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Abstract

We examine a system of equations arising in biophysics whose solutions are
believed to represent the stable positions of N conical proteins embedded in a cell
membrane. Symmetry considerations motivate two equivalent refomulations of the
system which allow the complete classification of solutions for small N < 13. The
occurrence of regular geometric patterns in these solutions suggests considering a
simpler system, which leads to the detection of solutions for larger N up to 280. We
use the most recent techniques of Grébner bases computation for solving non linear
systems.

1 Introduction

Both the shapes and positions of proteins which are embedded in a cell membrane can
influence their biological function. It is the interaction between the proteins which dic-
tates how they become arranged, but little is known about this interaction and its exact
cause is uncertain. However, for conical proteins, a likely explanation is the bending
of the membrane caused by the proteins. Specifically, an embedded conical protein in-
duces a curvature in the two dimensional membrane which influences the positions of
neighboring proteins. There is an energy associated to this curvature and the proteins
will tend to arrange themselves so as to minimize this energy. Recent work in [KJG98]
shows that any minimum energy arrangement is a zero energy arrangement. Further-
more, if z is the position of the ith protein using complex coordinates, it was also shown
that the energy at the ith protein is a constant multiple of |fi(zy,...,zy)|? where

N 1
filz,....29) = Yy ——— =0.
A
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Therefore the N proteins are at equilibrium if and only if (z,...,2y) is a solution to the
Membrane Inclusions Curvature Equations, or MICE:

fi(z,...,zy) =0, i=1,...,N. (1)

For brevity, we refer to the N-th system of equations as Sy.

One possible application of knowing how these proteins arrange themselves is to
deduce the form of proteins by examining the shapes they form. In this case, if they
arrange themselves according to our solutions it is very likely that they are conical.
Determining the shapes of proteins is still an unsolved problem in biology.

Grobner bases are used to find the solutions of Sy for several N. In section 2, we
review the most efficient algorithms for computing Grobner bases and their implemen-
tations. Direct application of these algorithms gives all the solutions of the problem for
N < 7 and is described in section 3. Because the difficulty of computing Grobner bases
increases rapidly with respect to the complexity of the input equations, it is necessary
to reformulate the system before most of the computations will successfully terminate.
Two reformulations of Sy into equivalent systems are given in section 4. The first refor-
mulation employs an algorithm for converting the numerators of the Sy equations into
symmetric polynomials, which are then expressed in terms of the elementary symmet-
ric functions prior to computing. The second reformulation uses a differential equation
describing the minimum polynomial for the coordinates of a solution and gives directly a
system already formulated using the elementary symmetric functions. Both reformula-
tions can be used jointly to decrease the computation time. Finally, we consider a much
simplified system obtained from Sy by limiting our search to those solutions which have
a certain geometric regularity to them; namely, we look for solutions whose coordinates
form concentric rings of regular polygons. While this last approach does not detect all
solutions for a given N, it does allow many to be found.

Our main result is a complete classification of the solutions for small values for N:

Theorem 1.1 There are no solutions for N < 12 except for N = 5 (finite number of solu-
tions) and N = 8 (Sg form a 1 dimensional variety).

The proof of this theorem is included in sections 3 and 4. For larger values of N we have
only a partial result:

Theorem 1.2 There exist solutions to Sy for N =5,8,16,21,33 37,40,56,65,85,119 133
161175208 225261 and 280 Moreover the number of solutions fir S;g and S1 is
infinite.

We explained in section 5 how we find this list of “regular solutions”.
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2 Tools for solving polynomial equations

We now review some major algorithms for solving multivariate polynomial systems. The
reader is also referred to [Dav93, Bec93, CLO92, CLO98] for a more detailed introduc-
tion.

Let Q[x1,...,Xn] be the polynomial ring with rational coefficients, F a finite list of
equations and | the ideal generated by F.

The main tools we use are Grobner bases [Buc65, Buc70, Buc79, Buc85]. We recall
that, in general, when the number of equations equals the number of variables the
shape of the Grobner basis G for a lexicographical ordering is the following:

hin(Xn)
Xp—1 = hnfl(xn)

X1 = h1<Xn)

where all the h; are univariate polynomials. Of course the shape of a lexicographical
Grobner basis is not always so simple but it will allways be the case in this paper (ex-
cept one very easy non zero dimensional system). From this Grobner basis it is rather
easy to compute numerically all the complex roots: we first solve numerically the first
equation [DG99], and we find z,...,zy a guaranteed approximation of all the complex
roots of h,. Then we substitute these values into the other coordinates.

Even if all the algorithms for computing Grébner bases do not depend on a specific
order it is well known [Fau93] that it is more efficient to compute first a Grobner basis for
a Degree Reverse Lexicographical ordering and then change the ordering with a specific
algorithm. In this paper we have used a standard implementation of the Buchberger
algorithm and the FGLM algorithm in Singular [Gre99] for easy cases. When the degree
of the univariate is big > 500we have used:

e the F4 [Fau99] algorithm for computing a DRL groebner basis.

o the K, [Fau94] algorithm to change the ordering. For the bigger computations we
found that the dimension of Q[x, ..., %]/l is bigger than 10P !

