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The main purpose of this paper is to present parallelized versions of Buchberger and
FGLM algorithms which are the most powerful tool to compute Grébner bases. In the
case of integer coefficients, the basic idea is to use a probabilistic DAG of dependencies
generated by an auxiliary fast modular computation in order to avoid vanishing syzygies
in first time and to exploit the parallelism without disturbing the sequential strategy in a
second time; the result of this computationis only probabilistic but we show that proving
it can be done quickly. A parallelized version of Buchberger algorithm is also presented in
the case of modular computation. We achieved about 31 times speedup with 8 processors
for a large robotic problem (integers), (/\/2). For a big modulo p problem — cyclic 7
— we report a 5 (resp. 6.2) rate of acceleration for Buchberger algorithm (resp. FGLM
algorithm) on a Alliant with 8 processors. The details of an efficient C4++ implementation
are given together with results of tests performed with significant examples.

1. Introduction

One of the main tools for solving algebraic systems is the computation of Grobner bases
(also called standard bases); we refer to Buchberger65, Buchberger70, Buchberger79,
Buchberger85, Davenport et al.93 and Becker et al.93 for basic facts on this notion.
In the zero dimensional case (finite number of solutions) an efficient way to achieve
this is Faugere et al.94b, Gianni et al.94, Lazard92, Faugere94 a four steps algorithm
(Lazard93b): first find a Grobuer base for a total degree ordering, change of ordering
(by using FGLM for instance), obtain a list of triangular sets, solve numerically using
the previous result. Although this class of problems is special, the majority of polyno-
mial systems arising in practice have this property. Another usual subclass of polynomial
problems is constituted by polynomials whose coefficients are in the ring Z; but very
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often there is a huge gap between computing over the integers and computing over inte-
gers modulo a prime p; trace methods Traverso98 are a first attempt to reduce this gap,
a second one is presented in this paper. The main purpose of this paper is to present
parallelized versions of the first and second steps. The methods exposed here are elemen-
taries in the sense that we do not try to modify deeply the sequential computation: on
the contrary we try to mimic closely as possible the best known sequential strategy. In
spite of that relative simplicity the methods are very efficient.

Section 3 is devoted to the parallelization of the first step, referred to as the ”Buch-
berger Algorithm”; it is the more random step in the sense that it is difficult, if not
impossible; to predict a priori the computational time and the growth of the coefficients.
It is the main section of the whole paper and it is divised in four parts.

Since, as sketched, before the shape of computation is totally different when computing
with integers or with modulo p integers we need a special algorithm for the latter case
and it is the object of subsection 3.5; for typical big problems Cyclic 7 (resp. T6) we
reduce the total CPU time by a factor of 5 = 1280.5¢¢ (1o5p 6.2)

216 sec
In the case of integer coefficients, we use an auxiliary modular to compute the DAG of

dependencies; we can use this DAG to avoid the computation of vanishing critical pairs
(subsection 3.3) and to parallelize the computation of the ones (subsection 3.4)

computation , more exactly we first show how to obtain a not probabilistic algorithm
from a probabilistic one and give some experimental results which prove that, surpris-
ingly, the extra cost for that ”check part” is relatively small and can be reduced to almost
zero by using a sufficient number of processors. Then we will explain how to deduce from
the graph of dependencies generated by an appropriate modular computation a paral-
lelized algorithm that preserve the selection strategies and all heuristics found recently
Giovini et al.91. Without parallelization we have a very efficient algorithm (non linear
gain) which enable very big computations (realistic examples from robotics are shown
Faugere et al.94a); with only 4 processors we can divide the computation time of the first
step by a factor 2.5.

we obtain a speedup varying from 5.5 to 31 for well known and realistic examples on
a shared multiprocessor environment with 8 processors (Alliant).

The quality of the computer implementation of Grobner bases algorithms can have a
profound effect on their performance. Hence, “paper and pencil” descriptions of Grobner
bases algorithms are not enough; this why we provide for each algorithm presented in
this paper an efficient C++ implementation part of the Gb system and a detailed list of
experimental results.

