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Jérémy Berthomieu, Mohab Safey El Din
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Abstract

Assuming sufficiently many terms of an n-dimensional table defined over a field are given, we
aim at guessing the linear recurrence relations with either constant or polynomial coefficients
they satisfy. In many applications, the table terms come along with a structure: for instance, they
may be zero outside of a cone, they may be built from a Gröbner basis of an ideal invariant under
the action of a finite group. Thus, we show how to take advantage of this structure to reduce
both the number of table queries and the number of operations in the base field to recover the
ideal of relations of the table. In applications like in combinatorics, where all these zero terms
make us guess many fake relations, this allows us to drastically reduce these wrong guesses.
These algorithms have been implemented and, experimentally, they let us handle examples that
we could not manage otherwise.

Furthermore, we show which kind of cone and lattice structures are preserved by skew-
polynomial multiplication. This allows us to speed the guessing of linear recurrence relations
with polynomial coefficients up by computing sparse Gröbner bases or Gröbner bases of an ideal
invariant under the action of a finite group in a ring of skew-polynomials.

Keywords: Linear recurrence relations, Gröbner bases, Symmetries, Change of orderings

1. Introduction

Problem statement and motivations. Given a sequence v = (vi1,...,in )i1,...,in≥0, we consider the table
made of a finite subset of its terms. Computing or guessing linear recurrence relations satisfied
by such a table is a fundamental problem in coding theory for cyclic codes [10, 27] of dimension
n ≥ 1, combinatorics and computer algebra for solving sparse linear systems, performing sparse
polynomial interpolation, polynomial least-square approximation and Gröbner bases changes of
orderings in n ≥ 1 variables [22, 23]. Furthermore, computing these relations with polynomial
coefficients in the indices allows us to predict the growth of its terms, to classify the differential
nature of their generating series or to evaluate said generating series [33].

Depending on the context, an upper bound on the number of table terms might be known in
order to guess these relations. For instance, in coding theory, this is related to the length and the
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minimum distance of the code. In the Gröbner bases change of orderings application, an upper
bound is given by the degree of the ideal and the number of variables. Whenever no upper bound
is known, one is still restricted to only consider a finite number of table terms to guess the linear
recurrence relations the table satisfies. Thus, some of these relations may be proven incorrect
when tested with many more table terms; further such relations will be called fake relations.
This happens for instance in combinatorics where the nature itself of the table may be unknown.

In many applications, the table comes with a structure. For instance, in combinatorics,
for nD-space walks in the nonnegative orthant, vi0,i1,...,in counts the number of ways to reach
(i1, . . . , in) ∈ Nn in i0 steps of size 1 [11, 12]. Therefore, vi0,i1,...,in is trivially 0 outside the cone
i1, . . . , in ≤ i0. Thus, computationwise, not considering these terms would reduce the size of the
table and thus might be beneficial for guessing the linear recurrence relations satisfied by the
table. Hence, the goal is to exploit this structure to both reduce the number of table queries and
the number of operations to guess the Gröbner basis of the ideal of relations.

Prior results. We distinguish two cases: the one-dimensional case, where tables are with one
index, and the multidimensional one, where tables have n > 1 indices.

In the one-dimensional case, given the first D terms of a table, the Berlekamp–Massey algo-
rithm [3, 32] guesses the linear recurrence relations with constant coefficients of smaller order.
Using fast extended Euclidean algorithm, this algorithm can do so in O(M(D) log D) operations
in the base field [14], where M(D) = O(D log D log log D) [15] is a cost function for multiply-
ing two univariate polynomials of degree at most D. Through Hermite-Padé approximants, the
Beckermann–Labahn algorithm [1] can be used to guess several relations with polynomial coef-
ficients including the one of minimal order. Let us notice that finding relations with polynomial
coefficients is a special case of Hermite-Padé approximants for which the Beckermann–Labahn
algorithm is not quasi-optimal in the input size.

In the multidimensional case, several algorithms were designed for guessing linear recurrence
relations with constant coefficients satisfied by the first terms of the tables using linear algebra
routines. For instance, the Berlekamp–Massey–Sakata algorithm [36–38], the Scalar-FGLM
algorithm [4, 5] or the ArtinianGorenstein border basis algorithm [34]. Given sufficiently many
terms, the first two return a Gröbner basis of the ideal of relations while the third one returns a
border basis of this ideal. Furthermore, in [9] the authors designed an algorithm extending both
the Berlekamp–Massey–Sakata and the Scalar-FGLM algorithms using polynomial arithmetic
and in [8], they extended the Scalar-FGLM algorithm for guessing relations with polynomial
coefficients. However, none of these algorithms were designed to take the structure of the table
terms into account. Another classical technique is the “ansatz + linear system solving” approach
for finding relations. Usually the ansatz allows the user to find a set of relations, then a post-
processing is needed in order to recover, for instance, the Gröbner basis of the ideal spanned by
the computed relations. Though, if the ansatz is far from being tight, then the linear system to
solve might be equivalent to the one of the Scalar-FGLM algorithm.

Gröbner bases are the output of several algorithms for guessing linear recurrence relations
and are a fundamental tool in polynomial systems solving. In many applications, polynomials
systems come with a structure, for instance they span an ideal globally invariant under the action
of a finite group G or their supports are in a cone. From the table viewpoint, these are related to
only considering table terms lying either on a lattice [28] or in a cone.

In [25], the authors show that for such an ideal, Gröbner bases computations through the
F4 [18], F5 [19] and FGLM [21] algorithms can be sped up with a factor depending on |G|, when-
ever the characteristic of the field of coefficients does not divide |G|. To do so, they essentially
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perform |G| parallel smaller computations. In particular for the FGLM algorithm, this factor is
|G|2, see [25, Theorem 10]. Likewise, in [39], the author proposed algorithms for computing
Gröbner bases of symmetric ideals over the rationals or a finite field.

In [2, 24], the authors show that if C is a semi-group of Zn containing 0 and no pair of
opposite elements and if f1, . . . , fs are polynomials with support in the corresponding monomial
setT(C) B

{
xi1

1 · · · x
in
n

∣∣∣(i1, . . . , in) ∈ C
}
, then one can consider the ideal spanned by f1, . . . , fs in the

subalgebra of polynomials with support in T(C). Modifying classical Gröbner bases algorithms,
they obtain a sparse Gröbner basis, a set of generators with support in T(C) of this ideal that
behaves like a Gröbner basis. This allows them to speed Gröbner basis computations up by
taking into account the sparsity of the union of the supports of the original generators of the
ideal.

Main results. We design variants of the Scalar-FGLM algorithm which guess linear recurrence
relations for an n-dimensional table v, given as polynomials in x1, . . . , xn. The original algorithm
is recalled in page 9.

We first prove that restraining the Scalar-FGLM algorithm to terms of a table lying on a cone
makes it compute a sparse Gröbner basis of the ideal of relations of the table. More precisely, we
obtain Theorem 3.2, a simplified version of which is as follows.

Theorem 1.1. Let C be a semi-subgroup of Nn containing 0. Let ≺ be a monomial ordering. Let
T ⊂ T(C) be a finite set of monomials ordered for ≺, such that for all µ1, µ2 ∈ T(C), if µ1µ2 ∈ T,
then µ1 and µ2 are in T .

Let v be a n-dimensional table with nonzero elements vi1,...,in only if (i1, . . . , in) ∈ C.
Then, if T is large enough, the output of the Scalar-FGLM called on v, T and ≺ is the

reduced sparse Gröbner basis of the ideal of relations of v with support in T(C).

Let us remark that this allows us to remove trivial constraints on the relations induced by the
zero terms outside of the cone, yielding in practice many fewer guessed relations that eventually
fail. On the one hand, as a byproduct, this allows us to reduce the number of table queries to
guess the relations. For instance, for a subtable of the Gessel walk, using 3 491 table terms,
we can guess 142 relations amongst which 136 are fake and only 6 are correct. On the other
hand taking only table terms in a cone allows us to consider table terms much further, which in
turn allow us to guess more relations. Indeed, with 3 010 terms in a cone of the same table, we
guess 21 relations and all of them are correct. We refer to Table 1 for more details. Let us also
notice that these fake relations may hide correct ones as their leading monomials could divide
the leading monomials of correct relations.

In the next theorem, we now consider table terms lying on a lattice Λ and affine translates
thereof. This allows us to design a parallel variant of the Scalar-FGLM algorithm, called the
Lattice Scalar-FGLM algorithm and given in page 13. Assuming the fundamental domain of
Λ has L integer points, this variant essentially deals with L sets of table terms of sizes roughly
divided by L. The following theorem is a simplified version of Theorem 3.4.

Theorem 1.2. Let Λ be a sublattice of Zn. Let ≺ be a monomial ordering. Let T ⊂ T be a finite
set of monomials ordered for ≺, such that for all µ1, µ2 ∈ T , if µ1µ2 ∈ T, then µ1 and µ2 are in T .

Let f1, . . . , fs be polynomials spanning a zero-dimensional ideal I of degree D such that
for all 1 ≤ i ≤ s, there exists a ∈ Zn such that the support of fi is included in T(a + Λ) B{
xi1

1 · · · x
in
n

∣∣∣(i1, . . . , in) ∈ a + Λ
}
.

Let v be a n-dimensional generic table whose ideal of relations is I.
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Then, if T is large enough, then the output of the Lattice Scalar-FGLM called on v, T and
≺ is the reduced Gröbner basis of the ideal of relations of v. Furthermore, each polynomial in
this Gröbner basis has its support in a set T(a + Λ).

Finally, we also make an adaptive variant of the Lattice Scalar-FGLM algorithm, following
what has been done for the Scalar-FGLM. This adaptive variant, given in page 21, aim at reduc-
ing the number of table queries using the shape of the staircase associated to the Gröbner basis
of the ideal of relations of the table.

Structure of the paper. We first recall in Section 2 the classical connection between linear re-
currence relations with polynomial coefficients and skew-polynomials in 2n variables. Then,
we recall how using linear algebra routines on a special kind of matrix, a multi-Hankel one,
the Scalar-FGLM algorithm, and its adaptive variant the Adaptive Scalar-FGLM algorithm,
guesses linear recurrence relations.

In Section 3, we design variants of the Scalar-FGLM algorithm that take the table structure
into account for guessing linear recurrence relations, then we prove Theorems 3.2 and 3.4. As
an application, we provide a modification of the Sparse-FGLM algorithm [22, 23] whenever the
ideal is globally invariant under the action of a finite group.

The same kind of variants of the Adaptive Scalar-FGLM algorithm are then designed, in
Section 4. Likewise, we prove Theorem 4.2 in this section. Then, we show how one can perform
skew-polynomial operations in order to preserve the cone and lattice structures of the support of
the polynomials.