These two algorithms are implemented in an experimental software callled FGb [Fau].
For generating the input equations we have used the Maple [Cha91] computer alge-
bra system.

3 First experiments

First, we observe that the set of solutions to Sy is invariant under translation and multi-
plication by complex scalars. These considerations allow us to change coordinates so
thatzy=0and zy_1 = 1.



Since the fj in the system Sy are rational functions we need to transform the system
into a polynomial system. In order to avoid "parasite” solutions, where z = z; for some
i # |, we introduce a new variable u and let B be the numerator of each f; in §y. That is
to say

P.(zl,...,zm:;k!]@—zk)z:o, i=1,...,N (2)
1 K#IL |

uni I'I’J\l i1(z—z)=1

P(zl, LZn)=01i=1,...,N
S\I z21=0

=1

Proposition 3.1 There is no solution for N < 4 and N = 6. The only solution for S5 is a
regular pentagon.

Proof For N <5it takes less than 0.1 second to compute a lexicographic Grobner basis
with FGb on a PC Pentium Il 300 Mhz. For N < 5 the Grdbner basis is {1}. For N=5
we can factorize the univariate polynomial and find a decomposition into irreducible
varietes: V =V, UV, UV3UV,UV5U Vg and

Vi= 23—+ 22— Z5, 4+ Z5° — 25, 25" — Z5° + 25° — 75 + 1]

For any polynomial pin xg,...,Xy and any permutation o, set o.p= p(xg(l), o ,XG(N))
and o(V)={o(v): YweV}. Itis easy to check that

(24,251 =V
(Zs, z5)V1 = V3
(Z )V]_ = V2
(z3,24,25)V1 = V5
(z3,25,4)V1 = Vs

Now we have
z§+ 1

z5+1

so that zs = e’s' and we see that the only solution is the regular pentagon.
The case N =6 is a little more difficult: the degree of the polynomial uI‘IN I‘I'J‘l ir1(z—

Z54—Z53+Z52—Z5—|—1—

zj)=1lis 1+ ( Y _16and so big that it does not help the Grobner basis computation.
In that case we can replace this condition by uzz4z57; = 1 and it takes only 13.6 seconds
to find {1} with Fgb. O
In conclusion the straightforward approach solves the problem for small N but leads
to several problems:

e intermediate computations contain the same solution several times (action of the
symmetric group), so the degree of the intermediate varieties are big.
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e it is not easy to remove the parasite solutions z = z;.

We have stopped the computation for N = 7 after 2000seconds.

4 Using the symmetry

It is clear from 1 that if (z,...,2zn) € CN is a solution of Sy then (z,,...,zy,) is also a so-
lution of Sy for every possible permutation of (is,...,iN) of (1,...,n). Hence it is enough
to compute the polynomial

fX)=(X—z)- (X—zn) = XN —er XNt 4 (—1)Ney

where the g = g(z,...,2zy) are the elementary symmetric functions in z,...,zy. In
this paper we will say that f is solution of Sy. In general solving efficiently a polynomial
system with symmetries is an open issue especially when the group is not the whole
symmetric group. In our problem the solutions are invariant under the symmetric group
but unfortunately f; is not a symmetric polynomial in (z1,...,z,) but only in {z; | j #i}.
If we exchange the role of z; and z then fj remain unchanged while fj becomes fy and
reciprocally.

zj—2z fi=fifori#jk fj——f

4.1 nilCoxeter algebra

Let e be the rth elementary symmetric function in N variables. For A = (A1,...,A) let

mA:Z;'/\ll"';/\rr (3)

denote the monomial symmetric functions, where the sum ranges over all monomials
whose exponent vector is equal to a permutation of A. Solving S| is equivalent to finding
a polynomial
f— XN _ elxN—1+esz—2 et (—l)NeN
{ f is squarefree.

(4)
whose roots are a solution to Sy. For any polynomial pin zi,...,zy, set

d(p) — p(Z]_,ZZ,,ZN>_ p(z|7227-7z|—172172|—|—l,7ZN> (5)

4 — 4

Let 11 be the ideal generated by P, ..., Ry, we define by induction

e =1lk-1: ( |_| (Zil _Ziz>) (6)

i]_<|2

and | =l,. Note that B = (1,i).P, for 1 <i <N and Py is symmetric in z,,...,2y.
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Theorem 4.1 Define for 1 <i; <--- <iks1 <N
PI]_,...,ik - I:)I

L. _ lv"':ik—l7ik+l
L--slolk+1 —
4

R

k Zik+1
sothat R,  €lxand R, i is symmetricin z,,...,z, and in the complementary set of
variables. Hence

He = > R

1<ii<-<ik<N

17*|k

is a true symmetric function

The next theorem gives an efficient method for computing the H;.

