Ridges and umbilics of polynomial parametric surfaces

Frédéric Cazals¹

Jean-Charles Faugère² Marc Pouget¹ Fabrice Rouillier²

¹INRIA Sophia, Project GEOMETRICA

²INRIA Rocquencourt, Project SALSA

Computational Methods for Algebraic Spline Surfaces II September 14th-16th 2005 Centre of Mathematics for Applications at the University of Oslo, Norway

イロト イポト イヨト イヨ

Outline

- Geometry of Surfaces : Umbilics and Ridges
 Curvatures and beyond
- Implicit equation of ridges of a parametric surface
 The ridge curve and its singularities
- Topology of ridges of a polynomial parametric surface
 Introduction
 - Algorithm

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline

Curvatures and beyond

Geometry of Surfaces : Umbilics and Ridges Curvatures and beyond

Implicit equation of ridges of a parametric surface
 The ridge curve and its singularities

Topology of ridges of a polynomial parametric surface
 Introduction

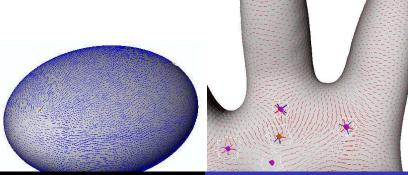
Algorithm

イロト イポト イヨト イヨト

Curvatures and beyond

Principal curvatures and directions

- k₁ and d₁ maximal principal curvature and direction (Blue).
- k_2 and d_2 minimal principal curvature and direction (Red).
- k_i and d_i are eigenvalues and eigenvectors of the Weingarten map $W = I^{-1}II$.
- d_1 and d_2 are orthogonal.



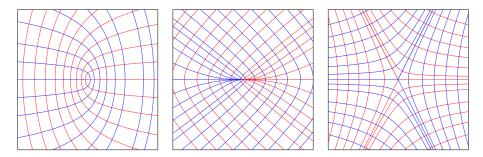
F. Cazals, J-C. Faugère, M. Pouget, F. Rouillier

Ridges and umbilics of polynomial parametric surfaces

Curvatures and beyond

Umbilics and curvature lines

- A curvature line is an integral curve of the principal direction field.
- Umbilics are singularities of these fields, $k_1 = k_2$



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

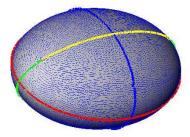
Curvatures and beyond

Ridges

A blue (red) ridge point is a point where k₁ (k₂) has an extremum along its curvature line.

$$\langle \nabla k_1, d_1 \rangle = 0 \quad (\langle \nabla k_2, d_2 \rangle = 0) \tag{1}$$

• Ridge points form lines going through umbilics.



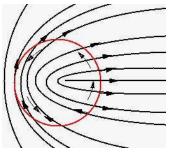
Umbilics, ridges, and principal blue foliation on the ellipsoid

F. Cazals, J-C. Faugère, M. Pouget, F. Rouillier Ridges and umbilics of polynomial parametric surfaces

Curvatures and beyond

Orientation of principal directions

- Principal directions d_1 (d_2) are not globally orientable.
- The sign of $\langle \nabla k_1, d_1 \rangle$ is not well defined.
- $\langle \nabla k_1, d_1 \rangle = 0$ cannot be a global equation of blue ridges.

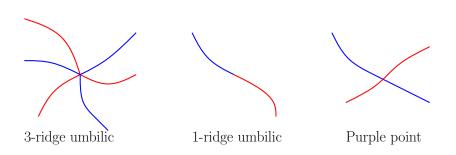


The principal field is not orientable around an umbilic

A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Curvatures and beyond

Singularities of the ridge curve



イロト イポト イヨト イヨト

Curvatures and beyond

Difficulties of ridge extraction

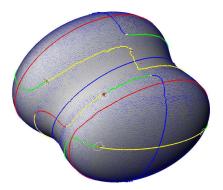
- Need third order derivatives of the surface.
- Singularities: Umbilics and Purple points
- Orientation problem.