Finally, in Section 5, we report on our speedup using our C implementation of the Sparse-
FGLM algorithm when the ideal is invariant under the action of a finite group. We also guess
linear recurrence relations satisfied by nD-space walks with and without exploiting the cone
structure of the table and then test further the guessed relations. We then report on how the cone
structure allows us to guess fewer fake linear recurrence relations.

2. Preliminaries

2.1. Tables and relations
In all this paper, we take the convention that 0 ∈ N. For n ∈ N, n ≥ 1, we let i = (i1, . . . , in) ∈

Nn, x = (x1, . . . , xn) and xi = xi1
1 · · · x

in
n . For a subset S of Nn, we let T(S) = {xs|s ∈ S} be the set

of monomials with exponents in S. To ease the presentation, we let T B T(Nn). Finally, for a
polynomial f =

∑
s∈S fsxs, we let supp f = {s ∈ S| fs , 0} be its support.

Let K be a field and v ∈ KNn
be a n-indexed sequence with values in K, that is v =

(vi1,...,in )(i1,...,in)∈Nn . There is a natural correspondence between finite linear combinations of terms
of v and polynomials in K[x1, . . . , xn]. For g =

∑
s∈S γsxs, with S a finite subset of Nn, we can

write
[
g
]
v B

∑
s∈S γsvs. Hence shifting a relation by an index i comes down to multiplying the

corresponding polynomial by xi since [
gxi

]
v
=

∑
s∈S

γsvs+i.

In particular, a polynomial g defines a linear recurrence relation with constant coefficients, or
C-relation for short, on v if, and only if, for all i ∈ Nn,

[
gxi

]
v
= 0. The set of all such polynomials

is an ideal of K[x] called the ideal of C-relations of v, see for instance [5, Definition 2 and
Proposition 4].
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Finally, a nonzero sequence v is said to be C-finite if together with a finite number of terms
of v and a finite number of C-relations, one can recover all the terms of v. This is equivalent
to requiring that the ideal of C-relations of v is 0-dimensional, see also [4, Definition 2 and
Proposition 3], where such sequences are called linear recursive.

Example 2.1. On the one hand, the terms vi, j = (5+ 4i+ 3 j)2i+ j + (3+ 6i+ j)5i+ j of v ∈ FN2

7 can
all be computed thanks to v0,0 = v0,1 = v0,2 = 1, v1,0 = 0 and the C-relations, for all (i, j) ∈ N2,

vi+1, j+1 + 3vi, j = vi+2, j + vi, j+2 + 6vi, j = vi, j+3 + 4vi+1, j + 6vi, j+1 = 0.

On the other hand, they can also be computed knowing v0,0 = v0,1 = v0,2 = v0,3 = 1 and that for
all (i, j) ∈ N2,

vi, j+4 + 6vi, j+2 + 2vi, j = vi+1, j + 2vi, j+3 + 5vi, j+1 = 0.

Thus, the ideal of C-relations of v is the 0-dimensional one
〈
xy + 3, x2 + y2 + 6, y3 + 4x + 6y

〉
=〈

y4 + 6y2 + 2, x + 2y3 + 5y
〉

and v is C-finite.

On the other hand, the binomial sequence, b =
(
bi, j

)
(i, j)∈N2

=
((

i
j

))
(i, j)∈N2

, satisfies Pascal’s

rule: for all (i, j) ∈ N2, bi+1, j+1 − bi, j+1 − bi, j = 0. Moreover, one can show that this relation
spans all the other C-relations, i.e. its ideal of C-relations is the 1-dimensional one ⟨xy − y − 1⟩,
thus b is not C-finite.

Furthermore, some sequences satisfy linear recurrence relations with coefficients that are
polynomials in the indices of the sequence, or P-relations for short. For instance, the binomial
sequence satisfies the following two P-relations for all (i, j) ∈ N2:

( j + 1) bi, j+1 − (i − j) bi, j = 0
(i + 1 − j) bi+1, j − (i + 1) bi, j = 0.

Combining them by shifting the former by index (0, 1) and then adding the latter yields

(i − j)bi+1, j+1 − (i − j)bi, j+1 − (i − j)bi, j = 0.

This proves that Pascal’s rule holds whenever i , j.
We thus aim at representing the former relations as polynomials g1 and g2 such that for all

(i, j) ∈ N2,
[
g1xiy j

]
v
=

[
g2xiy j

]
v
= 0. For instance, we could say that the first one corresponds

to
[
( j + 1)xiy j+1 − (i − j)xiy j

]
v
=

[
(( j + 1)y − (i − j)) xiy j

]
v
= 0, but this would mean that g1 has

coefficients in i and j, which are meaningless on their own. To circumvent this, in [8], the authors
introduced new variables t = (t1, . . . , tn), such that tp behaves like xp∂p, where ∂p is the differ-
ential operator with respect to xp. That is,

[
t kxi

]
v
B

[
tk1
1 · · · t

kn
n xi

]
v
=

[
(x1∂)k1 · · · (xn∂n)kn xi

]
v
=[

ik1
1 · · · i

kn
n xi

]
v
= ik1

1 · · · i
kn
n vi = ikvi. Then, the [.]v notation is naturally K-linearly extended to poly-

nomials in t and x. Therefore, the 2n variables t1, . . . , tn, x1, . . . , xn follow, for all 1 ≤ p, q ≤ n
and p , q, the commutation rules xpxq = xqxp, tptq = tqtp, tpxq = xqtp and tpxp = xp(tp + 1),
making polynomials in t and x quasi-commutative. The ring of skew-polynomials in t and x,
satisfying the quasi-commutative rules defined above, will be denoted K[t] ⟨x⟩ while the ring
of skew-polynomials in x with coefficients in K(t) will simply be denoted K(t) ⟨x⟩. Now, a
P-relation is given by a finite subset S of Nn and polynomials γs ∈ K[t] for s ∈ S, such that

∀i ∈ Nn,
∑
s∈S

γs(s + i)vs+i = 0.
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This relation corresponds to the polynomial g =
∑

s∈S γs(t)xs ∈ K[t] ⟨x⟩ such that for all i ∈ Nn,[
gxi

]
v
= 0.

Remark 2.2. While we can obviously find polynomials γ̃s ∈ K[t] such that
∑

s∈S γ̃s(i)vs+i =∑
s∈S γs(s + i)vs+i =

[
gxi

]
v
= 0, the notation with the γs(s + i)’s makes more explicit the corre-

sponding polynomial g in K[t] ⟨x⟩.

Example 2.3. Let t = t1, u = t2, x = x1 and y = x2. Then, the P-relations satisfied by the
binomial sequence can be rewritten as

( j + 1) bi, j+1 − (i − j) bi, j =
[
( j + 1) xiy j+1 − (i − j) xiy j

]
v

0 =
[
uxiy j+1 − (t − u) xiy j

]
v

0 =
[
(uy − (t − u)) xiy j

]
v

and (i + 1 − j) bi+1, j − (i + 1) bi, j =
[
(i + 1 − j) xi+1y j − (i + 1) xiy j

]
v

0 =
[
(t − u) xi+1y j − (t + 1) xiy j

]
v

0 =
[
((t − u) x − (t + 1)) xiy j

]
v
.

Thus, g1 = uy − (t − u) and g2 = (t − u) x − (t + 1) in K[t, u] ⟨x, y⟩.

The set of all such polynomials is a right ideal of K[t] ⟨x⟩. Indeed, it is stable by multiplica-
tion on the right by any monomial xi as requested. Furthermore, since tℓx j t kxi = tℓ (t − j)k x j+i,[
tℓx j t kxi

]
v
=

[
tℓ (t − j)k x j+i

]
v
= ( j + i)ℓ ikv j+i = ik

[
tℓx j+i

]
v
. In other words, multiplying on the

right by t kxi corresponds to multiplying on the right by xi and to multiply the evaluation by a
constant, namely ik. Thus if

[
gxi

]
v

vanishes, then so does
[
gt kxi

]
v
.

Such relations allow one to compute new terms of the sequence, though integer roots of the
leading coefficient may prevent some computations. For instance, one cannot compute bi+1,i+1
from bi,i+1 using (i + 1 − j)bi+1, j − (i + 1)bi, j and j = i + 1 as the coefficient in front of bi+1, j
vanishes. Thankfully, for this sequence, one can use the other relation ( j + 1)bi, j+1 − (i − j)bi, j

with i = j + 1 to achieve this goal.
Sequences satisfying P-relations form a large set. Among them, there are the P-finite ones.

In particular, analogously to the C-finite case, a nonzero sequence v such that a finite number of
its terms and a finite number of P-relations allows one to recover all of its terms is P-finite.

Example 2.4 (Cont. of Example 2.3). The ideal of P-relations of b in K[t, u] ⟨x, y⟩ is

⟨uy − (t − u), (t − u)x − (t + 1), xy − y − 1⟩ .

Furthermore, since

(xy − y − 1) (t − u) = (t − u) xy − (t + 1 − u) y − (t − u)

= ((t − u) x − (t + 1)) y + (uy − (t − u)) ,

in K(t, u) ⟨x, y⟩, its ideal of P-relations is only spanned by uy − (t − u) and (t − u)x − (t + 1).

Note that P-finite sequences are actually those whose generating series are D-finite and there
exist P-finite sequences that do not satisfy the above prerequisites.
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2.2. Gröbner bases

This section briefly recalls some basic definitions on Gröbner bases. The interested reader
will find more details in [16] in the commutative case and [31, Chapter 2] in the quasi-commutative
one.

For T the set of monomials in K[t] ⟨x⟩, a monomial ordering ≺ on T is a total order relation
satisfying the following three properties

1. ∀m ∈ T , 1 ⪯ m;
2. ∀m,m′, s ∈ T , m ⪯ m′ ⇒ ms ⪯ m′s and sm ⪯ sm′.

For a monomial ordering ≺ on K[t] ⟨x⟩, the leading monomial of f , denoted lm≺( f ), is the
greatest monomial in the support of f for ≺. For an ideal I, we let lm≺(I) = {lm≺( f ), f ∈ I}. We
recall briefly the definition of a Gröbner basis and of its associated staircase.

Definition 2.5. Let I be a nonzero ideal of K[t] ⟨x⟩ and let ≺ be a monomial ordering. A set
G ⊆ I is a Gröbner basis of I if for all f ∈ I, there exists g ∈ G such that lm≺(g)| lm≺( f ), it is
reduced if for any g, g′ ∈ G, and g , g′, any monomial m ∈ supp g′ satisfies lm≺(g) ∤ m.

