
A Distinguisher for High Rate McEliece Cryptosystems

Jean-Charles Faugère1, Ayoub Otmani2,3, Ludovic Perret1, and Jean-Pierre Tillich2

1 SALSA Project - INRIA (Centre Paris-Rocquencourt)
UPMC, Univ Paris 06 - CNRS, UMR 7606, LIP6

104, avenue du Président Kennedy 75016 Paris, France
jean-charles.faugere@inria.fr, ludovic.perret@lip6.fr

2 SECRET Project - INRIA Rocquencourt
Domaine de Voluceau, B.P. 105 78153 Le Chesnay Cedex - France
ayoub.otmani@inria.fr, jean-pierre.tillich@inria.fr

3 GREYC - Universit́e de Caen - Ensicaen
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Abstract. The purpose of this paper is to study the difficulty of the so-called Goppa Code Distinguishing
(GD) problem introduced by Courtois, Finiasz and Sendrier in Asiacrypt 2001. GD is the problem of dis-
tinguishing the public matrix in the McEliece cryptosystem from a random matrix. It is widely believed
that this problem is computationally hard as proved by the increasing number of papers using this hard-
ness assumption. To our point of view, disproving/mitigating this hardness assumption is a breakthrough in
code-based cryptography and may open a new direction to attack McEliece cryptosystems. In this paper, we
present an efficient distinguisher for alternant and Goppa codes of high rate over binary/non binary fields.
Our distinguisher is based on a recent algebraic attack against compact variants of McEliece which reduces
the key-recovery to the problem of solving an algebraic system of equations. We exploit a defect of rank
in the (linear) system obtained by linearizing this algebraic system. It turns out that our distinguisher is
highly discriminant. Indeed, we are able to precisely quantify the defect of rank for “generic” binary and
non-binary random, alternant and Goppa codes. We have verified these formulas with practical experiments,
and a theoretical explanation for such defect of rank is also provided. We believe that this work permits to
shed some light on the choice of secure parameters for McEliece cryptosystems; a topic thoroughly inves-
tigated recently. Our technique permits to indeed distinguish a public key of the CFS signature scheme for
all parameters proposed by Finiasz and Sendrier at Asiacrypt 2009. Moreover, some realistic parameters of
McEliece scheme also fit in the range of validity of our distinguisher.

Keywords: public-key cryptography, McEliece cryptosystem, CFS signature, algebraic cryptanalysis, dis-
tinguisher.

1 Introduction

Code-based public key cryptography appeared with McEliece’s pioneering work [23] where the author pro-
posed to use one-way trapdoor functions based on irreducible binary Goppa codes. The class of Goppa codes
represents one of the most important example of linear codes having an efficient decoding algorithm [4, 28]. A
binary Goppa code is defined by a polynomialΓ of degreer ≥ 1 with coefficients in some extension fieldF2m

of degreem> 1 overF2, and an-tupleL = (x1, . . . ,xn) of distinct elements inF2m with n≤ 2m. The trapdoor
of the McEliece public-key scheme consists of a randomly pickedΓ which together withL provide all the
information to decode efficiently. The public key is a generator matrix of a randomly chosen Goppa code. A
ciphertext is obtained by multiplying a plaintext with the public generator matrix and adding a random error
vector of prescribed Hamming weight. The receiver decrypts the message thanks to the decoding algorithm
that can be derived from the secrets. Niederreiter [26] brings a significant modification of the McEliece cryp-
tosystem by proposing to describe public linear codes through parity-check matrices. The resulting public key
cryptosystem is as secure as McEliece’s one. The first code-based signature scheme came out in [12] almost
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twenty years McEliece’s proposal. The only difference between the encryption and the signature scheme lies in
the choice of the parameters of the binary Goppa codes. For signature, Goppa codes have to be chosen such that
they correct very few errors. This leads to a very high rateR= k/n with n is its length andk being the dimension
of the code. It holds thatk = n− rm where by definitionr is the number of errors and generallyn is chosen to
be equal to 2m. For instance according to [18], an 80-bit security signature scheme imposesr = 10 andm= 21
which leads toR= 0.9999.

All these cryptographic primitives base their security under two assumptions: the intractability of decoding
random linear codes [3], and the difficulty of recovering the private key or an equivalent one. The problem of
decoding an unstructured code is a long-standing problem whose most effective algorithms [19, 20, 31, 10, 5]
have an exponential time complexity. Thus, one may reasonably not expect much progress in this direction. On
the other hand, no significant breakthrough has been observed during the last thirty years regarding the problem
of recovering the private key. Indeed, although some weak keys have been identified in [21], the only known
key-recovery attack is the exhaustive search of the secret polynomialΓ of the Goppa code, and applying the
Support Splitting Algorithm(SSA) [29] to check whether the Goppa code candidate ispermutation-equivalent
to the code defined by the public generator matrix. Despite the fact that there still does not exist a practical
attack against McEliece’s proposal of using binary Goppa codes, one should not exclude the possibility of
breakthrough in that field. The authors of [12] alleviated the McEliece assumptions by introducing theGoppa
Code Distinguishing (GD) problem. They assume that no polynomial time algorithm exists that distinguishes
a generator matrix of a Goppa code from a random generator matrix. This is a classical belief in code-based
cryptography. For instance, according to [12], proving or disproving the hardness of the GD problem will have
a significant impact :“Classification issues are in the core of coding theory since its emergence in the 50’s. So
far nothing significant is known about Goppa codes, more precisely there is no known property invariant by
permutation and computable in polynomial time which characterizes Goppa codes. Finding such a property or
proving that none exists would be an important breakthrough in coding theory and would also probably seal
the fate, for good or ill, of Goppa code-based cryptosystems”.Currently, the only known algorithm that solves
GD problem is based on the enumeration of Goppa codes and the SSA algorithm [29], as explained below. The
time complexity of this method isO (2mr) assuming that the cost of the SSA algorithm is negligible (which is a
reasonable assumption for Goppa codes, but not for all linear codes).

As a consequence, it is widely believed that distinguishing the public matrix in McEliece from a random matrix
is computationally hard. Furthermore, the hardness of the Goppa Code Distinguishing (GD) problem is manda-
tory to prove the semantic and CCA2 security of McEliece in the random oracle model and in the standard
model [27, 15, 8], the security in the random oracle model against existential forgery [12, 13] of the CFS sig-
nature [12] scheme, the provable security of several primitives such as a threshold ring signatures scheme [14],
an identity-based identification scheme [11], which are build upon CFS. Therefore, showing that the Goppa
Code Distinguishing problem is easier than expected will “unprove” most of the provable primitives based on
McEliece, and more importantly will be the first serious cryptographic weakness observed on this scheme since
thirty years. The purpose of this paper is to study the difficulty of the Goppa Code Distinguishing (GD) problem:

Definition 1 (Goppa Code Distinguishing (GD) Problem).Let n and k be two integers such that k≤ n. We
denote byGoppa(n,k) the set of k×n generator matrices of Goppa codes. Similarly,Random(n,k) is the set of
k×n random generator matrices. AdistinguisherD is an algorithm that takes as input a matrixG and returns
a bit. We say thatD solves the GD problem if it wins the following game:

– b
R
←{0,1} If b = 0 thenG R

← Goppa(n,k) otherwiseG R
← Random(n,k)

– If D(G) = b thenD wins the games elseD loses.