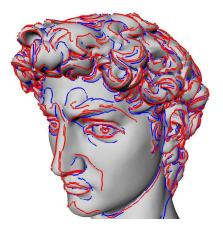
イロト イポト イヨト イヨト

2

Curvatures and beyond

Illustrations: ridges and crest lines





・ロト ・回 ト ・ ヨト ・

3

F. Cazals, J-C. Faugère, M. Pouget, F. Rouillier Ridges and umbilics of polynomial parametric surfaces

Outline

Geometry of Surfaces : Umbilics and RidgesCurvatures and beyond

- Implicit equation of ridges of a parametric surface
 The ridge curve and its singularities
- Topology of ridges of a polynomial parametric surface
 Introduction
 - Algorithm

イロト イポト イヨト イヨト

The ridge curve and its singularities

Problem statement

• The surface is parametrerized:

$$\Phi: (u, v) \in \mathbb{R}^2 \longrightarrow \Phi(u, v) \in \mathbb{R}^3$$

Find a well defined function

$$P: (u, v) \in \mathbb{R}^2 \longrightarrow P(u, v) \in \mathbb{R}$$

such that P = 0 is the ridge curve in the parametric domain.

イロト イポト イヨト イヨト 三油

The ridge curve and its singularities

Solving the orientation problem

- Consider blue and red ridges together $< \nabla k_1, d_1 > \times < \nabla k_2, d_2 >$ is orientation independent.
- Find two vector fields v₁ and w₁ orienting d₁ such that:
 v₁ = w₁ = 0 characterizes umbilics.
 Note: each vector field must vanish on some curve joining

Note: each vector field must vanish on some curve joining umbilics

• v_1 and w_1 are computed from the two dependant equations of the eigenvector system for d_1 .

イロト イポト イヨト イヨト 三連

Some technicallities

- *p*₂ = (*k*₁ *k*₂)² = 0 characterize umbilics.
 It is a smooth function of the second derivatives of Φ.
- Define a, a', b, b' such that: (Numer(∇k₁), v₁) = a√p₂ + b and (Numer(∇k₁), w₁) = a'√p₂ + b'. These are smooth function of the derivatives of Φ up to the

third order.

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

Main result

イロト 不得 とくほ とくほ とうほ

The ridge curve has equation P = ab' - a'b = 0. For a point of this set one has:

- If $p_2 = 0$, the point is an umbilic.
- If $p_2 \neq 0$ then
 - If ab ≠ 0 or a'b' ≠ 0 then the sign of one these non-vanishing products gives the color of the ridge point.
 - Otherwise, a = b = a' = b' = 0 and the point is a purple point.

The ridge curve and its singularities

Singularities of the ridge curve

1-ridge umbilics

$$S_{1R} = \{ p_2 = P = P_u = P_v = 0, \delta(P_3) < 0 \}$$

3-ridge umbilics

$$S_{3R} = \{p_2 = P = P_u = P_v = 0, \delta(P_3) > 0\}$$

Purple points

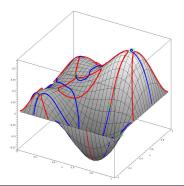
$$S_{p} = \{a = b = a' = b' = 0, \ \delta(P_{2}) > 0, \ p_{2} \neq 0\}$$

イロト イポト イヨト イヨト 一座

The ridge curve and its singularities

Example

For the degree 4 Bezier surface $\Phi(u, v) = (u, v, h(u, v))$ with $h(u, v) = 116u^4v^4 - 200u^4v^3 + 108u^4v^2 - 24u^4v - 312u^3v^4 + 592u^3$ $+ 324u^2v^2 - 72u^2v - 56uv^4 + 112uv^3 - 72uv^2 + 16uv.$



P is a bivariate polynomial

- total degree 84,
- degree 43 in *u* and *v*,
- 1907 terms,
- coefficients with up to 53 digits.

ヘロン 人間 とくほ とくほ とう

F. Cazals, J-C. Faugère, M. Pouget, F. Rouillier Ridges and umbilics of polynomial parametric surfaces

Introduction Algorithm

Outline

- Geometry of Surfaces : Umbilics and RidgesCurvatures and beyond
- Implicit equation of ridges of a parametric surface
 The ridge curve and its singularities
- Topology of ridges of a polynomial parametric surface
 Introduction
 - Algorithm

ヘロト ヘアト ヘビト ヘビト

1

Introduction Algorithm

Problem statement

Find a topological graph of the ridge curve P = 0. Classical method (Cylindrical Algebraic Decomposition)

- Compute *ν*-coordinates of singular and critical points: α_i Assume generic position
- 2 Compute intersection points between the curve and the line $v = \alpha_i$

Compute with polynomial with algebraic coefficients

Onnect points from fibers.

イロト イポト イヨト イヨト 一座

Our solution

Introduction Algorithm

- Locate singular and critical points in 2D no generic position assumption
- Compute regular intersection points between the curve and the fiber of singular and critical points Compute with polynomial with *rational coefficients*
- Use the specific geometry of the ridge curve.
 We need to know how many branches of the curve pass throught each singular point.
- Connect points from fibers.