The staircase of G is defined as S = Staircase(G) = {s ∈ T , ∀g ∈ G, lm≺(g) ∤ s}.
More generally, a set S will be said to be a staircase if for two monomials µ1 and µ2 such that

µ1µ2 ∈ S , we have µ1 ∈ S and µ2 ∈ S .

Let us recall that Staircase(G) is also the canonical basis of K[t] ⟨x⟩ /I as a K-vector space.
Gröbner basis theory allows us to choose any monomial ordering, among which we mainly

use, on the x variables, the

lex(xn ≺ · · · ≺ x1) ordering which satisfies xi ≺ x j if, and only if, there exists 1 ≤ p ≤ n such
that for all q < p, iq = jq and ip < jp, see [16, Chapter 2, Definition 3];

drl(xn ≺ · · · ≺ x1) ordering which satisfies xi ≺ x j if, and only if, i1 + · · ·+ in < j1 + · · ·+ jn or
i1 + · · · + in = j1 + · · · + jn and there exists 2 ≤ p ≤ n such that for all q > p, iq = jq and
ip > jp, see [16, Chapter 2, Definition 6].

We will also use monomial orderings on the t and x variables. Since we want to freely switch
from K[t] ⟨x⟩ to K(t) ⟨x⟩ and vice versa, it makes sense to choose an ordering such that tk ≺ xℓ
for any k and ℓ, such as lex(tn ≺ · · · ≺ t1 ≺ xn ≺ · · · x1) or drl(tn ≺ · · · ≺ t1 ≺ · · · ≺ x1). The
latter is more suitable as it allows us to enumerate all the monomials in t and x in increasing
order.

2.3. Structured Gröbner bases

The cones we are dealing with are those that are submonoids of Nn. These are subsets C of
Nn such that 0 ∈ C and for all i, j ∈ C, (i + j) ∈ C.

Given such a cone C and polynomials with support in its associated set of monomials T(C) ={
xi ∈ T

∣∣∣i ∈ C}, one may want to perform all the polynomial operations with monomials in T(C)
in order to take advantage of the structure of the support when computing a Gröbner basis of the
ideal they span. While, this is not always possible, one can achieve this goal by considering the
ideal the polynomials span in the subalgebra defined by C.

This leads to the definition of sparse Gröbner basis with support in T(C) that uses its monoid
structure.
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Definition 2.6 ([24, Definition 3.1] and [2, Definition 3.3]). Let C ⊆ Nn be a cone and T(C) be
its associated set of monomials. Then, K[C], the set of polynomials with support in T(C), is an
algebra.

Let f1, . . . , fs ⊆ K[C] be polynomials. We let I = ⟨ f1, . . . , fs⟩C =
{∑s

k=1 fkqk

∣∣∣q1, . . . , qs ∈ K[C]
}

be the ideal spanned by f1, . . . , fs in K[C]. Then, a sparse Gröbner basis of I for a monomial or-
dering ≺ is a generating set G = {g1, . . . , gr} ⊆ K[C] such that for all f ∈ I, lm≺( f ) = lm≺(g)m
for some g ∈ G and m ∈ T(C).

The associated staircase Staircase(G) of G is the set of monomials s in T(C) such that for any
g ∈ G, there is no monomial m ∈ T(C) such that s = lm≺(g)m.

Let us notice that for C = Nn, K[C] = K[Nn] = K[x] and sparse Gröbner bases are classical
Gröbner bases. Furthermore, like classical Gröbner bases, sparse Gröbner bases allow one to
solve the ideal membership problem in K[C] in an effective way.

For a lattice Λ ⊆ Zn, we let Λ≥0 = Λ ∩ Nn be its nonnegative cone, so that, naturally,
Zn
≥0 = Nn. In particular, Λ and Λ≥0 are cones and we may intersect them with another cone. For

a ∈ Zn, we also denote by a+Λ the affine lattice obtained by translating Λ by a and likewise we
can consider its intersection with a cone. In particular, (a + Λ)≥0 = (a + Λ) ∩ Nn.

Given a lattice Λ, its affine translates a0 + Λ = Λ, . . . , aL + Λ and polynomials f1, . . . , fk,
each with supports in an associated set of monomials T((aℓ + Λ)≥0), then a reduced Gröbner
basis of ⟨ f1, . . . , fk⟩ satisfies also this support property. This allows one to speed the Gröbner
bases computations up by essentially performing L computations in parallel with input of sizes
divided by L.

2.4. Multi-Hankel matrices

Given a table v and a polynomial g ∈ K[t] ⟨x⟩, in order to determine if a polynomial g is in
the ideal of P-relations of v, one must check that

[
gxi

]
v
= 0 for all i. As only a finite number of

terms of v are known, only a finite number of such tests can be done.

Definition 2.7. Let T be a finite subset of T
(
N2n

)
, the set of monomials in t1, . . . , tn, x1, . . . , xn,

and X be a finite subset of T(Nn), the set of monomials in x1, . . . , xn.
The multi-Hankel matrix HX,T is the matrix whose rows are indexed by X and columns by T

and whose coefficient at row xi and column t kx j is
[
t kx j+i

]
v
.

A vector in the right kernel of this matrix corresponds to a polynomial g with support in T
such that

[
gm

]
v = 0 for all m ∈ X.

Example 2.8. Let v = (vi, j)(i, j)∈N2 be a table and T = {1, u, t, y, x, uy, ty, ux, tx} ⊂ T
(
N2n

)
and

X =
{
1, y, x, y2, xy, x2

}
⊂ T(Nn) be two sets of monomials, then their multi-Hankel matrix is

HX,T =



1 u t y x uy ty ux tx

1 v0,0 0 0 v0,1 v1,0 v0,1 0 0 v0,1
y v0,1 v0,1 0 v0,2 v1,1 2v0,2 0 v1,1 v1,1
x v1,0 0 v0,1 v1,1 v1,1 v1,1 v1,1 0 2v2,0
y2 v0,2 2v0,2 0 v0,3 v1,2 3v0,3 0 2v1,2 v1,2
xy v1,1 v1,1 v1,1 v1,2 v2,1 2v1,2 v1,2 v2,1 2v2,1
x2 v2,0 0 2v2,0 v2,1 v3,0 v2,1 2v2,1 0 3v3,0


.
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We give some computation details. The coefficient on the third column (t) and first row (1) is
[t × 1]v =

[
tx0y0

]
v
= 01v0,0 = 0. Likewise, the coefficient on sixth column (uy) and the second to

last row (xy) is
[
uyxy

]
v =

[
uxy2

]
v
= 21v1,2 = 2v1,2.

Note that rows are only indexed with monomials in x and not in t, x since the row labeled
with t kxi, k , 0 would be a multiple of the row labeled with xi.

2.5. The Scalar-FGLM algorithm
The Scalar-FGLM algorithm [4, 5], takes as input the table v and a set of monomials T ,

which is a staircase, and computes the right kernel of the multi-Hankel matrix HT,T . Vectors
in this kernel can be seen as polynomials in K[x] and these polynomials with a leading term
minimal for the partial order induced by the division are the ones returned by the algorithm.
Furthermore, if T is ordered for a monomial ordering ≺ and contains the staircase and the leading
monomials of the reduced Gröbner basis of the ideal of C-relations of v for ≺, then the Scalar-
FGLM algorithm returns this Gröbner basis.

As our goal is to extend the Scalar-FGLM algorithm in order to deal with table terms lying
on a cone or a lattice, we recall this algorithm.

Algorithm 1: Scalar-FGLM

Input: A table v = (vi)i∈Nn with coefficients in K, a monomial ordering ≺, a sufficiently large
staircase T and ordered for ≺.

Output: A reduced Gröbner basis of the ideal of C-relations of v.
Build the matrix HT,T .
Compute the set S ⊆ T of smallest monomials, for ≺, such that rank HS ,S = rank HT,T .
For all m ∈ T \ S do // stabilize S for the division

If ∃s ∈ S such that m | s then S B S ∪ {m}.

L B T \ S sorted for ≺.
G B ∅.
While L , ∅ do

g B min≺ L
Solve the linear system HS ,Sγ + HS ,{g} = 0.
G B G ∪

{
g +

∑
s∈S γs s

}
.

Remove g and any of its multiples from L.
Return G.

The algorithm computes the column rank profile of the matrix HT,T , that is the set of left-
most linearly independent columns of the matrix. Since these columns are independent from the
previous ones, their labels cannot be the leading monomial, for ≺, of any polynomial in the ideal
of C-relations, thus they are in the associated staircase of the reduced Gröbner basis of this ideal
for ≺. If T is not large enough, a monomial m could be detected as not lying in the staircase
while one of its multiples does, hence there is a stabilization process to add m to the staircase if
this happens, see [4, Example 3]. Then, each output polynomial is computed by solving a linear
system involving its leading monomial and the monomials in the staircase.

Example 2.9 (Cont. of Example 2.1). Let us recall that a Gröbner basis of the ideal of C-
relation of v is

{
xy + 3, x2 + y2 + 6, y3 + 4x + 6y

}
for drl(y ≺ x), hence this ideal has degree 4.

Therefore, the staircase of the Gröbner basis of this ideal for lex(y ≺ x), or any monomial
ordering, can only contain monomials xiy j with (i + 1) × ( j + 1) ≤ 4 and it suffices to take
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T =
{
1, y, y2, y3, y4, x, xy, x2, x3, x4

}
to recover the staircase and the Gröbner basis. The column

rank profile of HT,T is given by S =
{
1, y, y2, y3

}
so that L =

{
y4, x, xy, x2, x3, x4

}
. Then, the linear

systems HS ,Sγ + HS ,{y4} = 0 and HS ,Sγ + HS ,{x} = 0 yield the Gröbner basis{
y4 + 6y2 + 2, x + 2y3 + 5y

}
.

In many applications, for instance the Gröbner bases change of orderings one through the
Sparse-FGLM algorithm, the computation of a single table element is costly. Therefore, we
may want to reduce the number of table queries performed by the Scalar-FGLM algorithm.
Algorithm 1 called on a set T requires # 2T table terms, where 2T is the Minkowski sum of T
with itself. To reduce this number of queries, the goal is to let the multi-Hankel grow step by
step. We start with the 1 × 1 matrix ( 1

1 [1]v
)
.