The probability thatD outputs1 whenG is chosen as a random binary generator matrix of a Goppa code is

denoted byPr[G R
← Random(n,k) : D(G) = 1] and the probability that it outputs1 whenG is chosen randomly

in Random(n,k) is denoted byPr[G R
← Random(n,k) : D(G) = 1]. We define the advantage of a distinguisher

D as:
AdvGD(D) =

∣
∣
∣Pr[G R

← Goppa(n,k) : D(G) = 1]−Pr[G R
← Random(n,k) : D(G) = 1]

∣
∣
∣ .
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In this paper, we present a deterministic polynomial-time distinguisher for solving the GD problem defined
below with advantage close to 1 for codes of high rate. Along the way, we also solve the code distinguishing
problem for alternant codes. The key ingredient is a new algebraic technique introduced in [17] to attack two
variants [1, 24] of McEliece. It has been observed [17] that a key recovery attack against these cryptosystems,
as well as the genuine McEliece’s system, can be reduced to solving the following algebraic set of equations:

{

gi,1Y1X j
1 + ∙ ∙ ∙+gi,nYnX j

n = 0

∣
∣
∣
∣ i ∈ {1, . . . ,k}, j ∈ {0, . . . , r−1}

}

(1)

where the unknowns are theXi ’s and theYi ’s and thegi, j ’s are known coefficients (with 1≤ i ≤ k,1≤ j ≤ n)
which are nothing but the coefficients of the public generator matrix of the scheme. Finally,k is equal ton−mr
here, wherem is some divisor ofs. In other words we have 2n unknowns andrk = r(n−mr) polynomial
equations. In the cases of [1, 24], additional structures permit to drastically reduce the number of variables and
solve (1) efficiently using dedicated Gröbner bases techniques [17]. For McEliece’s cryptosystem, solving (1)
seems to be out of the scope of such dedicated techniques.

However, this algebraic approach can be used to construct an efficientdistinguisher. To do so, we consider
the dimension of the solution space of a linear system deduced from (1). This linear system is obtained by
linearization of the algebraic system (1). Linearization introduces many new unknowns. Consequently, this
strategy makes sense if the number of equationsk is greater than the number of newly introduced unknowns.
This is for instance the case for the parameters proposed in CFS [12] but it turns out that the linearized system is
not of full rank. Although this is an obstacle to break the system, this particular feature permits to construct an
efficient distinguisher for alternant codes and Goppa codes over any field. Note that the distinguisher is efficient
since we only have to compute the rank of a linear system. Additionally, the distinguisher is highly discriminant.
We provide in Section 5 explicit formulas for “generic” random, alternant, and Goppa code over any alphabet.
We performed extensive experiments to compare our theoretical results on valid McEliece public keys. They
confirm that the generic formula are accurate. We emphasize that the Goppa Code Distinguishing problem has
been widely considered as a hard problem in code-based cryptography as proved by the increasing number of
papers using this assumption [27, 15, 8, 12–14, 11]. To our point of view, disproving/mitigating this hardness
assumption is a breakthrough in code-based cryptography and may open a new direction to attack the McEliece
cryptosystem. Although our attack remains theoretical, we believe that this work also permits to shed some light
on the choice of secure parameters for McEliece cryptosystems; a topic thoroughly investigated recently [6, 7,
25, 18]. Our technique permits to indeed distinguish a public key of the CFS signature scheme for all parameters
proposed by Finiasz and Sendrier [18]. Moreover, some realistic parameters of McEliece scheme also fit in the
range of validity of our distinguisher like a binary Goppa code of lengthn = 213 that correctsr = 19 errors. Fot
these parameters, the scheme has a 90-bit security.

Organisation of Paper. In Section 2, we briefly recall the McEliece public-key cryptosystem as well as the
Courtois-Finiasz-Sendrier CFS signature [12]. In Section 3, we recall several key features of Goppa and alter-
nant codes. In Section 4, we precisely explain how we can mount an algebraic cryptanalysis against McEliece-
like schemesi.e.namely how the algebraic system (1) is constructed. The distinguisher is presented in Section 5.
Section 6 deals with the consequences of the existence of a distinguisher in code-based cryptography. Finally,
in Section 7 we explain how the formulas used in Section 5 have been obtained. To do so, we use together
combinatorial properties of the linearized system and distinguishing features of Alternant/Goppa codes.

2 Code-Based Public-Key Cryptography

The main cryptographic primitives in code-based public-key cryptography are the McEliece encryption and the
CFS signature [12]. We recall that a linearcodeover a finite fieldFq of q elements defined by ak×n matrix

G (with k≤ n) overFq is the vector spaceC spanned by its rowsi.e. C
def
=
{

uG | u∈ Fk
q

}
. G is chosen as a

full-rank matrix, so that the code is of dimensionk. The rate of the code is given by the ratiokn. Code-based
public-key cryptography focuses on linear codes that have a polynomial time decoding algorithm. The role of
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decoding algorithms is to correct errors of prescribed weight. We say that a decoding algorithm correctst errors
if it recoversu from the knowledge ofuG+e for all possiblee∈ Fn

q of weight at mostt.

Secret key:the triplet(S,Gs,P) of matrices defined over a finite fieldFq overq elements, withq being a power
of two, that isq = 2s. Gs is a full rank matrix of sizek×n, with k < n, S is of sizek×k and is invertible.P is a
permutation matrix of sizen×n. Gs is chosen in such a way that its associated linear code (that is the set of all
possibleuGs with u ranging overFk

q) has a decoding algorithm which corrects in polynomial timet errors.

Public key:the matrixG = SGsP.

Encryption:A plaintext u ∈ Fk
q is encrypted by choosing a random vectore in Fn

q of weight at mostt. The
corresponding ciphertext isc = uG+e.

Decryption:c′ = cP−1 is computed from the ciphertextc. Notice thatc′ = (uSGsP+e)P−1 = uSGs+eP−1 and
that eP−1 is of Hamming weight at mostt. Therefore the aforementioned decoding algorithm can recover in
polynomial timeuSand therefore the plaintextu by multiplication byS−1.

What is generally referred to as the McEliece cryptosystem is this scheme together with a particular choice
of the code, which consists in taking a binary Goppa code. This class of codes belongs to a more general class
of codes (see Section 3, namely the alternant code family ([22, Chap. 12, p. 365]). The main feature of this last
class of codes is that they can be decoded in polynomial time.

Another important code-based cryptographic primitive is the CFS scheme [12], which is the first signature
scheme based on the security of the McEliece cryptosystem. In this kind of scheme, a user whose public key is
G and who wishes to sign a messagex ∈ Fk

2 has to compute a stringu such that the Hamming weight ofx−uG
is at mostt. Anyone (averifier) can publicly check the validity of a signature. Unfortunately, this approach
can only provide signatures for messagesx that are within distancet from a codeworduG. The CFS scheme
suggests to modify the message by appending a counter incremented until the decoding algorithm can find such
a signature. The efficiency of this scheme heavily depends on the number of trials. It is suggested in [12] to
choose as in the McEliece cryptosystem, binary Goppa codes for this purpose with the following parameters
n = 2m andk = n−mt. The number of trials is of ordert! in this case, which leads to choose a very smallt and
therefore to take a very largen in order to be secure. Notice that the code rate is then equal to2m−tm

2m = 1− mt
2m

which is for largen (that is for large values of 2m) and moderate values oft quite close to 1. Thus, the major
difference between the McEliece cryptosystem and the CFS scheme lies in the choice of the parameters. An 80-
bit security CFS scheme requiresn = 221 andt = 10 whereas the McEliece cryptosystem for the same security
needsn = 211 andt = 32 ([18]). The code of the CFS scheme is of rate 1− 10×21

221 ≈ 0.9999. We see here that
the CFS scheme depends on very high rate binary Goppa codes.

