
J. Symbolic Computation (1995) 11, 1{000Parallel Gr�obner Bases computattions by elementarymethods yJ.C. FAUG�EREe-mail : jcf@posso.ibp.frLITP, Institut Blaise PascalCase 168, 4, place JussieuF{75252 Paris Cedex 05(Received 8 June 1995)The main purpose of this paper is to present parallelized versions of Buchberger andFGLM algorithms which are the most powerful tool to compute Gr�obner bases. In thecase of integer coe�cients, the basic idea is to use a probabilistic DAG of dependenciesgenerated by an auxiliary fast modular computation in order to avoid vanishing syzygiesin �rst time and to exploit the parallelismwithout disturbing the sequential strategy in asecond time; the result of this computation is only probabilistic but we show that provingit can be done quickly. A parallelized version of Buchberger algorithm is also presented inthe case of modular computation.We achieved about 31 times speedup with 8 processorsfor a large robotic problem (integers), (=n=2). For a big modulo p problem { cyclic 7{ we report a 5 (resp. 6:2) rate of acceleration for Buchberger algorithm (resp. FGLMalgorithm)on a Alliantwith 8 processors.The details of an e�cient C++ implementationare given together with results of tests performed with signi�cant examples.1. IntroductionOne of the main tools for solving algebraic systems is the computation of Gr�obner bases(also called standard bases); we refer to Buchberger65, Buchberger70, Buchberger79,Buchberger85, Davenport et al.93 and Becker et al.93 for basic facts on this notion.In the zero dimensional case (�nite number of solutions) an e�cient way to achievethis is Faugere et al.94b, Gianni et al.94, Lazard92, Faugere94 a four steps algorithm(Lazard93b): �rst �nd a Gr�obner base for a total degree ordering, change of ordering(by using FGLM for instance), obtain a list of triangular sets, solve numerically usingthe previous result. Although this class of problems is special, the majority of polyno-mial systems arising in practice have this property. Another usual subclass of polynomialproblems is constituted by polynomials whose coe�cients are in the ring Z; but veryy Supported by EEC project PoSSo (Polynomial Systems Solving)0747{7171/90/000000 + 00 $03.00/0 c 1995 Academic Press Limited

2 J.C. FAUG�EREoften there is a huge gap between computing over the integers and computing over inte-gers modulo a prime p; trace methods Traverso98 are a �rst attempt to reduce this gap,a second one is presented in this paper. The main purpose of this paper is to presentparallelized versions of the �rst and second steps. The methods exposed here are elemen-taries in the sense that we do not try to modify deeply the sequential computation: onthe contrary we try to mimic closely as possible the best known sequential strategy. Inspite of that relative simplicity the methods are very e�cient.Section 3 is devoted to the parallelization of the �rst step, referred to as the "Buch-berger Algorithm"; it is the more random step in the sense that it is di�cult, if notimpossible, to predict a priori the computational time and the growth of the coe�cients.It is the main section of the whole paper and it is divised in four parts.Since, as sketched, before the shape of computation is totally di�erent when computingwith integers or with modulo p integers we need a special algorithm for the latter caseand it is the object of subsection 3.5; for typical big problems Cyclic 7 (resp. T6) wereduce the total CPU time by a factor of 5 = 1080 sec216 sec (resp. 6:2)In the case of integer coe�cients, we use an auxiliary modular to compute the DAG ofdependencies; we can use this DAG to avoid the computation of vanishing critical pairs(subsection 3.3) and to parallelize the computation of the ones (subsection 3.4)computation , more exactly we �rst show how to obtain a not probabilistic algorithmfrom a probabilistic one and give some experimental results which prove that, surpris-ingly, the extra cost for that "check part" is relatively small and can be reduced to almostzero by using a su�cient number of processors. Then we will explain how to deduce fromthe graph of dependencies generated by an appropriate modular computation a paral-lelized algorithm that preserve the selection strategies and all heuristics found recentlyGiovini et al.91. Without parallelization we have a very e�cient algorithm (non lineargain) which enable very big computations (realistic examples from robotics are shownFaugere et al.94a); with only 4 processors we can divide the computation time of the �rststep by a factor 2:5.we obtain a speedup varying from 5:5 to 31 for well known and realistic examples ona shared multiprocessor environment with 8 processors (Alliant).The quality of the computer implementation of Gr�obner bases algorithms can have aprofound e�ect on their performance. Hence, \paper and pencil" descriptions of Gr�obnerbases algorithms are not enough; this why we provide for each algorithm presented inthis paper an e�cient C++ implementation part of the Gb system and a detailed list ofexperimental results.All the tools needed for solving algebraic equations are implemented by the author in aC++ (59 000 lines) very e�cient software called GBy; GB is known as the fastest systemat this time. We have a �rst implementation of the method exposed in this paper: one canuse GB over a network of workstations (heterogeneous), or better on a multiprocessorsworkstation with share memory (for instance Sparc Center). The experimental timingsconcord with the computational model used to present the algorithm.In section 2 we describe recent works in area of parallelizing Buchberger algorithm.y GB is freely available (source and binaries) by anonymous ftp: posso.ibp.fr

