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Abstract

Consider f ∈ Q[X1, . . . , Xn] which is identified to the polynomial map-
ping sending x ∈ Cn to f(x). The set K(f) of generalized critical values

of f is a finite set of points in C such that f realizes a locally trivial fi-
bration on Cn \ f−1(K(f)). The core of this work is twofold. First, we
provide an algorithm computing the generalized critical values of the poly-
nomial mapping f . Secondly, we show how to use it in order to compute
sampling points of a semi-algebraic set defined by a single polynomial
inequality. The complexity of our algorithms is asymptotically optimal
and an implementation is already provided in the RAGLib package (see
http://www-calfor.lip6.fr/~safey/RAGLib).

Introduction. We provide an algorithm computing at least one point in each
connected component of a semi-algebraic set defined by a single polynomial
inequality f > 0 (or f 6= 0) where f ∈ Q[X1, . . . , Xn] of degree bounded by D.
Some methods provide such routines with a complexity in Dn (see [2] and ref-
erences therein) which improves Collins’Cylindrical Algebraic Decomposition.
These are based on an infinitesimal deformation: each connected component of
the solution set of f > 0 embedded in R〈ε〉n intersects at least one connected
component of the hypersurface of Rn defined by f − ε = 0. Hence, the problem
is reduced to study the hypersurface defined by f − ε = 0.
Instead of computing over Q(ε), our strategy consists in considering the problem
as a problem of algebraic optimization. Consider E(f) the set of local extrema
of f restricted to each connected component of the solution set of f 6= 0. Thus,
for each connected component S of f > 0 and 0 < e < min(B(f) ∩ R+), the
hypersurface defined by f −e = 0 has at least one connected component D ⊂ S.
The set of generalized critical values of f defined in [3] (see below) contains
E(f). Our contribution consists in designing an algorithm computing the set of
generalized critical values of f with a worst-case complexity which is polynomial
in Dn+1 (where D denotes the degree of f) and use it to compute at least one
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point in each connected component of the solution set of f > 0 with the same
complexity.

Definition and properties of generalized critical values. Consider f ∈
Q[X1, . . . , Xn] of degree bounded by D. The set of generalized critical values of
the mapping sending x ∈ Cn to f(x) is the set:

K(f) = {y ∈ C | ∃(x`)`∈N, f(x`) → y and ||x`||.||dx`
(f)|| → 0}

The set of asymptotic critical values is the set:

K∞(f) = {y ∈ C | ∃(x`)`∈N, f(x`) → y, ||x`||.||dx`
(f)|| → 0 and ||x`|| → ∞}.

Obviously, K(f) = K∞(f) ∪ K0(f) where K0(f) is the set of critical values of
f . One can prove that K(f) contains the local extrema of f on each connected
component of the solution set of f 6= 0. Also, performing a linear change of
variables does change neither the set of critical values nor the set of asymptotic
critical values. Moreover, for e ∈ Q, if c ∈ K∞(f − e) then c + e ∈ K∞(f).
In [3], the authors prove that the set of generalized critical values is Zariski
closed. The following degree bound is provided in [3]: D.]K∞(f) + ]K0(f) ≤
Dn − 1. Thus, providing an algorithm computing K(f) whose worst-case com-
plexity is polynomial in Dn is a relevant question.
In [3], the polynomial mapping φ : Cn → C × Cn × Cn2

whose coordinates are:
(f, ∂f

∂X1

, . . . , ∂f
∂Xn

, X1.
∂f

∂X1

, . . . , X1.
∂f

∂Xn
, . . . , Xn. ∂f

∂X1

, . . . , Xn. ∂f
∂Xn

) is considered
to characterize K(f) as the intersection of the Zariski-closure of the image of Φ
with the first axis of the target space.
They design an algorithm from this as follows. By introducing new variables ti

(for i ∈ {1, . . . , n}, ti,j (for (i, j) ∈ {1, . . . , n}2) and T consider the ideal I gener-

ated by: f − T,
(

∂f
∂Xi

− ti

)

i∈{1,...,n}
,
(

Xi
∂f

∂Xj
− ti,j

)

(i,j)∈{1,...,n}2

; eliminate the

variables X1, . . . , Xn and put the variables ti and ti,j to 0. Then, compute the
gcd of the obtained univariate polynomials.

Summary of the results. Our contribution allows to improve dramatically
the above algorithm. Our algorithm takes advantage of properness properties
of generic projections to compute the set of asymptotic critical values of f .
Given a new variable T , denote by H ⊂ Cn+1 the hypersurface defined by
f −T = 0. We consider in the sequel A ∈ GLn(C), and denote by fA the poly-
nomial f(A.X), and by HA the hypersurface defined by fA − T = 0. At last,

denote by IA
n−i+2(f) the ideal generated by fA − T = 0, ∂fA

∂Xn
= 0, . . . , ∂fA

∂Xi
= 0

and by WA

n−i+2(f) ⊂ Cn+1 its associated algebraic variety. Remark that de-
noting by πi : Cn+1 → Ci (for i = 1, . . . , n) the canonical projection sending
(T, x1, . . . , xn) on (T, x1, . . . , xi−1), WA

n−i+2(f) is the critical locus of πi re-
stricted to HA. We are ready to state our first result.

Theorem 1 Let e ∈ Q \ K0(f). There exists a proper Zariski-closed set Z in

GLn(C) such that if A /∈ Z the set of asymptotic critical values K∞(f − e) of

f − e is contained in the set of non-properness of π1 restricted to WA
n−1(f − e).
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From this result, one can retrieve easily the asymptotic critical values of f . We
give here the main ingredients of the proof. The proof of [Proposition 3, 1] can
be extended in our case to prove that for i = 1, . . . , n, IA

n−i+2(f−e) is radical and
equidimensional, and WA

n−i+2(f − e) is smooth. Moreover, in [4], the authors
show that outside a proper Zariski-closed set of GLn(C), for any i = 1, . . . , n the
projection πi restricted to WA

n−i+1 is proper. Then, using this geometric prop-
erty, Lojasiewicz’s inequality and the algebraic characterization of asymptotic
critical values of projections restricted to smooth and equidimensional varieties
given in [3], we prove by descending induction on i that if c ∈ K∞(f −e), then c
belongs to the set of asymptotic critical values of π1 restricted to WA

n−i+1(f−e).
Thus, computing the set of generalized critical values is done by retrieving the
set of non-properness of π1 restricted to WA

n . This can be done via Gröbner
bases computations and interpolation techniques; or via geometric resolutions
and Hensel lifting in a complexity which is polynomial in Dn+1 operations
over Q. Computing the set of critical values can be done with the same
complexity. This complexity dominates the one of finding e ∈ Q such that
0 < e < min(K(f) ∩ R+) and studying the hypersurface defined by f − e = 0
which can be done using [4]. This yields the following result.

Theorem 2 There exists an algorithm computing at least one point in each

connected component of the semi-algebraic set defined by f 6= 0 whose complexity

is polynomial in Dn+1 operations in Q.

Some experiments show the efficiency of our approach compared to techniques
using infinitesimal deformations and sharper complexity estimates justify it.
Compared to CAD, the output size of our algorithm is smaller even on some
problems with 3 variables.
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