If [1]v = v0 , 0, then 1 is in the associated staircase of the Gröbner basis of the ideal of C-
relations of v, otherwise it stops and returns the set of relations {1}. The algorithm extends a
full-rank matrix HS ,S into HS∪{m},S∪{m} with m greater, for ≺, than any monomial in S . Now,
there are two possibilities, either the new matrix has full rank or it is not and the column labeled
with m is linearly dependent from the other ones. In the former case, m is actually in this staircase
and S is replaced by S ∪ {m}. In the latter case, a polynomial with support in S ∪ {m} and leading
monomial, for ≺, m is found and no multiples of m will ever be proposed to extend the multi-
Hankel matrix. The algorithm stops either when no monomials can be added to the staircase
or when the size of the staircase has reached a threshold given in input. There is, however,
a possibility of finding wrong relations if the first terms of the table exceptionally satisfies a
relation of smaller order, for instance if v0 = 0. This problem can be circumvented by testing
relations further, that is adding a small buffer of constraints, i.e. rows of the matrix. This can be
noticed for instance when the relations are suspiciously small or in FGLM applications where
the degree of the ideal is known in advance.

3. Guessing with structures

In this section, we show how to guess linear recurrence relations of a table by taking the
structure of the table terms into account. We first start with the case where only table terms in
a cone are considered. Then, we study how to guess these relations when table terms are in a
lattice or some affine translates thereof.

3.1. Terms in a cone

In this subsection, we aim at describing how we can take advantage of the structure of a given
cone C to recover the ideal of relations of a table v by only considering table terms inside the
cone. That is, we aim at guessing polynomials g ∈ K[C] such that for all xi ∈ T(C),

[
gxi

]
v
= 0.

This latter condition is the guessing part as we will only be able to ensure that
[
gxi

]
v
= 0 for all

xi in a finite subset T of T(C).
To do so, two strategies are at our disposal and they both rely on the generators of C as a

submonoid of Nn. Let us denote by a1, . . . , aν a set of generators of C, i.e. for all i ∈ C, there
exists j ∈ Nν such that i = j1a1+ · · ·+ jνaν. Then, note that, first and foremost, there is no reason
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for ν to be less than or equal to n. Second, even if ν is minimal and a1, . . . , aν is a generating set,
there is no reason for ( j1, . . . , jν) to be unique.

Example 3.1. The cone C =
{
i ∈ N2

∣∣∣i1 ≤ 2i2, i2 ≤ 2i1
}

is spanned by a1 = (1, 1), a2 = (1, 2) and

a3 = (2, 1) so that C =
{
j1a1 + j2a2 + j3a3

∣∣∣a1 = (1, 1), a2 = (1, 2), a3 = (2, 1), ( j1, j2, j3) ∈ N3
}
.

Yet, we have the two decompositions (3, 3) = 3a1 = a2 + a3.

The first strategy is designed to only consider table terms lying in C. Assuming a generating
set a1, . . . , aν of C is known, the set of monomials T(C) can be defined as

T(C) =
{
x j1 a1 · · · x jνaν

∣∣∣( j1, . . . , jν) ∈ Nν
}
.

The second strategy makes use of a new set of variables y = (y1, . . . , yν), so that y1 represents
xa1 , etc and an auxiliary table w = (w j) j∈Nν defined by w j = v j1 a1+···+ jνaν . Then, two monomials
y j and yk represent the same monomial xi if, and only if, i = j1a1+ · · ·+ jνaν = k1a1+ · · ·+kνaν.
This implies that both w j and wk are equal to vi. Thus, w satisfies extra relations coming from
these multiple equivalent writings. They are given by binomials, namely y j − yk. Hence, not all
monomials in T(Nν) are of interest and we clean them up by using the binomial ideal I(C) they
span, for instance by reducing y j to yk.

In practice, both strategies are equivalent. They only differ in how they enumerate table
terms vi with i ∈ C. Note, though, that the second strategy requires computing a Gröbner basis
of I(C), for instance using [30] while the first one only requires checking that a monomial has
already been generated. However, such a Gröbner basis computation should not be the bottleneck
compared to the computations of the table terms or the linear algebra routines for the guessing
step.

Since the first strategy comes down to directly calling the Scalar-FGLM algorithm with a
set of monomials T ⊂ T(C), this yields Theorem 3.2.

Theorem 3.2. Let C be a submonoid cone of Nn spanned by the minimal set of generators
{a1, . . . , aν}. Let ≺ be a monomial ordering on T , the set of monomials in n variables, and let
T ⊂ T(C) be a staircase ordered for ≺.

Then, the Scalar-FGLM algorithm called on table v, T and ≺ returns a set of polynomials
G with support in T(C), such that for all s ∈ T \ ⟨lm≺(G)⟩, s is in the associated staircase of a
sparse Gröbner basis of the ideal of C-relations of v for ≺.

Furthermore, if the ideal of C-relations of v is 0-dimensional and has a reduced sparse
Gröbner basis with support in T for ≺, then the output of the Scalar-FGLM algorithm called on
v and T is this reduced sparse Gröbner basis.

Proof. As the Scalar-FGLM algorithm computes kernel vectors of HT,T , the corresponding
polynomials can only have support in T(C).

Let S be the associated staircase of a sparse Gröbner basis of the ideal of C-relations of v.
Let us show first that no monomial m < S is found in the staircase by the algorithm. As m ∈

lm≺(I), there exist αs ∈ K, for all s ∈ S such that m +
∑

s∈S αss ∈ I, thus
[
t
(
m +

∑
s∈S αss

)]
v = 0

for all t ∈ T . Since T ⊂ T , this means that the column labeled with m is linearly dependent
from the previous ones and neither m nor any multiple thereof is in the staircase associated to the
output. Hence, the computed staircase is included in the correct staircase.

Let us now assume that the ideal of C-relations of v is 0-dimensional, that is S is finite. We
shall show by contradiction that the matrix HS ,S has full rank, so that the output of the Scalar-
FGLM algorithm called on T ⊃ S is a reduced Gröbner basis whose associated staircase contains
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S . Let us assume that HS ,S has not full rank and let m < S be the smallest monomial for ≺ such
that rank HS ,S∪{m} > rank HS ,S , such a monomial exists for otherwise a monomial in S would be
the leading monomial of a relation. Let R be any finite subset of S ∪ {µ|µ ⪯ m}, which is also a
staircase containing S ∪ {m}. By minimality of m, for ≺, rank HS ,R = rank HS ,S∪{m} > rank HS ,S

and in particular the column labeled with m must be independent from the previous ones. Thus,
no polynomial with leading monomial m can be in the ideal of relations and m is in the staircase
of this ideal. This is a contradiction with the assumption that m is not in S . Since S ⊆ T , the
algorithm correctly computes a superset of the staircase S and thus the algorithm discovers the
correct staircase.

Finally, the polynomials of the sparse Gröbner basis are found by linear algebra.

Concerning the second strategy, since I(C) is spanned by binomials, the reduced Gröbner
basis G of I(C) for ≺ is made of binomials, see for instance [16, Chapter 5, Section 3, Exer-
cise 13]. Note that while the result is only asked to be proved for the lexicographic ordering, the
given hint can be used to show that the statement holds for any monomial ordering. Thus, any
monomial in T(Nν) reduces to a single monomial modulo G and we denote by T(Nν)/I(C) the
set of monomials that cannot be reduced by G. Furthermore, if y j ∈ T(Nν), then any monomial
yk ∈ T(Nν) that divides y j is in T(Nν)/I(C). Indeed, if yk were not, then it would be a leading
monomial in I(C) and so would y j. Hence, one can always pick a finite staircase T ⊂ T(Nν)/I(C)
and call the Scalar-FGLM algorithm with T and ≺. Then, by construction, it remains to replace
the output polynomials in K[y] by the corresponding ones in K[x]. They will naturally have
support in T(C).

Example 3.3 (Continuation of Example 3.1). It is clear that 3a1 = a2 + a3 generates all the
other different ways to decompose an element of C, hence I(C) =

〈
y3

1 − y2y3

〉
. Thus, when listing

the monomials for drl(y1 ≺ y2 ≺ y3) in T(Nν)/I(C), we will skip any multiple of y3
1.

3.2. Terms in a lattice

Let Λ≥0 be the set of nonnegative terms of a sublattice of Zn, we aim at guessing the re-
currence relations of a table v by following Λ≥0. Since a lattice is a special case of a cone, by
Theorem 3.2, restricting ourselves to only considering the subtable (vi)i∈Λ≥0

shall make us guess
the reduced sparse Gröbner basis of the ideal of relations of v in K[Λ≥0].

Yet, doing so would in some way make us forget the extra structure coming with a sublattice:
namely its fundamental domain, i.e. the quotient group Zn/Λ. Indeed, if a set of polynomials
{ f1, . . . , fr} is such that for all k, there exists ak ∈ Zn/Λ such that supp fk ⊂ (ak + Λ)≥0, then a
classical reduced Gröbner basis G = {g1, . . . , gs} of the ideal it spans in K[x] satisfies the same
property. Therefore, if we expect, or even can ensure beforehand, that the reduced Gröbner basis
of the ideal of relations of v also satisfies this property, we aim at guessing this Gröbner basis by
working in parallel on several smaller multi-Hankel matrices whose sizes have been divided by
# (Zn/Λ).

To do so, considering an input set of monomials T ⊂ T , we shall split it up into T =
⊔

a∈Zn/Λ
Ta,

with Ta = T ∩ T
(
(a + Λ)≥0

)
, and then call the Scalar-FGLM algorithm on v and Ta for each a.

However, the table terms that appear in HTa,Ta are vi with i ∈ (2a + Λ)≥0. Thus, we might never
consider certain table terms. To circumvent this, we always add the row and the column labeled
with 1 in these matrices. This yields the Lattice Scalar-FGLM algorithm or Algorithm 2 and
Theorem 3.4.
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Algorithm 2: Lattice Scalar-FGLM

Input: A table v = (vi)i∈Nn with coefficients in K, a monomial ordering ≺, a staircase T ordered
for ≺, a nonnegative lattice Λ ⊆ Zn, a setA ⊆ Nn containing 0 such that Λ +A = Zn.

Output: A truncated reduced Gröbner basis.
Partition T into T =

⊔
a∈A

Ta with Ta =
(
T ∩ T

(
(a + Λ)≥0

))
.

For all a ∈ A do
Build the matrix H{1}∪Ta ,{1}∪Ta .
Compute its column profile rank S a.

S B
⋃

a∈A
S a.

For all m ∈ T \ S do // make S a staircase
If ∃s ∈ S such that m | s ∈ S then S B S ∪ {m}.

L B T \ S sorted for ≺.
G B ∅.
While L , ∅ do

g B min≺ L
Find a ∈ A such that g ∈ T

(
(a + Λ)≥0

)
.

Solve the linear system HS a ,S aγ + HS a ,{g} = 0.
G B G ∪

{
g +

∑
s∈S a γs s

}
.

Remove g and any of its multiples from L.
Return G.

Theorem 3.4. Let Λ be a sublattice of Zn with fundamental domain A. Let ≺ be a monomial
ordering on T and let T ⊂ T be a finite staircase ordered for ≺.