Parallel Gr�obner Bases 32. Related WorksWe list briey works related to parallelizing the Buchberger algorithm. We recall thatour goal is to parallelize the fastest Gr�obner bases algorithm, thus recent results (such asGiovini et al.91 and Faugere et al.94b) imply to reconsider most of the following papers.Senechaud89computes Boolean Gr�obner bases: it is a very special case of ideals for which thereare specialized e�cient algorithms; the same is true for toric ideals and binomialideals (Pottier94 and Bsturmfels91).Vidal90proposed a parallel algorithm on a shared memory multiprocessor; the algorithmdoes not rely on the sugar strategy; he obtained a speedup of 14 = 1103 sec79 sec with 12processors on the the biggest example (katsura 5), but this example can be solvedonly 2secs with one processor !Grabe et al.94reports a parallel version of Gr�obner bases algorithm with factorization on a dis-tributed memory environment. This works only for \well splitting examples" whichare not very common.Siegl94implements in kMAPLEk of a Gr�obner bases algorithm using factorization: toyexamples are solved in a very long time.Sawada et al.94describes also a Gr�obner bases algorithm on a distributed parallel machine with256 processors. They obtained signi�cant speedup when the number of processorsis < 32 but the implementation (and the strategy) seems not very e�cient for oneprocessor. We include in our experiment the most signi�cant examples found here.Attardi et al.94are the closest of this paper; they present a parallelized form of Buchberger algo-rithm that is strategy-accurate. But they do not remove superuous critical pairsbefore parallelizing; moreover their algorithm is implemented on a network of work-stations and because the heavy cost of communications its seems not pratical; noexperimental timings are given.It follows from this listing that the designer of parallel Gr�obner bases algorithm musttake car of:The implementation and the choice of strategy must be up to date and e�cient atleast when the number of processor is one.The methods should be su�ciently general to handle properly a list of well knownsystems (such as the PoSSo test suite for instance).The algorithm must work not only on toy examples but also for big di�cult andrealistic examples.

4 J.C. FAUG�ERE3. Parallelization of Buchberger Algorithm3.1. Introduction3.1.1. NotationWe de�ne now some terms used in this paper but we donc explain the classical theoryof Gr�obner bases; for the reader unfamiliar with Gr�obner bases language we refer toBecker et al.93.A polynomial f is an ordered list of monomials; the order might be any admissibleordering Robbiano85 but the most useful ones are: the lexicographical (LEX) orderingand the degree{reverse{lexicographical (DRL). DRL is generally the one for which thecomputation of a Gr�obner has the best theoretical and practical complexity. On the otherside a DRL Gr�obner base does not give solutions by itself. In practice the coe�cient ofpolynomials are of two kind:integers (that is to say big integers with no size limitation)integers modulo a small prime p (represented by a word in a computer memory)We call the reduction of a polynomial p1 by a polynomial p2 an elementary operation,the result is given by: m1 � p1 �m2 � p2 mi monomialsThe S-polynomial of polynomials p1 and p2 is the reduction of m1 � p1 by p2 for somemonomial m1 and thus is an elementary operation. Reduction of a polynomial by a listof polynomials is a sequence of elementary operations. By \Buchberger Algorithm" wemean any algorithm that compute a Gr�obner base of a list of polynomials by a seriesof elementary operations; from this restricted point of view the classical sugar algoritmGiovini et al.91 and the new algorithm Lazard93a are \Buchberger Algorithm" even ifthey are very di�erent. Hence the methods describe here apply to all kind of Buchberger'salgorithms and variants including di�erent strategies.We denote by p 7! normalForm(p;G)the reduction of p modulo I where p is a polynomial,G is a Gr�obner base and I the idealgenerated by G; we recall that normalForm(p;G) = 0i� p is member of I. normalForm(p;G) is also a sequence of elementary operations.By a modular computation associated to a system of polynomials S, we mean thecomputation of a Gr�obner base of the input system S0p where S0p is the image of S by themorphism (see Traverso98, Lazard93b):coef �X� 7! (coef mod p)�X�3.1.2. Overview of the sectionComputing e�ciently a Gr�obner base depends strongly on:

Parallel Gr�obner Bases 5Avoid unnecessary critical pairs. Even with Buchberger's �rst ans second criteriamost of the critical pairs considered during a computation will reduce to zero (pairsreducing to zero may represent 95% of the total time in the integer case and 80%for modulo p coe�cients); in Moller et al.92 algorithm is given which show how thiscan be avoided by computing syzygies: this algorithm can detect more superuouscritical pairs than any other method, but unfortunately the time spend of computingsyzygies is a bottleneck and the algorithm is of no practical interest.The selection strategy: it is well known that selection strategies in Gr�obner basesalgorithms are a crucial point Giovini et al.91: one of the most important e�ectof a good strategy (sugar strategy is probably the best) is to reduce the size ofcoe�cients, and since 99% of the time is spent in arithmetical operations over theintegers (+, �) it is very important to not perturb the strategy. Even for modularcomputation and at least for big computations it seems better to strictly follow thesugar strategy.This section of the paper is devoted to prove that:for integers coe�cients and non homogenenous systems, there is a very simplemethod to avoid superuous critical pairs. We claim that the computation of Gr�ob-ner basis can be signi�cantly speeded up by a factor range from 4:2 to 7:4 for smallproblems and from 14 to 1 for large problems.for integers coe�cients and more processors we can reduce once more time the CPUtime given by the last method by a factor varying from 3:9 to 6:5 with 8 processorsand shared memory.for modulo p coe�cients on a shared multiprocessor we obtain speedup between 5and 6:4 for 8 processors.In each case the structure of our presentation is as follows. We give the algorithm,details on the implementation and the practical results and speedup on signi�cant andwell known problems are listed.There is a non linear gain in e�ciency due to this method. Our method use an auxiliarymodular computation as in Gr�obner trace algorithm of Carlo Traverso Traverso98 but itdi�ers from it in two main points: �rst we show that it could easily be converted into aexact method by doing an extra Gr�obner computation, the time spent in veri�cation issmall for very big problems and can be divide out by the number of available processors(we could even use a network of workstations without share memory). Secondly we explainhow to �nd a way to parallelize the main part of the computation from the DAG ofdependencies found by a modular computation; the method is well adapt for workstationswith a small number of processors (4 seems to be quite enough) with share memory andwas experimented on Sparc Center 2000 and Alliant Fx2800.3.2. Verify that a list of polynomials is a Gr�obner baseIn the rest of the paper we denote by step X a speci�c part of an algorithm and by �Xthe corresponding CPU time of that part. We recall that coe�cients of the polynomialsare integers.Let us suppose that we already have a Gr�obner bases implementation and a function

