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Abstract

We examine a system of equations arising in biophysics whose solutions are
believed to represent the stable positions of N conical proteins embedded in a cell
membrane. Symmetry considerations motivate two equivalent refomulations of the
system which allow the complete classification of solutions for small N < 13. The
occurrence of regular geometric patterns in these solutions suggests considering a
simpler system, which leads to the detection of solutions for larger N up to 280. We
use the most recent techniques of Gröbner bases computation for solving non linear
systems.

1 Introduction

Both the shapes and positions of proteins which are embedded in a cell membrane can
influence their biological function. It is the interaction between the proteins which dic-
tates how they become arranged, but little is known about this interaction and its exact
cause is uncertain. However, for conical proteins, a likely explanation is the bending
of the membrane caused by the proteins. Specifically, an embedded conical protein in-
duces a curvature in the two dimensional membrane which influences the positions of
neighboring proteins. There is an energy associated to this curvature and the proteins
will tend to arrange themselves so as to minimize this energy. Recent work in [KJG98]
shows that any minimum energy arrangement is a zero energy arrangement. Further-
more, if zi is the position of the ith protein using complex coordinates, it was also shown
that the energy at the ith protein is a constant multiple of | fi(z1, . . . ,zN)|2 where

fi(z1, . . . ,zN) =
N

∑
j=1
j 6=i

1
(zi−zj)2 = 0.
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Therefore the N proteins are at equilibrium if and only if (z1, . . . ,zN) is a solution to the
Membrane Inclusions Curvature Equations, or MICE:

fi(z1, . . . ,zN) = 0, i = 1, . . . ,N. (1)

For brevity, we refer to the N-th system of equations as SN.
One possible application of knowing how these proteins arrange themselves is to

deduce the form of proteins by examining the shapes they form. In this case, if they
arrange themselves according to our solutions it is very likely that they are conical.
Determining the shapes of proteins is still an unsolved problem in biology.

Gröbner bases are used to find the solutions of SN for several N. In section 2, we
review the most efficient algorithms for computing Gröbner bases and their implemen-
tations. Direct application of these algorithms gives all the solutions of the problem for
N < 7 and is described in section 3. Because the difficulty of computing Gröbner bases
increases rapidly with respect to the complexity of the input equations, it is necessary
to reformulate the system before most of the computations will successfully terminate.
Two reformulations of SN into equivalent systems are given in section 4. The first refor-
mulation employs an algorithm for converting the numerators of the SN equations into
symmetric polynomials, which are then expressed in terms of the elementary symmet-
ric functions prior to computing. The second reformulation uses a differential equation
describing the minimum polynomial for the coordinates of a solution and gives directly a
system already formulated using the elementary symmetric functions. Both reformula-
tions can be used jointly to decrease the computation time. Finally, we consider a much
simplified system obtained from SN by limiting our search to those solutions which have
a certain geometric regularity to them; namely, we look for solutions whose coordinates
form concentric rings of regular polygons. While this last approach does not detect all
solutions for a given N, it does allow many to be found.

Our main result is a complete classification of the solutions for small values for N:

Theorem 1.1 There are no solutions for N≤ 12 except for N = 5 (finite number of solu-
tions) and N = 8 (S8 form a 1 dimensional variety).

The proof of this theorem is included in sections 3 and 4. For larger values of N we have
only a partial result:

Theorem 1.2 There exist solutions to SN for N = 5,8,16,21,33,37,40,56,65,85,119,133,
161,175,208,225,261 and 280. Moreover the number of solutions fir S16 and S21 is
infinite.

We explained in section 5 how we find this list of “regular solutions”.
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2 Tools for solving polynomial equations

We now review some major algorithms for solving multivariate polynomial systems. The
reader is also referred to [Dav93, Bec93, CLO92, CLO98] for a more detailed introduc-
tion.

Let Q[x1, . . . ,xn] be the polynomial ring with rational coefficients, F a finite list of
equations and I the ideal generated by F .

The main tools we use are Gröbner bases [Buc65, Buc70, Buc79, Buc85]. We recall
that, in general, when the number of equations equals the number of variables the
shape of the Gröbner basis G for a lexicographical ordering is the following:






hn(xn)
xn−1 = hn−1(xn)
. . .
x1 = h1(xn)

where all the hi are univariate polynomials. Of course the shape of a lexicographical
Gröbner basis is not always so simple but it will allways be the case in this paper (ex-
cept one very easy non zero dimensional system). From this Gröbner basis it is rather
easy to compute numerically all the complex roots: we first solve numerically the first
equation [DG99], and we find z1, . . . ,zN a guaranteed approximation of all the complex
roots of hn. Then we substitute these values into the other coordinates.

Even if all the algorithms for computing Gröbner bases do not depend on a specific
order it is well known [Fau93] that it is more efficient to compute first a Gröbner basis for
a Degree Reverse Lexicographical ordering and then change the ordering with a specific
algorithm. In this paper we have used a standard implementation of the Buchberger
algorithm and the FGLM algorithm in Singular [Gre99] for easy cases. When the degree
of the univariate is big > 500we have used:

• the F4 [Fau99] algorithm for computing a DRL groebner basis.

• the F2 [Fau94] algorithm to change the ordering. For the bigger computations we
found that the dimension of Q[x1, . . . ,xn]/I is bigger than 106 !

