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Abstract. The purpose of this paper is to study the difficulty of the so-called Goppa Code Distinguishing
(GD) problem introduced by Courtois, Finiasz and Sendrier in Asiacrypt 2001. GD is the problem of dis-
tinguishing the public matrix in the McEliece cryptosystem from a random matrix. It is widely believed
that this problem is computationally hard as proved by the increasing number of papers using this hard-
ness assumption. To our point of view, disproving/mitigating this hardness assumption is a breakthrough in
code-based cryptography and may open a new direction to attack McEliece cryptosystems. In this paper, we
present an efficient distinguisher for alternant and Goppa codes of high rate over binary/non binary fields.
Our distinguisher is based on a recent algebraic attack against compact variants of McEliece which reduces
the key-recovery to the problem of solving an algebraic system of equations. We exploit a defect of rank
in the (linear) system obtained by linearizing this algebraic system. It turns out that our distinguisher is
highly discriminant. Indeed, we are able to precisely quantify the defect of rank for “generic” binary and
non-binary random, alternant and Goppa codes. We have verified these formulas with practical experiments,
and a theoretical explanation for such defect of rank is also provided. We believe that this work permits to
shed some light on the choice of secure parameters for McEliece cryptosystems; a topic thoroughly inves-
tigated recently. Our technique permits to indeed distinguish a public key of the CFS signature scheme for
all parameters proposed by Finiasz and Sendrier at Asiacrypt 2009. Moreover, some realistic parameters of
McEliece scheme also fit in the range of validity of our distinguisher.

Keywords: public-key cryptography, McEliece cryptosystem, CFS signature, algebraic cryptanalysis, dis-
tinguisher.

1 Introduction

Code-based public key cryptography appeared with McEliece’s pioneering work [23] where the author pro-
posed to use one-way trapdoor functions based on irreducible binary Goppa codes. The class of Goppa codes
represents one of the most important example of linear codes having an efficient decoding algorithm [4, 28]. A
binary Goppa code is defined by a polynoniiabf degreer > 1 with coefficients in some extension fidigm

of degreem > 1 overfF,, and an-tuple .Z = (x1,...,%y) of distinct elements iffom with n < 2™. The trapdoor

of the McEliece public-key scheme consists of a randomly pidkadhich together withZ provide all the
information to decode efficiently. The public key is a generator matrix of a randomly chosen Goppa code. A
ciphertext is obtained by multiplying a plaintext with the public generator matrix and adding a random error
vector of prescribed Hamming weight. The receiver decrypts the message thanks to the decoding algorithm
that can be derived from the secrets. Niederreiter [26] brings a significant modification of the McEliece cryp-
tosystem by proposing to describe public linear codes through parity-check matrices. The resulting public key
cryptosystem is as secure as McEliece’s one. The first code-based signature scheme came out in [12] almost
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twenty years McEliece’s proposal. The only difference between the encryption and the signature scheme lies in
the choice of the parameters of the binary Goppa codes. For signature, Goppa codes have to be chosen such that
they correct very few errors. This leads to a very high Ratek/n with nis its length and being the dimension

of the code. It holds thdt = n—rm where by definitiorr is the number of errors and generatlys chosen to

be equal to 2. For instance according to [18], an 80-bit security signature scheme impes&8 andm= 21

which leads tdR = 0.9999.

All these cryptographic primitives base their security under two assumptions: the intractability of decoding
random linear codes [3], and the difficulty of recovering the private key or an equivalent one. The problem of
decoding an unstructured code is a long-standing problem whose most effective algorithms [19, 20, 31, 10, 5]
have an exponential time complexity. Thus, one may reasonably not expect much progress in this direction. On
the other hand, no significant breakthrough has been observed during the last thirty years regarding the problem
of recovering the private key. Indeed, although some weak keys have been identified in [21], the only known
key-recovery attack is the exhaustive search of the secret polyndnuathe Goppa code, and applying the
Support Splitting AlgorithnfSSA) [29] to check whether the Goppa code candidapeisutation-equivalent

to the code defined by the public generator matrix. Despite the fact that there still does not exist a practical
attack against McEliece’s proposal of using binary Goppa codes, one should not exclude the possibility of
breakthrough in that field. The authors of [12] alleviated the McEliece assumptions by introduci@gppea

Code Distinguishing (GD) problenThey assume that no polynomial time algorithm exists that distinguishes

a generator matrix of a Goppa code from a random generator matrix. This is a classical belief in code-based
cryptography. For instance, according to [12], proving or disproving the hardness of the GD problem will have
a significant impact “Classification issues are in the core of coding theory since its emergence in the 50’s. So
far nothing significant is known about Goppa codes, more precisely there is no known property invariant by
permutation and computable in polynomial time which characterizes Goppa codes. Finding such a property or
proving that none exists would be an important breakthrough in coding theory and would also probably seal
the fate, for good or ill, of Goppa code-based cryptosyster@sitrently, the only known algorithm that solves

GD problem is based on the enumeration of Goppa codes and the SSA algorithm [29], as explained below. The
time complexity of this method i&’ (2™") assuming that the cost of the SSA algorithm is negligible (which is a
reasonable assumption for Goppa codes, but not for all linear codes).

As a consequence, it is widely believed that distinguishing the public matrix in McEliece from a random matrix

is computationally hard. Furthermore, the hardness of the Goppa Code Distinguishing (GD) problem is manda-
tory to prove the semantic and CCA2 security of McEliece in the random oracle model and in the standard
model [27, 15, 8], the security in the random oracle model against existential forgery [12, 13] of the CFS sig-
nature [12] scheme, the provable security of several primitives such as a threshold ring signatures scheme [14],
an identity-based identification scheme [11], which are build upon CFS. Therefore, showing that the Goppa
Code Distinguishing problem is easier than expected will “unprove” most of the provable primitives based on
McEliece, and more importantly will be the first serious cryptographic weakness observed on this scheme since
thirty years. The purpose of this paper is to study the difficulty of the Goppa Code Distinguishing (GD) problem:

Definition 1 (Goppa Code Distinguishing (GD) Problem).Let n and k be two integers such thatkn. We
denote byGoppa(n, k) the set of k n generator matrices of Goppa codes. SimilaRgndom(n,k) is the set of
k x n random generator matrices. distinguisher? is an algorithm that takes as input a mat@&and returns
a bit. We say thaZ solves the GD problem if it wins the following game:

— b&{0,1} Ifb = 0thenG & Goppa(n,k) otherwiseG & Random(n, k)
— If 2(G) = b thenZ wins the games els# loses.

The probability that? outputsl whenG is chosen as a random binary generator matrix of a Goppa code is
denoted byr[G & Random(n,k) : 2(G) = 1] and the probability that it outputs whenG is chosen randomly

in Random(n, k) is denoted byr|G & Random(n,Kk) : 2(G) = 1]. We define the advantage of a distinguisher
2 as:
AdVPP(2) = |PHG & Goppa(n,k) : 2(G) = 1] — PG < Random(n,k) : 2(G) = 1]|.
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In this paper, we present a deterministic polynomial-time distinguisher for solving the GD problem defined
below with advantage close to 1 for codes of high rate. Along the way, we also solve the code distinguishing
problem for alternant codes. The key ingredient is a new algebraic technique introduced in [17] to attack two
variants [1, 24] of McEliece. It has been observed [17] that a key recovery attack against these cryptosystems,
as well as the genuine McEliece’s system, can be reduced to solving the following algebraic set of equations:

where the unknowns are th§'s and theYj’s and theg; j's are known coefficients (with £i <k,1 < j <n)

which are nothing but the coefficients of the public generator matrix of the scheme. Hirialggual ton— mr

here, wherem is some divisor ofs. In other words we haver2unknowns andk = r(n— mr) polynomial
equations. In the cases of [1, 24], additional structures permit to drastically reduce the number of variables and
solve (1) efficiently using dedicated @ner bases techniques [17]. For McEliece’s cryptosystem, solving (1)
seems to be out of the scope of such dedicated techniques.