6 J.C. FAUG�EREInput: F list of polynomials.I the generated ideal.Output: G the Gr�obner base of I.f The result of this algorithm is probabilist, but CPU time is. g\Guess" a list G1 of polynomials of I.G2 fnormalForm(x;G1) j x 2 FgfWe call it step G (Guess). gDelete all zeros from G2.if G2 = ; thenf Check that G1 is a Gr�obner base : gG3 Gr�obner G1elseG3 Gr�obner G1 [G2fWe call this last Gr�obner call step C (Check). gG G3return GFigure 1. Heuristic Gr�obner ComputationnormalForm, a Gr�obner completion algorithm Lazard93b �tted in Figure 3.2 can easilybe writen.The algorithmworks �ne if we can guess a G1 such that we have with a good probabilitythe conditions:G2 = ;, that is to say G1 is a generator of I.G = G1 it means that G1 is already a Gr�obner base.If we don't execute step C, then we have only a probabilistic algorithm.We can achievestep G by doing simultaneously a modular computation { GM { and the same compu-tation over integers { GI { but in GI we don't try to compute syzygies reducing tozero in GM . With a good probability (see Traverso98), the previous conditions3.2 hold.Lazard93b says: \The last two veri�cations may be almost as di�cult as computing theGr�obner base by not modular method". The surprising empirical result shown here, isthat �C � �G for very big computation and �C � �G in other cases. Compute G2 isan easy and fast task if we have a normalForm function; it is obvious that G2 could beparallelized. Consequently step C is equivalent to verify that a list of polynomials reduceto zero wrt to a �xed list of polynomials, hence check that a speci�c polynomial reduceto zero can be done independently of the others, thus we can divide �C by n, if we havea set of n processors (not necessary with share memory).3.3. Avoid superfluous critical pairs3.3.1. Algorithm and implementationThe algorithm is plotted in Figure 3.3.1. The implementation in C++ follow strictlythis scheme: it can be run on a network of two distant workstations. We use Unix sock-ets to communicates data between the master and slave process; actually in the realimplementation we send the exponant of the leading monomial found in the modularcomputation; if we detect a failure it is better to choose a new prime and to rerun thewhole computation; this test is to be used only to screen out obvious errors. One has notto allow for communication costs: the amount of data to transfer is very small in front

Parallel Gr�obner Bases 7the total CPU time of each process. In Gb, two kind of fast servers for prime p < 216and for p < 231 were implemented. In practice a such p = 59999 has never failed.Input: F list of polynomials.I the generated ideal.Output: G the probabilistic Gr�obner base of I.critpairs form the list of critical pairschild fork(\remote workstation")if child process thenchoose a small random prime p and set the ground ring to Z=pZF F with coe�cients modulo pG F while critical 6= 0 doif child process thenh = normalForm(�rst(critpairs),G)if h = 0 thensend to(parent process,"ZERO")elsesend to(parent process,"NON ZERO")elseif get from(child process) = \NON ZERO" thenh normalForm(�rst(critpairs),G)G Update (h,G)critpairs Update (h, rest(critpairs))return GFigure 2. Probabilistic Gr�obner Computation avoiding vanishing pairs3.3.2. Experimental ResultsA list of examplesIn the rest of this paper we will evaluate our parallel Gr�obner bases programs onthe benchmarks listed below. We take the list of Sawada et al.94 except toy examples(namely katsura n and cyclic n for n < 6).Katsura-6 (Katsura86): (7 variables and 7 polynomials 64 solutions)Katsura-7 (Katsura86): (8 variables and 8 polynomials 128 solutions)Cyclic-6 (Bjork85, Backelin89, Davenport97): (6 variables and 6 polynomials 156solutions)Cyclic-7 (Bjork85, Backelin89, Backelin et al.91): (7 variables and 7 polynomials924 solutions)T-6 (Backelin et al.91): (7 variables and 6 polynomials dimension 1)In Faugere et al.94a we used the techniques exposed in subsection 3.3 to solve bigproblems arising in a robotic problem: a parallel manipulator is a body (platform), thespatial position of which is commanded by �xing the distance of six points of the platformto six �xed points of the space (the base). When one wants to compute the position ofthe platform from its geometry and the lengths of the linear actuators, one is led to asystem of algebraic equations which has several solutions.We summary a special con�guration of the parallel manipulator by symbols such as(=n=2) (Spat2N in text form), (=n2 j2), (=n n= j2), : : : . These examples will be add to thePoSSo Test suites; they are useful for our purpose because they are:

