
On Implementing Signature-based Gröbner Basis Algorithms

Using Linear Algebraic Routines from M4RI

Yao Sun, Dongdai Lin
SKLOIS, Institute of Information Engineering, CAS, (China)

Dingkang Wang
KLMM, Academy of Mathematics and Systems Science, CAS, (China)

dwang@mmrc.iss.ac.cn

Abstract

Gröbner bases, proposed by Buchberger in 1965 [5], have been proven to be very useful
in many aspects of algebra. Faugère introduced the concept of signatures for polynomials
and presented the famous F5 algorithm [9]. Since then, signature-based algorithms have
been widely investigated, and several variants of F5 have been presented, including F5C [7],
extended F5 [13], F5 with revised criterion [4], and RB [8]. Gao et al. proposed another
signature based algorithm G2V [11] in a different way from F5, and GVW[12] is an extended
version of G2V. The authors also studied generalized criteria and signature-based algorithms
in solvable polynomial algebra in [15, 16].

For implementations of signature-based algorithms, Roune and Stillman efficiently imple-
mented GVW and AP without using linear algebra [14]. Faugère mentioned a matrix F5 in
[10]. An F5 algorithm in F4 style was described in more detail by Albrecht and Perry [1].

In signature-based algorithms, each polynomial is assigned a signature, and polynomials
can only be reduced by polynomials with smaller signatures. When implementing signature-
based algorithms using linear algebra, such as [1], rows of the constructed matrices are also
assigned with signatures. These matrices can only be eliminated from one side due to the con-
straints of signatures, i.e. rows can only be reduced by rows with smaller signatures. However,
most public libraries on linear algebra do not provide routines for such one-side elimination,
such that most public libraries cannot be applied to the implementations of signature-based
algorithms directly.

In this talk, we present a method of rotating rows during the elimination, to ensure rows
with larger signatures can always be reduced by rows with smaller signatures. Our method
only needs to revise the swapping procedure during the elimination, and can be easily applied
to most public libraries on linear algebra. We have applied our method to the M4RI package
[3], and implemented the GVW algorithm by using the modified routines over the finite field
GF (2). Due to the efficient routines modified from M4RI, our implemented GVW algorithm
is more efficient than some of Gröbner basis implementations on public softwares.

Our method of rotating rows can be illustrated by the following example. Let A be a
matrix with entries in F2. Assume A has the following form:

S1

S2

S3

S4

S5

S6


0 1 ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 1 ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ ∗

 ,

where “∗” may be 1 or 0, Si is the signature of each row, and we assume S1 ≺s S2 ≺s · · · ≺s S6.
To reduce A to row-echelon form, we first find the pivot entry in the first column. We must

search the pivot entry from top to bottom (i.e. from lower signatures to higher signatures).
Then we find the entry at row 5 and col 1 is a pivot. If we use general methods of elimination,
we need to swap row 1 and row 5 directly, and clear entries at column 1 by the row with
signature S5. Next, when doing elimination in the second column, the row with signature S4

is selected as pivot row, and needs to eliminate other rows. However, this will leads to errors
in signature-based algorithms, because the row with signature S1 has a smaller signature than



S4 and cannot be eliminated by the row with signature S4. So we cannot swap row 1 and row
5 directly.

To make further eliminations correct, we swap row 1 and row 5 in a special manner. First,
we pick up the row 5 with signature S5. Second, we move rows 4, 3, 2, and 1 to rows 5, 4,
3, and 2 respectively. At last, we put the row with signature S5 at row 1. After this swap,
matrix A becomes the following form.

S5

S1

S2

S3

S4

S6


1 ∗ ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 1 ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ ∗

 .

Next, we use the row with S5 to clear all entries at column 1 below this row, and then
column 1 is done. For column 2, we find pivots from rows with S1, ..., S4 and S6, and repeat
the above processes. Elimination terminates when the matrix becomes an upper triangular
form.

This swap makes eliminations correct in signature-based algorithm for the following rea-
sons. On one hand, since pivot rows (e.g. row of S5) are finding from low signatures to high
signatures, rows with smaller signature (e.g. rows of S1, . . . , S4) cannot be reduced by pivot
rows (e.g. row of S5). On the other hand, after swaps, rows below pivot rows (e.g. rows of
S1, . . . , S4 and S6) are still in an increasing order on signatures.

Using this special swap, the echelon form of A is in an upper triangular form, such that
divide-and-conquer methods of PLE decomposition [2] can be used, and hence, the eliminations
can be speeded up significantly.

In our implementation, we modify many subroutines of mzd ple() in M4RI library to
use this swap. The new function with the special swap is called gvw ple(). We compare
the efficiency of mzd ple() and gvw ple() in Table 1. Examples with density ≈ 50% are
generated randomly by routines from M4RI. Since the densities of matrices in Gröbner basis
computations are usually very small, we also generate some randomized matrices with density
≈ 3%. The first column in Table 1 is the size of matrices, and the timings in this table are
given by seconds. All matrices are generated over GF (2).