3 Basic Facts about Alternant and Goppa Codes

As explained in the previous section, the McEliece cryptosystem relies on Goppa codes which belong to the
class ofalternant codesand inherit an efficient decoding algorithm from this. It is convenient to describe this
class through aparity-check matrixover an extension fieldFqm of Fq over which the code is defined. In other
words, the parity check matrix is anr×n matrixH with coefficients inFqm and the associated alternant codeA
is the set of vectors ofFn

q which belong to the right kernel ofH, i.e.

A = {c∈ Fn
q | HcT = 0}. (2)

r satisfies in this case the conditionr ≥ n−k
m wherek is the dimension ofA . For alternant codes, there exists a

parity-check matrix with a very special form related to Vandermonde matrices. For reasons which will be made

clear in Section 4, it will be convenient to work with the projective planeFqm
def
= Fqm ∪{∞} and to consider

the class ofprojective alternant codes(which are slightly more general than classical alternant codes). More
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precisely, any projective alternant code has a parity check matrix which is of the form

Vr(x,y)
def
=








y1 ∙ ∙ ∙ yn

y1x1 ∙ ∙ ∙ ynxn
...

...
y1xr−1

1 ∙ ∙ ∙ ynxr−1
n








. (3)

wherex = (x1, . . . ,xn) ∈ (Fqm)n andy = (y1, . . . ,yn) in (Fqm)n . Whenxi = ∞ we use the convention that thei-th

column ofVr(x,y) is equal to








0
...
0
yi








.

Definition 2 (Projective and classical alternant code).The projective alternant code of order r overFq as-

sociated tox = (x1, . . . ,xn) ∈ (Fqm)n (where all xi ’s are distinct) andy = (y1, . . . ,yn) ∈
(
F∗qm

)n
, denoted by

Ar(x,y), is defined by
Ar(x,y) = {c∈ Fn

q|Vr(x,y)cT = 0}. (4)

A classical alternant code corresponds to the case where all xi ’s are different from∞.

The class of Goppa codes is a subfamily of alternant codes which are given by:

Definition 3 (Projective and classical Goppa codes).The projective Goppa codeG (x,Γ ) overFq associated
to a polynomialΓ (x) of degree r overFqm and a certain n-tuplex = (x1, . . . ,xn) of distinct elements ofFqm

satisfyingΓ (xi) 6= 0 for4 all i ,1≤ i ≤ n, is the alternant codeAr(x,y) of order r with yi being defined by
yi = Γ (xi)−1. A classical Goppa code corresponds to the case xi ∈ Fqm for all i in {1, . . . ,n}.

It should be noted that the public code in the McEliece cryptosystem is also an alternant code. This is a simple
consequence of the fact that{uSGsP | u ∈ Fk

q} is obtained from the secret code{uGs | u ∈ Fk
q} by permuting

the coordinates in it with the help ofP, since multiplying by an invertible matrixSof sizek×k leaves the code
globally invariant.

4 Algebraic Cryptanalysis of McEliece-like Cryptosystems

In this part, we explain more precisely how we construct the algebraic system described in (1). This algebraic
system is the main ingredient of the distinguisher. We recall a key feature of alternant codes.

Fact 1. There exists a polynomial time algorithm decoding all errors of Hamming weight at mostr
2 for an

alternant code of order r once a parity-check matrixH of the formH = Vr(x,y) is given for it.

The variants of McEliece’s cryptosystem based on general alternant codes or on non binary Goppa codes, such
as [1, 24] for instance, add errors which are of weight smaller than or equal tor/2. In this case, it is possible to
break these variants by findingx∗ andy∗ in Fn

qm such that:

{xG | x ∈ Fr
q}= {y ∈ Fn

q | Vr(x∗,y∗)yT = 0}. (5)

According to Fact 1, the knowledge ofVr(x∗,y∗) permits to efficiently decode the public code,i.e. to recoveru
from uG+e. By the very definition of the public codeG, we have:

Vr(x
∗,y∗)GT = 0.

4 We defineΓ (∞)
def
= γr for Γ (X) = ∑r

i=0 γiXi .



6 Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, and Jean-Pierre Tillich

This is the key observation of the algebraic approach used in [17] to cryptanalyze dyadic and quasi-cyclic
variants of McEliece. LetX1, . . . ,Xn andY1, . . . ,Yn be 2n variables corresponding to thex∗i ’s and they∗i ’s. Observe
that suchx∗i ’s andy∗i ’s are a particular solution of the following system:

{

gi,1Y1X j
1 + ∙ ∙ ∙+gi,nYnX j

n = 0

∣
∣
∣
∣ i ∈ {1, . . . ,k}, j ∈ {0, . . . , r−1}

}

(6)

where thegi, j ’s are the entries of the known matrixG. In the cases of [1, 24], additional structures permit
to drastically reduce the number of variables allowing to solve (1) efficiently using dedicated Gröbner bases
techniques [17].

For binary Goppa codes, it is essential to recover its description as a Goppa code and not only thexi ’s and the
yi ’s giving its description as an alternant code. This is a consequence of the following result.

Fact 2. [28] There exists a polynomial time algorithm decoding all errors of Hamming weight at most r in a
Goppa codeG (x,Γ ) whenΓ has degree r and has no multiple roots, ifx andΓ are known.

If we recover only thexi ’s and theyi ’s we can decode onlyr/2 errors. The issue is now, once a possible
description of a Goppa code has been found as an alternant code, that is once a solutionx = (xi)1≤i≤n and
y = (yi)1≤i≤n of the system (6) has been found, does there exist a polynomialΓ (X) of degreer such that
yi = Γ (xi)−1 for all i ∈ {1, . . . ,n} ? If such a polynomial exists, it can be easily found by interpolation. The
problem is that a Goppa code has multiple descriptions as an alternant code,i.e., there are severalx,y’s for
which G = Ar(x,y). The solutions we are interested in are the ones for whichyi = Γ (xi)−1 for all i, and for
some polynomialΓ of degreer.

This raises the fundamental issue of finding all possible descriptions of the form (4) of an alternant codeA , that
is find allx,y’s such thatA = Ar(x,y). When the extension fieldFqm is the same as the definition5 fieldFq, i.e.
if m= 1, the problem was solved in [16]. This was the key of the cryptanalysis of McEliece’s variant based on
generalized Reed-Solomon codes [30].

The general case is still unsolved. However, the results of [16] basically show that the we have at least one degree
of freedom forYi and three degrees of freedom for theXi ’s in the system (6). First of all it is straightforward to
notice that if(Xi)1≤i≤n,(Yi)1≤i≤n is a solution of the algebraic Equation (6) then(αXi)1≤i≤n,(βYi)1≤i≤n is also
a solution for anyα ,β in Fqm. Therefore, we can specialize one(Xi ,Yi) arbitrarily. It turns out we can fix more
variables thanks to the following proposition.

Proposition 1. Let x = (xi)1≤i≤n ∈ (Fqm)n be an n-tuple formed by distinct elements and lety = (yi)1≤i≤n ∈
(Fqm)n be an n-tuple of nonzero elements. Let a,b,c,d be elements ofFqm such that that ad−bc 6= 0. Then

Ar

(
ax+b
cx+d

,y′
)

= Ar (x,y) , where

ax+b
cx+d

def
= (x′i)1≤i≤n with x′i =

axi +b
cxi +d

, y′ = (y′i)1≤i≤n with y′i = yi(cxi +d)r−1.

Remark 1.The proof is in Appendix A. Notice that eitherxi or x′i might be infinite. We used here the usual rules
to evaluate the homographyz 7→ az+b

cz+d , namelyα
0 = ∞, ∞

α = ∞, α
∞ = 0,β +∞ = ∞, 0×∞ = 0, a×∞+b

c×∞+d = a
c , where

α 6= 0,β belong toFqm.