These two algorithms are implemented in an experimental software callled FGb [Fau].
For generating the input equations we have used the Maple [Cha91] computer alge-

bra system.

3 First experiments

First, we observe that the set of solutions to SN is invariant under translation and multi-
plication by complex scalars. These considerations allow us to change coordinates so
that zN = 0 and zN−1 = 1.
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Since the fi in the system SN are rational functions we need to transform the system
into a polynomial system. In order to avoid "parasite" solutions, where zi = zj for some
i 6= j, we introduce a new variable u and let Pi be the numerator of each fi in SN. That is
to say

Pi(z1, . . . ,zN) = ∑
j 6=i

∏
k6=i, j

(zi−zk)
2 = 0, i = 1, . . . ,N (2)

S′N






uΠN
i=1ΠN

j=i+1(zi−zj) = 1
Pi(z1, . . . ,zN) = 0 i = 1, . . . ,N
z1 = 0
z2 = 1

Proposition 3.1 There is no solution for N ≤ 4 and N = 6. The only solution for S5 is a
regular pentagon.

Proof For N≤ 5 it takes less than 0.1 second to compute a lexicographic Gröbner basis
with FGb on a PC Pentium II 300 Mhz. For N < 5 the Gröbner basis is {1}. For N = 5
we can factorize the univariate polynomial and find a decomposition into irreducible
varietes: V = V1∪V2∪V3∪V4∪V5∪V6 and

V1 = [z3−z5
3 +z5

2−z5,z4 +z5
2−z5,z5

4−z5
3 +z5

2−z5 +1]

For any polynomial p in x1, . . . ,xN and any permutation σ , set σ .p= p(xσ(1), . . . ,xσ(N))
and σ(V) = {σ(v) : ∀v∈V}. It is easy to check that

(z4,z5)V1 = V6
(z3,z5)V1 = V3

(z3,z4)V1 = V2

(z3,z4,z5)V1 = V5
(z3,z5,z4)V1 = V4

Now we have

z5
4−z5

3 +z5
2−z5 +1 =

z5
5 +1

z5 +1

so that z5 = e
αıπ

5 and we see that the only solution is the regular pentagon.
The case N = 6 is a little more difficult: the degree of the polynomial uΠN

i=1ΠN
j=i+1(zi−

zj) = 1 is 1+ N(N−1)
2 = 16and so big that it does not help the Gröbner basis computation.

In that case we can replace this condition by uz3z4z5z6 = 1 and it takes only 13.6 seconds
to find {1} with Fgb. �

In conclusion the straightforward approach solves the problem for small N but leads
to several problems:

• intermediate computations contain the same solution several times (action of the
symmetric group), so the degree of the intermediate varieties are big.
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• it is not easy to remove the parasite solutions zi = zj .

We have stopped the computation for N = 7 after 2000seconds.

4 Using the symmetry

It is clear from 1 that if (z1, . . . ,zN) ∈ CN is a solution of SN then (zi1, . . . ,ziN) is also a so-
lution of SN for every possible permutation of (i1, . . . , iN) of (1, . . . ,n). Hence it is enough
to compute the polynomial

f (X) = (X−z1) ∙ ∙ ∙ (X−zN) = XN−e1XN−1 + ∙ ∙ ∙ (−1)NeN

where the ei = ei(z1, . . . ,zN) are the elementary symmetric functions in z1, . . . ,zN. In
this paper we will say that f is solution of SN. In general solving efficiently a polynomial
system with symmetries is an open issue especially when the group is not the whole
symmetric group. In our problem the solutions are invariant under the symmetric group
but unfortunately fi is not a symmetric polynomial in (z1, . . . ,zn) but only in {zj | j 6= i}.
If we exchange the role of zj and zk then fi remain unchanged while f j becomes fk and
reciprocally.

zj ←→ zk fi = fi for i 6= j,k fj ←→ fk

4.1 nilCoxeter algebra

Let er be the rth elementary symmetric function in N variables. For λ = (λ1, . . . ,λr) let

mλ = ∑zλ1
i1
∙ ∙ ∙zλr

ir
(3)

denote the monomial symmetric functions, where the sum ranges over all monomials
whose exponent vector is equal to a permutation of λ . Solving S′N is equivalent to finding
a polynomial {

f = XN−e1XN−1 +e2XN−2−∙∙ ∙+(−1)NeN

f is squarefree.
(4)

whose roots are a solution to SN. For any polynomial p in z1, . . . ,zN, set

∂i(p) =
p(z1,z2, . . . ,zN)− p(zi ,z2, . . . ,zi−1,z1,zi+1, . . . ,zN)

z1−zi
. (5)

Let I1 be the ideal generated by P1, . . . ,PN, we define by induction

Ik = Ik−1 : ( ∏
i1<i2

(zi1−zi2)) (6)

and I = I∞. Note that Pi = (1, i).P1 for 1≤ i ≤ N and P1 is symmetric in z2, . . . ,zN.
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Theorem 4.1 Define for 1≤ i1 < ∙ ∙ ∙< ik+1≤ N

Pi1,...,ik,ik+1 =
Pi1,...,ik−Pi1,...,ik−1,ik+1

zik−zik+1

so that Pi1,...,ik ∈ Ik and Pi1,...,ik is symmetric in zi1, . . . ,zik and in the complementary set of
variables. Hence

Hk = ∑
1≤i1<∙∙∙<ik≤N

Pi1,...,ik

is a true symmetric function

The next theorem gives an efficient method for computing the Hi .