Then, the Lattice Scalar-FGLM algorithm called on table v, T and ≺ returns a truncated
Gröbner basis of an ideal whose polynomials are each with support in {1} ∪ T

(
(a + Λ)≥0

)
, with

a ∈ A.
Furthermore, let G be a reduced Gröbner basis for ≺ satisfying this support property. Let S

be the associated staircase and v be a generic C-finite table whose ideal of relations is spanned
by G. Let T be a staircase containing S and the leading monomials of all the polynomials in G.
Then, there exists a non empty Zariski open set of values for the table terms [s]v of v, with s ∈ S,
such that the Lattice Scalar-FGLM algorithm called on v, ≺, T andA correctly guesses G.

Proof. This proof follows mostly the same steps as that of Theorem 3.2.
As the algorithm computes kernel vectors of matrices H{1}∪Ta,{1}∪Ta , the corresponding poly-

nomials can only have support in {1} ∪ T
(
(a + Λ)≥0

)
.

Let S be the associated staircase of a reduced Gröbner basis of the ideal of C-relations of v.
For each a ∈ A, we let S a = S ∩ T

(
(a + Λ)≥0

)
.

Let us show first that no monomial m < S is found in the staircase by the algorithm. As
m ∈ lm≺(I), there exist g = lm≺(g) +

∑
αs∈S a αs s ∈ I such that lm≺(g) ∈ T

(
(a + Λ)≥0

)
and

lm≺(g)|m. Thus, m
lm≺(g) g ∈ I and for all t ∈ T ,

[
t m
lm≺(g) g

]
v
= 0. In particular, this is true for all

t ∈ Tb, with m ∈ Tb, so that the column labeled with m is linearly dependent from the previous
ones in H{1}∪Tb,{1}∪Tb . Hence, neither m nor any of its multiples is in the staircase associated to
the output. That is, the computed staircase is included in the correct staircase.

It remains to prove the last statement. Let v be a sequence whose ideal of relations I is
spanned by G. First, from the proof of the Scalar-FGLM algorithm, we know that the matrix
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HS,S has full rank. For any a ∈ A, we let Sa = {1} ∪ (S ∩ T((a + Λ)≥0)). If HSa,Sa has full rank,
then for m ∈ lm≺(G)∩T((a + Λ)≥0), this matrix allows us to determine the polynomial in G with
leading monomial m. Thus, the algorithm correctly returns G.

For each a ∈ A, we know that the matrix HSa,S has full rank. Now, to recover a relation with
support in T(a + Λ)≥0, generically, it suffices to consider sufficiently many shifts of this relations.
And in particular, we can take the shifts induced by monomials in Sa, meaning that the matrix
HSa,Sa generically has full rank.

Remark 3.5. Adding a row labeled with 1 in the matrices is necessary to prevent computations
of incorrect relations when one of them is divisible by a non trivial monomial. Let us consider
a unidimensional table v satisfying the relation x4 − ax2 with a ∈ K and let Λ = 2Z and T ={
1, x, x2, x3, x4

}
, so that T0 =

{
1, x2, x4

}
and T1 =

{
x, x3

}
. We thus build the matrices

HT0,T0 =


1 x2 x4

1 [1]v
[
x2

]
v

[
x4

]
v

x2
[
x2

]
v

[
x4

]
v

[
x6

]
v

x4
[
x4

]
v

[
x6

]
v

[
x8

]
v

 =


1 x2 x4

1 v0 v2 av2
x2 v2 av2 a2v2
x4 av2 a2v2 a3v2

,

HT1,T1 =


x x3

x
[
x2

]
v

[
x4

]
v

x3
[
x4

]
v

[
x6

]
v

 = ( x x3

x v2 av2
x3 av2 a2v2

)
.

By hypothesis, clearly the column labeled with x4 is linearly dependent from the ones with
label 1 and x2. However, since

[
x4 − ax2

]
v
=

[
x6 − ax4

]
v
= 0, the column labeled with x3

is linearly dependent from the column labeled with x in the second matrix. Therefore, these
matrices do not allow us to recover that x3 is in the staircase of the ideal of relations of the input
table.

Yet, the matrix

H{1}∪T1,{1}∪T1 =


1 x x3

1 [1]v [x]v
[
x3

]
v

x [x]v
[
x2

]
v

[
x4

]
v

x3
[
x3

]
v

[
x4

]
v

[
x6

]
v

 =


1 x x3

1 v0 v1 v3
x v1 v2 0
x3 v3 0 0


has its column labeled with x3 independent from the previous two if, and only if, v3 , 0, allowing
us to detect that x3 is in the staircase.

Example 3.6. Consider the table v =
(
2i ( j + 1 mod 3)

)
(i, j)∈N2

defined over Q. Using, for in-
stance, the Berlekamp–Massey–Sakata or the Scalar-FGLM algorithms, we can easily show
that its ideal of relations is

〈
y3 − 1, x − 2

〉
. Let us consider the lattice Λ = (0, 3)Z + (1, 0)Z, so

thatA = {(0, 0), (0, 1), (0, 2)} and T =
{
1, y, y2, y3, y4, y5, x

}
.

Then, Algorithm 2 builds the matrices

HT0,T0 =


1 y3 x

1 1 1 2
y3 1 1 2
x 2 2 4

, HT1,T1 =


1 y y4

1 1 2 2
y 2 0 0
y4 2 0 0

, HT2,T2 =


1 y2 y5

1 1 0 0
y2 0 2 2
y5 0 2 2

.
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So that S 0 = {1}, S 1 = {1, y} and S 2 =
{
1, y2

}
. Hence S =

{
1, y, y2

}
, L =

{
y3, y4, y5, x

}
. This yields

the linear systems HS 0,S 0γ + HS 0,{y3} = 0 and HS 0,S 0γ + HS 0,{x} = 0 allowing us to recover y3 − 1
and x − 2.

Notice that w =
(
2i ( j mod 3)

)
(i, j)∈N2

has the same ideal of relations. Yet, the algorithm will
build the matrices

HT0,T0 =


1 y3 x

1 0 0 0
y3 0 0 0
x 0 0 0

, HT1,T1 =


1 y y4

1 0 1 1
y 1 2 2
y4 1 2 2

, HT2,T2 =


1 y2 y5

1 0 2 2
y2 2 1 1
y5 2 1 1

,
so that S 0 = ∅, S 1 = {1, y}, S 2 =

{
1, y2

}
and S =

{
1, y, y2

}
. Since the linear systems HS 0,S 0γ +

HS 0,{x3} = 0 and HS 0,S 0γ+HS 0,{y} = 0 are empty, they do not allow us to recover x3 − 1 and y− 2.
Indeed, ∅ = S 0 , S ∩ T(Λ≥0) = {0}.

Yet, for the table w′ =
([

(1 + λy)xiy j
]
v

)
, the algorithm builds the matrices

HT0,T0 =


1 y3 x

1 λ λ 2λ
y3 λ λ 2λ
x 2λ 2λ 4λ

, HT1,T1 =


1 y y4

1 λ 1 + 2λ 1 + 2λ
y 1 + 2λ 2 2
y4 1 + 2λ 2 2

,

HT2,T2 =


1 y2 y5

1 λ 2 2
y2 2 1 + 2λ 1 + 2λ
y5 2 1 + 2λ 1 + 2λ

.
It is clear that S 0 = {1}, provided λ , 0, S 1 = {1, y}, provided 4λ2 + 2λ+ 1 , 0, and S 2 =

{
1, y2

}
,

provided 2λ2 + λ − 4 , 0. All in all, the algorithm succeeds for w′ as long as λ does not satisfy
λ(4λ2 + 2λ + 1)(2λ2 + λ − 4) = 0.

Remark 3.7. While we assume thatΛ is a sublattice of Zn, hence of rank n, it can actually be any
Z-submodule of smaller rank ν. However, this means we can only guess an ideal of relations in ν
variables so that it may not be the whole ideal of relations. Nevertheless, this kind of restriction
can be of interest in the P-finite application where the kernel equation makes us study the P-finite
nature of a subsequence where some indices are set.

3.3. Application to Gröbner basis change of orderings with the action of a matrix group

In [23], the authors propose a variant of the FGLM algorithm [21], the so-called Sparse-
FGLM algorithm, relying on guessing C-relations. More precisely, from the input Gröbner basis
G, they build a random table v whose ideal of relations is ⟨G⟩. To do so, first, for each monomial
s in the staircase associated to G, they pick at random the table term [s]v, then they compute the
other table terms using the C-relations induced by G. Finally, applying an algorithm for guessing
C-relations on this table and the second input ordering, they obtain the Gröbner basis of the ideal
of relations of this table for this second ordering. If the first Gröbner basis spans a Gorenstein
ideal [13, 17], then with high probability, the output Gröbner basis is a Gröbner basis of the same
ideal and thus the target one.
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In particular, assuming generic properties, detailed below, on the polynomials that span the
ideal we want to compute a Gröbner basis of, this algorithm comes down to computing products
of a sparse matrix and some vectors and solving Hankel systems.

The goal of this section is to extend this approach to abelian group actions on the ideal. In
particular, we will restrict ourselves to finite abelian matrix group actions, that is finite abelian
subgroups of GL(n) where A ∈ GL(n) acts on f (x) ∈ K[x] by sending it to f (Ax).

3.3.1. Finite matrix group actions
We start by recalling some results on finite matrix group actions on ideals of K[x].
Let G be a finite abelian matrix group. By the invariant factors theorem, there exist q1 | · · · | qℓ

such that G ≃ Z/q1Z × · · · × Z/qℓZ and in particular, for any g ∈ G, gqℓ = 1 and qℓ is minimal
for this property.

Furthermore if |G| = q1 · · · qℓ is not divisible by the characteristic of the coefficient field K,
then there exists a primitive qℓth root of unity ζ such that the matrices in G are simultaneously
diagonalizable with powers of ζ on the diagonals, see [25, Theorem 2]. After this diagonalization
process, which comes down to a linear change of variables, for each matrix in G, there exist
natural numbers 0 ≤ ε1, . . . , εn ≤ qℓ − 1 such that xi is sent onto ζεi xi by this matrix.

Definition 3.8 ([25, Definition 3]). Let G ≃ Z/q1Z×· · ·×Z/qℓZ, with q1 | · · · | qℓ, be a diagonal
subgroup of GL(n) and ζ be a qℓth root of unity, then there exist matrices D1, . . . ,Dn spanning G
such that each Di has order qi.

For each monomial m ∈ T , there exist (µ1, . . . , µℓ) ∈ Z/q1Z × · · · ×Z/qℓZ such that for all i,
m is sent onto ζµiqℓ/qi m by Di. Then, m is said to have G-degree (µ1, . . . , µℓ).