8 J.C. FAUG�ERErealistic in the sense that they come from the physical world.very big, they give rise to an enormous coe�cient growth and are good tests of howe�cient the integer arithmetic is.unreachable with classical Gr�obner bases algorithms (at least the biggest).they do not have too much geometrical properties but have some. In some sensethey are othogonal to the cyclic-n problem which have a lot of symmetries.By testing our ideas on di�erent kind of examples, we will validate our theoreticalmodels.Gb and other Computer Algebra systemsEven if it is not an easy task to compare system, one can say that Gb is among thefastest system for computing Gr�obner bases. Because of the big numbers of computeralgebra systems which implement a Gr�obner bases function, it would be very di�cult(and very long) to test a comprehensive list of examples. Thus, we restrict ourselves toone well known system, cyclic n (see Backelin89 and Backelin et al.91); for each systemwe report on �gure 3.3.2 (see page 8) its aptitude to compute the Gr�obner base for thenon homogenenous integer Cyclic n problem in a less than one day. The fact that it is anon linear scale is best explained by referring to Table 3.3.2.
0

1

2

3

4

5

6

7

Degree Reverse Lexico

LexicographicalFigure 3. Comparing Gb with other systemsn 5 6 6 7time to solve Cyclic ntime to solve Cyclic n�1 10.7 10.3 4427.6Tab 3.3.2: Relative time for solving cyclic nThis list include the following systems: Reduce Version 4.3 (Fitch85, Hearn87), AxiomVersion 2.0 (Jenks et al.87, Jenks et al.92), Alpi Version 1.95 (Alpi, Traverso et al.89),MAS Version 0.7,Maple Version V.2 (Char et al.91), Singular version 0.9.0e (Grassman et al.94and Grassman et al.95) but we do not include a system such Macaulay (Stillman et al.89)

Parallel Gr�obner Bases 9which works only with modular p computation. We mention also that the Bergman(Backelin et al.92) is also very fast. The main drawback of this table is that it do notreport that a program such as the PoSSo library is faster than Reduce. Nevertheless wecan conclude from this table that Gb is one of the fastest system.Timings on Sparc 10We give a �rst table of computing time (Sparc Station 10): groebner is a classicalGr�obner bases, tgroebner is an implementation in GB of the previous method (twoprocessors for GI and GM thus �G is a parallel process time; one processor for C).groe-bner tgroe-bner �G �C savingof timeT6 (Homog) 4'3" 4'48" 48" 4' 0.85Homog Cyclic 6 16"3 7"3 2" 5"3 2.2Cyclic 6 14" 3"3 1"7 5"6 4.2Katsura 6 5'14" 1'1" 16" 45" 5.2(=n=2) 16'55" 2'18" 47" 1'31" 7.4Katsura 7 2h15'39" 9'5" 5'51" 3'14" 15(=n2 j2) 2h24'24" 10'20" 7'5" 3'15" 14(=n n= j2) 18h48' 55'5" 47'19" 7'46" 20.7(j6) > 4 days 1h16'48" 58'22" 18'26" > 75Cyclic 7 1 4h3'31" 3h52'2" 11'29" 1Tab 3.3.2: Using two processors Sparc 10 (50Mhz)Dire que Cyclic 7 est calcule avec l'algo de DanielLe cas de T6 est etrange homogene ?3.4. Parallelization of non vanishing critical pairsOur aim in this section is to compute GI on a multiprocessors workstation using theDAG of dependencies generated by GM . We �rst need to �x notations:3.4.1. DefinitionsWe want to compute a Gr�obner base for the DRL ordering (in fact ordering doesn'tmatter but experimental tests have been made only for the DRL ordering because it is

10 J.C. FAUG�EREthe most important case in practice), of the input system F = (f1; : : : ; fr). A Buchbergeralgorithm can be view as a series of polynomial computations fi (i > r), (we compute allthe polynomials one after the other) where fi is the S-polynomial of fai and fbi reducedby a set of previously computed polynomials (i.e. whose indexes are < i), namely fui;j forj = 1; : : : ; vi (ui;j < i). In other words, ai; bi and ui;j are indexes of all the polynomialswhich occur in the computation of fi and vi + 2 is the number of such polynomials;we denote by Si the list of indexes fai; bi; ui;j 8j 2 f1; : : : ; vigg. Elements of Si are notnecessarily unique. The �nal Gr�obner (not reduced) base is a sub series of the wholepolynomials series (fi): (fi1 ; : : : ; fik). (One can suppose that fi 6= 0 for all i as explainedbefore). We obtain the DAG of dependencies (see Fig 3.4.1, page 10) of vertices (1; : : : ; ik):if i > j we join j and i by an edge if ai = j, or bi = j or ui;l = j for some l � vi.y
1 2 3 r...

7

8

9

10

11Figure 4. DAG of dependencies.We note Nall = ik the total number of non null polynomials and Nbase = k the size ofthe Gr�obner base.3.4.2. Independent nodesFirst of all we can detect in the DAG of dependencies some characteristic pattern (seeFig 3.4.2, page 11) which can help us in parallelizing: for instance if a node i which doesnot depend of the previous node i� 1, we can compute i and i � 1 at the same time.Of course the question is then: what proportion of such patterns one may expect ina typical computation ? We have developed along with GB a small program call \ow"which analyzes the output of a modular Gr�obner computation. We note:Nonce = Cardfk j 9j; Card(Si \ fkg) = �i;j 8igNind = Nindependent = Cardfi j Si \ fi� 1g = ;gIn other words, Nonce (resp. Nindependent) is the number of patterns similar to the left(resp. the right) part �gure 3.4.2.y In fact in GB we compute only nodes which have a descendant in fi1; : : : ; ikg even if in practicethis number is very small.