Theorem 4.2 For 1≤ i1 < ∙ ∙ ∙< ik ≤ N

Pi1,...,ik = (1, i1).(2, i2). ∙ ∙ ∙ .(k, ik)Qk

where Qk = P1,2,...,k and we have
Qk = ∂kQk−1

The Hi were first computed in the monomial basis mλ using code specifically written
for this application in C++ in the small computer algebra system Gb; then the polynomi-
als were expressed in the ei basis using ACE [AS98], SF [J.98] and symmetrica. If we
set zn = 0 and zn−1 = 1 prior to computing the Hi , the reformulated system S̃N consists
of the polynomials H1, . . . ,HN,PN−1,PN in the variables e1, . . . ,eN−2. It turns out that S̃N

is easier to solve: it takes 2 minutes to compute a Gröbner basis for N = 10 with FGb,
while the calculation for S7 was unsuccessfully stopped after 2000 seconds.

4.2 Harm Derksen formulation

Our second reformulation was found by Harm Derksen[Der99], and appeals to the struc-
ture of the polynomial f in (5). First, a lemma.

Lemma 4.1 For any (z1, . . . ,zN) ∈ CN,

N

∑
j=1

1

z2
j

=
e2

N−1−2eNeN−2

e2
N

.

Proof Since ∑N
j=1(1/zj) = eN−1/eN and ∑i> j(1/zizj) = eN−2/eN, we have

N

∑
j=1

1

z2
j

= (
N

∑
j=1

1
zj

)2−2∑
i> j

1
zizj

=
e2

N−1

e2
N

−2
eN−2

eN
.

�
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Theorem 4.3 (z1, . . . ,zN) is a solution to SN if and only if
{

f is squarefree and
3( f ′′)2−4 f ′ f ′′′ is divisible by f

where f = ∏N
i=1(x−zi) = xN−e1xN−1 +e2xN−2−∙∙ ∙+(−1)NeN.

Proof Let Sr be the rth elementary symmetric polynomial in x−z1, . . . ,x−zN. Note that
replacing x by zi in Sr gives the rth elementary symmetric polynomial in zi − z1, . . . ,zi −
zi−1,zi − zi+1, . . . ,zi − zN, which we denote by Ei

r . Furthermore, the kth derivative of f is
f (k) = k!Sn−k so that f (k)(zi) = k!Ei

n−k. Set h := 3( f ′′)2−4 f ′ f ′′′. Then

h(zi) = 3(2Ei
N−2)

2−4Ei
N−1(3!Ei

N−3)

= 12((Ei
N−2)

2−2Ei
N−1Ei

N−3).
(7)

By Lemma 4.1

fi = ∑
j 6=i

1
(zi−zj)2 =

(Ei
N−2)

2−2Ei
N−1Ei

N−3

(Ei
N−1)

2
(8)

so that h(zi) is a constant multiple of the numerator of fi . Therefore f divides h and the
zi are distinct ⇐⇒ h(zi) = 0 for all i and the zi are distinct ⇐⇒ fi(z1, . . . ,zN) = 0 for all i
⇐⇒ (z1, . . . ,zn) is a solution of SN. �

Let r be the remainder of dividing h by f , and let cj , 1≤ j ≤ deg(r), be the coefficient
of xj in r. Then each cj is a polynomial in the ei and Theorem 2.3 implies the system
cj(e1, . . . ,eN) = 0, 1≤ j ≤ deg(r), is equivalent to SN.

Computations with Singular [Gre99] using the formulation of Theorem 2.3 reveal a
one-dimensional family of solution shapes for N = 8:

Proposition 4.1 The coordinates of a solution to S8 are given by the roots of the poly-
nomial

t8 +
28
5

t6a+14t4a2 +28t2a3− t−7a4

where a can be arbitrary. Setting a= 0, the roots form a regular heptagon with a point in
the center. Varying a deforms this into irregular hexagons with two points in the interior.

–1

–0.5

0.5

1

–1 –0.8–0.6–0.4–0.2 0.2 0.4 0.6 0.8 1x

Solutions N=8 a=0

–20

–10

10

20

–8 –6 –4 –2 2 4 6 8x

Solutions N=8 a=100
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This is a one dimensional family of solution shapes.

Proposition 4.2 There are no solutions to SN for N = 3,4,6,7,9,10,11, and 12.

Proof For N = 3,4, short (less than one minute by Maple on a Sun Ultra-5) Gröbner
bases computations show S̃N, hence SN, has no solutions. For the remaining N, com-
putations using one or both of the above reformulations show there are no solutions of
the equivalent systems. For N > 7 we use FGb for the computations. When N > 9 an-
other difficulty arises in the computation: it is impossible to compute the discriminant of
g = xN−2−e1xN−3 +e2xN−4−∙∙ ∙+(−1)NeN−2. At the begining we add only the condition
g(0) = eN−2 6= 0 and g(1) 6= 0 and we compute a lexicographical Gröbner basis. In the
last we remove the bad solutions. �

5 Regular solutions

The geometry of the solutions known thus far lead one to ask: What other regular poly-
gons are solution shapes (with or without a point in the center)? What about two regular
polygons, or n regular polygons? We use the notation [n,m, p] to denote a solution shape
consisting of n regular concentric m-gons and p = 1 or 0 as there is or is not a point in
the center. Thus a solution [n,m, p] will be a solution for Snm+p. We begin this section by
trying to find “by hand” some regular solutions then give a more systematic way to find
these solutions.