However, this algebraic approach can be used to construct an effittigtimguisher To do so, we consider

the dimension of the solution space of a linear system deduced from (1). This linear system is obtained by
linearization of the algebraic system (1). Linearization introduces many new unknowns. Consequently, this
strategy makes sense if the number of equatioissgreater than the number of newly introduced unknowns.

This is for instance the case for the parameters proposed in CFS [12] but it turns out that the linearized system is
not of full rank. Although this is an obstacle to break the system, this particular feature permits to construct an
efficient distinguisher for alternant codes and Goppa codes over any field. Note that the distinguisher is efficient
since we only have to compute the rank of a linear system. Additionally, the distinguisher is highly discriminant.
We provide in Section 5 explicit formulas for “generic” random, alternant, and Goppa code over any alphabet.
We performed extensive experiments to compare our theoretical results on valid McEliece public keys. They
confirm that the generic formula are accurate. We emphasize that the Goppa Code Distinguishing problem has
been widely considered as a hard problem in code-based cryptography as proved by the increasing number of
papers using this assumption [27, 15, 8,12-14, 11]. To our point of view, disproving/mitigating this hardness
assumption is a breakthrough in code-based cryptography and may open a new direction to attack the McEliece
cryptosystem. Although our attack remains theoretical, we believe that this work also permits to shed some light
on the choice of secure parameters for McEliece cryptosystems; a topic thoroughly investigated recently [6, 7,
25, 18]. Our technique permits to indeed distinguish a public key of the CFS signature scheme for all parameters
proposed by Finiasz and Sendrier [18]. Moreover, some realistic parameters of McEliece scheme also fit in the
range of validity of our distinguisher like a binary Goppa code of lemgth212 that corrects = 19 errors. Fot

these parameters, the scheme has a 90-bit security.

Organisation of Paper. In Section 2, we briefly recall the McEliece public-key cryptosystem as well as the
Courtois-Finiasz-Sendrier CFS signature [12]. In Section 3, we recall several key features of Goppa and alter-
nant codes. In Section 4, we precisely explain how we can mount an algebraic cryptanalysis against McEliece-
like schemese. namely how the algebraic system (1) is constructed. The distinguisher is presented in Section 5.
Section 6 deals with the consequences of the existence of a distinguisher in code-based cryptography. Finally,
in Section 7 we explain how the formulas used in Section 5 have been obtained. To do so, we use together
combinatorial properties of the linearized system and distinguishing features of Alternant/Goppa codes.

2 Code-Based Public-Key Cryptography

The main cryptographic primitives in code-based public-key cryptography are the McEliece encryption and the
CFS signature [12]. We recall that a lineadeover a finite fieldFy of g elements defined by lax n matrix
G (with k < n) overFq is the vector spac& spanned by its rowse. ¢ def {uG\ ue F'é} G is chosen as a

full-rank matrix, so that the code is of dimensiknTherate of the code is given by the ratiﬁ. Code-based
public-key cryptography focuses on linear codes that have a polynomial time decoding algorithm. The role of
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decoding algorithms is to correct errors of prescribed weight. We say that a decoding algorithm temnecss
if it recoversu from the knowledge ofiG+ e for all possiblee € IFS of weight at most.

Secret keythe triplet(S, Gs, P) of matrices defined over a finite field; overq elements, wittg being a power

of two, that isqg = 25. G is a full rank matrix of sizek x n, with k < n, Sis of sizek x k and is invertibleP is a
permutation matrix of siza x n. Gg is chosen in such a way that its associated linear code (that is the set of all
possibleuGs with u ranging overIF'é) has a decoding algorithm which corrects in polynomial tineerors.

Public key:the matrixG = SGP.

Encryption: A plaintextu € IF'C‘] is encrypted by choosing a random vecéoin IFS of weight at most. The
corresponding ciphertext s= uG+e.

Decryption:¢’ = cP~! is computed from the ciphertext Notice thatt’ = (USGP+e)P~! = uSG+eP~1 and
thateP— is of Hamming weight at most Therefore the aforementioned decoding algorithm can recover in
polynomial timeuSand therefore the plaintextby multiplication byS 2.

What is generally referred to as the McEliece cryptosystem is this scheme together with a particular choice
of the code, which consists in taking a binary Goppa code. This class of codes belongs to a more general class
of codes (see Section 3, namely the alternant code family ([22, Chap. 12, p. 365]). The main feature of this last
class of codes is that they can be decoded in polynomial time.

Another important code-based cryptographic primitive is the CFS scheme [12], which is the first signature
scheme based on the security of the McEliece cryptosystem. In this kind of scheme, a user whose public key is
G and who wishes to sign a message ]F'§ has to compute a stringsuch that the Hamming weight &f- uG
is at mostt. Anyone (averifier) can publicly check the validity of a signature. Unfortunately, this approach
can only provide signatures for messagebat are within distancefrom a codeworduG. The CFS scheme
suggests to modify the message by appending a counter incremented until the decoding algorithm can find such
a signature. The efficiency of this scheme heavily depends on the number of trials. It is suggested in [12] to
choose as in the McEliece cryptosystem, binary Goppa codes for this purpose with the following parameters
n= 2" andk = n—mt. The number of trials is of ordél in this case, which leads to choose a very sralid
therefore to take a very largein order to be secure. Notice that the code rate is then eqt@%@ =1- Zmnﬁ
which is for largen (that is for large values of"® and moderate values bfquite close to 1. Thus, the major
difference between the McEliece cryptosystem and the CFS scheme lies in the choice of the parameters. An 80-
bit security CFS scheme requines= 22! andt = 10 whereas the McEliece cryptosystem for the same security
needsn = 21 andt = 32 ([18]). The code of the CFS scheme is of rate 32! ~ 0.9999. We see here that
the CFS scheme depends on very high rate binary Goppa codes.

3 Basic Facts about Alternant and Goppa Codes

As explained in the previous section, the McEliece cryptosystem relies on Goppa codes which belong to the
class ofalternant codesind inherit an efficient decoding algorithm from this. It is convenient to describe this
class through @arity-check matrixover an extension fielign of Fq over which the code is defined. In other
words, the parity check matrix is a&n< n matrix H with coefficients infqm and the associated alternant code

is the set of vectors dfg which belong to the right kernel 1, i.e.

o ={ceFy|Hc" =0} (2)

r satisfies in this case the conditior> %‘ wherek is the dimension of7. For alternant codes, there exists a

parity-check matrix with a very special form related to Vandermonde matrices. For reasons which will be made

clear in Section 4, it will be convenient to work with the projective pl&iae d:efIqu U{e} and to consider
the class oprojective alternant code@vhich are slightly more general than classical alternant codes). More
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precisely, any projective alternant code has a parity check matrix which is of the form

Y1 “**Yn
YiXe - YnX

Vi(x,y) & : o )
yixX eyt

wherex = (X1,...,%1) € (Fgn)"andy = (y1,...,yn) in (Fqn)" . Whenx; = o we use the convention that théh
0

column ofV, (x,y) is equal to
Yi

Definition 2 (Projective and classical alternant code)The projective alternant code of order r oviég as-
sociated tox = (x1,...,%n) € (Fqm)" (where all x's are distinct) andy = (y1,...,Yn) € ( am)n, denoted by
1 (X,Y), is defined by

i (x,y) = {ce Fg|Vi(x,y)c" = 0}. (4)

A classical alternant code corresponds to the case wherg'alare different fronmpo.