This result explains that there is (at least) one degree of freedom for theYi ’s and three degrees of freedom for the
Xi ’s. It is quite helpful to allow herexi which can be infinite since even all of them are inFqm, it might happen
that cxi + d is equal to zero. Therefore the corresponding image by the homography will be infinite. Finally,
since the set of homographies acts 3-transitively overFqm∪{∞}, we have:

5 This means that the resulting code is a slight generalization of a generalized Reed-Solomon code known under the name
of a Cauchy code.
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Corollary 1. We can specialize (almost) randomly one Yi and three Xi ’s in (1). As long as the Xi ’s are distinct,
we still have a non-empty set of solutions for such modified system(1).

At first glance, the degree of freedom should be less for Goppa codes. Indeed, there is an additional crucial
constraint for binary Goppa codes: a solution must verifyYi = Γ (Xi)−1 for a certain polynomial of degreer.
Surprisingly, we can keep the same degree of freedom by considering a slight change of (6). LetG̃ (x,Γ ) be the
subcode of the Goppa codeG (x,Γ ) formed by all codewords of even Hamming weight. LetG̃ = (g̃i, j)1≤i≤k̃

1≤ j≤n
be

a generator matrix ofG̃ (x,Γ ), that is a matrix of full rank whose rows generateG̃ (x,Γ ). The dimensioñk of
this subspace is eitherk or k−1, wherek is the dimension of the Goppa codeG (x,Γ ). This subcode is itself an
alternant code.

Proposition 2. [2] It holds that:

G̃ (x,Γ ) = Ar+1(x,y)

for deg(Γ ) = r and wherey = (yi)i with yi = Γ (xi)−1.

This implies that thexi ’s andyi ’s are a particular solution of:

{

g̃i,1Y1X j
1 + ∙ ∙ ∙+ g̃i,nYnX j

n = 0

∣
∣
∣
∣ i ∈ {1, . . . , k̃}, j ∈ {0, . . . , r}

}

(7)

where the ˜gi, j ’s are the entries of the known matrix̃G. Notice that this system is very similar to (6) with the
exception that the powers of theXi ’s can now be equal tor. The crucial result is now that

Proposition 3. [2] Let x = (xi)1≤i≤n be an n-tuple of distinct elements ofFqm andΓ be a polynomial of degree
r such thatΓ (xi) 6= 0 for all i ∈ {1, . . . ,n}. Letψ(z) = az+b

cz+d be an homography with ad−bc 6= 0 and a,b,c,d ∈

Fqm. Let xψ def
= (xψ

i )1≤i≤n with xψ
i

def
= ψ−1(xi), Γ ψ(X)

def
= (cx+ d)rΓ (ψ(x)) = ∑r

i=0 γi(aX+ b)i(cx+ d)r−i , for
Γ (x) = ∑r

i=0 γiXi . Then

G̃ (x,Γ ) = G̃ (xψ ,Γ ψ).

Once again, we can use that homographies have a 3-transitive action onFqm.

Corollary 2. We can specialize in(7) one of the Yi and three of the Xi ’s almost arbitrarily (with Yi 6= 0 and such
that the three Xi ’s are distinct) and still obtain a solution for which there exists a polynomialΓ of degree r such
that Yi = Γ (Xi)−1 for all i in {1, . . . ,n}.

To finish this discussion, it will be helpful to notice that in the case of binary Goppa codes, we have even
more algebraic equations than the ones given in System (6). The starting point is the following result, which is
essentially derived from a discussion in a paragraph about Goppa codes in [22, p.341].

Theorem 3. A binary Goppa codeG (x,Γ ) associated to a Goppa polynomialΓ (X) of degree r without multiple
roots is equal to the alternant codeA2r(x,y), with yi = Γ (xi)−2.

In other words,x andy are solutions of the following algebraic system

{

gi,1Y1X j
1 + ∙ ∙ ∙+gi,nYnX j

n = 0

∣
∣
∣
∣ i ∈ {1, . . . ,k}, j ∈ {0, . . . ,2r−1}

}

, (8)

where(gil ) is a generator matrix of the Goppa code. Notice that the powersj are now in the range{0,1, . . . ,2r−
1} and not in{0,1, . . . , r−1}, as was the case before.
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Fig. 1.Systematic form ofG

5 A Distinguisher of Alternant and Goppa Codes

We present in this part the algebraic distinguisher. LetG = (gi j )1≤i≤k
1≤ j≤n

be a generator matrix of the public code.

We can assume without loss of generality thatG is systematic in itsk first positions. Such a form can be easily
obtained by Gaussian elimination and by a suitable permutation of the columns. We describe now a simple
way of using this particular form for solving (6). We assume that the rate of the public code is close to 1,
i.e. n−mr

n ≈ 1, which impliesmr� n. From a cryptographic point of view, this means that the expansion ratio
between the size of the ciphertext and the size of the message is close to 1. This kind of rate has been proposed
in [18]. The strategy is as follows.

5.1 First step – expressing theYiXd
i ’s in terms of the YjXd

j ’s for j ∈ {k+1, . . . ,n}.

Let P = (pi j ) 1≤i≤k
k+1≤ j≤n

be the submatrix ofG formed by its lastmr columns (as in Figure 1). We can rewrite (6)

as 




Yi = ∑n
j=k+1 pi, jYj

YiXi = ∑n
j=k+1 pi, jYjXj

. . .

YiX
r−1
i = ∑n

j=k+1 pi, jYjX
r−1
j

(9)

for all i ∈ {1, . . . ,k}.

5.2 Second step – using the trivial identityYiYiX2
i = (YiXi)2 and linearization.

Thanks to the trivial identityYiYiX2
i = (YiXi)2 for all i in {1, . . . ,k}, we get:

n

∑
j=k+1

pi, jYj

n

∑
j=k+1

pi, jYjX
2
j =

(
n

∑
j=k+1

pi, jYjXj

)2

, for all i ∈ {1, . . . ,k}.

It is possible to reorder this a little bit to obtain the following equations:

n

∑
j=k+1

∑
j ′> j

pi, j pi, j ′

(
YjYj ′X

2
j ′ +Yj ′YjX

2
j

)
= 0 (10)

We can now linearize this system by lettingZj j ′
def
= YjYj ′X

2
j ′ +Yj ′YjX2

j . We obtaink linear equations involving
theZj j ′ ’s: {

n

∑
j=k+1

∑
j ′> j

pi, j pi, j ′Zj j ′ = 0, i = 1. . .k

}

. (11)

To solve this system it is necessary that the number of equations is greater than the number of unknowns,i.e.:

k≥

(
mr
2

)

This approach works for alternant codes in general. However, for Goppa codes, it will be interesting to consider
also a related system. It is obtained by applying the same approach described before but to the generator matrix
G̃ of the subcode of the public code consisting in codewords of even Hamming weight. The reason which makes
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this new system interesting will be explained in Subsection 7.2, it is related to Proposition 2. We denote byk̃
the dimension of this code. We have eitherk̃ = k or k̃ = k−1.

As previously, we can suppose thatG̃ is in systematic form:̃G =
(
Ĩ |P̃
)

whereI is the identity matrix of sizek
or k−1 (depending on the dimension of the subcode). Finally, let ˜pi j be the coefficient in thei-th row and j-th
column ofP̃ . We can proceed similarly and obtain a new linear system of equations:






n

∑
j=k̃+1

∑
j ′> j

p̃i, j p̃i, j ′Zj j ′ = 0, i = 1. . . k̃





. (12)

Whenk̃ = k−1, the number of equations is smaller. It might bek−1 instead ofk and the number of variables

is also larger. It is equal to
(n−k̃

2

)
=
(mr+1

2

)
. However, we will see that due to Proposition 2, this system has also

nice properties in the Goppa case.