Tests density ≈ 50% density ≈ 3%
mzd ple() gvw ple() mzd ple() gvw ple()

10, 000× 10, 000 0.378 0.382 0.345 0.354
10, 000× 30, 000 1.342 1.301 1.268 1.262
30, 000× 10, 000 1.432 1.443 1.403 1.418
30, 000× 30, 000 7.661 7.655 7.604 7.577
30, 000× 60, 000 18.684 18.671 18.651 18.634
60, 000× 30, 000 19.396 19.296 19.282 19.298
60, 000× 60, 000 58.373 58.636 54.509 54.263
60, 000× 100, 000 123.321 123.298 119.479 122.523
100, 000× 60, 000 119.991 118.388 108.565 108.501
100, 000× 100, 000 266.817 267.191 237.401 237.560
150, 000× 150, 000 817.682 817.750 700.032 700.781

Table 1: mzd ple() vs gvw ple()

From the above table, we can see the function mzd ple() and gvw ple() almost have the
same efficiency.

In Table 2, we compare our implementation of GVW with some intrinsic implementations
on public softwares, including Gröbner basis functions on Maple (version 17, setting “method
= fgb”), Singular (version 3-1-6), and Magma (version 2.12-16)1, and the computing times in
seconds are listed. In the column of Exam., n×n means that the input polynomial system has
n polynomials with n variables. These square polynomial systems were generated by Courtois
in [6]. The Computer we used is MacBook Pro with 2.6 GHz Intel Core i7, 16 GB memory.

1Magma 2.12-16 is an old version.



Exam. Maple Singular Magma GVW
16× 16 4.088 5.210 0.484 0.560
17× 17 9.891 12.886 0.874 0.893
18× 18 22.340 31.590 1.513 1.556
19× 19 48.314 84.771 2.792 2.742
20× 20 107.064 265.325 5.226 4.676
21× 21 218.479 724.886 10.468 14.991
22× 22 839.067 > 1h 37.144 28.947

Table 2: Maple, Singular and Magma vs M-GVW

From the above table, we can see that, due to the efficiency of routines from M4RI, our
implementation of M-GVW is more efficient than some of functions from existing public soft-
wares. However, since the matrices in large polynomial systems become quite sparse, our
implementation may not perform very good for large systems at present.

Keywords
Gröbner basis, linear algebra, implementation.

References

[1] M. Albrecht and J. Perry. F4/5. Preprint, arXiv:1006.4933v2 [math.AC], 2010.

[2] M. Albrecht and C. Pernet. Efficient decomposition of dense matrices over GF(2). Arxiv.org:
1006.1744, 2011.

[3] M. Albrecht and G. Bard. The M4RI library – Version 20130416. 2013. http://m4ri.sagemath.org .

[4] A. Arri and J. Perry. The F5 criterion revised. J. Symb. Comput. vol 46, 1017-1029, 2011.

[5] B. Buchberger. Ein Algorithmus zum auffinden der Basiselemente des Restklassenringes nach einem
nulldimensionalen Polynomideal. PhD thesis, 1965.

[6] N. Courtois. Benchmarking algebraic, logical and constraint solvers and study of selected hard prob-
lems, 2013. http://www.cryptosystem.net/aes/hardproblems.html.

[7] C. Eder and J. Perry. F5C: a variant of Faugère’s F5 algorithm with reduced Gröbner bases. J. Symb.
Comput., vol. 45(12), 1442-1458, 2010.

[8] C. Eder and B.H. Roune. Signature rewriting in Gröbner basis computation. In proc. ISSAC’13, ACM
Press, New York, USA, 331-338, 2013.

[9] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without reduction to zero (F5).
In proc. ISSAC’02, ACM Press, New York, USA, 75-82, 2002.

[10] J.-C. Faugère and S. Rahmany. Solving systems of polynomial equations with symmetries using
SAGBI-Gröbner bases. In proc. ISSAC ’09, ACM Press, New York, USA, 151-158, 2009.

[11] S.H. Gao, Y.H. Guan, and F. Volny. A new incremental algorithm for computing Gröbner bases. In
proc. ISSAC’10, ACM Press, New York, USA, 13-19, 2010.

[12] S.H. Gao, F. Volny, and M.S. Wang. A new algorithm for computing Gröbner bases. Cryptology
ePrint Archive, Report 2010/641, 2010. Latest version is given in July, 2013, and downloaded from
http://www.math.clemson.edu/~sgao/pub.html.

[13] A. Hashemi and G. Ars. Extended F5 criteria. J. Symb. Comput., vol. 45(12), 1330-1340, 2010.

[14] B.H. Roune and M. Stillman. Practical Gröbner basis computation. In proc. ISSAC’12, ACM Press,
2012.

[15] Y. Sun and D.K. Wang. A generalized criterion for signature related Gröbner basis algorithms. In
Proc. ISSAC’11, ACM Press, 337-344, 2011.

[16] Y. Sun, D.K. Wang, D.X. Ma, and Y. Zhang. A signature-based algorithm for computing Gröbner
bases in solvable polynomial algebras. In Proc. ISSAC’12, ACM Press, 351-358, 2012.