The class of Goppa codes is a subfamily of alternant codes which are given by:

Definition 3 (Projective and classical Goppa codes).he projective Goppa codé€(x, /") overFq associated
to a polynomiall” (x) of degree r oveifqm and a certain n-tuplex = (x1,...,Xa) of distinct elements df gm
satisfyingl (x) # 0 for* all i,1 < i < n, is the alternant code (x,y) of order r with y being defined by
yi = I (x) . A classical Goppa code corresponds to the caselgn foralliin {1,...,n}.

It should be noted that the public code in the McEliece cryptosystem is also an alternant code. This is a simple
consequence of the fact thetSGP | u € ]F'a} is obtained from the secret codaGs | u € Fg} by permuting

the coordinates in it with the help & since multiplying by an invertible matri® of sizek x k leaves the code
globally invariant.

4 Algebraic Cryptanalysis of McEliece-like Cryptosystems

In this part, we explain more precisely how we construct the algebraic system described in (1). This algebraic
system is the main ingredient of the distinguisher. We recall a key feature of alternant codes.

Fact 1. There exists a polynomial time algorithm decoding all errors of Hamming weight at fnfist an
alternant code of order r once a parity-check matrbof the formH =V (x,y) is given for it.

The variants of McEliece’s cryptosystem based on general alternant codes or on non binary Goppa codes, such
as [1, 24] for instance, add errors which are of weight smaller than or equ#2tén this case, it is possible to
break these variants by finding andy* in Fgn such that:

{XG|x € Fy} = {y € Fy | V,(x*,y")y" =0}. (5)

According to Fact 1, the knowledge &t (x*,y*) permits to efficiently decode the public codle, to recoveru
from uG+ e. By the very definition of the public cod®, we have:

Vi (x",y )G =0.

4 We definel” (e0) 2"y, for M (X) = 51_o yX.
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This is the key observation of the algebraic approach used in [17] to cryptanalyze dyadic and quasi-cyclic
variants of McEliece. LeXy, ..., X, andYs, ..., Y, be Zhvariables corresponding to tkg's and they;’s. Observe
that suchx’’s andy;’s are a particular solution of the following system:

{gile1X1j+~~~+gi,nYanj =0|ie{l,....k},je {0,...,r—1}} (6)

where theg; j's are the entries of the known matr®. In the cases of [1, 24], additional structures permit
to drastically reduce the number of variables allowing to solve (1) efficiently using dedicabbteésrbases
techniques [17].

For binary Goppa codes, it is essential to recover its description as a Goppa code and not yisatitethe
yi's giving its description as an alternant code. This is a consequence of the following result.

Fact 2. [28] There exists a polynomial time algorithm decoding all errors of Hamming weight at most r in a
Goppa codeZ (x,I") whenl™ has degree r and has no multiple rootsxiand ™ are known.

If we recover only thex’s and they;’s we can decode only/2 errors. The issue is now, once a possible
description of a Goppa code has been found as an alternant code, that is once a gctufigiv<i<n and

y = (Vi)1<i<n Of the system (6) has been found, does there exist a polyndniié) of degreer such that

yi = (x) Lforallie{1,...,n} 2 If such a polynomial exists, it can be easily found by interpolation. The
problem is that a Goppa code has multiple descriptions as an alternanti.eqdégere are several,y’s for
which % = % (x,y). The solutions we are interested in are the ones for whieh ™ (x)~* for all i, and for
some polynomial” of degree .

This raises the fundamental issue of finding all possible descriptions of the form (4) of an alternaaf,dbdé

is find allx,y’s such thate = <% (X,y). When the extension fielgn is the same as the definitidfield Fq, i.e.

if m= 1, the problem was solved in [16]. This was the key of the cryptanalysis of McEliece’s variant based on
generalized Reed-Solomon codes [30].

The general case is still unsolved. However, the results of [16] basically show that the we have at least one degree
of freedom forY; and three degrees of freedom for tés in the system (6). First of all it is straightforward to

notice that if(X;)1<i<n, (Yi)1<i<n IS a solution of the algebraic Equation (6) thenX;)1<i<n, (BYi)1<i<n is also

a solution for anya, 3 in Fqm. Therefore, we can specialize 01§, Y;) arbitrarily. It turns out we can fix more
variables thanks to the following proposition.

Proposition 1. Letx = (X)1<i<n € (Fqm)" be an n-tuple formed by distinct elements andylet (yi)1<i<n €
(Fgm)" be an n-tuple of nonzero elements. Ldi,a, d be elements dfqn such that that ad- bc# 0. Then

p (a”b y/) — o (xy), where

cx+d’

ax+b def .
Cx+d - (Xi/)lﬁlgn with )< —

ax +b
cx+d’

y = (¥)1<i<n With ¥ =yi(cx +d)" .

Remark 1.The proof is in Appendix A. Notice that eithgror x' might be infinite. We used here the usual rules

0

to evaluate the homograplay—+ &8, namelyd =0, 2 =0, & =0, 8+ 00 = 00, 0x 00 = 0, =8 — 8 where
a # 0, belong toFgm.

This result explains that there is (at least) one degree of freedom fgrdtaend three degrees of freedom for the
X’s. It is quite helpful to allow here; which can be infinite since even all of them arefgm, it might happen
thatcx +d is equal to zero. Therefore the corresponding image by the homography will be infinite. Finally,
since the set of homographies acts 3-transitively GyerJ {«}, we have:

5 This means that the resulting code is a slight generalization of a generalized Reed-Solomon code known under the name
of a Cauchy code.
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Corollary 1. We can specialize (almost) randomly oneaivd three Xs in (1). As long as the 6 are distinct,
we still have a non-empty set of solutions for such modified syddem

At first glance, the degree of freedom should be less for Goppa codes. Indeed, there is an additional crucial
constraint for binary Goppa codes: a solution must veYify: I (X))~ for a certain polynomial of degree
Surprisingly, we can keep the same degree of freedom by considering a slight change of 48X, l[etbe the
subcode of the Goppa co@&x, ") formed by all codewords of even Hamming weight. Get (6i,j) 1<i<k be

1<j<n
a generator matrix o (x, I"), that is a matrix of full rank whose rows generatéx, ). The dimensiork of
this subspace is eith&ror k— 1, wherek is the dimension of the Goppa co@&x, " ). This subcode is itself an
alternant code.

Proposition 2. [2] It holds that:
g(xvr) = <§%I’+1(X?y)

for deg ™) = r and wherey = (y; )i with y; = I (x;) 2.

This implies that thei’s andy;’s are a particular solution of:
{gi,lYlX]J; +"'+gi,nYan{. =0lie {177R}7J € {07~~'7r}} (7)

where thegij’s are the entries of the known matr& Notice that this system is very similar to (6) with the
exception that the powers of th§s can now be equal to. The crucial result is now that

Proposition 3. [2] Let x = (X)1<i<n be an n-tuple of distinct elementsléfn and ™ be a polynomial of degree

rsuch that (x) #O0foralli € {1,...,n}. Lety(z) = g;ig be an homography with adbc+# 0and ab,c,d €

Fn. Letx? & (x¥)1icn with X Z'y-1(x), F¥(X) £ (ex+d) T (w(x)) = S1_o W(@X + b)i(cx-+d) T, for
I (x)=Y{_oyX".Then

G(x,[)=9Gx¥,I¥).
Once again, we can use that homographies have a 3-transitive acfigm.on

Corollary 2. We can specialize i¥) one of the Yand three of the 6 almost arbitrarily (with Y # 0 and such
that the three ¥s are distinct) and still obtain a solution for which there exists a polynorialf degree r such
thaty = (%) tforalliin {1,...,n}.

To finish this discussion, it will be helpful to notice that in the case of binary Goppa codes, we have even

more algebraic equations than the ones given in System (6). The starting point is the following result, which is
essentially derived from a discussion in a paragraph about Goppa codes in [22, p.341].