Theorem 4.2 For1<ij<---<ix<N

Ry i = (Li1).(2i2). -+ . (K ik) Qk

where Q= Py, .k and we have

Qx = Qk-1

The H; were first computed in the monomial basis m, using code specifically written
for this application in C++ in the small computer algebra system Gb; then the polynomi-
als were expressed in the g basis using ACE [AS98], SF [J.98] and symmetrica. If we
set z,=0and z,_; = 1 prior to computing the H;, the reformulated system §N consists
of the polynomials Hs,...,Hn,Py_1,Py in the variables eq,...,en_». It turns out that N
is easier to solve: it takes 2 minutes to compute a Grobner basis for N = 10 with FGb,
while the calculation for S; was unsuccessfully stopped after 2000 seconds.

4.2 Harm Derksen formulation

Our second reformulation was found by Harm Derksen[Der99], and appeals to the struc-
ture of the polynomial f in (5). First, a lemma.

Lemma 4.1 Forany (z,...,zy) € CN,

— 2enen— 2

21]2_ z

Proof Since Zﬂ-\':l(l/zj) =en-1/en and 3. (1/7z)) = en_2/en, We have

%1_('“ 1)2 oy 1
j:lZJ2 =14 iS5 44
:eﬁlfl_zeN—Z‘

& en



Theorem 4.3 (z,...,2zy) is a solution to Sy if and only if

f is squarefree and
3(f")2 —4f'" is divisible by f

where f =N (x—2z) =xN —ep™ 1 exN2 — ... 1 (—1)Ney.

Proof Let S be the rth elementary symmetric polynomial in x—z;,...,x— zy. Note that
replacing X by z in § gives the rth elementary symmetric polynomial in z —z,...,7 —
Z_1,Z —7%Zy1,...,Z — 2N, Which we denote by E}. Furthermore, the kth derivative of f is
fK =KIS, « so that fK(z) =KIE! . Seth:=3(f")2—4f{". Then

h(z) = 3(2Eri\1—2)2 - 4Eri\1—1(3!E|i\1—3)

i 2 i i (7)
=12((En_2)" — 2EN-1BEn-3)-
By Lemma 4.1
Ei 2 2EI Ei
fi = 1 5 = ( N—Z) i N2—1 N—3 (8)
IEA <Zi - Zj) (ENfl)

so that h(z) is a constant multiple of the numerator of fi. Therefore f divides h and the
z are distinct <= h(z) = 0for all i and the z are distinct < fi(z,...,zy) = 0for all i
< (z1,...,2,) is a solution of §y. O

Let r be the remainder of dividing h by f, and let cj, 1 < j < dedr), be the coefficient
of x) in r. Then each cj is a polynomial in the g and Theorem 2.3 implies the system
cj(ey,...,en) =0, 1< j <dedr), is equivalent to Sy.

Computations with Singular [Gre99] using the formulation of Theorem 2.3 reveal a
one-dimensional family of solution shapes for N = 8:

Proposition 4.1 The coordinates of a solution to S are given by the roots of the poly-
nomial

28
t8 + €t6a+ 14t%a% + 2&2a® —t — 7a°

where a can be arbitrary. Setting a= 0, the roots form a regular heptagon with a point in
the center. Varying a deforms this into irregular hexagons with two points in the interior.
Solutions N=8 a=0 Solutions N=8 a=100

o 14 204

0.5 10

1708060402 | 02040608 1 36 4 2 24,6 8

®-1- -20 4



This is a one dimensional family of solution shapes.
Proposition 4.2 There are no solutions to Sy for N = 3,4,6,7,9,10,11, and 12

Proof For N = 3,4, short (less than one minute by Maple on a Sun Ultra-5) Grobner
bases computations show §N, hence Sy, has no solutions. For the remaining N, com-
putations using one or both of the above reformulations show there are no solutions of
the equivalent systems. For N > 7 we use FGb for the computations. When N > 9 an-
other difficulty arises in the computation: it is impossible to compute the discriminant of
g=x""2—epxN 34 exN4—... 4 (—1)Ney_,. At the begining we add only the condition
0(0) =en_2 # 0 and g(1) # 0 and we compute a lexicographical Grobner basis. In the
last we remove the bad solutions. [J

5 Regular solutions

The geometry of the solutions known thus far lead one to ask: What other regular poly-
gons are solution shapes (with or without a point in the center)? What about two regular
polygons, or nregular polygons? We use the notation [n,m, p| to denote a solution shape
consisting of n regular concentric mgons and p =1 or 0 as there is or is not a point in
the center. Thus a solution [n,m, p] will be a solution for Symp. We begin this section by
trying to find “by hand” some regular solutions then give a more systematic way to find
these solutions.

5.1 One regular m-gon: [1,m, p

Since the solutions are invariant under translation and multiplication by complex num-
bers, it suffices to examine the m'th roots of unity.
The main lemma we need is

Lemma 5.1 Let w be a primitive m’th root of unity. Then

2 oz = °
ml 1 (m—1)(m—5)
;1 (wl — - 12 ®)
m ~ mb"(b™+am(m-1))
j; (fw' =12 (b™—am)?