All the tools needed for solving algebraic equations are implemented by the author in a
C++ (59 000 lines) very efficient software called GBT; GB is known as the fastest system
at this time. We have a first implementation of the method exposed in this paper: one can
use GB over a network of workstations (heterogeneous), or better on a multiprocessors
workstation with share memory (for instance Sparc Center). The experimental timings
concord with the computational model used to present the algorithm.

In section 2 we describe recent works in area of parallelizing Buchberger algorithm.

T GBis freely available (source and binaries) by anonymous ftp: posso.ibp.fr
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2. Related Works

We list briefly works related to parallelizing the Buchberger algorithm. We recall that
our goal is to parallelize the fastest Grobner bases algorithm, thus recent results (such as
Giovini et al.91 and Faugere et al.94b) imply to reconsider most of the following papers.

Senechaud&9

computes Boolean Grobner bases: 1t is a very special case of ideals for which there
are specialized efficient algorithms; the same is true for toric ideals and binomial
ideals (Pottier94 and Bsturmfels91).

Vidal90

proposed a parallel algorithm on a shared memory multiprocessor; the algorithm

does not rely on the sugar strategy; he obtained a speedup of 14 = 1%33 £2¢ with 12
! A sec

processors on the the biggest example (katsura 5), but this example can be solved

only 2secs with one processor !
Grabe et al.94

reports a parallel version of Grobner bases algorithm with factorization on a dis-
tributed memory environment. This works only for “well splitting examples” which
are not very common.

Siegl94
implements in [|[MAPLE|| of a Grobner bases algorithm using factorization: toy
examples are solved in a very long time.

Sawada et al.94

describes also a Grobner bases algorithm on a distributed parallel machine with
256 processors. They obtained significant speedup when the number of processors
is < 32 but the implementation (and the strategy) seems not very efficient for one
processor. We include in our experiment the most significant examples found here.

Attardi et al.94

are the closest of this paper; they present a parallelized form of Buchberger algo-
rithm that is strategy-accurate. But they do not remove superfluous critical pairs
before parallelizing; moreover their algorithm is implemented on a network of work-
stations and because the heavy cost of communications its seems not pratical; no
experimental timings are given.

It follows from this listing that the designer of parallel Grobner bases algorithm must
take car of:

The implementation and the choice of strategy must be up to date and efficient at
least when the number of processor is one.

The methods should be sufficiently general to handle properly a list of well known
systems (such as the PoSSo test suite for instance).

The algorithm must work not only on toy examples but also for big difficult and
realistic examples.
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3. Parallelization of Buchberger Algorithm

3.1. INTRODUCTION
3.1.1. NOTATION

We define now some terms used in this paper but we donc explain the classical theory
of Grobner bases; for the reader unfamiliar with Grobner bases language we refer to
Becker et al.93.

A polynomial f is an ordered list of monomials; the order might be any admissible
ordering Robbiano85 but the most useful ones are: the lexicographical (LEX) ordering
and the degree-reverse—lexicographical (DRL). DRL is generally the one for which the
computation of a Grobner has the best theoretical and practical complexity. On the other
side a DRL Grobner base does not give solutions by itself. In practice the coefficient of
polynomials are of two kind:

integers (that is to say big integers with no size limitation)
integers modulo a small prime p (represented by a word in a computer memory)

We call the reduction of a polynomial p; by a polynomial p; an elementary operation,
the result is given by:

my X p1 — ma X py  m; monomials

The S-polynomial of polynomials p; and py is the reduction of m; x p; by ps for some
monomial m; and thus is an elementary operation. Reduction of a polynomial by a list
of polynomials 1s a sequence of elementary operations. By “Buchberger Algorithm” we
mean any algorithm that compute a Grobner base of a list of polynomials by a series
of elementary operations; from this restricted point of view the classical sugar algoritm
Giovini et al.91 and the new algorithm Lazard93a are “Buchberger Algorithm” even if
they are very different. Hence the methods describe here apply to all kind of Buchberger’s
algorithms and variants including different strategies.
We denote by

p — normal Form(p, G)

the reduction of p modulo I where p is a polynomial, (G is a Grobner base and [ the ideal
generated by G; we recall that

normal Form(p, G) = 0

iff p is member of I. normal Form(p, G) is also a sequence of elementary operations.