Theorem 3. A binary Goppa cod® (x, ") associated to a Goppa polynomia(X) of degree r without multiple
roots is equal to the alternant codes (x,y), with yi = I (x) 2.

In other wordsx andy are solutions of the following algebraic system
{gi11Y1X1j+~~~+gi’nYnX,{' =0|ie{l,....k},je{0,...;2r —1}}, (8)

where(gj ) is a generator matrix of the Goppa code. Notice that the poywms now in the rang€0,1,...,2r —
1} and notin{0,1,...,r — 1}, as was the case before.
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Fig. 1. Systematic form o5

5 A Distinguisher of Alternant and Goppa Codes

We present in this part the algebraic distinguisher.&et (gij) 1<i<k be a generator matrix of the public code.
1<j<n

We can assume without loss of generality tBaits systematic in it first positions. Such a form can be easily
obtained by Gaussian elimination and by a suitable permutation of the columns. We describe now a simple
way of using this particular form for solving (6). We assume that the rate of the public code is close to 1,
i.e. =M ~ 1, which impliesmr < n. From a cryptographic point of view, this means that the expansion ratio
between the size of the ciphertext and the size of the message is close to 1. This kind of rate has been proposed
in [18]. The strategy is as follows.

5.1 First step — expressing th& X"'s in terms of the Y;X's for j € {k+1,...,n}.

LetP = (pij) 1<i<k be the submatrix o6 formed by its lastnr columns (as in Figure 1). We can rewrite (6)

k+1<j<n
as )
Yi = TP
YiXi : Y joke1 LY )
Y = 3Pt
forallie{1,...,k}.
5.2 Second step — using the trivial identity;Y;X? = (Y;X)2 and linearization.
Thanks to the trivial identity; ;X2 = (Y;X;)? for all i in {1,...,k}, we get:
n n n 2
PiiYi F)i_ijXj2 = piiYiX; | Jforallie{1,... k}.
j=k+1 j=k+1 j=k+1
Itis possible to reorder this a little bit to obtain the following equations:
n (v + i)
Pii B (YiY X +YpYiX) =0 (10)
11%1121 J

We can now linearize this system by lettidg, d:‘EijYj/ij, +YjYj ij. We obtaink linear equations involving

thEij/’S:
n
pi,jpi,j/ij/—O,i—l...k}. (11)
B3

To solve this system it is necessary that the number of equations is greater than the number of unlarowns,

mr
k>
(%)
This approach works for alternant codes in general. However, for Goppa codes, it will be interesting to consider

also arelated system. It is obtained by applying the same approach described before but to the generator matrix
G of the subcode of the public code consisting in codewords of even Hamming weight. The reason which makes



A Distinguisher for High Rate McEliece Cryptosystems 9

this new system interesting will be explained in Subsection 7.2, it is related to Proposition 2. We dekote by
the dimension of this code. We have eitker k ork =k — 1.

As previously, we can suppose ti@tis in systematic formG = (T|I5) wherel is the identity matrix of sizé
or k—1 (depending on the dimension of the subcode). Finallypileb€ the coefficient in theth row andj-th
column ofP . We can proceed similarly and obtain a new linear system of equations:

n
Z Bi.jBiZjjy =0,i=1...ko. (12)
j=k+1i">]

Whenk = k— 1, the number of equations is smaller. It mightibe 1 instead ok and the number of variables

is also larger. It is equal t(j‘;k) = (m';l). However, we will see that due to Proposition 2, this system has also
nice properties in the Goppa case.

5.3 Experimental behavior

Observe that the linear systems (11) and (12) have coefficieritg whereas solutions are sought in the ex-
tension fieldFgm. In addition, the freedom of choosing thrigs and oneY; in order to reduce the number of
unknowns in the linearized systems is not used. However, even if this additional knowledge is taken into ac-
count, the rank of the linear systems remains insufficient to solve the system. More precisely, the problem is that
the dimension of the vector space solution of (11) is amazingly large. It even depends on whether or not the code
with generator matrixs is chosen as a (generic) alternant code or as a Goppa code. Interestingly enough, when
G is chosen at random, the dimension of the solution space is typically O kisdiarger than the number of
variables. Although these facts are an obstacle to break the McEliece cryptosystem, it can be used to distinguish
the public generator from a random code. Let us denote by:

N (") the number of variables in (11§ the number of variables of (12),

— Drandom respectivelyirandOm the dimension of the vector space solution of (11), respectively (12) when the
pij’s are chosen uniformly at randomIy,

— Daiternant respectivelyDaiernant the dimension of the vector space solution of (11), respectively (12) when
G is chosen as a generator matrix of a random alternant code of degree

— Dgoppa respectivel;f)Goppathe dimension of the vector space solution of (11), respectidywhenG is
chosen as a generator matrix of a random Goppa code of degree

A thorough experimental study revealed that the dimension of the vector spadéyamfethe solutions of (11)
follows typically the following formulas:

Experimental fact 1 Let D be in{Dajternans f)anemam, Daoppa f)eoppa}- With very high probability and as long
as N— D < k, the dimension D has the following value:

Daternant= M - Y ((ze T 2q”1‘1 1) for ¢ ' |logy(r — 1)] (13)
Daternant = Dalternant for q > 2 (14)
Forr < q— 1, it holds that
DaGoppa= w = Datternant (15)
Booppa= "1 (16)

wheras for r> q— 1, by denoting by the unique integer such thaf ¢ 29 1+ g2 <r < q** -2 +q 1,
we obtain

mr
Dcoppa= - ((2@ Fr—2g +2q 1 - 1) 17)

~ mr ) )
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We gathered samples of results we obtained through intensive computations with the Magma system [9]
in order to confirm the formulas. We randomly generated alternant and Goppa codes over thg figtlal
g€ {2,4,8,16,32} for values ofr in the range(3,...,50} and severain. The Goppa codes are generated by
means of an irreduciblé of degree and hencé™ has no multiple roots. In particular, we can apply Theorem 3
in the binary case. We compare the dimensions of the solution space against the dibgpgigiof the system
derived from a random linear code. Table 1 and Table 2 give figures for the binary casewitd. We define
Taiernant aNdTgoppa respectively as the expected dimensions for an alternant and a Goppa code deduced from
the formulas (13) and (15)-(17). We can check Bahgomis equal to O for € {3,...,12} andDyandgom= N —k
as expected. We remark thagternantis different fromDyandgomWhenever < 15, andDggppais different from
Drandoma@s long ag < 25. Finally we observe that our formulas fBfiternant fit @s long ask > N — T,jermant
which correspond to < 15. This is also the case for binary Goppa codes since we Tigyg, = Dgoppa@s
long ask > N — Tgoppa I-€. I < 25. We also give in Table 10 and Table 11 in Appendix B the examples that we
obtained forg = 4 andm = 6 to check that the arguments also apply. We also compare binary Goppa codes and
random linear codes fan = 15 in Table 4-6 anan = 16 in Table 7-9 (See Appendix B). We see tBgtnqom
andDggppaare different for < 33 whenm = 15 and form= 16 they are different even beyond our range of
experiment < 50.