Parallel Gr�obner Bases 11
n

m

Node n is use only once.

n+1n

n+3

Independents nodes.

n+2Figure 5. Characteristic patternNall Nonce Nind NindNallC6 98 10 11 11:2%(j6) 109 9 26 23:8%(=n2 j2) 82 10 32 39%(=n n= j2) 105 11 22 20:9%Tab 3.4.2: Number of patternsIt is to be noticed that this \rate of independencies" is not negligible, but representonly 10=25% of the overall computation. That is to say that a Buchberger algorithm isa very sequential algorithm.3.4.3. Almost independent nodes.Let us extract a typical list of dependencies from the (=n2 j2) example:...a29 = 19; b29 = 22; v29 = 8;S29 = [19; 22; 20; 18; 22; 15; 18; 19; 20; 28]...It means that the knowledge of 28 (f28) is strictly necessary for computing node 29(f29), which require to perform v29+1 = 9 elementaries operations; but at the other side,the �rst 8 steps can be done as soon as we have computed fi; i < 22, in other words wecan compute 89 = 88% of f29 as soon as we know f22. We introduce now the followingmeasure:

12 J.C. FAUG�EREpi = 8>><>>: 0 if ai = i� 1 or bi = i � 11 if maxSi < i � 1j0vi+1 else, withj0 = minfj � vi j ui;j = i � 1gpi tell us which percentage of fi we can compute without knowing fi�1. It is now easyto �nd the number of such elements fi: we can compute: Nalmost = Cardfi j pi > 6%g.ow give both pi and Nalmost: C6 (j6) (=n2 j2) (=n n= j2)Nalmost 60 52 52 60NalmostNall 61% 48% 63% 57%Tab 3.4.3: Quasi independent nodesThese numbers explain why one can expect good result of the previous outlinedmethod, however they are not su�cient to estimate the computational time.3.4.4. A computational modelTo estimate the computational time, pi is not su�cient becausewe have �xed arbitrarily the limit of 66%.even if we know that pi > 66% we don't know when fi can be computed (in theprevious example, we have seen that f29 is almost computed since f22 is known).we have to test the dependency of node i not only with i � 1, but also with i� 2,i � 3, : : :ow will give a good estimate if we can continue to restrict ourselves to analyze theDAG of dependencies, that is to say if we can suppose that each element of [iSi has thesame weight in the global computational time; so we are making the following simplifyinghypothesis:H1 : We have Nall processors (a typical number is 100 for Nall) at our disposal. Ofcourse it is not a realistic estimation; it is introduce here to simplify the algorithmpresentation: processor number i will have the task to compute fi. In practical casesonly a few processors are needed as it will be seen later.H2 : Time for sending messages is negligible: this is only true if we a share memoryarchitecture in which case it is su�cient to send index of polynomials. (sendingmessage in that case is done by mean of share memory, so it is very fast).

Parallel Gr�obner Bases 13H3 : We suppose that all elementaries operations over polynomials can be performedin a constant time t0: this hypothesis is globally false because polynomials aregrowing during the computation (both the number of monomials and the size ofcoe�cients); nevertheless we can estimate as a �rst approximate that fi and fi+j ,for j small, have almost the same size; thus the assertion H3 is locally well veri�ed.As a result, we can write that the sequential computational time of GI is of the sameorder than Tseq = t0(Nall+Pi vi). We associate { at initialization time { to each processori, a stack Pi of constituted of all elements of Si (ai is at the top of the stack). On can saythat fi is known when the corresponding stack Pi is empty; of course, at the beginning,stacks Pi for which i < r are empty. Now we can write very easily our main algorithm(see Fig 3.4.4, page 13 and Fig 3.4.4, page 13).while 9i0 such that Pi0 6= ; dofor i 1 to Nall dof�rst(Pi) return the �rst element at the topof the stack Pi without popping. gif Pi 6= ; and P�rst(Pi) = ; thenj pop (Pi)fi Reduction of fi by fjFigure 6. Gr�obner pipeline computation
12

13

13

12

13

12

16 27

Processor 1

16

20

17

19

15

16

20

19

16

15

Processor 2Figure 7. Each processor has its own stack.The For loop in the algorithm can be done in parallel, hence T== { the number ofiteration multiplied by t0 { is an estimation of the computational time. ow can simulatethis algorithm (only the DAG of dependencies is needed):

14 J.C. FAUG�ERE C6 (j6) (=n2 j2) (=n n= j2)Tseq 2165 7499 2848 5004T== 630 2824 932 1553TseqT== 3.4 2.7 3.1 3.2Nprocsy 16 29 14 28N� procs 3.44 2.66 3.06 3.22Tab 3.4.4: Theoretical parallel timeConsequently we can estimate to 3 the gain factor of the method to be compare withthe results of previous section (�G in 3.3.2). It remains to see if we can restrict thenumber of actual processors in order to validate H1; ow compute also (last two lines ofthe tabular) the maximal number (resp. the average number) of processors needed for aparticular computation. When one read N� procs = Naverage processors = 4 in the tabular,it means that most of the time we can compute fr , fr+1, : : :, fr+3 at the same time, thuscomputing polynomials of roughly the same size (see H2. All of these results show thatwe can validate our hypothesis (see page 13) and that a number of 4 processors seemsenough in most cases.3.4.5. Implementation in GB.In GB we have made two kind of implementations (C++): one for a distributed net-work of heterogeneous workstations and a true parallel implementation for multiproces-sors computers (Sparc Centery, Alliantz) with share memory. The �rst one was only adebugging program because of the prohibitive cost of communications. Nevertheless weadopt in both cases the syntax of sending messages and objects, which is semanticallyrich and enable us to have the same code to describe the algorithms. The natural archi-tecture client/server of GB (see Fig 3.4.5, page 15) was very helpful to implement themethod.The central module called GB is an interpreter which sends among other things theinitial system of polynomials to the master server. Ideally each servers should be associatewith a physical processor; it is planed in a future version of GB to suppress the masterserver. The master don't compute things by itself but it has to:Use the DAG of dependencies to dispatch computation between servers (in the sameway of ow, see algorithm 3.4.4, page 13).Execute and read data from the Modular Server. (Very often this server is runningon a remote workstation)See below for de�nitions of Nprocs and N� procs.y Thanks to J. Hollman in Sweden.z Thanks to J. Marchand �Ecole Polytechnique