By a modular computation associated to a system of polynomials S, we mean the
computation of a Grobner base of the input system 51/7 where 51/7 is the image of .S by the
morphism (see Traverso98, Lazard93b):

coef x X% — (coef mod p) x X*
3.1.2. OVERVIEW OF THE SECTION

Computing efficiently a Grobner base depends strongly on:
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Avoid unnecessary critical pairs. Even with Buchberger’s first ans second criteria
most of the critical pairs considered during a computation will reduce to zero (pairs
reducing to zero may represent 95% of the total time in the integer case and 80%
for modulo p coefficients); in Moller et al.92 algorithm is given which show how this
can be avoided by computing syzygies: this algorithm can detect more superfluous
critical pairs than any other method, but unfortunately the time spend of computing
syzygies 1s a bottleneck and the algorithm is of no practical interest.

The selection strategy: it is well known that selection strategies in Grobner bases
algorithms are a crucial point Gioviniet al.91: one of the most important effect
of a good strategy (sugar strategy is probably the best) is to reduce the size of
coefficients, and since 99% of the time is spent in arithmetical operations over the
integers (+, x) it is very important to not perturb the strategy. Even for modular
computation and at least for big computations it seems better to strictly follow the
sugar strategy.

This section of the paper is devoted to prove that:

for integers coefficients and non homogenenous systems, there is a very simple
method to avoid superfluous critical pairs. We claim that the computation of Grob-
ner basis can be significantly speeded up by a factor range from 4.2 to 7.4 for small
problems and from 14 to oo for large problems.

for integers coefficients and more processors we can reduce once more time the CPU
time given by the last method by a factor varying from 3.9 to 6.5 with 8 processors
and shared memory.

for modulo p coefficients on a shared multiprocessor we obtain speedup between 5
and 6.4 for 8 processors.

In each case the structure of our presentation is as follows. We give the algorithm,
details on the implementation and the practical results and speedup on significant and
well known problems are listed.

There is a non linear gain in efficiency due to this method. Our method use an auxiliary
modular computation as in Grobner trace algorithm of Carlo Traverso Traverso98 but it
differs from it in two main points: first we show that it could easily be converted into a
exact method by doing an extra Grobner computation, the time spent in verification is
small for very big problems and can be divide out by the number of available processors
(we could even use a network of workstations without share memory). Secondly we explain
how to find a way to parallelize the main part of the computation from the DAG of
dependencies found by a modular computation; the method is well adapt for workstations
with a small number of processors (4 seems to be quite enough) with share memory and
was experimented on Sparc Center 2000 and Alliant Fx2800.

3.2. VERIFY THAT A LIST OF POLYNOMIALS IS A (AROBNER BASE

In the rest of the paper we denote by step X a specific part of an algorithm and by 7x
the corresponding CPU time of that part. We recall that coefficients of the polynomials
are integers.

Let us suppose that we already have a Grobner bases implementation and a function
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F' list of polynomials.
I the generated ideal.
Output: G the Grobner base of 1.
{ The result of this algorithm is probabilist, but CPU time is. }
“Guess” a list 1 of polynomials of 1.
G2 + {normalForm(z,G1) |z € F'}
{ We call it step G (Guess). }
Delete all zeros from 5.
if Go = 0 then
{ Check that G1 is a Grobner base: }
('3 «+ Grobner Gy
else
G5 < Grobner G U Gy
{ We call this last Grébner call step C (Check). }
G« G3
return G

Input:

Figure 1. Heuristic Grobner Computation

normalForm, a Grobner completion algorithm Lazard93b fitted in Figure 3.2 can easily
be writen.

The algorithm works fine if we can guess a (G such that we have with a good probability
the conditions:

G2 = 0, that is to say (1 is a generator of 1.
G = (G 1t means that G is already a Grobner base.