Furthermore, a polynomial is G-homogeneous if all its monomials have same G-degree.

From this, one can prove that the G-degree of the product of two monomials is the sum of
their G-degrees. Since the G-degree of the monomial 1 is (0, . . . , 0), the subset of monomials
of G-degree (0, . . . , 0) is a sublattice T(Λ≥0) of T . A consequence of this is that if f1, . . . , fs

are G-homogeneous polynomials, then a reduced Gröbner basis of ⟨ f1, . . . , fs⟩ is made of G-
homogeneous polynomials as well and ⟨ f1, . . . , fs⟩ is stable by the action of G, see [25, Theo-
rem 4].

3.3.2. Gröbner bases change of orderings
From the reduced drl Gröbner basis G of such an ideal, it then makes sense to apply the

Sparse-FGLM algorithm in order to obtain the reduced lex Gröbner basis. Since we already
know that the support of each polynomial in the target Gröbner basis lies on a lattice, or an affine
translate thereof, we can use Algorithm 2 to guess the relations on the table that is built by the
algorithm. Furthermore, since the table is built with its first table terms picked at random, no
fake relations, like in Example 3.6, should be guessed.

Proposition 3.9. Let G be an abelian group as in Definition 3.8.
Let f1, . . . , fs be generic polynomials of degree d1, . . . , ds such that I = ⟨ f1, . . . , fs⟩ is zero-

dimensional stable by the action of G.
Let ≺ and < be a monomial orders and let G andH be the reduced Gröbner basis of I for ≺

and <respectively.
Then, the guessing step ofH when calling the Sparse-FGLM algorithm on G, ≺ and < can be

sped up using the Lattice Scalar-FGLM algorithm by a factor O(|G|ω−1) instead of the Scalar-
FGLM algorithm.
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Proof. From [25] and the genericity assumption on I, the polynomials in H are evenly split
between all the G-degrees. Furthermore, so are the monomials in the Staircase(H).

Now, to recover H , one needs to call the Scalar-FGLM and Lattice Scalar-FGLM algo-
rithms on a staircase T that contains S and lm≺(H). Then, the Scalar-FGLM algorithm com-
putes the right-kernel of HT,T in at most O(#Tω) operations. Now, the Lattice Scalar-FGLM
will build |G| submatrices of HT,T of size roughly #T/|G| and compute the right-kernel of each.
Thus it can be done in O(#Tω/|G|ω−1).

We shall say that a zero-dimensional ideal I ⊂ K[x] has

Property S, if its reduced Gröbner basis for lex(xn ≺ · · · ≺ x1) is in shape position. That is,
there exist g1, . . . , gn ∈ K[xn] of degree at most D− 1 such that this reduced Gröbner basis
is

{
xD

n + gn(xn), xn−1 + gn−1(xn), . . . , x1 + g1(xn)
}
.

Property M, if its reduced Gröbner basis for drl(xn ≺ · · · ≺ x1) satisfies the following condi-
tion. For every monomial m in the staircase associated to this Gröbner basis, either mxn is
in the staircase or it is the leading monomial of some polynomial in this Gröbner basis.

Let us recall that if I is spanned by generic polynomials f1, . . . , fn ∈ K[x] of degree d1, . . . , dn and
K is sufficiently large or infinite, then both Properties S and M are satisfied. See for instance [23,
Proposition 5.3], where x1 is chosen as the smallest variable, for the latter. For the former, this is
a direct consequence of I being radical with solutions not sharing the same last coordinate. Thus,
the Shape lemma applies without requiring any change of variables, see [26, Lemma 1.4].

Under these assumptions, several algorithms can be used to compute the reduced lexGröbner
basis of an ideal of degree D from the reduced drl one. The seminal one, FGLM [21] with a
complexity O(nD3), the Sparse-FGLM one [22, 23] with a complexity Õ(kD2 + nD), where
k is the number of polynomials in the reduced drl Gröbner basis whose leading monomial is
divisible by xn, a faster variant [20] of the FGLM algorithm using Keller-Gehrig algorithm [29]
or SyzygyModuleBasis [35, Algorithm 3] both with a complexity Õ(nDω).

Whenever an ideal is stabilized by the action of such a finite abelian matrix group, the goal
is to take advantage of this to speed the change of orderings algorithm up. In [25, Theorem 10],
the authors show the complexity of the FGLM algorithm drops to O(D3/|G|2), mainly because
they deal with |G| matrices of sizes roughly D/|G| instead of one larger matrix of size D. These
matrices correspond to those of monomials of each G-degree. It would be interesting to study
if, using the same trick, one could make the complexities of the faster variant of the FGLM
algorithm or of the SyzygyModuleBasis algorithm drop to Õ(nDω/|G|2) or even Õ(nDω/|G|ω−1).

Let us notice that in this situation, the Sparse-FGLM algorithm only relies on 1-dimensional
algorithms like the Berlekamp–Massey one as the best strategy. We now focus on the complexity
improvements one can reach in this setting when the ideal spanned by G and H is stable under
the action of a G as in Definition 3.8.

We now focus on the Sparse-FGLM algorithm and we assume that a reduced G-homogeneous
Gröbner basis for drl(xn ≺ · · · ≺ x1), spanning an ideal satisfying Property M, is given and
the goal is to recover the reduced Gröbner basis for lex(xn ≺ · · · ≺ x1) satisfying Property S.
By G-homogeneity, the support of each polynomial in the target Gröbner basis, namely {xD

n +

gn(xn), xn−1 + gn−1(xn), . . . , x1 + g1(xn)}, is already known. It is given by the G-degree of its
leading monomial, namely xD

n , xn−1, . . . , x1. Since G is finite, there exists d > 0 minimal such
that xd

n has G-degree (0, . . . , 0) and there exists δn, . . . , δ1 ≥ 0, all minimal, such that xδnn has same
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G-degree as xD
n and xδin has same G-degree as xi for 1 ≤ i ≤ n − 1. Therefore, for 1 ≤ i ≤ n,

supp gi =

{
xδin , x

δi+d
n , . . . , x

δi+
⌊ D−1−δi

d

⌋
d

n

}
.

Thus, the polynomial gn can be computed by solving the following Hankel system



xδnn xδn+d
n ··· xD−d

n

xδnn

[
x2δn

n

]
v

[
x2δn+d

n

]
v
· · ·

[
xD−d+δn

n

]
v

xδn+d
n

[
x2δn+d

n

]
v

[
x2δn+2d

n

]
v
· · ·

[
xD−d+δn

n

]
v

...
...

...
...

x
δn+⌊ D−1−δn

d ⌋d
n =xD−d

n

[
xD−d

n

]
v

[
xD−d+δn

n

]
v
· · ·

[
x2D−2d

n

]
v


γ +



xD
n

xδnn

[
xD+δn

n

]
v

xδn+d
n

[
xD+δn+d

n

]
v

...
...

xD−d
n

[
x2D−d

n

]
v


= 0.

Denoting Mn the matrix of the multiplication by xn in K[x]/I, 1 =
 1

0
...
0

 and r a vector picked at

random, the table terms
[
xi

n

]
v

are defined as rTMi
n1. This is done by computing v0 = rT, v1 =

v0Mn, v2 = v1Mn, . . . and then extracting the first coordinate of each vector to simulate the mul-
tiplication by 1.

Since we do not need all the terms but only v2δn , v2δn+d, v2δn+2d, . . ., we first compute v2δn and
Md

n in order to perform big steps. Let us notice that, following [22, 23], by Property M, the
columns of matrix Mn are of two types. If a monomial m in the staircase is such that mxn is still
in the staircase, then the column corresponding to m is trivial, it is a vector of the canonical basis.
Otherwise, m is the leading monomial of a polynomial g in the reduced Gröbner basis and the
column corresponding to m is the coefficient vector of its normal form, namely m − g. Usually,
these latter vectors are denser than the former. Then, Md

n has the same shape as Mn, it has trivial
and non-trivial columns. Furthermore, if Mn has k non-trivial columns, then Md

n has at most
max(D, kd) non-trivial columns. From [25] and the genericity assumption on I, we know we can
split Mn in |G|2 matrices of size at most ⌈D/|G|⌉. Furthermore, its non-trivial columns are evenly
split in the small matrices, i.e. the number of non-trivial columns of each small matrix is at most
⌈k/|G|⌉. Then, we can multiply all these small matrices accordingly to obtain the splitting of Md

n .
Now, polynomials g1, . . . , gn−1 can be computed by solving a similar Hankel system:



xδin xδi+d
n ··· x

δi+
⌊ D−1−δi

d

⌋
d

n

xδnn

[
xδi+δnn

]
v

[
xδi+δn+d

n

]
v
· · ·

[
x
δi+δn+

⌊ D−1−δi
d

⌋
d

n

]
v

xδn+d
n

[
xδi+δn+d

n

]
v

[
xδi+δn+2d

n

]
v
· · ·

[
x
δi+δn+

⌊ D−1−δi
d +1

⌋
d

n

]
v

...
...

...
...

xD−d
n

[
xδi+D−d

n

]
v

[
xδi+δn+D−d

n

]
v
· · ·

[
x
δi+δn+

⌊ D−1−δi
d −1

⌋
d+D

n

]
v


γ +



xi

xδnn

[
xix
δn
n

]
v

xδn+d
n

[
xix
δn+d
n

]
v

...
...

xD−d
n

[
xixD−d

n

]
v


= 0.

However, the matrices might all be different. In order to speed the computation up, we change
the linear systems into ones with the same matrix as the first one. This is done by multiplying all
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the column labels by xδn−δin . The constant vectors of the systems thus become



xδn−δin xi

xδnn

[
xix

2δn−δi
n

]
v

xδn+d
n

[
xix

2δn+d−δi
n

]
v

...
...

xD−d
n

[
xix

D−d+δn−δi
n

]
v


.

Proposition 3.10. Let I ⊂ K[x] be a zero-dimensional ideal of degree D, invariant under the
action of a finite diagonal matrix group G. Let us assume that I satisfies both properties S and M
and that the matrix Mn has k non-trivial columns. Let furthermore S be the staircase associated
to the lex(xn ≺ · · · ≺ x1) Gröbner basis of I, T(Λ≥0) be the set of monomials of G-degree 0 and
for A, B ⊆ T , A + B = {ab|a ∈ A, b ∈ B} be the Minkowski sum of A and B.

Then, we can recover the lex(xn ≺ · · · ≺ x1) Gröbner basis, G, of I from its drl(xn ≺ · · · ≺

x1) Gröbner basis using #
(
(S ∩ T(Λ≥0)) +

(
(S ∩ T(Λ≥0)) ∪ lm≺(G)

))
table terms and O

(
nkD2

|G|

)
operations.