5.3 Experimental behavior

Observe that the linear systems (11) and (12) have coefficients inFq whereas solutions are sought in the ex-
tension fieldFqm. In addition, the freedom of choosing threeXi ’s and oneYi in order to reduce the number of
unknowns in the linearized systems is not used. However, even if this additional knowledge is taken into ac-
count, the rank of the linear systems remains insufficient to solve the system. More precisely, the problem is that
the dimension of the vector space solution of (11) is amazingly large. It even depends on whether or not the code
with generator matrixG is chosen as a (generic) alternant code or as a Goppa code. Interestingly enough, when
G is chosen at random, the dimension of the solution space is typically 0 whenk is larger than the number of
variables. Although these facts are an obstacle to break the McEliece cryptosystem, it can be used to distinguish
the public generator from a random code. Let us denote by:

– N
def
=
(mr

2

)
the number of variables in (11),̃N the number of variables of (12),

– Drandom, respectivelyD̃random, the dimension of the vector space solution of (11), respectively (12) when the
pi j ’s are chosen uniformly at random inFq,

– Dalternant, respectivelyD̃alternant, the dimension of the vector space solution of (11), respectively (12) when
G is chosen as a generator matrix of a random alternant code of degreer,

– DGoppa, respectivelyD̃Goppathe dimension of the vector space solution of (11), respectively(12) whenG is
chosen as a generator matrix of a random Goppa code of degreer.

A thorough experimental study revealed that the dimension of the vector space overFq of the solutions of (11)
follows typically the following formulas:

Experimental fact 1 Let D be in{Dalternant, D̃alternant,DGoppa, D̃Goppa}. With very high probability and as long
as N−D < k, the dimension D has the following value:

Dalternant =
m(r−1)

2

(

(2`+1)r−2
q`+1−1

q−1

)

for `
def
=
⌊
logq(r−1)

⌋
(13)

D̃alternant = Dalternant for q > 2 (14)

For r < q−1, it holds that

DGoppa=
m(r−1)(r−2)

2
= Dalternant (15)

D̃Goppa=
mr(r−1)

2
(16)

wheras for r≥ q−1, by denoting bỳ the unique integer such that q`−2q`−1 +q`−2 < r ≤ q`+1−2q` +q`−1,
we obtain

DGoppa=
mr
2

(
(2`+1)r−2q` +2q`−1−1

)
(17)

D̃Goppa=
mr
2

(
(2`+1)r−2q` +2q`−1 +1

)
(18)
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We gathered samples of results we obtained through intensive computations with the Magma system [9]
in order to confirm the formulas. We randomly generated alternant and Goppa codes over the fieldFq with
q∈ {2,4,8,16,32} for values ofr in the range{3, . . . ,50} and severalm. The Goppa codes are generated by
means of an irreducibleΓ of degreer and henceΓ has no multiple roots. In particular, we can apply Theorem 3
in the binary case. We compare the dimensions of the solution space against the dimensionDrandomof the system
derived from a random linear code. Table 1 and Table 2 give figures for the binary case withm= 14. We define
Talternant andTGoppa respectively as the expected dimensions for an alternant and a Goppa code deduced from
the formulas (13) and (15)-(17). We can check thatDrandomis equal to 0 forr ∈ {3, . . . ,12} andDrandom= N−k
as expected. We remark thatDalternantis different fromDrandomwheneverr ≤ 15, andDGoppais different from
Drandom as long asr ≤ 25. Finally we observe that our formulas forTalternant fit as long ask≥ N−Talternant

which correspond tor ≤ 15. This is also the case for binary Goppa codes since we haveTGoppa = DGoppa as
long ask≥ N−TGoppa i.e. r≤ 25. We also give in Table 10 and Table 11 in Appendix B the examples that we
obtained forq = 4 andm= 6 to check that the arguments also apply. We also compare binary Goppa codes and
random linear codes form= 15 in Table 4-6 andm= 16 in Table 7-9 (See Appendix B). We see thatDrandom

andDGoppaare different forr ≤ 33 whenm= 15 and form= 16 they are different even beyond our range of
experimentr ≤ 50.

Table 1.q = 2 andm= 14

r 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N 861 1540 2415 3486 4753 6216 7875 9730 117811402816471191102194524976
k 1634216328163141630016286162721625816244162301621616202161881617416160

Drandom 0 0 0 0 0 0 0 0 0 0 269 2922 5771 8816
Dalternant 42 126 308 560 882 1274 1848 2520 3290 4158 5124 6188 7350 8816
Talternant 42 126 308 560 882 1274 1848 2520 3290 4158 5124 6188 7350 8610
DGoppa 252 532 980 1554 2254 3080 4158 5390 6776 8316 10010118581386016016
TGoppa 252 532 980 1554 2254 3080 4158 5390 6776 8316 10010118581386016016

Ñ 903 1596 2485 3570 4851 6328 8001 9870 119351419616653193062215525200
k̃ 1634116327163131629916285162711625716243162291621516201161871617316159

D̃random 42 56 70 84 98 112 126 140 154 168 453 3120 5983 9041
D̃alternant 84 182 378 644 980 1386 1974 2660 3444 4326 5306 6384 7560 9041
D̃Goppa 294 588 1050 1638 2352 3192 4284 5530 6930 8484 10192120541407016240

6 Cryptographic Implications

The existence of a distinguisher for the specific case of binary Goppa codes has consequences for code-based
cryptographic primitives because it is represents, and by far, the favorite choice in such primitives. One of the
reasons for this, is the fact that this class has withstood many cryptographic attacks for more than thirty years
now. We focus in this part on secure parameters that are within the range of validity of our distinguisher. In
Section 5, we gave a general expression of the distinguisher for a Goppa code over any finite fieldFq. This
expression can be easily simplified in the binary case (q = 2).

Proposition 4. Let us definè
def
= dlog2 re+1 and N

def
=
(mr

2

)
. The formula for DGoppagiven in Equation(17)can

be simplified to DGoppa= mr
2

(

(2`+1)r−2`−1

)

as long as N−DGoppa< n−mr.

This simple expression is therefore not true for any value ofr andmbut tends to be true for codes that have
a code raten−mr

n that is close to one. This kind of codes are mainly encountered with the public keys of the
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Table 2.q = 2 andm= 14

r 17 18 19 20 21 22 23 24 25 26 27 28 29 30

N 2820331626352453906043071472785168156280610756606671253766368221587990
k 1614616132161181610416090160761606216048160341602016006159921597815964

Drandom 1205715494191272295626981312023561940232450415004655247606446623772026
Dalternant 1205715494191272295626981312023561940232450415004655247606446623772026
Talternant 1019211900137341569417780199922233024794273843010032942359103900442224
DGoppa 1856421294242062730030576340343767441496455005004655247606446623772026
TGoppa 1856421294242062730030576340343767441496455004968654054586046333668250

Ñ 2844131878355113934043365475865200356616614256643071631770288262188410
k̃ 1614516131161171610316089160751606116047160331601916005159911597715963

D̃random 1229615747193942323727277315123594240569453935041155626610376664472447
D̃alternant 1229715747193952323827277315113594340570453925041255626610386664472447
D̃Goppa 1880221546244722758030870343423799641832458505041255626610376664472447

CFS signature scheme. We will show that there also exist public keys of the McEliece cryptosystem that can be
distinguished for parameters considered as secure. We assume that the lengthn is equal to 2m and we denote by
rmin the smallest integerr such thatN−DGoppa≥ 2m−mr. Recall that given a degree extensionmoverF2, any
binary Goppa code defined with a polynomialΓ (z) of degreer ≥ rmin cannot be distinguished from a random
linear code by our technique. This value is gathered in Table 3 for different values ofm. It provides therefore
a lower bound forr in the choice of secure parameters if being unable to distinguish the public code from a
random linear code is required. One can notice for instance that the McEliece key obtained withm= 13 and
r = 19 and which corresponds to 90-bit of security, fits in the range of validity of our distinguisher. The values
of rmin in Table 3 are checked by experimentations form≤ 16 whereas those form≥ 17 are obtained by solving

the equationmr
2

(

(2`+1)r−2`−1

)

= 1
2mr(mr−1)−2m+mr. Additionally, all the keys proposed in [18] (See

therein Table 4) for the CFS scheme can be distinguished.