Proof From Lemma 4.1 we know

1— 2enen-—2

Z%Z‘N 2




where the g are the elementary symmetric polynomials in the z;. The polynomials with
roots w! (1<j<m), w -1(1<j<m-1),and fw! -1 (1< j<m)are, respectively

P(X) = X™—1and

(X+1)m-1 m— m— m m
P(X):sz 14 mx 2+...+(3)X2+(2)X+m (10)
P(X) = (X+1)"= ()"

respectively. substituting in the corresponding values of ey,en_1 and ey_» gives the
result.

O

We first consider the case p=0: [1,m,0]. Let z = w for all i, where w is a primitive
m'th root of unity. Then the i’th equation is

1 1 1 1 1 ™1l 1

N A N T ) P N R PN T

By lemma 5.1, for all i the i’th equation is zero if and only if

w1 (m-1)(m-5
Stz 0

i.e., if and only if m=5 or m= 1. Thus the regular pentagon is the only solution shape
for this case. If p=1, i.e., [1,m /1], we have z = «' fori =1,... mand zy = 0. Then the
N’th equation

1

m
fN=Yy ———=0
JZ (w! —0)

by lemma 5.1. Fori = 1,...,m, the i’th equation is
| ;(Z‘_Zﬂz ;W —w)? ()2 ()2 ;(wn —1)2
1 m-1 1
= -(wi)z (lem—i-l) .

Soforalli=1,...,mthe i'th equation is zero if and only if

(11)

1 (m-1)(m-5
gl(wj—l)z__ 12 b

i.e., m=7or m= —1. Therefore the regular heptagon with a point in the center is the
only solution shape in this case.



5.2 Two regular m-gons [2,m,X]

Again we may fix one mgon, Py, to be the nith roots of unity. We intruduce a new
complex variable, x, to describe the second m-gon, P, = xP;, where multiplication of a
polygon P with x means x times each vertex of the polygon.

Proposition 5.1 There are no solution shapes of the form [2,m,Q] or [2,m,1].

Proof We include in square brackets facts for the case [2,m, 1]. Let

W ifi=1,...,m
z=<xw ifi=m+1,... 2m (12)
[0 ifi=2m+1].

Dividing by (-x)? in the i'th equation when i =1,...,m, or (-:1)2 wheni=m+1,...,2m,
we get two equations in one unknown:

(m—1)(m-5) m(1+x"(m-1))

- I S A cw il (13)
(m—1)(m-5) mX"(x"+m-1)

— 1 [+ 1]+ X—1)2 =0. (14)

where we have used the third part of lemma 5.1. Subtracting one equation from the
other gives
1—x2M=0, (15)

so the solution set would have to consist of 2mth roots of unities. But we have already
seen that in the single polygon case the only solutions are m=5 and m= 7, neither of
which is divisible by two. Therefore no shapes of the form [2,m,0] or [2,m,1] can be a
solution. [J

5.3 The Generalization

Using the differential equation of theorem 4.3 we can find some more conditions not
only for the case of regular polygons but for any set of roots to a polynomial N(X). For
the case of regular polygons this raises the chances of successful computations since
we can add the new equations to our old systems.

Definition 5.1 Let N,M,P be univariate polynomials of degree n,m, p. We use the nota-
tion [N, M, P] to denote the set of solutions of Symp with the shape P(X)N(M(X)). In the
particular case P(X) = XP, M(X) = X™ we use the simplified notation [N, m, pl.
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Theorem 5.1 Let N(x) = zP:OaiXi be a squarefree polynomial of degree n such that
ag # 0. Then [N,m, p| (with m> 1) is a solution of Sym.p if and only if p <1 and N(X)
divides

n -

Z}ijaiaj (Mi—1)(Bmj+5-4mi X' ifp=0

i=

j=0

and N(X) divides

n . .

Zja;aj jim(jm+1)(im+1)(3im—4jm+4) X't ifp=1.
i=
=1

Proof Let f(X)=XPN(X™). We know from theorem 4.3 that f is a solution of Sym;p
if and only if f is squarefree and U (X) = 3(f")? — 4f'f" is divisible by f(X). The first
condition is true as soon as p < 1 since 0 is not a root of N(X).
Considering the case p =0, we find:
n

2 n .
U(X)=3 (Zim(mi_ 1)aixmi—2> —4 <.Zlimaixmi_l> (Z im (mi— 1) (mi—Z)aiXim—3>

where i3 =2if m=2and i3 =1 else. Since X and f(X) are relative prime, f divides
U iff f divides XU =V with

n \ 2 n _ n :
V(X)=3 im(mi—l)aixm'> —4( imaxm') ( im(mi—1) (mi—2)aiX'm>
b: Simax) (5
hence V =W(X™) is divisible by N(X™) iff W(X) is divisible by N(X). We can rewrite
the sum:

W(X) = n? iijaiaj (mi—1) (3mj+5—4mi) X"+,
=1

We consider now the case p =1 and find:

n 2 n N
UX)=3 (,Zaa (im+ 1)(im)><"“‘1> ~4 (_Zjai (im+ 1)xim) (Za(im+ 1) (im) (im — 1)xim—2>

must be divisible by X and N(X™) so that m> 2 and Vi(X) = X?U(X) should be
divisible by N(X™)

n 2 n n
vl(X)zs<_;a(im+1)(im)xim> —4(_;a(im+1)xim> (_;ai(im+l)(im)(im—1)xim>
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this equivalent to divisibility of

n 2 n n
Wi (X) =3 (_Zla;(ier 1)(im)xi> —4 (_;a<im+ 1)xi> (_;a(ier 1) (im) (im — 1)xi>

= ¥ aajjm(jm+1)(im+ 1)(3im—4jm+ 4)X'*1

=]

l:
=1
]
Remark 5.1 We can always suppose that N(X) = X"+ X"-1 4 z{‘;ozaxi

Remark 5.2 In the following we give an explicit value to n and p and we consider m as
a variable.

Corollary 5.1 There are no solutions of the form [N, 2,1].

Proof From the proof of Theorem 5.1, f(X) = XN(X) does not divide U (X)
because X does not divide U (X). O

Corollary 5.2 FordegN) =1, [N,m,0] is a solution iff( m—1)(m—5)=0and N(X) =1+X

Proof We apply the theorem 5.1 to N = 1+ X and we find W(X) = —X?(m—1) (m—5).
U

Corollary 5.3 FordegN) =1, [N,m,1] is a solution iff m=7 and N(X) = 1+ X
Proof We apply the theorem 5.1 to N =1+ X and we find
Wi (X) = X(—4+4m?) + X?(m® — 2n? — 7Tm— 4)
and the remainder of W; divided by N should be zero:
—m(—7+m)(m+1)x
O

Corollary 5.4 degN) =2, [N,m,0| there is no solution.
Proof We apply the theorem 5.1 to N = ag+ X + X2 and we find

W(X) = — (4(2m—1) (2m—5)X>+4 (m—1) (4m—5) X + (m— 1) (m—5)) X?

and the remainder of W divided by N should be zero:

— (—5—m?+18m— 60agm+ 16agn? + 20ag) X
— (=P +18m— 5+ 16aon? — 48agm+ 20ag) ag = 0

we can can compute a lexico Grébner of the coefficients:

[20ag — m? 4 18m—5,m (P — 18m+5)]
and the number of solutions is O.
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5.4 Summary of the regular solutions

An extended version of this paper including a complete list of solutions, pictures and all
the polynomials can be found at http://calfor.1lip6.fr/~jcf/MICE/mice.ps.gz. We
summarize all the results:

Theorem 5.2 For fixed values of n and p we give all the possible values of m and for
each m all the solutions [n,m, p|. The results are summarized in the following table.

Shape Values of m Values of N
[1,m, 0] m=5 N=5

[1,m, 1] m=7 N=8

[2,m, Q] 0

[2,m, 1] 0

[3,m, 0] m=7 m=11 N=21, N=33
[3,m, 1] m=5 m=13 N=16 N=40
[4,m, Q] m=2 m=4 N=8 N=16
[4,m, 1] m=5 N=21
[5,m, 0] m=13 m=17 N =65 N =285
[5,m, 1] m=11 m=19 N =56 N=296
[6,m, 0] 0

[6,m, 1] 0

[7,m, Q] m=19 m=23 N=133 N=161
[7,m1  m=1m=17m=25| N=8 N=119 N=175
[8,m, 0] m=5 m=7 N =40 N =56
[8,m, 1] m=4, m=8 N =37, N=65
[9,m, 0] m=25 m=29 N =225 N =261
[9,m, 1] m=23 m=31 N =208 N =280

Corollary 5.5 Using this information we could find the following solution families:

11 11
f(X) = =324+ A + x84 =58 - ——
(X) +A XX+ g% ~ 128°
13 13
f(X) = —A 2538 £ x2L x4 _ 2257 =2
(x) X+ X° X4 X 16" +400

forN=16and N =21

Conjecture 5.1 For n odd, there will be solutions for [n,m,0] with m=3n—2 and m=
3n+ 2 and for [n,m, 1] with m=3n—4,m=3n+4.