Parallel Gr�obner Bases 15
Server

slave

processor 1

M
E
M
O
R
Y

Server

slave

processor 2
........

GB

sockets message passing

share memory

Serveur

MasterModular
Computation

share memory message passingFigure 8. Architecture of GB.Run all other processes.Schedule computations between servers.Synchronize all the slave servers.Send messages and polynomials: in the distributed implementation it is necessaryto send only a minimum of data over the network; thus the master server has foreach slave server a list of all the polynomials which are already in its memory. Inthe case of share memory there is no need to send polynomials, all the messagesconsist of indexes which are copy in a part of the memory share among all processesdevoted for sending messages.Share memory is write protected by a semaphorey in order to prevent concurrentaccess of the same part of memory.Collect polynomials whose computation is �nished and all available processors.When the master server \receive" a polynomial it checks that the degree of theleading monomial is the equal to the exponent found by the modular computationprogram.At the opposite side, task of a slave server iscompute one fi at a time and wait while the corresponding stack is not ready(that is to say when the top of the stack is not known yet); when the stack isempty the server send fi to its master; wait for receiving a new index j and beginthe computation of fj . In our �rst implementation we follow the description ofalgorithm 3.4.4 but it would be better to begin the computation of a new fj insteadof waiting.each server has its own memory zone under the control of a local Memory Man-agement { MM { (describe in Faugere94). It works as follow: when one enter ina function the system store a mark at the beginning of the free memory; when afunction return the programmer indicates to the MM (eventually) which data are\stable" or are supposed to be stable; in such a case the MM release all memoryy On Alliant machines this mechanism was not available.

16 J.C. FAUG�EREabove the previous mark, then compacts and slides the data at the beginning offree memory. Such a Memory Management system is well adapted to our problem:when the slave server end a computation it release all its local memory (the previ-ous mark is at the beginning of memory) and copy the corresponding polynomialin share memory (a mark shared by all processors);3.4.6. Timings on Alliant FX2800We give now the results of our �rst implementation using 1,2 or 3 e�ective processors(remember that master server use a processor). Therefore we are not exactly in the idealcase of 4 active processors. All the timings are obtain by making the di�erence betweenthe date at the end and date at the beginning of a computation; thus it is exactly thetime the user spent in front of the workstation to have the Gr�obner base. All the timingsare round to the nearest second. 1 proc-essor 2 proc-essors 3 proc-essors(=n=2) 220" 136" 110"Cyclic 6 7" 5" 3"Tab 3.4.6: Alliant FX2800 8 processorsHere is the table for (=n=2) example; Sequential is the classic groebner function; Sequen-tial trace is a sequential implementation of trace method including veri�cations; Parallelis the parallel implementation using 3 processors.Sequential Sequentialtrace Parallel(=n=2) 3635" 434" 179"C6 47.8" 11" 4"Tab 3.4.6: Sequential/Parallel Alliant (3 procs)For this examples, the parallel implementation is 2:5 faster, in other we use 80% ofeach processors.The main messages of this sbusection are summarized in Fig. 3.4.6 where the speedupof our method is illustrated in the case of 1:5, 4 or 8 processors and �ve examples:The reminder of this section is concerned with studying the parallelization of Buch-berger algorithm in a very di�erent case: modular computations.

Parallel Gr�obner Bases 17
0

200

400

600

800

1000

1200

1 2 3 4 5 6 7

Spat 66 (sec)
Cyclic 6 (sec)
T6 (sec)

(sec)

Nb Procs 8Figure 9. Time in secs/Nb of Processors Modulo p (Alliant 8 procs)
1

2

3

4

5

6

7

1 2 3 4 5 6 7

Spat 66 (speedup)

Cyclic 6 (speedup)

T6 (speedup)

Sp
ee

du
p

8Nb ProcsFigure 10. Speedup/Nb of Processors Modulo p (Alliant 8 procs)3.5. A parallel Buchberger algorithm for modulo p coefficientsThe point of view in this paragraph is necessarily di�erent because:arithmetic are no more the most important part of the computation.we do not know the graph of dependenciesOn the other side, the fact that most of time is spent in computing vanishing criticalpairs is always true: 95% � 3366 sec785sec (resp. 92% � 162 sec20 sec) of the time for cyclic 8 (resp.cyclic 7) on an Alpha workstation.4. Parallelization of FGLM Algorithm

18 J.C. FAUG�ERE
8 Procs

6 Procs

4 Procs

2 Procs
0

10000

20000

30000

40000

50000

60000

Figure 11. Activity by proc on Alliant ((j6) Modulo p).
20

40

60

80

100

120

140

160

1 2 3 4 5 6 7

se
c

Nb Procs 8

Katsura 66 (sec)

10 x Cyclic 6 (sec)

T6 (sec)

Figure 12. Time in secs/Nb of Processors Comput. Part BigInt (Alliant 8 procs)5. ConclusionWe have shown in this paper that:The cost for verifying that a list of polynomials is a Gr�obner base is small and canbe easily parallelized.By using 3-4 processors we can divide the computational of a trace method by 2-3using the DAG of dependencies.