If we don’t execute step C, then we have only a probabilistic algorithm. We can achieve
step G by doing simultaneously a modular computation — G — and the same compu-
tation over integers — Gy — but in Gy we don’t try to compute syzygies reducing to
zero in Gyr. With a good probability (see Traverso98), the previous conditions3.2 hold.
Lazard93b says: “The last two verifications may be almost as difficult as computing the
Grobner base by not modular method”. The surprising empirical result shown here, is
that 7« & 7 for very big computation and 7¢ & 7¢ in other cases. Compute G5 1is
an easy and fast task if we have a normalForm function; it is obvious that G5 could be
parallelized. Consequently step C' is equivalent to verify that a list of polynomials reduce
to zero wrt to a fized list of polynomials, hence check that a specific polynomial reduce
to zero can be done independently of the others, thus we can divide 7 by n, if we have
a set of n processors (not necessary with share memory).

3.3. AVOID SUPERFLUOUS CRITICAL PAIRS
3.3.1. ALGORITHM AND IMPLEMENTATION

The algorithm is plotted in Figure 3.3.1. The implementation in C++ follow strictly
this scheme: it can be run on a network of two distant workstations. We use Unix sock-
ets to communicates data between the master and slave process; actually in the real
implementation we send the exponant of the leading monomial found in the modular
computation; if we detect a failure it is better to choose a new prime and to rerun the
whole computation; this test is to be used only to screen out obvious errors. One has not
to allow for communication costs: the amount of data to transfer 1s very small in front
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the total CPU time of each process. In Gb, two kind of fast servers for prime p < 2'6
and for p < 23! were implemented. In practice a such p = 59999 has never failed.

F' list of polynomials.
I the generated ideal.
Output: G the probabilistic Grobner base of 1.
critpairs < form the list of critical pairs
child + fork(“remote workstation”)
if child process then
choose a small random prime p and set the ground ring to Z/pZ
F + F with coefficients modulo p
G + F while critical # 0 do
if child process then
h = normalForm(first(critpairs),G)
if A = 0 then
send to(parent process,”ZERO")
else
send to(parent process,”"NON ZERO")
else
if get from(child process) = “NON ZERO” then
h + normalForm (first(critpairs),&)
G «+ Update (h,G)
critpairs < Update (A, rest(critpairs))
return G

Input:

Figure 2. Probabilistic Grébner Computation avoiding vanishing pairs

3.3.2. EXPERIMENTAL RESULTS

A list of examples

In the rest of this paper we will evaluate our parallel Grobner bases programs on
the benchmarks listed below. We take the list of Sawada et al.94 except toy examples
(namely katsura n and cyclic n for n < 6).

Katsura-6 (Katsura86): (7 variables and 7 polynomials 64 solutions)

Katsura-7 (Katsura86): (8 variables and 8 polynomials 128 solutions)

Cyclic-6 (Bjork85, Backelin89, Davenport97): (6 variables and 6 polynomials 156
solutions)

Cyclic-7 (Bjork85, Backelin89, Backelin et al.91): (7 variables and 7 polynomials
924 solutions)

T-6 (Backelin et al.91): (7 variables and 6 polynomials dimension 1)

In Faugere et al.94a we used the techniques exposed in subsection 3.3 to solve big
problems arising in a robotic problem: a parallel manipulator is a body (platform), the
spatial position of which is commanded by fixing the distance of six points of the platform
to six fixed points of the space (the base). When one wants to compute the position of
the platform from its geometry and the lengths of the linear actuators, one is led to a
system of algebraic equations which has several solutions.

We summary a special configuration of the parallel manipulator by symbols such as

(/\/?) (Spat2N in text form), (A?]?), (AV [?), .... These examples will be add to the

PoSSo Test suites; they are useful for our purpose because they are:
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realistic in the sense that they come from the physical world.

very big, they give rise to an enormous coefficient growth and are good tests of how
efficient the integer arithmetic is.

unreachable with classical Grobner bases algorithms (at least the biggest).

they do not have too much geometrical properties but have some. In some sense
they are othogonal to the cyclic-n problem which have a lot of symmetries.

By testing our ideas on different kind of examples, we will validate our theoretical
models.

Gb and other Computer Algebra systems

Even if it is not an easy task to compare system, one can say that Gb is among the
fastest system for computing Grobner bases. Because of the big numbers of computer
algebra systems which implement a Grobner bases function, it would be very difficult
(and very long ) to test a comprehensive list of examples. Thus, we restrict ourselves to
one well known system, cyclic n (see Backelin89 and Backelin et al.91); for each system
we report on figure 3.3.2 (see page 8) its aptitude to compute the Grobner base for the
non homogenenous integer Cyclic n problem in a less than one day. The fact that it is a
non linear scale is best explained by referring to Table 3.3.2.