5.1 One regular m-gon: [1,m, p]

Since the solutions are invariant under translation and multiplication by complex num-
bers, it suffices to examine the m’th roots of unity.

The main lemma we need is

Lemma 5.1 Let ω be a primitive m’th root of unity. Then

m

∑
j=1

1
(ω j)2 = 0

m−1

∑
j=1

1
(ω j −1)2 =−

(m−1)(m−5)
12

m

∑
j=1

1
(a

bω j −1)2 =
mbm(bm+am(m−1))

(bm−am)2 .

(9)

Proof From Lemma 4.1 we know

N

∑
j=1

1

z2
j

=
e2

N−1−2eNeN−2

e2
N
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where the ei are the elementary symmetric polynomials in the zj . The polynomials with
roots ω j (1≤ j ≤m), ω j −1 (1≤ j ≤m−1), and a

bω j −1 (1≤ j ≤m) are, respectively

P(X) = Xm−1 and

P(X) =
(X +1)m−1

X
= Xm−1 +mXm−2 + . . .+

(
m
3

)

X2 +

(
m
2

)

X +m

P(X) = (X +1)m− (
a
b
)m

(10)

respectively. substituting in the corresponding values of eN,eN−1 and eN−2 gives the
result.
�
We first consider the case p = 0: [1,m,0]. Let zi = ω i for all i, where ω is a primitive

m’th root of unity. Then the i’th equation is

fi = ∑
j 6=i

1
(zi−zj)2 = ∑

j 6=i

1
(ω i−ω j)2 =

1
(ω i)2 ∑

j 6=i

1
(ω j−i−1)2 =

1
(ω i)2

m−1

∑
j=1

1
(ω j −1)2 .

By lemma 5.1, for all i the i’th equation is zero if and only if

m−1

∑
j=1

1
(ω j −1)2 =−

(m−1)(m−5)
12

= 0,

i.e., if and only if m= 5 or m= 1. Thus the regular pentagon is the only solution shape
for this case. If p = 1, i.e., [1,m,1], we have zi = ω i for i = 1, . . . ,m and zN = 0. Then the
N’th equation

fN =
m

∑
j=1

1
(ω j −0)2 = 0

by lemma 5.1. For i = 1, . . . ,m, the i’th equation is

fi = ∑
j 6=i

1
(zi−zj)2 = ∑

j 6=i

1
(ω i−ω j)2 +

1
(ω i)2 =

1
(ω i)2

(

∑
j 6=i

1
(ω j−i−1)2 +1

)

=
1

(ω i)2

(
m−1

∑
j=1

1
(ω j −1)2 +1

)

.

(11)

So for all i = 1, . . . ,m the i’th equation is zero if and only if

m−1

∑
j=1

1
(ω j −1)2 =−

(m−1)(m−5)
12

=−1,

i.e., m= 7 or m=−1. Therefore the regular heptagon with a point in the center is the
only solution shape in this case.
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5.2 Two regular m-gons [2,m,x]

Again we may fix one m-gon, P1, to be the m’th roots of unity. We intruduce a new
complex variable, x, to describe the second m-gon, P2 = xP1, where multiplication of a
polygon P with x means x times each vertex of the polygon.

Proposition 5.1 There are no solution shapes of the form [2,m,0] or [2,m,1].

Proof We include in square brackets facts for the case [2,m,1]. Let

zi =






ω i if i = 1, . . . ,m;

xω i if i = m+1, . . . ,2m;

[0 if i = 2m+1].

(12)

Dividing by ( 1
ω i )2 in the i’th equation when i = 1, . . . ,m, or ( 1

xω i )2 when i = m+ 1, . . . ,2m,
we get two equations in one unknown:

−
(m−1)(m−5)

12
[+1]+

m(1+xm(m−1))
(1−xm)2 = 0 (13)

−
(m−1)(m−5)

12
[+1]+

mxm(xm+m−1)
(xm−1)2 = 0. (14)

where we have used the third part of lemma 5.1. Subtracting one equation from the
other gives

1−x2m = 0, (15)

so the solution set would have to consist of 2mth roots of unities. But we have already
seen that in the single polygon case the only solutions are m= 5 and m= 7, neither of
which is divisible by two. Therefore no shapes of the form [2,m,0] or [2,m,1] can be a
solution. �

5.3 The Generalization

Using the differential equation of theorem 4.3 we can find some more conditions not
only for the case of regular polygons but for any set of roots to a polynomial N(X). For
the case of regular polygons this raises the chances of successful computations since
we can add the new equations to our old systems.

Definition 5.1 Let N,M,P be univariate polynomials of degree n,m, p. We use the nota-
tion [N,M,P] to denote the set of solutions of Snm+p with the shape P(X)N(M(X)). In the
particular case P(X) = Xp, M(X) = Xm we use the simplified notation [N,m, p].
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Theorem 5.1 Let N(x) = ∑n
i=0aiXi be a squarefree polynomial of degree n such that

a0 6= 0. Then [N,m, p] (with m > 1) is a solution of Snm+p if and only if p≤ 1 and N(X)
divides

n

∑
i=0
j=0

i jaiaj (mi−1)(3m j+5−4mi)Xi+ j if p = 0

and N(X) divides

n

∑
i=0
j=1

aiaj jm( jm+1)(im+1)(3im−4 jm+4)Xi+ j if p = 1.