Parallel Gr�obner Bases 19
1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7

Katsura 6 (speedup)

Cyclic 6 (speedup)

T6 (speedup)

Sp
ee

du
p

Nb Procs 8Figure 13. Speedup/Nb of Processors Comput. Part BigInt (Alliant 8 procs)
6 Procs

5 Procs
4 Procs

3 Procs
2 Procs

1 Proc

0
2000
4000
6000
8000

10000

12000

14000

16000

Figure 14. Activity by proc on Alliant (T6 Big Int).The method exposed here does not excluded parallelization of elementaries opera-tions which can be achieved with more processors. Our main goal was to not perturbatethe selection strategy (sugar strategy) for integers coe�cients which ensures that par-allelization will not grow the volume of computations; the second goal was to have animplementation for common workstations with four processors that can be competitivewith a very e�cient implementation for non trivial problems.Another important algorithmFGLM Faugere et al.94b { change of ordering of a Gr�ob-ner base (step 2 for solving) { is also available in GB both in a sequential and parallelform; it is not describe in this paper (see Faugere94) but works very well. It is also obvi-ous to obtain a parallel algorithm for the last step: �nd a list of triangular sets. Thus one

20 J.C. FAUG�ERE
20

40

60

80

100

120

140

160

1 2 3 4 5 6 7

se
c

Nb Procs 8

Katsura 66 (sec)

10 x Cyclic 6 (sec)

T6 (sec)

Figure 15. Time in secs/Nb of Processors Comput. + Check BigInt (Alliant 8 procs)
1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7

Katsura 6 (speedup)

Cyclic 6 (speedup)

T6 (speedup)

Sp
ee

du
p

Nb Procs 8Figure 16. Speedup/Nb of Processors Comput. + Check BigInt (Alliant 8 procs)can say that a complete parallel implementation for solving algebraic systems is availablein GB, of course the �rst step remain the more di�cult part to be parallelized.Limitation de la // Petit nombre de processeur.The success of algorithms for Gr�obner bases computations, perhaps more than in anyother area of Computer Algebra depends on the quality of their computer implementa-tion. Some algorithms presented here which appear not very attractive from a theoreticalpoint of view but are very e�cient in practice. For these reasons, we have described C++programs which implement all the algorithms discussed in this paper.ReferencesAlpi: a system for experimenting with buchberger algorithm. alpha version in Common Lisp availableby anonymous FTP in gauss.dm.unipi.it (131.114.6.55).Attardi (G.) et Traverso (C.). { A strategy-accurate parallel buchberger algorithm. In : Pasco'94, �ed.par Hong (Hoon). pp. 12{21. { World Scienti�c.

Parallel Gr�obner Bases 21
Mathematica

Maple

MAS

Reduce

Alpi

PoSSo

Singular

Axiom

RISA/ASIR

GB

0 1 2 3 4 5 6 7

Degree Reverse Lexico

LexicographicalFigure 17. Speedup for BigInt/sugar method (Alliant 8 procs)
0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9

(s
ec

)

Cyclic 7, Modulo p CPU time

Theoretical optimal time

Figure 18. Time in secs/Nb of Processors FGLM Cyclic 7Backelin (J.) et Fr�oberg (R.). { How we proved that there are exactly 924 cyclic 7-roots. In : ISSAC'91, �ed. par Watt (S. M.). pp. 103{111. { ACM.Backelin (J�orgen) et Hollman (Joachim). { Calculating gr�obner bases fast. In : DISCO 92.Backelin (J.). { Square multiples n give in�nitely many cyclic n{roots. { Technical Report 8, ReportsMatematiska Institutionen, Stockholms Universitet, 1989.Becker (T.) et Weispfenning (V.). { Groebner Bases, a Computationnal Approach to CommutativeAlgebra. { Springer-Verlag, 1993, Graduate Texts in Mathematics.Bj�ork (G.). { Functions of modulus one on zp whose fourier transforms have constant modulus. In : Pro-ceedings of Alfred Haar Memorial Conference, Budapest, Colloquia Mathematica Societatis J�anosBolyai, pp. 193{197.B.Sturmfels. { Gr�obner bases of toric varieties'.Tohoku Mathematical journal, vol. 43, 1991, pp. 249{261.Buchberger (B.). { Ein Algorithmus zum Au�nden der Basiselemente des Restklassenringes nach einemnulldimensionalen Polynomideal. { PhD thesis, Innsbruck, 1965.Buchberger (B.). { An algorithmical criterion for the solvability of algebraic systems. AequationesMathematicae, vol. 4 (3), 1970, pp. 374{383. { (German).Buchberger (B.). { A criterion for detecting unnecessary reductions in the construction of gr�obner basis.In : Proc. EUROSAM 79. pp. 3{21. { Springer Verlag.Buchberger (B.). { Gr�obner bases : an algorithmic method in polynomial ideal theory. In : Recent trendsin multidimensional system theory, �ed. par Reidel. { Bose, 1985.