7
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3 [] Degree Reverse Lexico
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] Lexicographical
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Figure 3. Comparing Gb with other systems

’ no 56 6 7
time to solve Cyclic n 10.7 10.3 4497 .6

time to solve Cyclic n—1

Tab 3.3.2: Relative time for solving cyclic n

This list include the following systems: Reduce Version 4.3 (Fitch85, Hearn87), Axiom
Version 2.0 (Jenks et al.87, Jenks et al.92), Alpi Version 1.95 (Alpi, Traverso et al.89),
MAS Version 0.7, Maple Version V.2 (Char et al.91), Singular version 0.9.0e (Grassman et al.94
and Grassman et al.95) but we do not include a system such Macaulay (Stillman et al.89)
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which works only with modular p computation. We mention also that the Bergman
(Backelin et al.92) is also very fast. The main drawback of this table is that it do not
report that a program such as the PoSSo library is faster than Reduce. Nevertheless we
can conclude from this table that Gb is one of the fastest system.

Timings on Sparc 10

We give a first table of computing time (Sparc Station 10): groebner is a classical
Grobner bases, tgroebner is an implementation in GB of the previous method (two
processors for Gy and Gy thus 74 is a parallel process time; one processor for C).

groe-— tgroe- saving
bner bner TG e of time
T6 (Homog) 4’37 4487 48” 4 0.85
Homog Cyclic 6 1673 73 27 573 2.2
Cyeclic 6 147 373 177 576 4.2
Katsura 6 5’147 1’1 16” 45”7 5.2
(N?) 16°55” 2’187 477 1’317 7.4
Katsura 7 2h15’39” 9’57 5’517 3’147 15
(A2 2h24°24” 107207 757 3’157 14
AV 18h48’ 55’57 47°19” 7467 20.7
(1%) > 4 days 1h16°48” 58227 18267 > 75
Cyclic 7 0o 4h3’31” 3h522”7  11°29” 0o

Tab 3.3.2: Using two processors Sparc 10 (50Mhz)

Dire que Cyclic 7 est calcule avec ’algo de Daniel
Le cas de T6 est etrange homogene 7

3.4. PARALLELIZATION OF NON VANISHING CRITICAL PAIRS

Our aim 1n this section is to compute Gy on a multiprocessors workstation using the
DAG of dependencies generated by Gpr. We first need to fix notations:

3.4.1. DEFINITIONS

We want to compute a Grobner base for the DRL ordering (in fact ordering doesn’t
matter but experimental tests have been made only for the DRL ordering because it is
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the most important case in practice), of the input system F = (f1, ..., f;). A Buchberger
algorithm can be view as a series of polynomial computations f; (¢ > r), (we compute all
the polynomials one after the other) where f; is the S-polynomial of f,, and fi, reduced
by a set of previously computed polynomials (i.e. whose indexes are < ¢), namely f,, ; for
J=1,... v (u; <1). In other words, a;, b; and v; ; are indexes of all the polynomials
which occur in the computation of f; and v; + 2 1s the number of such polynomials;
we denote by S; the list of indexes {a;, b;, u; ; Vj € {1,...,v;}}. Elements of S; are not
necessarily unique. The final Grobner (not reduced) base is a sub series of the whole
polynomials series (f;): (fiy, ..., fi,). (One can suppose that f; # 0 for all ¢ as explained
before). We obtain the DAG of dependencies (see Fig 3.4.1, page 10) of vertices (1, ..., iz):

if £ > j we join j and ¢ by an edge if a; = j, or b; = j or u;; = j for some I < v;.

10
Figure 4. DAG of dependencies.

We note N = 1 the total number of non null polynomials and Npase = & the size of
the Grobner base.

3.4.2. INDEPENDENT NODES

First of all we can detect in the DAG of dependencies some characteristic pattern (see
Fig 3.4.2, page 11) which can help us in parallelizing: for instance if a node ¢ which does
not depend of the previous node ¢ — 1, we can compute ¢ and ¢ — 1 af the same time.