Table 3.Smallest orderr of a binary Goppa code of lengthn = 2m for which our distinguisher does not work.

m 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

rmin 5 8 8 11 16 20 26 34 47 62 85 114 157 213 290 400

7 An Explanation for the Distinguisher

The goal of this section is to provide a theoretical explanation to the practical behavior observed in the previous
section. We first consider the case of alternant codes and will explain the defect of rank observed in the linearized
systems described previously.

7.1 The generic alternant case

As a general comment, we emphasize that it seems difficult to obtain a precise lower bound or upper bound on
the dimensionD, respectivelyD̃ of the vector space solution of (11), respectively (12) holding for all alternant
codes. Indeed, it is always possible to have degenerate cases for particularx andy defining the alternant code
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Ar(x,y). Whenx andy are chosen in a subfieldFqm′ with m′ being a divisor ofm, then the dimensionD of
the system is much smaller than predicted in experimental Fact 1. We have typically the same formula as in
(13), but withm′ replacingm there. On the other hand, wheny is chosen accordingly to a Goppa code, then the
dimension can be much larger.

However, there is a simple fact explaining what happens in the generic case for Formula (13), i.e. for “random”
choices ofx andy. Indeed, to set up the linear system (11) or (12) we have used the trivial identityYiYiX2

i =
(YiXi)2. More generally, we can use any identity of the formYiXa

i YiXb
i = YiXc

i YiXd
i with a,b,c,d ∈ {0,1, . . . , r−

1} such thata+b = c+d. It is straightforward to check that we obtain in the same way the algebraic system:

n

∑
j=k+1

∑
j ′> j

pi, j pi, j ′

(
YjX

a
j Yj ′X

b
j ′ +Yj ′X

a
j ′YjX

b
j +YjX

c
j Yj ′X

d
j ′ +Yj ′X

c
j ′YjX

d
j

)
= 0 (19)

and
n

∑
j=k̃+1

∑
j ′> j

p̃i, j p̃i, j ′

(
YjX

a
j Yj ′X

b
j ′ +Yj ′X

a
j ′YjX

b
j +YjX

c
j Yj ′X

d
j ′ +Yj ′X

c
j ′YjX

d
j

)
= 0. (20)

In other words:
Za,b,c,d

def
=
(
YjX

a
j Yj ′X

b
j ′ +Yj ′X

a
j ′YjX

b
j +YjX

c
j Yj ′X

d
j ′ +Yj ′X

c
j ′YjX

d
j

)
1≤ j≤mr

j ′> j

is a solution of (11) whereas

Z̃a,b,c,d
def
=
(
YjX

a
j Yj ′X

b
j ′ +Yj ′X

a
j ′YjX

b
j +YjX

c
j Yj ′X

d
j ′ +Yj ′X

c
j ′YjX

d
j

)

1≤ j≤n−k̃
j ′> j

is a solution of (12). This yields many (presumably) independent vectors which are solution of (11) or (12).
In other words, large dimension of the vector space solution of (11) or (12) is explained by the fact thatthere
are many different ways of combining the equations of the algebraic system(10) together yielding the same
linearized systems(11)or (12).

Observe that there are some relations among solutions, such asZa,b,c,d +Zc,d,e, f = Za,b,e, f . However, if we define

St
def
= {{a,b}|a+b = t} ,

then we expect to obtain∑t(|St |−1) linearly independent solutions to (11) or (12) from this process. The term
|St |−1 in the sum is a simple consequence of the following fact.

Fact 4. Assume that we havèindependent (overF2) vectors e1, . . . , è . Then the set
{

ei +ej : i, j ∈ {1, . . . , `}
}

generates a vector space of dimension`−1 overF2.

Finally, the solutions have coefficients overFqm. By decomposing each coefficient overFq we may finally have
m∑t(|St |−1) (potentially) independent vectors overFq. This accounts for a generating set of size:

m(r−1)(r−2)
2

which agrees with Formula (13) whenr ≤ q.

For larger values ofr, the automorphisms ofFqm leavingFq invariant have to be used. They are of the form

x 7→ xql
for some` ∈ {0, . . . ,m−1}. Notice that if we raise the equationYiXi = ∑ pi jYjXj to theq-th power we

get:
Yq

i Xq
i = ∑ pi jY

q
j Xq

j .

We can use the same trick forYi = ∑ pi jYj . From the trivial identityYi(YiXi)q = Yq
i YiX

q
i , we obtain a new

algebraic equation which is

n

∑
j=k+1

∑
j ′> j

pi, j pi, j ′

(
YjY

q
j ′X

q
j ′ +Yj ′Y

q
j Xq

j +Yq
j Yj ′X

q
j ′ +Yq

j ′YjX
q
j

)
= 0. (21)
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To useYiX
q
i = ∑ pi jYjX

q
j , we need to haver ≥ q+ 1. However it should be noticed that ifa+ b = c+ d then

Za,b,c,d andZqa,qb,qc,qd only givem (potentially) independent vectors overFq (and not 2m) after decomposing
their coefficients overFq. This comes from the fact that the Frobenius mapx 7→ xq is aFq-linear transform.
Therefore, the only new vectors obtained in this way are of the formZa,qj b,c,qj d with 0≤ a,b,c,d < r, 0≤ j < m
anda+qjb = c+qjd. This whole discussion leads to

Heuristic 1 Let S0
t

def
= {{a,b}|0≤ a < r,0≤ b < r,a+b = t} 6. For j in {1, . . . ,m−1}, we set Sjt

def
=
{
(a,qjb)|0≤ a < r,0≤ b < r,a+qjb = t

}
.

Then, for most choices ofx andy, we have:

Dalternant= m ∑
{t, j:Sj

t }6= /0

(|Sj
t |−1).

The sum appearing in the right-hand side has a very simple expression which is given by

Proposition 5.

∑
{t, j:Sj

t }6= /0

(|Sj
t |−1) =

r−1
2

{

(2`+1)r−2
q`+1−1

q−1

}

(22)

with `
def
=
⌊
logq(r−1)

⌋
.

This finishes to explain the first part of Experimental Fact 1. In order to prove Proposition 5, we first prove the
following lemma.