Proof Let f (X) = XpN(Xm). We know from theorem 4.3 that f is a solution of Snm+p

if and only if f is squarefree and U(X) = 3( f ′′)2−4 f ′ f ′′′ is divisible by f (X). The first
condition is true as soon as p≤ 1 since 0 is not a root of N(X).

Considering the case p = 0, we find:

U(X)= 3

(
n

∑
i=1

im(mi−1)aiX
mi−2

)2

−4

(
n

∑
i=1

imaiX
mi−1

)(
n

∑
i=i3

im(mi−1)(mi−2)aiX
im−3

)

where i3 = 2 if m= 2 and i3 = 1 else. Since X and f (X) are relative prime, f divides
U iff f divides X4U = V with

V(X) = 3

(
n

∑
i=1

im(mi−1)aiX
mi

)2

−4

(
n

∑
i=1

imaiX
mi

)(
n

∑
i=i3

im(mi−1)(mi−2)aiX
im

)

hence V = W(Xm) is divisible by N(Xm) iff W(X) is divisible by N(X). We can rewrite
the sum:

W(X) = m2
n

∑
i=1
j=1

i jaiaj (mi−1)(3m j+5−4mi)Xi+ j .

We consider now the case p = 1 and find:

U(X)= 3

(
n

∑
i=1

ai(im+1)(im)Xim−1

)2

−4

(
n

∑
i=0

ai(im+1)Xim

)(
n

∑
i=1

ai(im+1)(im)(im−1)Xim−2

)

must be divisible by X and N(Xm) so that m > 2 and V1(X) = X2U(X) should be
divisible by N(Xm)

V1(X)= 3

(
n

∑
i=1

ai(im+1)(im)Xim

)2

−4

(
n

∑
i=0

ai(im+1)Xim

)(
n

∑
i=1

ai(im+1)(im)(im−1)Xim

)
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this equivalent to divisibility of

W1(X) = 3

(
n

∑
i=1

ai(im+1)(im)Xi

)2

−4

(
n

∑
i=0

ai(im+1)Xi

)(
n

∑
i=1

ai(im+1)(im)(im−1)Xi

)

=
n

∑
i=0
j=1

aiaj jm( jm+1)(im+1)(3im−4 jm+4)Xi+ j

�

Remark 5.1 We can always suppose that N(X) = Xn +Xn−1 +∑n−2
i=0 aiXi

Remark 5.2 In the following we give an explicit value to n and p and we consider m as
a variable.

Corollary 5.1 There are no solutions of the form [N,2,1].

Proof From the proof of Theorem 5.1, f (X) = XN(X) does not divide U(X)
because X does not divide U(X). �

Corollary 5.2 For deg(N) = 1, [N,m,0] is a solution iff (m−1)(m−5) = 0 and N(X) = 1+X

Proof We apply the theorem 5.1 to N = 1+X and we find W(X) = −X2(m−1)(m−5).
�

Corollary 5.3 For deg(N) = 1, [N,m,1] is a solution iff m= 7 and N(X) = 1+X

Proof We apply the theorem 5.1 to N = 1+X and we find

W1(X) = X(−4+4m2)+X2(m3−2m2−7m−4)

and the remainder of W1 divided by N should be zero:

−m(−7+m)(m+1)x

�

Corollary 5.4 deg(N) = 2, [N,m,0] there is no solution.

Proof We apply the theorem 5.1 to N = a0 +X +X2 and we find

W(X) =−
(
4 (2m−1)(2m−5)X2 +4 (m−1)(4m−5)X +(m−1)(m−5)

)
X2

and the remainder of W divided by N should be zero:

−
(
−5−m2 +18m−60a0m+16a0m2 +20a0

)
X

−
(
−m2 +18m−5+16a0m2−48a0m+20a0

)
a0 = 0

we can can compute a lexico Gröbner of the coefficients:

[
20a0−m2 +18m−5,m

(
m2−18m+5

)]

and the number of solutions is 0.
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5.4 Summary of the regular solutions

An extended version of this paper including a complete list of solutions, pictures and all
the polynomials can be found at http://calfor.lip6.fr/~jcf/MICE/mice.ps.gz. We
summarize all the results:

Theorem 5.2 For fixed values of n and p we give all the possible values of m and for
each m all the solutions [n,m, p]. The results are summarized in the following table.

Shape Values of m Values of N
[1,m,0] m= 5 N = 5
[1,m,1] m= 7 N = 8
[2,m,0] /0
[2,m,1] /0
[3,m,0] m= 7, m= 11 N = 21, N = 33
[3,m,1] m= 5, m= 13 N = 16, N = 40
[4,m,0] m= 2, m= 4 N = 8, N = 16
[4,m,1] m= 5 N = 21
[5,m,0] m= 13, m= 17 N = 65, N = 85
[5,m,1] m= 11, m= 19 N = 56, N = 96
[6,m,0] /0
[6,m,1] /0
[7,m,0] m= 19, m= 23 N = 133, N = 161
[7,m,1] m= 1, m= 17, m= 25 N = 8, N = 119, N = 175
[8,m,0] m= 5, m= 7 N = 40, N = 56
[8,m,1] m= 4, m= 8 N = 37, N = 65
[9,m,0] m= 25, m= 29 N = 225, N = 261
[9,m,1] m= 23, m= 31 N = 208, N = 280

Corollary 5.5 Using this information we could find the following solution families:

f (x) =−32λ x5 +λ +x16+x11+
11
8

x6−
11
128

x

f (x) =−λ x+25λ x8 +x21+x14−
13
10

x7 +
13
400

for N = 16 and N = 21.