Of course the question is then: what proportion of such patterns one may expect in
a typical computation 7 We have developed along with GB a small program call “flow”
which analyzes the output of a modular Grobner computation. We note:

Nonce = Card{k | 3j, Card(S; N {k}) = 6; ; Vi}

Nind = Nindependent = Card {Z | Si N {Z - 1} = 0}

In other words, Nonce (resp. Nindependent ) 1 the number of patterns similar to the left
(resp. the right) part figure 3.4.2.

T In fact in GB we compute only nodes which have a descendant in {%1,...,i;} even if in practice
this number is very small.
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n
y n+
n+2
m
n+3 .

Independents nodes.

Node n isuse only once.

Figure 5. Characteristic pattern

N.
Nall Nonce Nind #:ﬁi

Cs 98 10 11 11.2%

(1 109 9 2 23.8%

(AZI) 82 10 32 39%

(AV % 105 11 22 20.9%

Tab 3.4.2: Number of patterns

It is to be noticed that this “rate of independencies” is not negligible, but represent
only 10/25% of the overall computation. That is to say that a Buchberger algorithm is
a very sequential algorithm.

3.4.3. ALMOST INDEPENDENT NODES.

Let us extract a typical list of dependencies from the (A? |?) example:

a29 = 19, bag = 22, vag =8,
Sog = [19, 22,20,18,22,15,18,19, 20, 28]

It means that the knowledge of 28 (fas) is strictly necessary for computing node 29
(fa9), which require to perform vag+1 = 9 elementaries operations; but at the other side,
the first 8 steps can be done as soon as we have computed f;, ¢ < 22, in other words we
can compute % = 88% of f29 as soon as we know f52. We introduce now the following
measure:
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0 fa=i—1lorb,=i—1
1 if maeS; <1-—1

Pi =14 _io
v;+1

else, with
Jo=min{j <wv;|uj; =i—1}

p; tell us which percentage of f; we can compute without knowing f;_;. It is now easy
to find the number of such elements f;: we can compute: Naymost = Card{i | p; > 6%}.
flow give both p; and Najmest:

Cs (19 (N*P) (AVP)
Nalmost 60 52 52 60

N&—mnt 61% 48%  63% 57%

Tab 3.4.3: Quasi independent nodes

These numbers explain why one can expect good result of the previous outlined
method, however they are not sufficient to estimate the computational time.

3.4.4. A COMPUTATIONAL MODEL

To estimate the computational time, p; is not sufficient because

we have fixed arbitrarily the limit of 66%.

even if we know that p; > 66% we don’t know when f; can be computed (in the
previous example, we have seen that fag is almost computed since faz is known).
we have to test the dependency of node ¢ not only with ¢ — 1, but also with 7 — 2,

i—3, ...

flow will give a good estimate if we can continue to restrict ourselves to analyze the
DAG of dependencies, that is to say if we can suppose that each element of U;S; has the
same weight in the global computational time; so we are making the following simplifying
hypothesis:

H; : We have Ny processors (a typical number is 100 for Ny ) at our disposal. Of
course it 18 not a realistic estimation; it is introduce here to simplify the algorithm
presentation: processor number ¢ will have the task to compute f;. In practical cases
only a few processors are needed as 1t will be seen later.

H. : Time for sending messages is negligible: this is only true if we a share memory
architecture in which case it is sufficient to send index of polynomials. (sending
message in that case is done by mean of share memory, so it is very fast).
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Hs : We suppose that all elementaries operations over polynomials can be performed
in a constant time #y: this hypothesis is globally false because polynomials are
growing during the computation (both the number of monomials and the size of
coefficients); nevertheless we can estimate as a first approximate that f; and fiy;,
for j small, have almost the same size; thus the assertion Hj is locally well verified.