Lemma 1.

|S0
t | =

⌈
t +1

2

⌉

, for 0≤ t ≤ r−1, (23)

|S0
t | =

⌈
2r− t−1

2

⌉

, for r ≤ t ≤ 2r−2, (24)

|S0
t | = 0 otherwise. (25)

|Sj
t | ≤ 1, if q j ≥ r, (26)

|Sj
t | = min

(

r,

⌊
t
qj

⌋

+1

)

−max

(⌈
t− r +1

qj

⌉

,0

)

otherwise. (27)

Proof. The first three equations follow directly from the definition ofS0
t . Equation (26) is an easy consequence

of the definition ofSj
t . Let us assume now thatr > qj . We now prove Equation (27). Let(a,b) be a couple of

integers such that:

0≤ a ≤ r−1 (28)

0≤ b ≤ r−1 (29)

a+qjb = t. (30)

From (28), (29) and (30), we obtaint−qjb≤ r−1, which impliesb≥
⌈

t−r+1
qj

⌉
. Together with (29)

b≥max

(⌈
t− r +1

qj

⌉

,0

)

. (31)

On the other hand, we also haveb≤ r−1 andb≤
⌊

t
qj

⌋
sincea≥ 0. This implies

b≤min

(

r−1,

⌊
t
qj

⌋)

. (32)

All the b’s between these upper and lower bounds are possible. Then, there is only one correspondinga each
time. This yields Equation (27). ut

6 The notation{a,b} refers to a multiset here. We may havea = b.
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From this, we deduce:

Lemma 2. It holds that:

∑
t:S0

t 6= /0

(|S0
t |−1) =

(r−1)(r−2)
2

, (33)

∑
t:Sj

t 6= /0

(|Sj
t |−1) = (r−1)(r−qj) for r ≥ qj , (34)

∑
t:Sj

t 6= /0

(|Sj
t |−1) = 0 otherwise. (35)

Proof. Let us first prove (33). By using Lemma 1, we obtain

∑
t:S0

t 6= /0

(|S0
t |−1) =

r−1

∑
t=0

(⌈
t +1

2

⌉

−1

)

+
2r−2

∑
t=r

(⌈
2r− t−1

2

⌉

−1

)

Forr odd (sayr = 2r ′+1), we notice that∑r−1
t=0

(⌈
t+1

2

⌉
−1
)
= r ′(r−1)+r ′= r ′2 and that∑2r−2

t=r

(⌈
2r−t−1

2

⌉
−1
)
=

r ′(r−1). This implies that∑t:S0
t 6= /0(|S

0
t |−1) = r ′(2r ′ −1) = (r−1)(r−2)

2 . On the other hand, forr even, sayr = 2r ′,

we obtain∑r−1
t=0

(⌈
t+1

2

⌉
−1
)

= r ′(r ′ −1) and∑2r−2
t=r

(⌈
2r−t−1

2

⌉
−1
)

= r ′ −1+(r ′ −1)(r ′ −2) = (r ′ −1)2. From

this, we deduce that∑t:S0
t 6= /0(|S

0
t |−1) = (r ′ −1)(2r ′ −1) = (r−1)(r−2)

2 . This proves (33).

To prove (34), we first notice that|Sj
t | is positive if and only ift belongs to{0,1, . . . , (qj +1)(r−1)}. Then, we

use Lemma 1 again and we obtain

∑
t:Sj

t 6= /0

(|Sj
t |−1) =

(qj+1)(r−1)

∑
t=0

(|Sj
t |−1) (36)

=
(qj+1)(r−1)

∑
t=0

min

(

r,

⌊
t
qj

⌋

+1

)

−max

(⌈
t− r +1

qj

⌉

,0

)

−1

=
(qj+1)(r−1)

∑
t=0

min

(

r−1,

⌊
t
qj

⌋)

−max

(⌈
t− r +1

qj

⌉

,0

)

=
(qj+1)(r−1)

∑
t=0

min

(

r−1,

⌊
t
qj

⌋)

−
(qj+1)(r−1)

∑
t=0

max

(⌈
t− r +1

qj

⌉

,0

)

. (37)

Observe now that

(qj+1)(r−1)

∑
t=0

min

(

r−1,

⌊
t
qj

⌋)

=
qj (r−1)−1

∑
t=0

⌊
t
qj

⌋

+
qj (r−1)−1

∑
t=qj (r−1)

(r−1)

= qj(0+1+ ∙ ∙ ∙+ r−2)+(r−1)r.

The other term appearing in the right-hand side of (37) is handled as follows

(qj+1)(r−1)

∑
t=0

max

(⌈
t− r +1

qj

⌉

,0

)

=
(qj+1)(r−1)

∑
t=r

⌈
t− r +1

qj

⌉

= qj(1+2+ ∙ ∙ ∙+ r−1).

By plugging these two expressions in (37) we obtain

∑
t:Sj

t 6= /0

(|Sj
t |−1) = qj(0+1+ ∙ ∙ ∙+r−2)+(r−1)r−qj(1+2+ ∙ ∙ ∙+r−1) = (r−1)r−qj(r−1) = (r−1)(r−qj).

ut
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Finally, we can now finish with the proof of Proposition 5.

Proof.

∑
t, j:Sj

t 6= /0

(|Sj
t |−1) = ∑

t:S0
t 6= /0

(|S0
t |−1)+

m−1

∑
j=1

∑
t,:Sj

t 6= /0

(|Sj
t |−1)

=
(r−1)(r−2)

2
+ ∑

j:qj<r

(r−1)(r−qj)

Let ` be the largest integer such thatr > q`. We obtain

∑
t, j:Sj

t 6= /0

(|Sj
t |−1) =

r−1
2

{

2`r +(r−2)−2
`

∑
j=1

qj

}

=
r−1

2

{

2(`+1)r−2
`

∑
j=0

qj

}

=
r−1

2

{

2(`+1)r−2
q`+1−1

q−1

}

.

This concludes the proof. ut

7.2 The Goppa case

The simplest way to understand why there is a difference between the generic alternant case and the Goppa
case is to comparẽDGoppawith D̃alternant. First of all, the same reasoning as in the previous subsection can be
done for the subcode˜Ar(x,y) of even weights of an alternant codeAr(x,y). This leads in the same way to the
conclusion that in general:

D̃alternant=
m(r−1)

2

{

(2`+1)r−2
q`+1−1

q−1

}

,

with `
def
= blogq(r −1)c. Notice, that from Proposition 2, we know that̃G (x,Γ ) is an alternant code of degree

r +1, whenΓ is of degreer. Therefore, we have

D̃Goppa≥
mr
2

{

(2`+1)(r +1)−2
q`+1−1

q−1

}

.

with `
def
= blogq(r)c. This explains whỹDGoppais significantly greater thañDalternant. If we we denote bỹDGoppa(r)

the dimension of the solution space of (12) for a Goppa code associated to a polynomial of degreer (we fix
the orderm of the extension) and if we denote byD̃alternant(r) the dimension of the solution space of(11) for a
generic alternant codeAr of degreer, then this explains why we have

D̃Goppa(r)≥ D̃alternant(r +1).

It should be added that forr ≤ q−2, we actually havẽDGoppa(r) = D̃alternant(r +1).

We do not have a general explanation for the formula observed forDGoppaof non-binary Goppa codes. However,
in the case of binary Goppa codes we can use Theorem 3. In this case, when the Goppa polynomialΓ has only

simple roots, we know thatG (x,Γ ) = A2r(x,y′), wherer
def
= deg(Γ ) andy′i = Γ (xi)−2 where thexi ’s are the

coordinates ofx and they′i ’s are the coordinates ofy′. This basically explains why the vector space solution of
(11) is much greater for a binary Goppa code than for a binary alternant code of the same degree. This would
suggest thatDGoppa(r) ≥ Dalternant(2r). However, this is not true. Now, there are linear relations among the
vectorsZa,b,c,d which are solutions of (11). Providing a cleaner explanation of the formula obtained for binary
Goppa codes is much more involved and is beyond the scope of this article.
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A Proof of Proposition 1

Proof. Let c = (ci)1≤i≤n be a codeword inAr(x,y). Consider a polynomialP(X) = ∑r−1
j=0ajX j ∈ Fqm[X] of

degree at mostr−1 and notice that

y′iP

(
axi +b
cxi +d

)

= yi(cxi +d)r−1 ∑
0≤ j≤r−1

aj

(
axi +b
cxi +d

) j

= yi ∑
0≤ j≤r−1

aj(axi +b) j(cxi +d)r−1− j

= yiQ(xi)

whereQ is a polynomial of degree at mostr−1 which depends ona,b,c,d but not oni. By the very definition
of Ar(x,y), we know that

0 =
n

∑
i=1

ciyiQ(xi) =
n

∑
i=1

ciy
′
iP

(
axi +b
cxi +d

)

.