Conjecture 5.1 For n odd, there will be solutions for [n,m,0] with m= 3n−2 and m=
3n+2 and for [n,m,1] with m= 3n−4,m= 3n+4.

�
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0.2

0.2

Solutions [9,31,1]

Figure 1: one regular solution for N = 280.

6 Extended version of the paper.

6.1 Equations

[3,7,0]

N(X) = X3 +X2− 13
10 X + 13

400

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

–1 –0.8 –0.4 0.2 0.4 0.6 0.8 1x

Solutions [3,7,0]

The following polynomial is also a solution for all λ :

14



f (X) =−λ x+25λ x8 +x21+x14− 13
10 x7 + 13

400
for instance for λ = 400:

–2

–1

1

2

–2 –1 1 2x

MICE

In fact the solution when “λ is big” are from one part:

f1(X) =−λ x+25λ x8 = λ
(
25x7−1

)
x

that is to say 0 and 25
−1
7 e

2kıπ
7 for k = 0, . . . ,6. The second set of solution is

f2(X) = 25x13+26x6 +625λ ≈ 25x13+625λ

and the solutions are (−25λ )
1
13e

2kıπ
13 for k = 0, . . . ,12

[3,11,0]

N(X) = X3 +X2− 17
70 X + 17

7840

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

–1 –0.8 –0.4 0.2 0.4 0.6 0.8 1x

Solutions [3,11,0]

[3,5,1]
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N(X) = X3 +X2 + 11
8 X− 11

128

–1

–0.8

–0.6

–0.4

–0.2

0.2

0.4

0.6

0.8

1

–1 –0.8 –0.4 0.2 0.4 0.6 0.8 1x

Solutions [3,5,1]

f (x) =−32λ x5 +λ +x16+x11+ 11
8 x6− 11

128x

[3,13,1]

N(X) = X3 +X2− 19
112X + 19

17920

–1

–0.8

–0.6

–0.4

–0.2

0.2

0.4

0.6

0.8

1

–1 –0.8 –0.4 0.2 0.4 0.6 0.8 1x

Solutions [3,13,1]

[4,2,0]

N(X) = X4 +X3 + 25
56 X2 + 125

784X− 625
87808
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–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

–0.4 –0.2 0.2 0.4x

Solutions [4,2,0]

[4,4,0]

N(X) = X4 +X3 + 49
88 X2− 343

1936X− 2401
1703680

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

–0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8x

Solutions [4,4,0]

[5,13,0]

N(X) = X5 +X4− 26246
10773X3 + 264143

6786990X
2 + 1331

12216582X + 14641
1169859892320
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–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

–1 –0.8 –0.4 0.2 0.4 0.6 0.8 1x

Solutions [5,13,0]

[5,17,0]

N(X) = X5 +X4− 505466
1071455X

3 + 517478
129646055X

2 + 191139
49913731175X + 828269

4861846985100875

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

–1 –0.8 –0.4 0.2 0.4 0.6 0.8 1x

Solutions [5,17,0]

[5,11,1]

N(X) = X5 +X4 + 1355
544 X3− 1885

30464X2− 345
974848X−

115
1856110592
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–1

–0.8

–0.6

–0.4

–0.2

0.2

0.4

0.6

0.8

1

–1 –0.8 –0.4 0.2 0.4 0.6 0.8 1x

Solutions [5,11,1]

[5,19,1]

N(X) = X5 +X4− 623
1872X3 + 35231

16061760X
2 + 10633

7709644800X + 10633
264595009536000

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

–1 –0.8 –0.4 0.2 0.4 0.6 0.8 1x

Solutions [5,19,1]

[7,19,0]

N(X) = X7+X6− 250573
70304 X5+ 15738440127

380204032000X
4+ 1616936130527

9895190136832000X
3+ 118110645017

8232798193844224000X
2−

5415437771
44522972632309563392000X + 92062442107

1854007817165581914944307200000
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–1

–0.8

–0.6

–0.4

–0.2

0.2

0.4

0.6

0.8

1

–1 –0.8 –0.4 0.2 0.4 0.6 0.8 1x

Solutions [7,19,0]

[7,23,0]

N(X)= X7+X6− 13439
19250X5+ 115793631

22586795000X
4+ 4543346861

549084986450000X
3+ 5295509

13727124661250000X
2− 843657

628908216355168750000X+
5343161

22571767448273548505000000000

–1

–0.8

–0.6

–0.4

–0.2

0.2

0.4

0.6

0.8

1

–1 –0.8 –0.4 0.2 0.4 0.6 0.8 1x

Solutions [7,23,0]

[7,17,1]

N(X)= X7+X6+ 673177
186340X

5− 232819511
4148673760X

4− 13989941649
35139266747200X

3− 562316989
13528617697672000X

2+ 317057
654785096567324800X−

317057
1275586846622805442880000
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–1