As a result, we can write that the sequential computational time of G 1s of the same
order than Tieq = to(Nan+), vi). We associate — at initialization time — to each processor
i, a stack P; of constituted of all elements of S; (a; is at the top of the stack). On can say
that f; is known when the corresponding stack P; is empty; of course, at the beginning,

stacks P; for which ¢ < r are empty. Now we can write very easily our main algorithm
(see Fig 3.4.4, page 13 and Fig 3.4.4, page 13).

while Jiy such that P;, # 0 do
for ¢ < 1 to Ny do
{first(P;) return the first element at the top
of the stack P; without popping. }
if P, # 0 and Pﬁrst(P,) = 0 then
Jj + pop (%)
fi < Reduction of f; by f;

Figure 6. Grobner pipeline computation

16

20

12 17

13 19

13 15
12 16

13 20

= 12 —= 19

16

Processor 1 15

Processor 2

Figure 7. Each processor has its own stack.

The For loop in the algorithm can be done in parallel, hence Ty, — the number of
iteration multiplied by ¢y — is an estimation of the computational time. flow can simulate
this algorithm (only the DAG of dependencies is needed):
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Co (I (A (AVP)
Tyeq 2165 7499 2848 5004

1y, 630 2824 932 1553
Tseq
oo 34 27 31 3.2
Nowoos! 16 29 14 28

Ny procs 344 2.66 3.06 3.22

Tab 3.4.4: Theoretical parallel time

Consequently we can estimate to 3 the gain factor of the method to be compare with
the results of previous section (7¢ in 3.3.2). It remains to see if we can restrict the
number of actual processors in order to validate Hy; flow compute also (last two lines of
the tabular) the maximal number (resp. the average number) of processors needed for a
particular computation. When one read Ny procs = Naverage processors = 4 in the tabular,
it means that most of the time we can compute f., fr41, ..., fr43 at the same time, thus
computing polynomials of roughly the same size (see Hy. All of these results show that
we can validate our hypothesis (see page 13) and that a number of 4 processors seems
enough in most cases.

3.4.5. IMPLEMENTATION IN GB.

In GB we have made two kind of implementations (C++): one for a distributed net-
work of heterogeneous workstations and a true parallel implementation for multiproces-
sors computers (Sparc CenterT, Allianti) with share memory. The first one was only a
debugging program because of the prohibitive cost of communications. Nevertheless we
adopt in both cases the syntax of sending messages and objects, which 1s semantically
rich and enable us to have the same code to describe the algorithms. The natural archi-
tecture client/server of GB (see Fig 3.4.5, page 15) was very helpful to implement the
method.

The central module called GB is an interpreter which sends among other things the
initial system of polynomials to the master server. Ideally each servers should be associate
with a physical processor; it is planed in a future version of GB to suppress the master
server. The master don’t compute things by itself but it has to:

Use the DAG of dependencies to dispatch computation between servers (in the same
way of flow, see algorithm 3.4.4, page 13).

Execute and read data from the Modular Server. (Very often this server is running
on a remote workstation)

See below for definitions of Nprocs and Nx procs-
T Thanks to J. Hollman in Sweden.
! Thanks to J. Marchand Fcole Polytechnique
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Figure 8. Architecture of GB.

Run all other processes.

Schedule computations between servers.

Synchronize all the slave servers.

Send messages and polynomials: in the distributed implementation it is necessary
to send only a minimum of data over the network; thus the master server has for
each slave server a list of all the polynomials which are already in its memory. In
the case of share memory there is no need to send polynomials, all the messages
consist of indexes which are copy in a part of the memory share among all processes
devoted for sending messages.

Share memory 1s write protected by a semaphore]L in order to prevent concurrent
access of the same part of memory.

Collect polynomials whose computation is finished and all available processors.
When the master server “receive” a polynomial it checks that the degree of the
leading monomial is the equal to the exponent found by the modular computation
program.