Table 1.q=2 andm= 14

[ r [ 3] 4[]5[6] 7 [ 8] 9 ]10]11]12]13]14] 15] 16 |

N [ 861 [1540[ 2415] 3486] 4753] 6216] 7875] 9730[117811402§164711911(2194524976

k  ]163421632§1631416300162861627416256162441623(1621616202161881617416160
Drandom| O | O [ 0 [ 0 [ 0 [ 0 [ 0] 0] 0] 0 |269]2922 5771|8816
Datteman{ 42 | 126 | 308 | 560 | 882 [ 1274] 1848| 2520 3290| 4158| 5124 6188| 7350| 8816
Taternant| 42 | 126 | 308 | 560 | 882 [ 1274] 1848| 2520 3290| 4158| 5124/ 6188| 7350| 8610
Dgoppa | 252 | 532 | 980 | 1554 2254 3080 4158| 5390 6776 8316/10010118581386(16016
Tcoppa | 252 | 532 | 980 | 1554| 2254] 3080[ 4158] 5390] 6776] 8316/1001(1185§1386(16016

N 903 | 1596| 2485| 3570| 4851 | 6328| 8001 | 9870|119351419616653193062215525200
k 16341163271631316299162851627116257116243162291621516201161871617316159
Drandom| 42 | 56 | 70 | 84 | 98 | 112 | 126 | 140 | 154 | 168 | 453 | 3120| 5983| 9041
Datternaniy 84 | 182 | 378 | 644 | 980 | 1386| 1974 | 2660| 3444| 4326| 5306| 6384| 7560| 9041
DgGoppa| 294 | 588 | 1050| 1638| 2352| 3192| 4284| 5530| 6930| 8484|101924120541407(01624(

6 Cryptographic Implications

The existence of a distinguisher for the specific case of binary Goppa codes has consequences for code-based
cryptographic primitives because it is represents, and by far, the favorite choice in such primitives. One of the
reasons for this, is the fact that this class has withstood many cryptographic attacks for more than thirty years
now. We focus in this part on secure parameters that are within the range of validity of our distinguisher. In
Section 5, we gave a general expression of the distinguisher for a Goppa code over any finkg. ficlis
expression can be easily simplified in the binary case ).

Proposition 4. Let us definé def [log,r]+1and Nd:ef ("2") The formula for [eppagiven in Equatior(17)can

be simplified to Roppa= 5" ((2€+ Dr -2 - 1) as long as N- Dggppa<< N— M.

This simple expression is therefore not true for any valueaxfdm but tends to be true for codes that have
a code rate’™-™ that is close to one. This kind of codes are mainly encountered with the public keys of the
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Table 2.q=2andm= 14

[ r [J17]18[19[20[21[22] 23] 242526 ] 27 ] 28] 29[ 30 |

N [28203316263524539060430714727§516815628(061075660667125376636822158799(

k  [16146161341611§161041609016076160641604§1603416020160061599241597815964
Drandom|12057154941912722956269813120435619402324504150046552471606446623772026
Daiternan{1205715494191272295626981312023561940234450415004655247606446623772026
Taiternant|101921190013734156941778(199922233(24794273843010032942359103900442224
Dgoppa | 1856421294242062730030576340343767441496455005004655247606446623772026
Tcoppa |185642129424206273003057634034376744149645500496865405458604633366825(

N |2844131878355113934043365475865200356616614256643071631770288262188410

k 1614516131161171610316089160751606116041160331601916005159911597715963
Drandom|1229615747193942323127277315123594244056945393504115562661037166644 72447
Dalternani12291157471939523238272773151135943405704539250412556266103866644 724471
DgGoppa |[18802215462447227580308703434237996418324585050412556266103716664472441

CFS signature scheme. We will show that there also exist public keys of the McEliece cryptosystem that can be
distinguished for parameters considered as secure. We assume that the isrgthal to 2' and we denote by

I'min the smallest integarsuch thalN — Dgoppa> 2™ — mr. Recall that given a degree extensiomoverF,, any

binary Goppa code defined with a polynomia|z) of degreer > rmin cannot be distinguished from a random
linear code by our technique. This value is gathered in Table 3 for different valuasloprovides therefore

a lower bound forr in the choice of secure parameters if being unable to distinguish the public code from a
random linear code is required. One can notice for instance that the McEliece key obtained-wiB and

r = 19 and which corresponds to 90-bit of security, fits in the range of validity of our distinguisher. The values
of rmin in Table 3 are checked by experimentationsfor 16 whereas those fon > 17 are obtained by solving

the equatiori’ (204 1)r — 20-1) = %mr(mr— 1) — 2™+ mr. Additionally, all the keys proposed in [18] (See
therein Table 4) for the CFS scheme can be distinguished.

Table 3. Smallest order of a binary Goppa code of length= 2™ for which our distinguisher does not work.

[ m[[8]9[10[11]12]13[14[15]16[17]18] 19| 20] 21 [ 22] 23]|
([rmin][5]8] 8 [11]16]20[26]34]47[62]85]114157]213 290400

7 An Explanation for the Distinguisher

The goal of this section is to provide a theoretical explanation to the practical behavior observed in the previous
section. We first consider the case of alternant codes and will explain the defect of rank observed in the linearized
systems described previously.

7.1 The generic alternant case

As a general comment, we emphasize that it seems difficult to obtain a precise lower bound or upper bound on
the dimensiorD, respectivelyD of the vector space solution of (11), respectively (12) holding for all alternant
codes. Indeed, it is always possible to have degenerate cases for pariantdy defining the alternant code
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< (X,y). Whenx andy are chosen in a subfieIEqm( with m' being a divisor ofm, then the dimensio® of

the system is much smaller than predicted in experimental Fact 1. We have typically the same formula as in
(13), but withm' replacingmthere. On the other hand, whegiis chosen accordingly to a Goppa code, then the
dimension can be much larger.

However, there is a simple fact explaining what happens in the generic case for Formula (13), i.e. for “random”
choices ofx andy. Indeed, to set up the linear system (11) or (12) we have used the trivial id\ﬁmm? =

(YiX)2. More generally, we can use any identity of the forg2Y,xP = Y;XY; x4 with a,b,c,d € {0,1,...,r —

1} such thak+b = c+d. Itis straightforward to check that we obtain in the same way the algebraic system:

n

Z > PPy (Y,-vaj,xjti+Yj,xf}ijjb+Y,-xj°Yj,xﬁ +Yj,xj‘>,Y,-xjd) =0 (19)
j=kF+1j7>]
and .
Y 3 Bubiy (ijf‘Yj/xﬁ + Y XEYXP + VXY XS +Yj/xj°,Y,-xjd) =0. (20)
j=k+1J">]
In other words: dot
e
Zanoa  (YiXPY)XE 4 Yy XAV XD+ Y XEV) XS + Yy XY XY ) 1o

i">]
is a solution of (11) whereas

> def
Zapcd 2 (Y,- XAV} XE -+ Y XY XP 4 YiXOY; X3 4+ Y, XY, x,-“)1§ n_ik
">

is a solution of (12). This yields many (presumably) independent vectors which are solution of (11) or (12).
In other words, large dimension of the vector space solution of (11) or (12) is explained by the fabethat
are many different ways of combining the equations of the algebraic sy&®rtogether yielding the same
linearized systemd. 1) or (12).
Observe that there are some relations among solutions, sdgh 8§+ Zc d.e t = Zab,e f- However, if we define

s &' {{ab}la+b=t},

then we expect to obtaif (|S | — 1) linearly independent solutions to (11) or (12) from this process. The term
|S|— 1 in the sum is a simple consequence of the following fact.

Fact 4. Assume that we havdndependent (ovef,) vectors g, ..., e,. Then the se{a +eije{l,... ,e}}
generates a vector space of dimensfenl overFs.