O
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Solutions [9,31,1]
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Figure 1: one regular solution for N = 280

6 Extended version of the paper.

6.1 Equations
3,7,0]

N(X) = X3+ X2 - Bx+ A3
Solutions [3,7,0]

0.8+

0.6 -

0.4+

0.2-

-1-08 -04 0] 02040608 1
0.2
0.4+
08 -
0.8

11

The following polynomial is also a solution for all A:
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f(X) = —A x+25A38 424 xd4_ 13,7, 13
for instance for A = 400
MICE

2

2
In fact the solution when “A is big” are from one part:
f1(X) = —Ax+25Ax8 = A (25¢" — 1)

that is to say 0 and 257 ™ for k= 0,...,6. The second set of solution is

fo(X) = 25x13+ 26x° + 6251 ~ 25x13+ 625)

and the solutions are (—25A )%se%" fork=0,...,12
3,11,0]
N(X) = X3+X2 - 3Ix+ 10
Solutions [3,11,0]
1 -

038
0.6-
0.4
0.2-

-1-08 04 0| 02040608 1
0.2
0.4+
06"
08"

e
3,5,1]

15



N(X) = X3+ X2+ X — 5

Solutions [3,5,1]
1
0.8-
0.6
0.4
0.2+

-1-08 04 | 02040608 1
. 0.2+
0.4
06
08

11

f(X) = —32A x5+ A +x16 4 x4 L6 Ly
3,13,1]

N(X) = X3+ X2~ LS X + 20
Solutions [3,13,1]
SER
- 087 °
061
0.4
0.2

1-08 -04 02 0.4 9f6 08 1
o ° —-0.2 ]
0.4
30.6 ]

©-0.87 |

-1 4

[4,2,0]

_y4 3, 25y2 , 125 625
N(X) = X4+ X3+ 22x24 128% _ 625

16



Solutions [4,2,0]
0.8€
0.6%
0.4%

0.2

—04 02 0 02y, 04
-0.2

-0.4

-0.6

-0.8 ]

[4,4,0]

N(X) = X*+X3+ g3 X? — 156X — 1705680
Solutions [4,4,0]

° 0.8*: °

0.65
0.4

° 0.2

-0.8-06-04-020] 02 04 06 038
~0.2

-0.4

-0.6 ]

-0.8 1

[5,13,0]

W5, w4 26246y3 | 2641432 , 1331 14641
N(X) = X+ X" — 26573X° + §786900<~ + 12216582X + 1169859802320

17



Solutions [5,13,0]

l*:O

o

[5,17,0]

w5, wA 5054663 , 517478 2 191139 828269
N(X) =X+ X" — 1571255X" + 120646055 + 20013731173 T 7861846985100875
Solutions [5,17,0]
1.

087,

o

o ° 0.627

0.2

Lo —0.2
° ° .0 0.4 o
Oo o 00—0.6} L
o8]
S R
(5,11,1]

5, w4, 13553  1885vw2 345 v 115
N(X) =X+ X"+ 7 X" — 35564X° — 974848X — 1856110592

18



Solutions [5,11,1]
° 1— °
0.08*; O

067 °

[5,19,1]

w5, w4 6233, 35231 10633 10633
N(X) = X°+ X% — $5 X3 + 155617605 + 7709644800< T 2645095006536000

Solutions [5,19,1]

o 1*
. e
O.&i R o
o o 1
o ] o
° o o 0,676 O° o
. 1 o 4 o
° o
o % 0.4+
o . .
o ° °
° 0.2 o

[7,19,0]

_ w7, w6 _ 250573y5 , 15738440127 1616936130527 v 3 118110645017 2
N(X) =X"+X®— S5z X +380204o32003( + 5895100136832000 T 82327981938442240
5415437771 L 950624
STt raus e 337000 T TE5A007ETY Sess o IABAATOTZ00000

19



Solutions [7,19,0]

L 1*: ° .
- 08 . .
S T
A VS
.7 024 o
-1-08 04 | 02040608 1
.0 e =02 S
°Ooow_g.4go:§’°° )
R
Y% R
T, ot
7,23,0]
N(X) - ;g;; 1XG — 79950+ 75536798000+ 5a008458645000% + T3TIT 124561750008 ~ 528908216355 16875
22571767448273548505000000000
Solutions [7,23,0]
RS
B
. 067 .
-1-08 -=04 | 02040608 1
. et D029
S VS .
e f—f)oegéoi’ Cee
T sl L
SIS N
7,17,1]
N(X) = X7+ XO+ 355320X° — idp673760C — 3513006674720 — T3528617607672008 T 6547850665673248

317057
1275586846622805442880000
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Solutions [7,17,1]

o
o o
17 o
°
° o
o o © o
© ) o
o o ° o
° . °
o °
o 0 0.5
) ) 05 e o
o © °© o o
o °
° o © o
° o °
o e °
o o )
°
o o o °
-1 05, 05, 1
o o o
o
e o
N o o . . . o
o °
o o o o o o o
o . o o N
° o 051 N
) © o o
° o o
o °© ©
o o . o
o o
o o
o —1j °
[7,25,1]

_\7.L 6 1203647y5 , 15133863954 , 3365775485 3 564207339 2
N()i)ll_os)z(oztx 24344325 1 504725917608 T 99733841336729& T 2914883701074034685

+ 37027343
4273196485061808719134?& 1240334593196852549369068519424

Solutions [7,25,1]

8,5,0]