ヘロト ヘアト ヘビト ヘビト

Introduction Algorithm

Algebraic tools

- Univariate root isolation for polynomial with rational coefficients.
- Solve zero dimentional systems / with Rational Univariate Representation (RUR).
 - Recast the problem to an univariate one with rational functions.
 - Let *t* be a separating polynomial and f_t the characteristic polynomial of the multiplication by *t* in the algebra $\mathbb{Q}[X_1, \ldots, X_n]/I$

$$\begin{array}{rcl} \mathsf{V}(I)(\cap\mathbb{R}^n) &\approx & \mathsf{V}(f_t)(\cap\mathbb{R})\\ \alpha = (\alpha_1, \dots, \alpha_n) &\to & t(\alpha)\\ (\frac{g_{t,X_1}(t(\alpha))}{g_{t,1}(t(\alpha))}, \dots, \frac{g_{t,X_n}(t(\alpha))}{g_{t,1}(t(\alpha))}) &\leftarrow & t(\alpha) \end{array}$$

イロト イポト イヨト イヨト 三油

Introduction Algorithm

Outline

- Geometry of Surfaces : Umbilics and RidgesCurvatures and beyond
- Implicit equation of ridges of a parametric surface
 The ridge curve and its singularities
- Topology of ridges of a polynomial parametric surface
 Introduction
 - Algorithm

ヘロト ヘアト ヘビト ヘビト

1

Introduction Algorithm

Step 1. Isolating study points

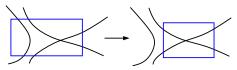
- Compute RUR of study points: 1-ridge umbilics, 3-ridge umbilics, purple points and critical points.
- Isolate study points in boxes [u_i¹; u_i²] × [v_i¹; v_i²], as small as desired.
- Identify study points with the same v-coordinate.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

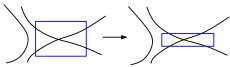
Introduction Algorithm

Step 2. Regularization of the study boxes

 Reduce a box until the right number of intersection points is reached wrt the study point type.



• Reduce to compute the number of branches connected from above and below.



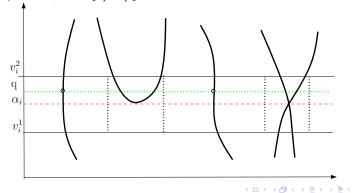
ヘロト ヘアト ヘビト ヘ

Introduction Algorithm

Step 3. Compute regular points in fibers

Outside study boxes, intersection between the curve and fibers of study points are regular points.

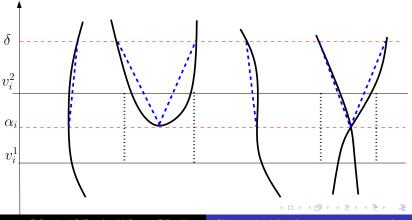
⇒ Simple roots of the polynomial with rational coefficients P(u, q) for any $q \in [v_i^1; v_i^2] \cap \mathbb{Q}$



Introduction Algorithm

Step 4. Perform connections

- Add intermediate fibers.
- One-to-one connection of points with multiplicity of branches.



F. Cazals, J-C. Faugère, M. Pouget, F. Rouillier Ridges and umbilics of polynomial parametric surfaces

Introduction Algorithm

Example: degree 4 Bezier surface

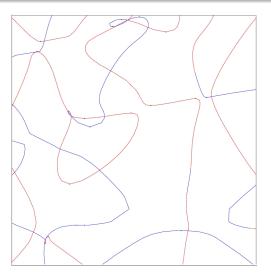
- Computation with the softwares FGB and RS.
- Domain of study $\mathcal{D} = [0, 1] \times [0, 1]$.

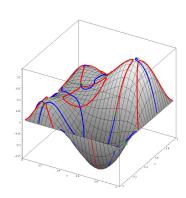
System	# of roots $\in \mathbb{C}$	# of roots $\in \mathbb{R}$	# of real roots $\in \mathcal{D}$
Su	160	16	8
Sp	1068	31	17
Sc	1432	44	19

イロト イポト イヨト イヨト 一座

Introduction Algorithm

Example: degree 4 Bezier surface





<ロ> (四) (四) (三) (三) (三)

F. Cazals, J-C. Faugère, M. Pouget, F. Rouillier Ridges and umbilics of polynomial parametric surfaces