Finally, the solutions have coefficients odgj. By decomposing each coefficient od&gywe may finally have
my:(|S|—1) (potentially) independent vectors ovéy. This accounts for a generating set of size:

m(r—1)(r —2)
2
which agrees with Formula (13) wherx g.
For larger values of, the automorphisms dfgm leavingF invariant have to be used. They are of the form
x+— xd for somel € {0,...,m—1}. Notice that if we raise the equatidfX; = 3 pijY;X; to theg-th power we
get:
Y=Y Py

We can use the same trick fof = 3 pjjY;. From the trivial identityY;(Y;X)% = YquiXiq, we obtain a new
algebraic equation which is

n

S Pip (Yjvﬂxﬁ YT Y XYY, xj‘*) —0. 1)

=K+1j">]j

]
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To useYiX! = 5 pijY;X;!, we need to have > g+ 1. However it should be noticed thatdft b = c+d then
Zabed andZgagbqcqd ONly give m (potentially) independent vectors ovEg (and not 2n) after decomposing
their coefficients oveFq. This comes from the fact that the Frobenius map x9 is a Fq-linear transform.
Therefore, the only new vectors obtained in this way are of the g, ¢ 4ig With0<a,b,c,d <r,0<j<m

anda+qg'b = c+qid. This whole discussion leads to

Heuristic 1 Let$’d8f{{a,b}\0§a< rn0<b<r,at+b=t}® Forjin {1,...,m—l},weset$d:6f{(a,qu)\0§ a<r0<b<r

Then, for most choices &fandy, we have:
Daiternant=m Z (|S(J| -1).
{t.i:g)#0
The sum appearing in the right-hand side has a very simple expression which is given by
Proposition 5.

(+1
S (81-0=" {27 @2)
{tig}-0
with ¢ =" |logy(r — 1) .

This finishes to explain the first part of Experimental Fact 1. In order to prove Proposition 5, we first prove the
following lemma.

Lemma 1.
|§|:le-‘,f0r0<t<r—1, (23)
19| = Fr_zt_lw,forrgtgzz, (24)
|| = 0 otherwise. (25)
§l<1ifgl >, (26)
19| = mm( Lq J +1) —maxqt _cr|J'+ 1-‘ ,O) otherwise. (27)

Proof. The first three equations follow directly from the definitionS3f Equation (26) is an easy consequence
of the definition ofg. Let us assume now that> q'. We now prove Equation (27). Léa,b) be a couple of
integers such that:

0< a <r-1 (28)
0< b <r-1 (29)
a+qglb=t. (30)

From (28), (29) and (30), we obtain- qib < r — 1, which impliesb > P;(;Jﬂ] . Together with (29)

o[52]).
<|

J sincea > 0. This implies

On the other hand, we also havel r — 1 andb < qi

b < min (r—l, H’D (32)

All the b's between these upper and lower bounds are possible. Then, there is only one corresp@adimng
time. This yields Equation (27). a

6 The notation{a, b} refers to a multiset here. We may have- b.
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From this, we deduce:
Lemma 2. It holds that:

(r=1)(r—2)
(1-1) = ————, (33)
t:%ém 2
(I8]-1) = (r=1)(r—d) forr > d, (34)
t:9 0
S (I9]-1) = Ootherwise. (35)
t:§ 0

Proof. Let us first prove (33). By using Lemma 1, we obtain

2=z (- 1)522({”‘2“1%1)

Forr odd (sayr = 2r’+ 1), we notice tha[ SR -1)=r(r— =r2andthay 2 ([242] -1) =
r'(r —1). This implies thatzt:§ﬂ, (1P| — r'(2r’ — ):( ( Onthe other hand, fareven, say = 2r/,
we obtainy{ g ([%5t] - 1) =r'(r — 1) andz2r 2([EE] - ) =r' =14 (' =1)(r' —2) = (r' = 1)%. From

this,Wededuceth%:§¢0(|§|— = - -1)= (r= )(r =0=2) Thig proves (33).

To prove (34), we first notice thdﬁj| is positive if and only ift belongs to{0,1,...,(g/ +1)(r —1)}. Then, we
use Lemma 1 again and we obtain

(@+1)(r-1)

Y (8- = > (1€1-2) (36)

t:§ #0
5 o4 5 )
t= _
U o [3]) om0
&
_ (qi+%:r—1)min <r o D 120 qt —r]+ 1} 70> . (37)
&

(qj+1)(r71) ( \‘ t J) qj(rfl)fl \‘ t J qj(rfl)fl
min(r—21|—=|)= — |+ (r—1)
t;) q] t; qj t:q%—l)

=g (0+1+---+r—2)+(r—1r.

The other term appearing in the right-hand side of (37) is handled as follows

(@+1)(r-1) _ (@ +1)(r-1) rp _
ZO maxqt r+ 1} 70> _ z P r+ 1"
= q! & q

=g (14+2+---+r-1).

Observe now that

By plugging these two expressions in (37) we obtain
S (191-1)=d 0+ 1+ +r=2)+ (r=Dr =g} (1424 +r-1) = (= r—gl(r—1) = (= 1)(r - ),
t:9 -0
O
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Finally, we can now finish with the proof of Proposition 5.

Proof.
. m-—1
S (§]-1)= g (1L-+y ¥ (8-
t,j:§ #0 t: 940 =190
_ (r—l)(r—2)+
2 N
j:ql<r

Let ¢ be the largest integer such thiat q’. We obtain

-1 Lo
3 (d-n="31 {zer+<r2>2zq'}
t,j:§ #0 =1

LY PYRRIMEPE
=512+ r- J;)q

7I’—1 q€+1_1
2{2(€+1)r2 1 }

This concludes the proof. O

7.2 The Goppa case

The simplest way to understand why there is a difference between the generic alternant case and the Goppa
case is to compar‘éGoppawith Daiternant First of all, the same reasoning as in the previous subsection can be
done for the subcode/ (x,y) of even weights of an alternant codg(x,y). This leads in the same way to the
conclusion that in general:
m(r — 1) qtt— 1}
Y

Daltemant:

{(2€+1)r—2 a1

with ¢ %' [logy(r —1)]. Notice, that from Proposition 2, we know thé{x,I") is an alternant code of degree

r+1, whenl” is of degree. Therefore, we have

m (+1

with ¢ %' [logy(r) . This explains whDgoppais significantly greater thajtermant If we we denote b goppdT)
the dimension of the solution space of (12) for a Goppa code associated to a polynomial ofrd@geefex
the ordemn of the extension) and if we denote &éneman{r) the dimension of the solution space(dfl) for a
generic alternant code; of degree, then this explains why we have

DGODP&") 2 5alternan{|’ +1).

It should be added that for< q— 2, we actually hav®goppd) = Dattemnan{r + 1).

We do not have a general explanation for the formula observeddgy,,0f non-binary Goppa codes. However,

in the case of binary Goppa codes we can use Theorem 3. In this case, when the Goppa polymasiaihly

simple roots, we know tha¥ (x,I) = 7 (x,y’), wherer d:efdeg(l') andy, = I (x)~2 where thex’s are the
coordinates ok and they;’s are the coordinates gf. This basically explains why the vector space solution of

(11) is much greater for a binary Goppa code than for a binary alternant code of the same degree. This would
suggest thaDgoppd) > Daiternanf2r). However, this is not true. Now, there are linear relations among the
vectorsZ, ¢ ¢ Which are solutions of (11). Providing a cleaner explanation of the formula obtained for binary
Goppa codes is much more involved and is beyond the scope of this article.



16 Jean-Charles Faae, Ayoub Otmani, Ludovic Perret, and Jean-Pierre Tillich

References

1. T. P. Berger, P.L. Cayrel, P. Gaborit, and A. Otmani. Reducing key length of the McEliece cryptosystem. In Bart
Preneel, editorProgress in Cryptology - Second International Conference on Cryptology in Africa (AFRICACRYPT
2009) volume 5580 ot.ecture Notes in Computer Scienpages 77-97, Gammarth, Tunisia, June 21-25 2009.

2. Thierry P. Berger. On the cyclicity of Goppa codes, parity-check subcodes of Goppa codes, and extended Goppa codes.
Finite Fields and their application$(3):255-281, 2000.

3. E. Berlekamp, R. McEliece, and H. van Tilborg. On the inherent intractability of certain coding probl&BEE
Transactions on Information Theqr24(3):384-386, May 1978.