In other words, we have just proved thatc∈Ar
(

ax+b
cx+d ,y′

)
. This proves that

Ar(x,y)⊂Ar

(
ax+b
cx+d

,y′
)

.

The inclusion in the other direction is proved similarly.
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B Experimental Results

Table 4.q = 2 andm= 15

r 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N 990 1770 2775 4005 5460 7140 9045 11175135301611018915219452520028680
k 3272332708326933267832663326483263332618326033258832573325583254332528

Drandom 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DGoppa 270 570 1050 1665 2415 3300 4455 5775 7260 8910 10725127051485017160
TGoppa 270 570 1050 1665 2415 3300 4455 5775 7260 8910 10725127051485017160

Ñ 1035 1830 2850 4095 5565 7260 9180 11325136951629019110221552542528920
k̃ 3272232707326923267732662326473263232617326023258732572325573254232527

D̃random 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D̃Goppa 315 630 1125 1755 2520 3420 4590 5925 7425 9090 10920129151507517400

Table 5.q = 2 andm= 15

r 17 18 19 20 21 22 23 24 25 26 27 28 29 30

N 32385363154047044850494555428559340646207012575855818108799094395101025
k 32513324983248332468324533243832423324083239332378323633234832333 32318

Drandom 0 3817 7987 12382170022184726917322123773243477494475564262062 68707
DGoppa 19890228152593529250327603646540365444604875053235579156279067860 73125
TGoppa 19890228152593529250327603646540365444604875053235579156279067860 73125

Ñ 32640365854075545150497705461559685649807050076245822158841094830101475
k̃ 32512324973248232467324523243732422324073239232377323623234732332 32317

D̃random 128 4088 8273 12683173182217827263325733810843868498535606362498 69158
D̃Goppa 20145230852622029550330753679540710448204912553625583206321068295 73575
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Table 6.q = 2 andm= 15

r 31 32 33 34 35 36 37 38 39 40 41 42 43 44

N 107880114960122265129795137550145530153735162165170820179700188805198135207690217470
k 32303 32288 32273 32258 32243 32228 32213 32198 32183 32168 32153 32138 32123 32108

Drandom 75577 82672 89992 97537 105307113302121522129967138637147532156652165997175567185362
DGoppa 78585 84240 90585 97537 105307113302121522129967138637147532156652165997175567185362
TGoppa 78585 84240 90585 97155 103950110970118215125685133380141300149445157815166410175230

Ñ 108345115440122760130305138075146070154290162735171405180300189420198765208335218130
k̃ 32302 32287 32272 32257 32242 32227 32212 32197 32182 32167 32152 32137 32122 32107

D̃random 76043 83153 90488 98048 105833113843122078130538139223148133157268166628176213186023
D̃Goppa 79050 84720 91080 98048 105833113843122079130539139224148134157269166628176214186024

Table 7.q = 2 andm= 16

r 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N 1128 2016 3160 4560 6216 8128 1029612720154001833621528249762868032640
k 6548865472654566544065424654086539265376653606534465328653126529665280

Drandom 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DGoppa 288 608 1120 1776 2576 3520 4752 6160 7744 9504 11440135521584018304
TGoppa 288 608 1120 1776 2576 3520 4752 6160 7744 9504 11440135521584018304

Ñ 1176 2080 3240 4656 6328 8256 1044012880155761852821736252002892032896
k̃ 6548765471654556543965423654076539165375653596534365327653116529565279

D̃random 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D̃Goppa 336 672 1200 1872 2688 3648 4896 6320 7920 9696 11648137761608018560

Table 8.q = 2 andm= 16

r 17 18 19 20 21 22 23 24 25 26 27 28 29 30

N 3685641328460565104056280617766752873536798008632093096100128107416114960
k 6526465248652326521665200651846516865152651366512065104 65088 65072 65056

Drandom 0 0 0 0 0 0 2360 8384 146642120027992 35040 42344 49904
DGoppa 2121624336276643120034944388964305647424520005678461776 66976 72384 78000
TGoppa 2121624336276643120034944388964305647424520005678461776 66976 72384 78000

Ñ 3712841616463605136056616621286789673920802008673693528100576107880115440
k̃ 6526365247652316521565199651836516765151651356511965103 65087 65071 65055

D̃random 0 0 0 0 0 0 2729 8769 150652161728425 35489 42809 50385
D̃Goppa 2148824624279683152035280392484342447808524005720062208 67424 72848 78480
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Table 9.q = 2 andm= 16

r 31 32 33 34 35 36 37 38 39 40 41 42 43

N 122760130816139128147696156520165600174936184528194376204480214840225456236328
k 65040 65024 65008 64992 64976 64960 64944 64928 64912 64896 64880 64864 64848

Drandom 57720 65792 74120 82704 91544 100640109992119600129464139584149960160592171480
DGoppa 83824 89856 96624 103632110880118368126096134064142272150720159408168336177504
TGoppa 83824 89856 96624 103632110880118368126096134064142272150720159408168336177504

Ñ 123256131328139656148240157080166176175528185136195000205120215496226128237016
k̃ 65039 65023 65007 64991 64975 64959 64943 64927 64911 64895 64879 64863 64847

D̃random 58217 66305 74649 83249 92105 101217110585120209130089140225150617161265172169
D̃Goppa 84320 90368 97152 104176111440118944126688134672142896151360160064169008178192

Table 10.q = 4 andm= 6

r 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N 153 276 435 630 861 112814311770214525563003348640054560
k 40784072406640604054404840424036403040244018401240064000

Drandom 0 0 0 0 0 0 0 0 0 0 0 0 0 560
Dalternant 6 18 60 120 198 294 408 540 690 858 1044124814701710
Talternant 6 18 60 120 198 294 408 540 690 858 1044124814701710
DGoppa 18 60 120 198 294 408 540 750 990 12601560189022502640
TGoppa 18 60 120 198 294 408 540 750 990 12601560189022502640

Ñ 171 300 465 666 903 117614851830221126283081357040954656
k̃ 40774071406540594053404740414035402940234017401140053999

D̃random 0 0 0 0 0 0 0 0 0 0 0 0 90 657
D̃alternant 6 18 60 120 198 294 408 540 690 858 1044124814701710
D̃Goppa 36 84 150 234 336 456 594 810 105613321638197423402736

Table 11.q = 4 andm= 6

r 17 18 19 20 21 22 23 24 25 26 27 28 29 30

N 515157786441714078758646945310296111751209013041140281505116110
k 3994398839823976397039643958 3952 3946 3940 3934 3928 3922 3916

Drandom 1157179024593164390546825495 6344 7229 8150 9107 101001112912194
Dalternant 2064244828623306390546825495 6344 7229 8150 9107 101001112912194
Talternant 2064244828623306378042844818 5382 5976 6600 7254 7938 8652 9396
DGoppa 3060351039904500504056106210 6840 7500 8190 9107 101001112912194
TGoppa 3060351039904500504056106210 6840 7500 8190 8910 9660 1044011250

Ñ 525358866555726080018778959110440113251224613203141961522516290
k̃ 3993398739813975396939633957 3951 3945 3939 3933 3927 3921 3915

D̃random 1260189925753285403248165634 6489 7380 8307 9270 102691130412375
D̃alternant 2064244828623306403248155634 6489 7380 8307 9270 102691130412375
D̃Goppa 3162361841044620516657426348 6984 7650 8346 9270 102701130512375


