application is introduced in [34], which is a dynamical system
used to model synchronization among some given coupled oscillators. Here we consider
only the model constituted by 4 oscillators. The maximum number of real solutions
of steady-state equations of this model was an open problem before it is solved in [28]
using numerical homotopy continuation methods. However, to the best of our knowledge,
there is no exact algorithm that is able to solve this problem. We present in what follows
the first solution using symbolic computation. Moreover, our algorithm can return the
semi-algebraic formulas defining the regions over which the number of real solutions is
invariant.

As explained in [28], we consider the system f of the following equations{
yi −

∑4
j=1(sic j − s jci) = 0

s2
i + c2

i = 1
for 1 ≤ i ≤ 3,

where (s1, s2, s3) and (c1, c2, c3) are variables and (y1, y2, y3) are parameters. We are asked
to compute the maximum number of real solutions of f (η, .) when η varies over R3. This
leads us to solve the weak version of Problem (1) for this parametric system.

We first construct the parametric Hermite matrix H associated to this system. This
matrix is of size 14 × 14. The polynomial w∞ has the factors y1 + y2, y2 + y3, y3 + y1 and
y1+ y2+y3. The polynomial wH has degree 48 (c.f. [28]). We denote by w the polynomial
w∞ · wH .

Note that the polynomial system has real roots only if |yi| ≤ 3 (c.f. [28]). So we only
need to consider the compact connected components of R3 \ V(w). Since the polynomial
w is invariant under any permutation acting on (y1, y2, y3), we exploit this symmetry to
accelerate the computation of sample points.

Following the critical point method, we compute the critical points of the map
(y1, y2, y3) 7→ y1 + y2 + y3 restricted to R3 \ V(w); this map is also symmetric. We ap-
ply the change of variables

(y1, y2, y3) 7→ (e1, e2, e3),

where e1 = y1 + y2 + y3, e2 = y1y2 + y2y3 + y3y1 and e3 = y1y2y3 are elementary symmetric
polynomials of (y1, y2, y3). This change of variables reduces the number of distinct so-
lutions of zero-dimensional systems involved in the computation and, therefore, reduces
the computation time.

From the sample points obtained by this computation, we derive the possible number
of real solutions and conclude that the system f has at most 10 distinct real solutions
when (y1, y2, y3) varies over R3 \ V(w). This agrees with the result given in [28]. We show
below a list of parameter values such that the system has respectively 2, 4, 6, 8 and 10
distinct real solutions.

Number of solutions (y1, y2, y3)

2 solutions [−2,−0.03, 0.22]
4 solutions [1,−0.09, 0.16]
6 solutions [0,−0.7,−0.48]
8 solutions [0.08,−0.03, 0.22]
10 solutions

[
274945023031

2199023255552 ,
−68723139707
549755813888 ,

−549808278091
4398046511104

]
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Fig. (3) reports on the timings for computing the parametric Hermite matrix (mat),
for computing its determinant (det) and for computing the sample points (sp). We
stop both of the commands DiscriminantVariety and BorderPolynomial after 240 hours
without obtaining the polynomial w.

hermite dv bp
mat det sp total
2 m 1 h 85 h 86 h ∞ ∞

Figure 3: Kuramoto model for 4 oscillators

Static output feedback. The second non-generic example comes from the problem of
static output feedback [29]. Given the matrices A ∈ R`×`, B ∈ R`×2, C ∈ R1×` and a

parameter vector P =
[
y1
y2

]
∈ R2, the characteristic polynomial of A + BPC writes

f (s, y) = det(sIl − A − BKC) = f0(s) + y1 f1(s) + y2 f2(s),

where s is a complex variable.
We want to find a matrix P such that all the roots of f (s, y) must lie in the open left

half-plane. By substituting s by x1 + ix2, we obtain the following system of real variables
(x1, x2) and parameters (y1, y2): 

<( f (x1 + ix2, y)) = 0
=( f (x1 + ix2, y)) = 0
x1 < 0

Note that the total degree of these equations equals `.
We are now interested in solving the weak-version of Problem (1) on the system

<( f ) = =( f ) = 0. We observe that this system satisfies Assumptions (A) and (B). Let
H be the parametric Hermite matrix H of this system with respect to the usual basis
we consider in this paper. This matrix H behaves very differently from generic systems.

Computing the determinant of H (which is an element of Q[y]) and taking its square-
free part allows us to obtain the same output w as DiscriminantVariety. However, this
direct approach appears to be very inefficient as the determinant appears as a large power
of the output polynomial.

For example, for a value `, we observe that the system consists of two polynomials of
degree `. The determinant of H appears as w2`, where w has degree 2(`− 1). The bound
we establish on the degree of this determinant is 2(` − 1)`2, which is much larger than
what happens in this case. Therefore, we need to introduce the optimization below to
adapt our implementation of Algorithm 2 to this problem.

We observe that, on these examples, the polynomial w can be extracted from a smaller
minor instead of computing the determinant H . To identify such a minor, we reduce H
to a matrix whose entries are univariate polynomials with coefficients lying in a finite
field Z/pZ as follow.

Let u be a new variable. We substitute each yi by random linear forms in Q[u] in
H and then compute H mod p. Then, the matrix H is turned into a matrix Hu whose
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entries are elements of Z/pZ[u]. The computation of the leading principal minors of Hu

is much easier than the one of H since it involves only univariate polynomials and does
not suffer from the growth of bit-sizes as for the rational numbers.

Next, we compute the sequence of the leading principal minors of Hu in decreasing
order, starting from the determinant. Once we obtain a minor, of some size r, that is not
divisible by wu, we stop and take the index r+ 1. Then, we compute the square-free part
of the (r+1)× (r+1) leading principal minor of H , which can be done through evaluation-
interpolation method. This yields a Monte Carlo implementation that depends on the
choice of the random linear forms in Q[u] and the finite field to compute the polynomial
w.

In Fig. (4), we report on some computational data for the static output feedback
problem. Here we choose the prime p to be 65521 so that the elements of the finite field
Z/pZ can be represented by a machine word of 32 bits. We consider different values
of ` and the matrices A, B,C are chosen randomly. On these examples, our algorithm
returns the same output as the one of DisciminantVariety. Whereas, BorderPolynomial
(bp) returns a list of polynomials which contains our output and other polynomials of
higher degree.

The timings of our algorithm are given by the two following columns:

• The column mat shows the timings for computing parametric Hermite matrices H .

• The column comp-w shows the timings for computing the polynomials w from H
using the strategy described as above.

We observe that our algorithm (mat + comp-w) wins some constant factor comparing
to DiscriminantVariety (dv). On the other hand, BorderPolynomial (bp) performs less
efficiently than the other two algorithms in these examples.

Since the degrees of the polynomials w here (given as deg-w) are small comparing
with the bounds in the generic case. Hence, unlike the generic cases, the computation of
the sample points in these problems is negligible as being reported in the column sp.

` hermite dv bp sp deg-w
mat comp-w total

5 2 s 1 s 3 s 30 s 1.5 m .2 s 8
6 12 s 5 s 17 s 90 s 30 m .4 s 10
7 1 m 6 m 7 m 16 m 4 h 1 s 12
8 4 m 50 m 1 h 1.5 h 34 h 3 s 14

Figure 4: Static output feedback
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