4. E. R. Berlekamp. Factoring polynomials over finite fields. In E. R. Berlekamp, editgebraic Coding Theory
chapter 6. McGraw-Hill, 1968.

5. D. J. Bernstein, T. Lange, and C. Peters. Attacking and defending the McEliece cryptosyseQCriyptq volume
5299 ofLNCS pages 31-46, 2008.

6. Daniel J. Bernstein, Tanja Lange, Ruben Niederhagen, Christiane Peters, and Peter Schwabe. FSBday: Implementing
Wagner’s generalized birthday attack against the round-1 SHA-3 candidate FBEDQCRYPTpages 18-38, 2009.

7. Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Attacking and defending the McEliece cryptosystem. In
PQCryptq pages 31-46, 2008.

8. Bhaskar Biswas and Nicolas Sendrier. McEliece cryptosystem implementation: Theory and pracBECryptq
pages 47-62, 2008.

9. W. Bosma, J. J. Cannon, and Catherine Playoust. The Magma algebra system I: The user ldn§yage. Comput.
24(3/4):235-265, 1997.

10. A. Canteaut and F. Chabaud. A new algorithm for finding minimum-weight words in a linear code: Application to
McEliece’s cryptosystem and to narrow-sense BCH codes of length IFEE Transactions on Information Theory
44(1):367-378, 1998.

11. Pierre-Louis Cayrel, Philippe Gaborit, David Galindo, and Marc Girault. Improved identity-based identification using
correcting codesCoRR abs/0903.0069, 2009.

12. N.T. Courtois, M. Finiasz, and N. Sendrier. How to achieve a McEliece-based digital signature scbetune Notes
in Computer Scieng®248:157-174, 2001.

13. Léonard Dallot. Towards a concrete security proof of Courtois, Finiasz and Sendrier signature schafa®VdRC
pages 65-77, 2007.

14. Léonard Dallot and Damien Vergnaud. Provably secure code-based threshold ring signatfitéslnin Conf, pages
222-235, 2009.

15. Rafael Dowsley,drn Miller-Quade, and Anderson C. A. Nascimento. A CCA2 secure public key encryption scheme
based on the McEliece assumptions in the standard mod€THRSApages 240-251, 2009.

16. Arne Oir. The automorphism groups of Reed-Solomon codesrnal of Combinatorial Theory, Series #4:69-82,

1987.

17. Jean-Charles Faéige, Ayoub Otmani, Ludovic Perret, and Jean-Pierre Tillich. Algebraic cryptanalysis of McEliece
variants with compact keys. Broceedings of Eurocrypt 2018pringer Verlag, 2010. to appear.

18. M. Finiasz and N. Sendrier. Security bounds for the design of code-based cryptosystems. In M. Matsuisatitypt
2009 volume 5912 of NCS pages 88-105. Springer, 2009.

19. P. J. Lee and E. F. Brickell. An observation on the security of McEliece’s public-key cryptosysteAdvamnces
in Cryptology - EUROCRYPT'8&olume 330/1988 okecture Notes in Computer Scienpages 275-280. Springer,
1988.

20. J. S. Leon. A probabilistic algorithm for computing minimum weights of large error-correcting ciéttes. Transac-
tions on Information TheorB4(5):1354-1359, 1988.

21. P. Loidreau and N. Sendrier. Weak keys in the mceliece public-key cryptosyl&ifa. Transactions on Information
Theory 47(3):1207-1211, 2001.

22. F. J. MacWilliams and N. J. A. Sloand&he Theory of Error-Correcting CodesNorth—Holland, Amsterdam, fifth
edition, 1986.

23. R. J. McEliece A Public-Key System Based on Algebraic Coding Thepages 114-116. Jet Propulsion Lab, 1978.
DSN Progress Report 44.

24. R. Misoczki and P. S. L. M. Barreto. Compact McEliece keys from Goppa code&eléated Areas in Cryptography
(SAC 2009)Calgary, Canada, August 13-14 2009.

25. R. Niebuhr, M. Meziani, S. Bulygin, and J. Buchmann. Selecting parameters for secure McEliece-based cryptosystems.
Technical Report 2010/271, IACR, 2010.

26. H. Niederreiter. A public-key cryptosystem based on shift register sequend®@dRACRYP Tvolume 219 olLNCS
pages 35-39, 1985.



27.

28.

29.

30.

31.

A Distinguisher for High Rate McEliece Cryptosystems 17

Ryo Nojima, Hideki Imai, Kazukuni Kobara, and Kirill Morozov. Semantic security for the McEliece cryptosystem
without random oracleDes. Codes Cryptography9(1-3):289-305, 2008.

N. Patterson. The algebraic decoding of Goppa codlEEE Transactions on Information Theor1(2):203-207,

1975.

N. Sendrier. Finding the permutation between equivalent linear codes: The support splitting alg&fiErTransac-

tions on Information Theory6(4):1193-1203, 2000.

V.M. Sidelnikov and S.O. Shestakov. On the insecurity of cryptosystems based on generalized Reed-Solomon codes.
Discrete Mathematics and Applicatiarig4):439—-444, 1992.

J. Stern. A method for finding codewords of small weight. In G. D. Cohen and J. Wolfmann, edidisg Theory

and Applicationsvolume 388 olecture Notes in Computer Scienpages 106—-113. Springer, 1988.



18 Jean-Charles Faae, Ayoub Otmani, Ludovic Perret, and Jean-Pierre Tillich

A Proof of Proposition 1

Proof. Let ¢ = (Gi)1<i<n be a codeword in%(x,y). Consider a polynomiaP(X) = ngéajxi € Fqm[X] of
degree at most— 1 and notice that

ax+b _ ax+b\’
P —— ) =yi(cx+d)* a()
% (c)q +d) i(e% +d) OSIZSH "\ex+d
= aj(ax +b)! (cx +d) 1
0<j<r-1

= ¥iQ(x)
whereQ is a polynomial of degree at most- 1 which depends oa, b, c,d but not oni. By the very definition
of < (X,y), we know that

ax + b)

0= iiqyiQ(Xi) = iicMP (c>q +d

In other words, we have just proved tleat .o (gxx—ﬁ,y’). This proves that

chrd’y

ax+b ,
szfr(x,y)cﬂr< >

The inclusion in the other direction is proved similarly.