8 7 189/ 6 1519 5 36015 y4 215061 3 45619 2 319333
X31;:_33>§ + 832X° — 13312X° 1 5537792X " — Ta3082502¢ — 9214885888% T 958348132352 T

1594691292233728
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BT, 28v6 5 4
N(X) = X8+ X7+ g3XC — £ X5+ oo X4 —

8 7 6__
N(X) = X84+ X7+ L3 X6
13867422257
810933972631552000

Solutions [8,5,0]

o

o

o

0.8

0.6

047 -°

0.2

o

~1.-0.8-0.6-0.4-0.2 0.2

o

0.2 )
041 o
061 )
-0.81
8,7,0]
1932
6755375

04,06 08 1

o

3 161
X+ 12861825

Solutions [8,7,0]

187083

1. -08-06-04-0201

o

X5+

-0.24

0.4

°—0.6 ]

8,4,1]

17064099

4

40299571

<tz

246167259

2

23

T te750%° + saTorEErsK + SAATTREIE00

1066724789

862400

30356480

22

"~ 667842560

4798366720

"~ 16455640678400



Solutions [8,4,1]

° 0.6 o

° °

0.4

02

o o
o o

08 <0.6 04 02 0] 02 04 06 038

021 °
~0.41
o _0-607 5 o
8,8,1]
w8, w7, 12076 851683 12729583 w4 87613529 /3 3403397229 2
N(X) =X®+ X"+ 3572X" — 9553840%~ — 81407406088 — 300348143104 T 3538942757100760-
410338673 n 6975757441
268959649540341768 | 233844277696354739814400

Solutions [8,8,1]

0.8
L. 061 ..
L, @.4% o L,
RS I

-1 208-06-04-02 | 02 04,06 08 1

027 .
. ° ° _@4% . o ° )
SRS I
. 08+ )
[9,25,0)

N(X) _ x9+x8_ 268466x7+ 37749581302 6_|_ 413656879904907 5+ 12304828054251749 4

- 57239 884090789982 21193689644695087é§ 9967137915624363319605
2016962935969613 3_% 57217346608047 + 9 007
1379252544764099%%%%%%%%50é§8 10492801659547362566280412065403%8 213033853122124452559967451819293966@

12640627189356212335708507331037005997751533568
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Solutions [9 25,0]

o 14
° 1 °
° °
o o
°
o o OO’Scr s © o
° ° o o
° °
o 0°a—° o0 o .
o o ° o
. o o o o
° ° ° , o o ©
° o b ° o
2 o
o o o 004 ° o0 © °
° ° °
° ° % o _© °
o o o” © o o

o
° o ° O.Zi 0o o °

-1-08 -°504 0] 0204°06:08 1
o ° o o _0,272 Co T
I E DU DS

9 Jo

° ° 20640 ° o o ° °
! ]
o]

o ) ° 1&8‘{ Lo o
SRRV R
[9,29,0]
N(X) _X9+X8— 317122968 7_|_ 12964501623920 6+ 13450720325129528144 5+ 6863525935087271
— 343302261 22055350825086923( 11100309086371428406787§% 14018913354451068077
563378090146829056 3+ 6736550307020061440 . 2268677868976¢
196573203056112878%%%%3?%5%%%%%%% 1126177571367381336329993512296840261%23 32628855392984276195622535(

658915285859971494652443714988122706538556183025198791
Solutions [9 29,0]

001"0

o
o
oo
o
o

[9,31,1]

N(X) —X9+X8 87004837 + 988698212699 6+ 7649466909707441 5+ 778364618387927033
- 13272165&( 276694777878753( 1433863961228011500086 4619802143279560952137500
31235560755437909 _|_ 886646005540711 2+ 44262730811
45292540212712815517041756050000 0 8584068683814396371805640376250000300 5591907599741949636490531445100

3153103873396184675257032714649680600675000000000000
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Solutions [9,31,1]

. . 0.2—2 o,
AP OV Y MM
[9,23,1]
N(X) _ X9+X8+ 446725777)(7 14305770645413,,6  13328514939091617283 247787301154250111
— 94325000 26714726500000 322673824030250000000 "~ 90759346504508500000000
1342628342958548400883 784562691765830249 8686521311430279
3424350143615105g§g§£%§£5§§§5§§% O 509372083862746973618750000000000 O 19396888953493404755402000000(

8527985765381631251907679274800000000000000000000000

Solutions [9,23,1]

o °14 .
o ]
| o
° 0'8 o o
o © ° o
o 0.6 °
Lo 04L < - 3

] o
o o b
o o ‘o 0.2 o °
o L] 0® o
o o 1 o
° o b °

6.2 Another proof of Derksens formulation

Let f =1}, (x—z). Define

Then
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f—j/ = ! . (16)
fj i; (x—1zj)

Derivating this and plugging in z; we get

fj"fj—f,fz(zj):_ 1 eyt (17)
2 i; (x—2z)? i; (z1-2)