Proof. Since the ideal I satisfies Property S, the staircase S associated to its lex(xn ≺ · · · ≺ x1)

Gröbner basis is
{
1, xn, . . . , xD−1

n

}
. Therefore, by definition of d, S∩T(Λ≥0) =

{
1, xd

n, . . . , x
⌊ D−1

d ⌋d
n

}
.

Thus, the matrix rows labels are in bijection with a subset of S ∩T(Λ≥0) while the matrix column
labels and the column-vector label are in bijection with a subset of (S ∩ T(Λ≥0)) ∪ lm≺(G). This
show that only #

(
(S ∩ T(Λ≥0)) +

(
(S ∩ T(Λ≥0)) ∪ lm≺(G)

))
table terms are required.

Since I also satisfies Property M, Mn has k non-trivial columns and D − k columns that
are vectors of the canonical basis. Furthermore, these non-trivial columns correspond to G-
homogeneous polynomials, so each of them has at most O(D/|G|) nonzero coefficients. Thus, Mn

has O(kD/|G|) nonzero coefficients. Now, computing v2δn requires 2δn multiplications between
Mn and a vector. Hence v2δn can be computed in O (δnkD/|G|) operations.

It remains to compute v2δn+ jd = rTM2δ+ jd
n for all j up to (2D−d−2δn)/d by successive multi-

plications by Md
n . While Md

n has max(D, kd) non-trivial columns, these non-trivial columns still
represent G-homogeneous polynomials, thus Md

n has O(kdD/|G|) nonzero coefficients. Hence,
all these vectors can be computed in O(kD2/|G|) operations.

For the constant vectors of the Hankel systems, we need to extract the coefficients corre-
sponding to xi of vectors v2δn−δi+ jd for each i and each j. First, let us notice that each vector
v2δn−δi has been computed in order to obtain v2δn . Then, the others are computed by successive
multiplications by Md

n , as for the vectors v2δn+ jd. Thus, they can be obtained in O(nkD2/|G|)
operations.

Finally, these linear systems are Hankel of size O(D/d) sharing the same matrix and thus can
be solved in O

(
M

(
D
d

) (
n + log D

d

))
operations, see [14]. This step is therefore not the bottleneck

of the algorithm.

4. Adaptive approach

4.1. The Adaptive Scalar-FGLM algorithm

A drawback of the Scalar-FGLM algorithm is that, in order to return the correct Gröbner
basis, it needs to be called with a staircase T that contains both the support of the Gröbner basis
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and its associated staircase. Without the help of an oracle, which we have in a multi-modular
setting for instance, it is not an easy task to find such a T . Thus, an adaptive variant was designed
by the authors in [4, 5] in order to discover the associated staircase and the Gröbner basis step by
step. As a byproduct, it also minimizes the number of table queries.

Given a table v and a monomial ordering ≺, the Adaptive Scalar-FGLM starts with the empty
set S = ∅. At each step, S is a staircase and a subset of the correct one. Then, for a monomial
xi such that S ∪

{
xi
}

is also a staircase, if HS∪{xi},S∪{xi} has a greater rank than HS ,S , then S is

replaced by S ∪
{
xi
}
. Otherwise we have found a relation with leading monomial xi and we shall

never try any multiple of xi as a new term in S .
In the cone setting, as in Section 3.1, the two strategies can be used. If we build an auxiliary

table w ∈ KNν , then the Adaptive Scalar-FGLM algorithm can directly be called on w provided
we only try to add monomials y j that are in T(Nν)/I(C). If we rather call it on the original table
v ∈ KNn

, then we modify the algorithm so that only monomials in T(C) are used. Furthermore,
once a relation with leading monomial xi is found, we shall never try any multiple xi+ j in the
cone, i.e. with x j ∈ T(C).

Example 4.1. Consider the linear King walk v =
(
vi0,i1

)
(i0,i1)∈N2 counting the number of ways

to reach i1 in i0 steps of size 1 starting from 0 in the nonnegative ray. It is clear that vi0,i1 = 0
whenever either i1 > i0 or i0 + i1 = 1 mod 2, so that we shall only consider the cone

C =
{
(i0, i1) ∈ N2

∣∣∣i0 + i1 = 0 mod 2, i1 ≤ i0
}

= (1, 1)N + (0, 2)N.

Assume we consider the lex(x1 ≺ x0) ordering, so that T(C) =
{
1, x0x1, x2

0, x
2
0x2

1, x
4
0, . . .

}
.

1. We build the matrix
( 1

1 1
)

which has full rank.

2. We increase the matrix by adding monomials in T(C) so we build
( 1 x0 x1

1 1 1
x0 x1 1 1

)
which

does not have full rank, so we have found the fake relation x0x1 − 1.

3. We increase the matrix to
( 1 x2

0

1 1 1
x2

0 1 2

)
which has full rank.

4. We increase the matrix to


1 x2

0 x4
0

1 1 1 2
x2

0 1 2 5
x4

0 2 5 14

 which has full rank.

5. And so on.

In the lattice setting however, we need to be more careful. We shall make one matrix per
element in Zn/Λ and each time we must add an extra column and an extra row, they will be
added to the matrix corresponding to the monomial labeling the extra column. If there is no rank
increase, then as usual a relation is found and no multiple of this monomial will ever label any
new column in any matrix. This yields Algorithm 3 and Theorem 4.2.
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Algorithm 3: Lattice Adaptive Scalar-FGLM

Input: A table v = (vi)i∈Nn with coefficients in K, a monomial ordering ≺, a nonnegative lattice
Λ ⊆ Nn, a setA ⊆ Nn containing 0 such that Λ +A = Zn.

Output: A set G of relations.
If v(0,...,0) = 0 then Return [1].
L B {x1, . . . , xn}.
Sort L by increasing order wrt. ≺.
G B ∅ // the future set of relations
For all a ∈ A do S a B {1}. // the future staircase
While L , ∅ do

m B first element of L and remove it from L.
Pick a ∈ A such that m ∈ T

(
(a + Λ)≥0

)
.

S ′ B S a ∪ {m}.
If HS ′ ,S ′ has full rank then // No relation

S a B S ′.
L B L ∪ {x1m, . . . , xnm} Sort L by increasing order wrt. ≺ and remove duplicates and

multiples of lm≺(G).
Else // Relation!

Solve HS a ,S aγ + HS a ,{m} = 0.
G B G ∪

{
m +

∑
s∈S a γs s

}
and remove multiples of m in L.

return G.

Theorem 4.2. Let Λ be a sublattice of Zn with fundamental domain A. Let ≺ be a monomial
ordering on T . Let us assume that the Lattice Adaptive Scalar-FGLM algorithm called on
table v, ≺, Λ andA ⊆ Nn returns a non-empty set of polynomials G.

Let us denote by S the associated staircase to G and S a = S ∩ T
(
(a + Λ)≥0

)
for each a ∈ A.

Then, for any polynomial g ∈ G with lm≺(g) ∈ T
(
(a + Λ)≥0

)
and any s ∈ S a with s ≺ lm≺(g),

we have
[
gs

]
v = 0.

Furthermore, let G be a Gröbner basis for ≺ spanning a 0-dimensional ideal such that for all
g ∈ G, there exists a ∈ A such that supp g ⊂ T

(
(a + Λ)≥0

)
. Let S be the associated staircase and

v be a generic C-finite table whose ideal of relations is spanned by G. Then, there exists a non
empty Zariski open set of values for the table terms [s]v of v, with s ∈ S, such that the Lattice
Adaptive Scalar-FGLM algorithm called on v, ≺ andA correctly guesses G.

Proof. In the while loop, either monomial m is added to the staircase S a or it is the leading
monomial of a polynomial g that is added to G.

In the latter case, only monomials less than m can have been added to S a. Thus, the cur-
rent set S a is actually the final set S a with only elements less than m, i.e. S a ∩ {t ≺ m}. Now,
HS a∩{t≺m},S a∩{t≺m}γ + HS a∩{t≺m},{m} = 0 is equivalent to

[
gs

]
v = 0 for any s a row index, that is

s ∈ S a with s ≺ m.
Let us prove the second assertion. For any a ∈ A, let Sa = S ∩ T

(
(a + Λ)≥0

)
. A necessary

and sufficient condition for the Lattice Adaptive Scalar-FGLM algorithm to correctly guess G
is that for each a, Sa ⊆ S a, which means that S a = {1} ∪ Sa. This can only happen if, for each
a and each monomial m ∈ Sa, the rank condition in the if statement is fulfilled. Following the
proof of Theorem 3.4, we can build a sequence w from v whose ideal of relations is also spanned
by G but whose such that the rank conditions in the if statement is satisfied for all monomial
m ∈ S.
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Remark 4.3. If an incorrect staircase is guessed, then not much can be said on the output set
of polynomials compared to the correct Gröbner basis. However, we know that the guessed
staircase is included in the correct one.

Example 4.4. Let us consider the same first table as in Example 3.6, v =
(
2i ( j + 1 mod 3)

)
(i, j)∈N2

and its associated latticeΛ = (0, 3)Z+(1, 0)Z, so thatA = {(0, 0), (0, 1), (0, 2)}. We also consider
the lex(y ≺ x) ordering.

1. We build three matrices
( 1

1 1
)

which have full rank.

2. We increase the second matrix to
( 1 y

1 1 2
y 2 0

)
which has full rank.

3. We increase the third matrix to
( 1 y2

1 1 0
y2 0 2

)
which has full rank.

4. We increase the first matrix to
( 1 y3

1 1 1
y3 1 1

)
which does not have full rank so that we have

found that y3 − 1 is in the ideal of relations.

5. We increase the first matrix to
( 1 x

1 1 2
x 2 4

)
which does not have full rank so that we have

found that x − 2 is in the ideal of relations.
6. We return

{
y3 − 1, x − 2

}
.

4.2. Mixed approach for guessing P-relations
In [8], the authors proposed a mixed approach for guessing P-relations based on a Gröbner

basis computations for reducing the number of table queries. The idea is that if two polynomials
g1, g2 ∈ K[t] ⟨x⟩ are P-relations satisfied by the table, then any polynomial in ⟨g1, g2⟩ is also a
P-relation. Therefore, as soon as two P-relations g1 and g2 are guessed, the goal is to compute a
Gröbner basis {g1, g2, . . . , gr} of ⟨g1, g2⟩. This will yield polynomials, namely g3, . . . , gr, whose
leading monomials are not in ⟨lm≺(g1), lm≺(g2)⟩. The advantage of this method is twofold. First,
since lm≺(g3), . . . , lm≺(gr) ≻ lm≺(g1), lm≺(g2), they require more queries to the table to be cor-
rectly guessed. Yet, such a Gröbner basis computation does not require any more queries. Then,
these P-relations may help us determine that the ideal of P-relations is 0-dimensional in K(t) ⟨x⟩.
This is a necessary condition for the table to be P-finite.