B Experimental Results

A Distinguisher for High Rate McEliece Cryptosystems

Table 4.g=2 andm= 15

[ r [ 3] 4]5[6[7[8] 9 ]10]11]12]13]14] 15] 16 |

N

990

1770

2775

4005

5460

7140

9045|1117513530

16110

18915

21945

2520028680

k

32723

3270832693

3267832663

32648

326333261832603

32588

32573

32558

3254332528

Drandom

0

0

0

0

0

0

0 0

0

0

0

0

0 0

DGoppa

270

570

1050

1665

2415

3300

4455|5775

7260

8910

10725

12705

1485017160

TGoppa

270

570

1050

1665

2415

3300

4455|5775

7260

8910

10725

12705

1485017160

N

1035

1830

2850

4095

5565

7260

9180{1132513695

16290

19110

22155

2542528920

k

32727

3270732697

32677132667

32647

326323261732602

32587

32577

32557

3254232527

Drandom 0

0

0

0

0

0

0 0

0

0

0

0

0 0

DGoppa

315

630

1125

1755

2520

3420

4590| 5925

7425

9090

10920

12915

1507517400

Table 5.g=2 andm= 15

[ r [17] 18] 192021 [ 22 [ 23 [ 24 25[26] 27 ] 28] 29] 30 |

N

32385

36315

40470

44850

49455

54285

5934064620

7012575855

81810

87990

94395101025

k

32513

32498

3248332468

32453

32438

3242332408

3239332378

32363

32348

32333 32318

Drandom

0

3817

7987(12382

17002

21847

2691732212

3773243477

49447

55647

62062 68707

DGoppal

1989022815

2593529250

32760

364685

4036544460

4875053235

57915

62790

6786Q 73125

TGoppa

1989022815

2593529250

32760

36465

4036544460

4875053235

57915

62790

67860 73125

N

3264036585

407554515(Q

49770

54615

5968564980

7050076245

822185

88410

94830101475

k

3251232497

3248232467

32457

32437

3242232407

3239232377

32367

32347

32337 32317

Drandon

128

4088

8273|12683

17318

22178

2726332573

38108438684

49853

56063

62498 69158

DGoppa

2014523085

262202955(

33075

36795

4071044820

4912553625

58320

63210

68295 73575

19
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Table 6.g=2 andm= 15

[ r [ 31 ] 32 [ 33 ] 34 [ 3 [ 36 | 37 | 38 [ 39 | 40 [ 41 [ 42 [ 43 [ 44 ]
N [10788011496(12226512979513755(14553(15373516216517082(17970(18880519813520769(21747
k [ 32303[ 32288| 32273| 32258| 32243| 32228| 32213 32198| 32183 32168| 32153 32138 32123| 32108
Drandon] 75577| 82672| 89992| 97537|10530711330212152312996713863714753215665216599717556 7185362
Dgoppal 78585| 84240| 90585 97537|10530711330212152212996713863714753215665216599717556 7185362
Tcoppa | 78585] 84240| 90585 97155/10395(11097011821512568513338014130014944515781516641017523(
N 10834511544012276013030513807514607(15429(16273517140518030(18942(19876520833521813(
k [32302] 32287| 32272| 32257| 32242| 32227| 32212( 32197| 32182| 32167| 32152| 32137| 32122| 32107
Drandon] 76043 83153| 90488| 98048|105833113843122078130538139223148133157268166628176213186023
Dgoppal 79050] 84720] 91080| 98048|105833113843122079130539139224148134157269166628176214186024

Table 7.g=2 andm= 16

[ r [3]4]5[6] 7] 8] 9J10]11[]12]13]14][15] 16 |
N [1128]2016] 3160] 4560] 6216[ 8128[1029§1272(154001833621528249762868(3264(
k [65488654746545665440654246540865392653766536(0653446532865312652966528(
Dandod O | O] O O] o] o] o] o] o] o[]o] o] o] o
Dgoppal 288 | 608 | 1120] 1776| 2576 3520| 4752 6160| 7744 9504|1144(1355241584018304
Teoppa | 288 | 608 | 1120] 1776] 2576| 3520| 4752| 6160| 7744| 9504]|1144(135521584(18304
N [1176]2080] 3240[ 4656] 6328[ 8256]1044(1288(155761852821736252002892(32894
k |65487654716545565439654236540765391653758653596534365327653116529565279
Dandod 0O | O] O O] o] o] o] o] o] o[]o] o] o] o
Dgoppa] 336 | 672 | 1200] 1872| 2688| 3648 4896| 6320] 7920 9696(1164813776160801856(

Table 8.g=2 andm= 16

[ r [17] 18] 1920 21 [ 22 [ 23 [ 24 252627 ] 28 [ 29 | 30 |
N [3685641328460565104456280617766752§7353679804863209309610012810741611496(
k  [6526465248652326521665200651846516§65152651366512(65104 65088| 65072| 65056
Drandoy O | O [ 0 | 0 [ 0 | 0 [2360]8384/146642120027997 35040( 42344 49904
Dgoppal 2121624336276643120034944388964305647424520005678461776 66976| 72384] 78000
Tcoppa |2121624336276643120034944388964305647424520005678461776 66976| 72384| 78000
N [37128416164636(05136(0566166212§678967392(080200867369352810057610788011544(
k  [6526365247652316521565199651836516765151651356511965103 65087 65071| 65055
Drandoy 0 | O [ 0 | 0 [ 0 | 0 [2729]8769[150652161728425 35489| 42809 50385
Dgoppa] 21488246242796§3152(3528(3924843424478085240(5720062208 67424 72848] 78480
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Table 9.g=2 andm= 16

[ r [ 3] 32 [ 3] 3 [ 3 ] 36 | 37 ] 38 3 | 40 [ 41 ] 42 ] 43 ]
N [12276013081613912814769615652016560017493618452819437620448(21484(225456236324
k | 65040[ 65024| 65008| 64992| 64976| 64960| 64944 64928| 64912| 64896 64880 64864| 64848
Drandon] 57720 65792 74120 82704| 91544]10064010999211960012946413958414996016059217148(
Dgoppal 83824| 89856] 96624/10363211088(118368126096134064142272150720159408168336177504
Tcoppa | 83824 89856 96624|103632110880118368126096134064142272150720159408168336177504]
N [12325613132813965614824(15708(16617617552818513619500(20512(21549622612§237016
k | 65039] 65023| 65007| 64991| 64975| 64959| 64943| 64927| 64911 64895| 64879| 64863 64847
Drandon] 58217| 66305| 74649| 83249 92105/101217110585120209130089140225150617161265172164
Dgoppal 84320] 90368] 97152/10417611144(0118944126684134672142896151360160064169008178192

Table 10.g=4 andm=6

[ r [3[4][5]6]7][8[9]10]11]12]13][14[15]16]
N [153]276]435]630] 861]112§1431177(21452556300334864005456(
k  [40784072406640604054404840424036403040244018401240064000
Drandom| 0 [ O[O JOJOJO[O]O[O]O[O0O] O[O0 [560
Datternan{ 6 | 18 | 60 [ 120 198|294 408| 540[ 690 | 85810441248147(1710
Taiternant| 6 | 18 [ 60 | 120] 198 294] 408 540[ 690 | 858]10441248147(1710
Dgoppa| 18 | 60 | 120] 198 294[ 408 540[ 750 990[12601560 189022502640
Tcoppa | 18 | 60 | 120 198 294[ 408 540[ 750 990[12601560 189022572640
N [171]300[ 465] 666] 903]11761485183(2211262§3081357040954656
k  [40774071406540594053404740414035402940234017401140053999
Drandom| 0 [ O[O J O] O0[O[O0[O0O[O0|]0]O0][O0][90][657
Datternan{ 6 | 18 | 60 [ 120 198|294 408| 540[ 690 85810441248147(1710
Dgoppa| 36 | 84 | 150] 234 336] 456 | 594| 810|10561332163§1974234(2736

Table 11.g=4 andm=16

[ r [17][18]19[20[21[22[ 23] 24 | 25 [ 26 | 27 | 28 [ 29 | 30 |
N |515157786441714078758646945310296111751209(13041140281505116110
k  |3994398839823976397(30643958 3952 3946 3940| 3934| 3928| 3922| 3916
Drandom|1157179024593164 390546825495 6344| 7229| 8150| 9107|101001112912194
Datternani 2064 24482862 3306390546825495 6344| 7229 8150 9107|101041112912194
Tatvernant | 2064 24482862 3306378042844818 5382| 5976/ 6600| 7254| 7938 8652| 9396
Deoppa |3060351039904500504056106210 6840| 7500 8190| 9107(101041112912194
Teoppa |3060351039904500504056106210 6840] 7500 8190| 8910] 9660|1044011250
N [525358866555 7260800187799591104401132512246132031419§1522916290
k  |3993398739813975396939633957 3951 | 3945 3939 3933| 3927 3921 3915
Brandom| 126018992575 3285403248165634 6489| 7380| 8307| 9270|102691130412374
Datternani 2064 24482862 3306403248155634 6489| 7380| 8307 9270|102691130412375
Daoppa |3162361841044620516657426348 6984| 7650| 8346] 9270(1027(1130512375