–0.5

0.5

1

–1 –0.5 0.5 1
x

Solutions [7,17,1]

[7,25,1]

N(X) = X7+X6− 1203647
2434432X

5+ 1513386395
504725917696X

4+ 3365775485
997338413367296X

3+ 564207339
4914883701074034688X

2−
111082029

427319648506180871913472X + 37027343
1240334593196852549369068519424

–1

–0.5

0

0.5

1

–1 –0.5 0.5 1
x

Solutions [7,25,1]

[8,5,0]

X8 + X7 + 189
832X6− 1519

13312X5 + 36015
5537792X

4− 215061
143982592X

3− 45619
9214885888X

2 + 319333
958348132352X +

319333
1594691292233728

21



–0.8

–0.6

–0.4

–0.2

0.2

0.4

0.6

0.8

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1x

Solutions [8,5,0]

[8,7,0]

N(X)= X8+X7+ 28
85 X6− 14

187X5+ 7
9350X4− 1932

6755375X
3+ 161

148618250X
2+ 23

6316275625X+ 23
94491483350000

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

–1 –0.8–0.6–0.4–0.2 0.2 0.4 0.6 0.8 1x

Solutions [8,7,0]

[8,4,1]

N(X)= X8+X7+ 13
176X6− 187083

862400X
5+ 17064099

303564800X
4− 40299571

6678425600X
3+ 246167259

747983667200X
2− 1066724789

164556406784000X−
13867422257

810933972631552000
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–0.6

–0.4

–0.2

0

0.2

0.4

0.6

–0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8x

Solutions [8,4,1]

[8,8,1]

N(X)= X8+X7+ 1207
3344X6− 851683

9563840X
5− 12729583

8140740608X
4− 87613529

309348143104X
3+ 3403397229

3538942757109760X
2+

410338673
268959649540341760X + 6975757441

233844277696354739814400

–0.8

–0.6

–0.4

–0.2

0.2

0.4

0.6

0.8

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1x

Solutions [8,8,1]

[9,25,0]

N(X)= X9+X8− 268466
57239 X7+ 377495813029

8840907899824X
6+ 413656879904907

2119368964469508752X
5+ 12304828054251749

996713791562436331960576X
4−

2016962935969613
13792525447640993961670450688X3+ 57217346608047

1049280165954736256628041206540288X2+ 2902085007
2130338531221244525599674518192939008X+

22249318387
12640627189356212335708507331037005997751533568
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–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

–1 –0.8 –0.4 0.2 0.4 0.6 0.8 1x

Solutions [9,25,0]

[9,29,0]

N(X)= X9+X8− 3171229688
3433022619X

7+ 12964501623920
2205535082508693X

6+ 13450720325129528144
1110030908637142840678785X5+ 68635259350872716128

140189133544510680777845794005X4−
563378090146829056

196573203056112876586695372353811X3+ 6736550307020061440
11261775713673813363299935122968402618823X2+ 22686778689766400

3262885539298427619562253503112758259154206613X+
2835847336220800

658915285859971494652443714988122706538556183025198791

–1

–0.8

–0.6

–0.4

–0.2

0.2

0.4

0.6

0.8

1

–1 –0.8 –0.4 0.2 0.4 0.6 0.8 1x

Solutions [9,29,0]

[9,31,1]

N(X)= X9+X8− 87004837
132721650X

7+ 988698212699
276694777878750X

6+ 7649466909707441
1433863961228011500000X

5+ 778364618387927033
4619802143279560952137500000X4−

31235560755437909
45292540212712815574756050000000X3+ 886646005540711

8584068683814396371805640376250000000X2+ 44262730811
55919075997419496364905314451000000000000X+

1018042808653
3153103873396184675257032714649680600675000000000000
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0.2

0.2

Solutions [9,31,1]

[9,23,1]

N(X)= X9+X8+ 446725777
94325000X7− 14305770645413

267147265000000X
6− 13328514939091617283

32267382403025000000000X
5− 247787301154250111

9075934650450850000000000X4+
1342628342958548400883

3424350143615105705000000000000000X3− 784562691765830249
5093720838627469736187500000000000000X2− 8686521311430279

1939688895349340475540200000000000000000000X−
55014634972391767

8527985765381631251907679274800000000000000000000000

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

–1 –0.8 –0.4 0.2 0.4 0.6 0.8 1x

Solutions [9,23,1]

6.2 Another proof of Derksens formulation

Let f = ∏n
j=1(x−zj). Define

f j = ∏
i 6= j

(x−zi), j = 1, . . . ,n.

Then
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f ′j
f j

= ∑
i 6= j

1
(x−zj)

. (16)

Derivating this and plugging in zj we get

f ′′j f j − f
′2
j

f 2
j

(zj) =−∑
i 6= j

1
(x−zi)2(zj) =−∑

i 6= j

1
(zj −zi)2 . (17)

Therefore for all j, ( f ′′j f j − f
′2
j )(zj) = 0 if and only if ∑i 6= j

1
(zj−zi)2 , i.e. if the MICE

equations are satisfied and zj is a root of f . On the other hand we have

f = f j(x−zj),

f ′ = f ′j(x−zj)+ f j ,

f ′′ = f ′′j (x−zj)+2 f ′j ,

f ′′′ = f ′′′j (x−zj)+3 f ′′j ,

(18)

and therefore

(3( f ′′)2−4 f ′ f ′′′)(zj) = 12(( f ′j)
2− f j f ′′j )(zj)

= 0.
(19)

6.3 Three regular m-gons

Proposition 6.1 The only solution shapes [3,m,0] are for m = 7 or m = 11. The only
solution shapes [3,m,1] are for m= 5 or m= 13.