22 J.C. FAUG�ERE
1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

Theoretical optimal time

9
Nb Procs

Sp
ee

du
p

Cyclic 7, Modulo p

Figure 19. Speedup/Nb of Processors FGLM Cyclic 7Char (B.), Geddes (K.), Gonnet (G.), Leong (B.), Monagan (M.) et Watt (S.). { Maple V LibraryReference Manual. { Spinger-Verlag, 1991. Third Printing, 1993.Davenport (J.), Siret (Y.) et Tournier (E.). { Calcul Formel. { Masson, 1993. 2e �edition r�evis�ee.Davenport (J.H.). { Looking at a set of equations. { Technical Report 87-06, University of Bath, 1997.Technical report.Faug�ere (J.C.) et Lazard (D.). { The combinatorial classes of parallel manipulators. Mechanism andMachine Theory, February 1994.Faug�ere (Jean-Charles), Gianni (Patrizia), Lazard (Daniel) et Mora (Teo). { E�cient computation ofzero{dimensional gr�obner bases by change of ordering. J. Symbolic Computation, vol. 16, 1994, pp.329{344.Faug�ere (J.C.). { R�esolution des syst�emes d'�equations alg�ebriques. { PhD thesis, Universit�e Paris 6,Feb. 1994.Fitch (J.). { Solving algebraic problems with reduce. J. Symb. Comp., vol. 1, 1985, pp. 211{227.Gianni (Patrizia), Mora (Teo), Robbiano (Lorenzo) et Traverso (Carlo). { Hilbert functions and Buch-berger algorithm. { 1994. (submitted).Giovini (A.), Mora (T.), Niesi (G.), Robbiano (L.) et Traverso (C.). { One sugar cube, please, or selectionstrategies in the Buchberger algorithm. In : Proceedings of the 1991 International Symposium onSymbolic and Algebraic Computation, �ed. par Watt (S. M.). ISSAC. { ACM Press.Gr�abe (H.G.) et Lassner (W.). { A parallel gr�obner factorizer. In : Pasco'94, �ed. par Hong (Hoon). pp.174{180. { World Scienti�c.Grassman (H.), Greuel (G.M.), Martin (B.), Neumann (W.), P�ster (G.), Pohl (W.), Sch�onemann (H.)et Siebert (T.). { Standard bases, syzygies and their implementation in SINGULAR. { TechnicalReport 251, Universit�at-Kaiserlautern, March 1994. Preprint.Grassman (H.), Greuel (G.M.), Martin (B.), Neumann (W.), P�ster (G.), Pohl (W.), Sch�onemann (H.)et Siebert (T.). { SINGULAR User Manual. { Technical report, Universit�at-Kaiserlautern, 1995.Hearn (Anthony C.). { Reduce user's manual, Version 3.3. { The RAND Corporation, July 1987, reportcp 78 edition.Hollman (J.). { Theory and Applications of Gr�obner Bases. { PhD thesis, Royal Institure of Technology,Stockholm, Sweden, September 1992.Jenks (R. D.), Sutor (R. S.) et Watt. (S. M.). { Scratchpad II: An abstract datatype system formathematical computation. In : Trends in Computer Algebra, Proc. Internat. Symp., �ed. par Jan�en(R.). pp. 12{37. { Bad Neuenahr, May 1987. Lecture Notes in Computer Science 296.Jenks (Richard D.) et Sutor (Robert S.). { Axiom, the Scienti�c Computation System. { Springer-Verlag,1992.Katsura (K.). { Theory of spin glass by the method of the distribution function of an e�ective �eld.Progress of Theoretical Physics, no87, 1986, pp. 139{154. { Supplement.Lazard (D.). { Solving zero-dimensional algebraic systems. J. Symb. Comp., vol. 15, 1992, pp. 117{132.Lazard (D.). { A new gr�obner basis algorithm. { 1993. Not published.Lazard (D.). { Systems of algebraic equations (algorithms and complexity). In : Proceedings of CortonaConference, �ed. par Eisenbud et Robbiano. { Cambridge University Press.

Parallel Gr�obner Bases 23M�oller (H.M.), Mora (T.) et Traverso (C.). { Gr�obner bases computation using syzygies. { January1992. preprint.Pottier (L.). { Gr�obner bases of toric ideals. { Technical Report 2224, INRIA Sophia Antipolis, april1994.Robbiano (L.). { Term orderings on the polynomial ring. In : Proceedings of Eurocal'85 (Linz). { Lect.Notes in Comp. Sc., 1985.Sawada (H.), Terasaki (S.) et Aiba (A.). { Parallel computation of gr�obner bases on distributedmemorymachines. J. Symb. Comp., vol. 18 (3), september 1994, pp. 207{222.Senechaud (P.). { Implementation of a parallel algorithm to compute a gr�obner basis on boolean poly-nomials. In : Computer Algebra and Parallelism. pp. 159{166. { Academic Press.Siegl (K.). { A parallel factorization tree gr�obner basis algorithm. In : Pasco'94, �ed. par Hong (Hoon).pp. 356{372. { World Scienti�c.Stillman (M.) et Bayer (D.). { Macaulay User Manual, 1989. available via anonymous ftp onzariski.harvard.edu.Traverso (C.) et Donati (L.). { Experimenting the gr�obner basis algorithm with the alpi system. In :Proceedings of the 1989 International Symposium on Symbolic and Algebraic Computation, �ed. parPress (ACM). ISSAC '89.Traverso (Carlo). { Gr�obner trace algorithms. In : ISSAC '88, Roma. pp. 125{138. { Lect. Notes inComp.Sc.Vidal (J.P.). { The computation of gr�obner bases on a shared memory multiprocessor. In : Design andimplementation of symbolic systems. pp. 81{90. { Springer Verlag.