Therefore for all j, (fj'fj— sz)(zj) =0 if and only if 3 ; (Z]—;Z{)z i.e. if the MICE

equations are satisfied and z; is a root of f. On the other hand we have
f=1j(x-z),
f/ = f]/(X_Z]) + fJ?
£ _ fj//(x— zj) —{—ij/,
" = 1" (x—z) + 31,

(18)

and therefore

(3(F")2—4t'1")(z)) = 12((])?— £ f]')(z;) (19)

6.3 Three regular m-gons

Proposition 6.1 The only solution shapes [3,m,0] are for m=7 or m= 11 The only
solution shapes [3,m,1] are form=5orm= 13

Proof Proceeding as before, we fix one m-gon to be the m'th roots of unity and use two
variables x and y to describe the remaining two. Again using formula in lemma 5.1,
Ssmyp is reduced to a system of three equations in two unknowns. The case p=1is
included in square brackets:

(m—1)(m-5) m(1+x"(m—-1)) md+y"(m-1))
—~ P [+ 1]+ A2 A —y2 =0 (20)
—1)(m-5 XXM+ m—1)  m¥"(x™ -
g T ) =0 (21)
(m—1)(m-5) my"(y"+m—1) my"(y"4+mx"—x")
— B [+1]+ TV 7 e =0 (22)

Remark 6.1 In general, this method reduces S\mp to a system of n equations inn—1
unknowns.
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We can also make the variable changes X = x™ and Y = y™ to eliminate m from the
exponents, which allows m to be treated as a variable in the calculations. A lexi-
cographic Grébner basis for [3,m,0] with X >Y > m was obtained after 536 seconds
by computing a degree reverse-lexicographic Grobner basis thenusing FGLM. This
was done using Singular[Gre99]. The single polynomial involving m alone is 9m° —
990m° + 4165M° — 833256n" + 8052130n° — 35019540 + 56505450 — 33100200 +
86751257 — 1050750n + 48125 which factors as (m— 7)(m— 11)(3m— 5)(3m— 1)(m? —
30m+5)3. We are only interested in the integer partial solutions m= 7 and m= 11,
both of which lift to solutions. Similarly, the same calculation took 657 seconds for
the case [3,m, 1] and the relevant polynomial is 9m10— 990m9 + 4121318 — 796104n7 +
6974386n6— 226375565+ 95291224 + 27373753+ 128272692+ 236464 2n+ 156065
Its factorization is (m—5)(m— 13)(3m— 7)(3m-1)(nm? —30m— 7)3 and both integer partial
solutions lift. C1U (X) = 12 (31, aX™-Lim)? + 3 (31 o aX™Lim (mi— 1))

—125" jaX™yn jaXM=2im(mi—1) —4 3N g X™ s aX™=2im(mi— 1) (mi—2)

—430 sa XM Limyh o aX™=Lim(mi— 1) (mi—2)

must be divisible by X and N(X™) so that m> 2 and Vi(X) = X?U(X) should be
divisible by N(X™)

Vi(X) = 12 (37, aX™Mim)? + 3 (3P oaXMim (mi—1))*
—125" pa XMy saX™Mim(mi—1) — 451 saX™ 5! aX™im(mi— 1) (mi—2)
— 45 g XMims g X™im (mi— 1) (mi—2)

this equivalent to divisibility of

Wi (X) = 12 (31, aXiim)? 43 (31 gaXiim(mi— 1))

—125" paX' s paX'im(mi—1)—45! (aX' S aX'im(mi— 1) (mi—2)
— 45" JaXimyh  aX'im(mi— 1) (mi—2)
by N(X).

2

6.4 Different Polygons

We tried using 3 different polygons for the case N = 16 and there were no solutions,
neither with a point nor without a point. We tried the partitions 1+2+2+11, 1+2+3+10,
1+2+4+9, 1+2+5+8, 1+2+6+7, 1+3+3+9, 1+3+4+8, 1+3+5+7, 1+3+6+6, 1+4+4+7, 1+4+5+6,
1+5+5+5 (there is the solution we know), 2+2+12, 2+3+11, 2+4+10, 2+5+9, 2+6+8,
2+7+7, 3+3+10, 3+4+9, 3+5+8, 3+6+7, 4+4+8, 4+5+7, 4+6+6, 5+5+6.

7 Conclusion

We have a new application of computer algebra in biological physics. We were able
to solve the system completely up to N = 12 using the symmetry and the most recent
techniques for the Grobner bases computation. Starting with solution shapes of regular
polygons we found solution families for N = 8,16,21 as well as single solutions for N up
to 280for which we have reason to assume that they are part of solution families as well.
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From the biophysical point of view, solutions for N about 1000 are needed since
there are thousands of proteins in a cell membrane [Kim99]. But even small numbers of
proteins can give some interesting insights. We have extended the results in the original
paper[KJG98] from N =510 12

This work is a particular instance of the more general problem of finding a global
minimum of an energy function and in particular we want want to point out similar work
related to the classification of the stable solutions of the n body problem.
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