Proof Proceeding as before, we fix one m-gon to be the m’th roots of unity and use two
variables x and y to describe the remaining two. Again using formula in lemma 5.1,
S3m+p is reduced to a system of three equations in two unknowns. The case p = 1 is
included in square brackets:

−
(m−1)(m−5)

12
[+1]+

m(1+xm(m−1))
(1−xm)2 +

m(1+ym(m−1))
(1−ym)2 = 0 (20)

−
(m−1)(m−5)

12
[+1]+

mxm(xm+m−1)
(xm−1)2 +

mxm(xm+mym−ym)
(xm−ym)2 = 0 (21)

−
(m−1)(m−5)

12
[+1]+

mym(ym+m−1)
(ym−1)2 +

mym(ym+mxm−xm)
(ym−xm)2 = 0 (22)

Remark 6.1 In general, this method reduces Snm+p to a system of n equations in n−1
unknowns.
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We can also make the variable changes X = xm and Y = ym to eliminate m from the
exponents, which allows m to be treated as a variable in the calculations. A lexi-
cographic Gröbner basis for [3,m,0] with X > Y > m was obtained after 536 seconds
by computing a degree reverse-lexicographic Gröbner basis thenusing FGLM. This
was done using Singular[Gre99]. The single polynomial involving m alone is 9m10−
990m9 + 41657m8− 833256m7 + 8052130m6− 35019540m5 + 56505450m4− 33100200m3 +
8675125m2− 1050750m+ 48125which factors as (m− 7)(m− 11)(3m− 5)(3m− 1)(m2−
30m+ 5)3. We are only interested in the integer partial solutions m = 7 and m = 11,
both of which lift to solutions. Similarly, the same calculation took 657 seconds for
the case [3,m,1] and the relevant polynomial is 9m10−990m9+ 41213m8−796104m7+
6974386m6−22637556m5+9529122m4+27373752m3+12827269m2+2364642m+156065.
Its factorization is (m−5)(m−13)(3m−7)(3m+1)(m2−30m−7)3 and both integer partial

solutions lift. � U(X) = 12
(
∑n

i=1aiXmi−1im
)2

+3
(
∑n

i=0aiXmi−1im(mi−1)
)2

−12∑n
i=0aiXmi∑n

i=0aiXmi−2im(mi−1)−4 ∑n
i=0aiXmi∑n

i=0aiXmi−2im(mi−1)(mi−2)
−4 ∑n

i=0aiXmi−1im∑n
i=0aiXmi−1im(mi−1)(mi−2)

must be divisible by X and N(Xm) so that m > 2 and V1(X) = X2U(X) should be
divisible by N(Xm)

V1(X) = 12
(
∑n

i=1aiXmiim
)2 +3

(
∑n

i=0aiXmiim(mi−1)
)2

−12∑n
i=0aiXmi∑n

i=0aiXmiim(mi−1)−4 ∑n
i=0aiXmi∑n

i=0aiXmiim(mi−1)(mi−2)
−4 ∑n

i=0aiXmiim∑n
i=0aiXmiim(mi−1)(mi−2)

this equivalent to divisibility of
W1(X) = 12

(
∑n

i=1aiXiim
)2 +3

(
∑n

i=0aiXiim(mi−1)
)2

−12∑n
i=0aiXi ∑n

i=0aiXiim(mi−1)−4 ∑n
i=0aiXi ∑n

i=0aiXiim(mi−1)(mi−2)
−4 ∑n

i=0aiXiim∑n
i=0aiXiim(mi−1)(mi−2)

by N(X).

6.4 Different Polygons

We tried using 3 different polygons for the case N = 16 and there were no solutions,
neither with a point nor without a point. We tried the partitions 1+2+2+11, 1+2+3+10,
1+2+4+9, 1+2+5+8, 1+2+6+7, 1+3+3+9, 1+3+4+8, 1+3+5+7, 1+3+6+6, 1+4+4+7, 1+4+5+6,
1+5+5+5 (there is the solution we know), 2+2+12, 2+3+11, 2+4+10, 2+5+9, 2+6+8,
2+7+7, 3+3+10, 3+4+9, 3+5+8, 3+6+7, 4+4+8, 4+5+7, 4+6+6, 5+5+6.

7 Conclusion

We have a new application of computer algebra in biological physics. We were able
to solve the system completely up to N = 12 using the symmetry and the most recent
techniques for the Gröbner bases computation. Starting with solution shapes of regular
polygons we found solution families for N = 8,16,21 as well as single solutions for N up
to 280for which we have reason to assume that they are part of solution families as well.
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From the biophysical point of view, solutions for N about 1000 are needed since
there are thousands of proteins in a cell membrane [Kim99]. But even small numbers of
proteins can give some interesting insights. We have extended the results in the original
paper[KJG98] from N = 5 to 12.

This work is a particular instance of the more general problem of finding a global
minimum of an energy function and in particular we want want to point out similar work
related to the classification of the stable solutions of the n body problem.
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