At the opposite side, task of a slave server is

compute one f; at a time and wait while the corresponding stack is not ready
(that is to say when the top of the stack is not known yet); when the stack is
empty the server send f; to its master; wait for receiving a new index j and begin
the computation of f;. In our first implementation we follow the description of
algorithm 3.4.4 but it would be better to begin the computation of a new f; instead
of waiting.

each server has its own memory zone under the control of a local Memory Man-
agement — MM — (describe in Faugere94). It works as follow: when one enter in
a function the system store a mark at the beginning of the free memory; when a
function return the programmer indicates to the MM (eventually) which data are
“stable” or are supposed to be stable; in such a case the MM release all memory

T On Alliant machines this mechanism was not available.
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above the previous mark, then compacts and slides the data at the beginning of
free memory. Such a Memory Management system is well adapted to our problem:
when the slave server end a computation it release all its local memory (the previ-
ous mark is at the beginning of memory) and copy the corresponding polynomial
in share memory (a mark shared by all processors);

3.4.6. TIMINGS ON ALLIANT FX2&800

We give now the results of our first implementation using 1,2 or 3 effective processors
(remember that master server use a processor). Therefore we are not exactly in the ideal
case of 4 active processors. All the timings are obtain by making the difference between
the date at the end and date at the beginning of a computation; thus it is exactly the
time the user spent in front of the workstation to have the Grobner base. All the timings
are round to the nearest second.

1 proc- 2 proc- 3 proc-
€ssor €ssors €ssors
(N?) 2207 136” 110”7
Cyclic 6 7’ 57 37

Tab 3.4.6: Alliant FX2800 8 processors

Here is the table for (/\/?) example; Sequentialis the classic groebner function; Sequen-
tial trace 1s a sequential implementation of trace method including verifications; Parallel
is the parallel implementation using 3 processors.

Sequential Sequential Parallel
trace
(N?) 3635”7 434” 1797
Cs 47.87 11”7 47

Tab 3.4.6: Sequential/Parallel Alliant (3 procs)

For this examples, the parallel implementation is 2.5 faster, in other we use 80% of
each processors.

The main messages of this sbusection are summarized in Fig. 3.4.6 where the speedup
of our method is illustrated in the case of 1.5, 4 or 8 processors and five examples:

The reminder of this section is concerned with studying the parallelization of Buch-
berger algorithm in a very different case: modular computations.
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Figure 10. Speedup/Nb of Processors Modulo p (Alliant 8 procs)

3.5. A PARALLEL BUCHBERGER ALGORITHM FOR MODULO P COEFFICIENTS
The point of view in this paragraph is necessarily different because:

arithmetic are no more the most important part of the computation.
we do not know the graph of dependencies

On the other side, the fact that most of time is spent in computing vanishing critical

pairs is always true: 95% =~ 33256’% (resp. 92% ~ 12602 222) of the time for cyclic 8 (resp.

cyclic 7) on an Alpha workstation.

4. Parallelization of FGLM Algorithm
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Figure 11. Activity by proc on Alliant ((|®) Modulo p).
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Figure 12. Time in secs/Nb of Processors Comput. Part BigInt (Alliant 8 procs)

5. Conclusion

We have shown in this paper that:

The cost for verifying that a list of polynomials is a Grobner base is small and can
be easily parallelized.

By using 3-4 processors we can divide the computational of a trace method by 2-3
using the DAG of dependencies.
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Figure 14. Activity by proc on Alliant (T6 Big Int).

The method exposed here does not excluded parallelization of elementaries opera-
tions which can be achieved with more processors. Our main goal was to not perturbate
the selection strategy (sugar strategy) for integers coefficients which ensures that par-
allelization will not grow the volume of computations; the second goal was to have an
implementation for common workstations with four processors that can be competitive
with a very efficient implementation for non trivial problems.

Another important algorithm FGLM Faugere et al.94b — change of ordering of a Grob-
ner base (step 2 for solving) — is also available in GB both in a sequential and parallel
form; it is not describe in this paper (see Faugere94) but works very well. Tt is also obvi-
ous to obtain a parallel algorithm for the last step: find a list of triangular sets. Thus one
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Figure 16. Speedup/Nb of Processors Comput. + Check BigInt (Alliant 8 procs)

can say that a complete parallel implementation for solving algebraic systems is available
in GB, of course the first step remain the more difficult part to be parallelized.

Limitation de la // Petit nombre de processeur.

The success of algorithms for Grobner bases computations, perhaps more than in any
other area of Computer Algebra depends on the quality of their computer implementa-
tion. Some algorithms presented here which appear not very attractive from a theoretical
point of view but are very efficient in practice. For these reasons, we have described C++
programs which implement all the algorithms discussed in this paper.
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