The aim of this section is to extend this approach for guessing P-relations of a table when only
considering terms in a cone or when the ideal of relations is stable by the action of a subgroup of
GL(n).

Lemma 4.5. Let T(C) be a cone of monomials in x1, . . . , xn, as before. Let us assume that
f1, f2 ∈ K[t] ⟨x⟩ are both polynomials with monomials in T(Nn)×T(C) =

{
t kxi

∣∣∣xi ∈ T(C)
}
. Then,

any polynomial f1a1 + f2a2 in the right ideal ⟨ f1, f2⟩, such that supp a1, supp a2 ∈ T(Nn) × T(C),
has its support in T(Nn) × T(C) as well.

In particular, we can compute a sparse Gröbner basis of ⟨ f1, f2⟩ with monomials all in
T(Nn) × T(C) using Buchberger’s algorithm or Faugère’s F4 algorithm, restricted to only multi-
plying the polynomials by monomials in T(Nn) × T(C).
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Proof. We need to prove that if supp f and supp a are in T(Nn) × T(C), then so is supp f a. By
linearity, this comes down to proving that if two monomials tℓx j and t kxi are in T(Nn) × T(C),
then so is the support of their product. Since

tℓx j t kxi = tℓ (t − j)k x j+i

=

ℓ1,...,ℓn∑
q1,...,qn=0

(
k1

q1

)
· · ·

(
kn

qn

)
(− j1)k1−q1 · · · (− jn)kn−qn tℓ1+q1

1 · · · tℓn+qn
n x j+i

and x j+i ∈ T(C), tℓxi t kxi ∈ T(Nn) × T(C).
Now, in T(Nn) × T(C), we can define the division of monomials with m2|m1 if there exists

m3 ∈ T(Nn) × T(C) such that m1 = m2m3. Then, we can make a new S-polynomial of two
polynomials with supports in T(Nn) × T(C) by considering the lcm in T(Nn) × T(C) of their
leading monomials.

This lemma shows that the definition of sparse Gröbner bases and the algorithmic techniques
to compute them in [24] can be extended to skew-polynomial rings K[t] ⟨x⟩ with commutation
rules tpxp = xp(tp + 1).

Using the definitions and notation of Section 3.3.1, we have the following lemma.

Lemma 4.6. Let G be a finite group of diagonal matrices acting on t1, . . . , tn, x1, . . . , xn, then G
leaves t1, . . . , tn, each, invariant.

Assume that f1, f2 ∈ K[t] ⟨x⟩ are both G-homogeneous polynomials, then their S-polynomial
is also G-homogeneous. Thus, so are all the elements of a reduced Gröbner basis of ⟨ f1, f2⟩.

Proof. There exists a root of unity ζ such that for each matrix in G, there exist integers τ1, . . . , τn,
ε1, . . . , εn such that for all 1 ≤ p ≤ n, xp is sent onto ζεp xp and tp onto ζτp tp.

Therefore, tpxp − xptp = xp is sent on both ζτp tpζ
εp xp − ζ

εp xpζ
τp tp = ζ

τp+εp
(
tpxp − xptp

)
=

ζτp+εp xp and ζεp xp. Thus, ζτp = 1 and G lets tp invariant. By Definition 3.8, this means that the
G-degree of tp is 0 so that the t kxi and xi have same G-degree.

The S-polynomial of f1 and f2 is f1 t kxi − f2
lc≺( f1)
lc≺( f2) tℓx j with t k lm≺( f1)xi = tℓ lm≺( f2)x j =

gcd (lm≺( f1), lm≺( f2)), where lc≺( f ) stands for leading coefficient of f , i.e. the coefficient of
lm≺( f ). Since both terms of the sum have the same leading monomial, it remains to show
that multiplying a polynomial by a monomial preserves the G-homogeneity. Since tℓx j t kxi =

tℓ (t − j)k x j+i, it is a G-homogeneous polynomial of same G-degree as x j+i. Now, the G-degree
of x j+i is the sum of the G-degrees of x j and xi and thus of tℓx j and t kxi.

From Lemmas 4.5 and 4.6, we can compute a Gröbner basis or a sparse Gröbner basis of
the ideal spanned by skew-polynomials associated to P-relations in K[t] ⟨x⟩, with commutation
rules tpxp = xp(tp + 1), to guess new P-relations in the cone and lattice settings.

Corollary 4.7. Let G be a finite diagonal matrix group acting on variables t and x. Let I =
⟨ f1, . . . , fs⟩ ⊂ K[t] ⟨x⟩ be an ideal spanned by G-homogeneous polynomials. Then, one can
compute a Gröbner basis of I by using a quasi-commutative variant of the F4 algorithm [18]
building |G| Macaulay matrices for each G-degree.
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5. Experiments

In this section, we report on our implementations of the different algorithms of this paper.
We start with the Scalar-FGLM algorithm on a cone, as in Subsection 3.1, in particu-

lar for guessing P-relations of tables in Maple 2019. This is an extension of Algorithm 1,
see [8]. We investigate Gessel planar walk g in the nonnegative quadrant N2 with steps in
{(1, 0), (1, 1), (−1, 0), (−1,−1)} and the 3D-space Walk-43 w of [11] in the nonnegative octant
N3 with steps in {(−1,−1,−1), (−1,−1, 1), (−1, 1, 0), (1, 0, 0)}. In particular, we restrict ourselves
to a subsequence of each where one index is 0. These walks come naturally with a cone structure:
for instance whenever n , 2n′ + 2 j, then gn,0, j = 0. Likewise, whenever n , 8n′ + 2 j + 4k, then
wn,0, j,k = 0. Thus, it makes sense to look for the relations given by the table terms g2n′+2 j,0, j and
w8n′+2 j+4k,0, j,k.

In Table 1, we report on the number of computed relations and the number of relations that
do not fail after further testing.

1. The column Full Orthant means that we consider all the table terms gn,0, j and wn,0, j,k.
2. The column Half Orthant means that we consider all the table terms g2n′,0, j and w2n′,0, j,k.
3. The column Cone means that we consider all the table terms g2n′+2 j,0, j and terms w8n′+2 j+4k,

corresponding to the potential nonzero terms.

We tested two kinds of matrices: matrices that are almost square, with just a little bit more
rows than columns, and matrices that have many more rows than columns.

We can notice, as expected in both cases, that by considering only terms on the nonzero
cone we guess many fewer false positive P-relations. This happens despite our matrices having
fewer rows in the cone setting than in the full orthant setting, i.e. a priori the relations have fewer
constraints. This means that amongst these constraints more are linearly independent and that in
general the number of linearly dependent rows is responsible for the matrix rank decrease. As a
byproduct, this reduces the number of operations.

Type Cone Half Orthant Full Orthant

Matrix size Queries Relations Matrix size Queries Relations Matrix size Queries Relations
Fake Correct Fake Correct Fake Correct

gn,0, j 444 × 441 866 11 0 444 × 443 857 68 0 496 × 495 946 48 0
gn,0, j 631 × 564 1 174 0 0 961 × 581 1 506 115 0 1 326 × 661 1 942 84 0
gn,0, j 721 × 711 1 408 15 8 724 × 713 1 401 87 0 726 × 715 1 386 67 0
gn,0, j 1 951 × 1 089 3 010 0 21 2 209 × 1 036 3 196 154 0 2 556 × 1 001 3 491 136 6
wn,0,i, j 223 × 211 430 7 1 222 × 211 411 25 0 220 × 210 395 24 0
wn,0,i, j 444 × 253 552 2 1 520 × 260 758 40 0 680 × 267 912 37 0
wn,0,i, j 406 × 400 799 11 6 406 × 400 772 40 0 406 × 400 771 27 0
wn,0,i, j 806 × 522 1 320 2 6 1 200 × 550 1 716 78 0 1 540 × 589 2 073 68 0

Table 1: Guessing fake and correct P-relations with Algorithm 1 for P-relations on a cone.

In Table 2, we consider the FGLM application, presented in Subsection 3.3, running on an
Intel Xeon E-2286M with 32 GB of RAM. We compute first a drl Gröbner basis of an ideal
invariant by the action of a finite diagonal group Z/nZ and then the eliminating polynomial of
the last variable. The number n in the names of the systems denotes the number of variables and
the computations were done modulo 230 < p < 231 such that a primitive nth root of unity exists in
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Z/pZ. The Sparse-FGLM algorithm [22, 23] has been implemented in C, as part of the msolve
library [6, 7], it generates a scalar table first and then guesses its C-relation with the Berlekamp–
Massey algorithm. Notice that the table generation is the bottleneck of the method, but it is
also the part that benefit the most from the occurred speedup. In the column Sparse-FGLM, we
use the whole multiplication matrix, while in the column lattice Sparse-FGLM, we use the n
nonzero blocks of the multiplication matrix to perform the computations and taking advantage
of the action of Z/nZ. We also compare with Maple 2019 where we use Groebner:-FGLM

to compute a Gröbner basis for an ordering eliminating all the variables but the last one. As
expected by Proposition 3.10, using the splitting of the multiplication matrix allows us to divide
the computation time by n.

Type Degree Sparse-FGLM lattice Sparse-FGLM lattice speedup Maple
Seq. gen. Guess. Seq. gen. Guess. Seq. gen. Guess.

Cyclic-6 156 1 470 10 200 2.3 7.35 4.35 120 000
Cyclic-7 924 64 000 56 5 200 8.3 12.3 6.75 13 s
Random-3 294 3 100 18 1 100 6.8 2.82 2.65 510 000
Random-3 bis 3090 470 000 170 83 000 63 5.66 2.70 –
Random-4 896 69 000 53 8 600 14 8.02 3.79 2 000 s
Random-5 2000 386 000 110 35 000 24 11.0 4.58 49 s
Random-6 1656 330 000 91 26 000 17 12.7 5.35 1 200 s
Random-10 4160 13 s 250 37 000 26 351 9.62 –

Table 2: FGLM application with the action of Z/nZ (in µs).
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sis: A probabilistic approach, in: Proceedings of the 39th International Symposium on Symbolic and Alge-
braic Computation, Association for Computing Machinery, New York, NY, USA. p. 170–177. URL: https:
//doi.org/10.1145/2608628.2608669, doi:10.1145/2608628.2608669.

[21] Faugère, J.Ch., Gianni, P., Lazard, D., Mora, T., 1993. Efficient Computation of Zero-dimensional Gröbner Bases
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