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Abstract. In this paper, we present an efficient cryptanalysis of the so-
called HM cryptosystem which was published at Asiacrypt’1999, and one
perturbed version of HM. Until now, this scheme was exempt from crypt-
analysis. We first present a distinguisher which uses a differential prop-
erty of the public key. This distinguisher permits to break one perturbed
version of HM. After that, we describe a practical message-recovery at-
tack against HM using Gröbner bases. The attack can be mounted in
few hundreds seconds for recommended parameters. It turns out that
algebraic systems arising in HM are easier to solve than random systems
of the same size. Note that this fact provides another distinguisher for
HM. Interestingly enough, we offer an explanation why algebraic systems
arising in HM are easy to solve in practice. Briefly, this is due to the ap-
parition of many new linear and quadratic equations during the Gröbner
basis computation. More precisely, we provide an upper bound on the
maximum degree reached during the Gröbner basis computation (a.k.a.
the degree of regularity) of HM systems. For F2, which is the initial and
usual setting of HM, the degree of regularity is upper-bounded by 3. In
general, this degree of regularity is upper-bounded by 4. These bounds
allow a polynomial-time solving of the system given by the public equa-
tions in any case. All in all, we consider that the HM scheme is broken
for all practical parameters.

1 Introduction

Multivariate cryptography comprises all the cryptographic schemes that use mul-
tivariate polynomials. The use of polynomial systems in cryptography dates back
to the mid eighties with the design of C∗ [16], later followed by many other
proposals [19,23,22,14,24,25]. At first glance, many aspects of such systems are
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tempting for cryptographers. First, basing schemes on the hard problem of solv-
ing a system of multivariate equations is very appealing. Indeed, generic al-
gorithms to solve this problem are exponential in the worst case, and solving
random system of algebraic equations is also known to be difficult (i.e. exponen-
tial) in the average case. Moreover, no quantum algorithm allowing to solve non
linear equations exists. Finally, multivariate schemes usually require computa-
tions with rather small integers leading to rather efficient smart-card implemen-
tations (see for example [5])

Unfortunately, it appears that most multivariate public-key schemes suffer
from obvious to less obvious weaknesses ([17,13,9,7] for instance). One reason is
that the public-key equations are constructed from a highly structured system of
equations. Although the structure is hidden, it can be exploited for instance via
differential or Gröbner based techniques. Regarding the intensity of such attacks
these last years, it is rather remarkable that the HM cryptosystem [20,21], despite
a “special property” pointed out in the original paper, is still standing. In this
paper, we use both a property of the differential of the public key and Gröbner
basis techniques to attack the HM scheme. The common point between these
attacks is that both take advantage on the non-commutativity of the matrices.
In particular, we present a message-recovery attack against HM which works
on all practical parameters. In addition and in contrast to many cryptanalytic
results against multivariate schemes, we are able to theoretically explain why
algebraic systems arising in HM are easy to solve in practice.

1.1 Organization of the Paper. Main Results

This paper is organized as follows. In Section 2, we give an introduction on
multivariate cryptography and specifically detail the HM construction. In Sec-
tion 3, we show that the public key equations of HM are distinguishable from a
random quadratic system of equations. This property appears by simply consid-
ering the differential of the public key. Thanks to this differential, we can mount
an attack against a perturbed version of HM [25]. The technique is essentially
similar to [10]. Section 4 focuses on the message-recovery. We notice that when
applying a Gröbner-based resolution of the system given by the public key, the
resolution succeeds for any practical choice of parameters. To illustrate this,
we provide experimental results using Gröbner bases, in particular on recom-
mended parameters for HM [20,21]. For instance, our attack can be mounted
in few hundreds seconds on previously assumed secure parameters. Besides, we
observe that the so-called “degree of regularity”, which is the key-parameter for
the complexity of Gröbner bases computations, is upper-bounded by 3 when
K = F2 and 4 otherwise. This allows to obtain a computation in polynomial
time in the number of variables. Interestingly enough, we bring elements that
help explaining this behavior. Briefly, we show the apparition of many linear
and quadratic equations during the Gröbner basis computation. To us, this is
very interesting since besides from HFE [18,9,11] multivariate schemes broken
by Gröbner based techniques didn’t offer such an explanation.
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2 Multivariate Cryptology and Hidden Matrix
Cryptosystem

A frequently used one-way function in multivariate cryptography is based on the
evaluation of a set of algebraic polynomials p =

(
p1(x1, . . . , xN ), . . . , pm(x1, . . . ,

xN )
) ∈ K[x1, . . . , xN ]m, namely:

m = (m1, . . . , mN ) ∈ K
n �−→ p(m) =

(
p1(m), . . . , pm(m)

) ∈ K
m.

The mathematical hard problem underlying this one-way function is :

Polynomial System Solving
Instance : polynomials p1(x1, . . . , xN ), . . . , pm(x1, . . . , xN ) of K[x1, . . . , xN ].
Question : Does there exists (z1, . . . , zN ) ∈ K

n such that
p1(z1, . . . , zn) = 0, . . . , pm(z1, . . . , zn) = 0

To introduce a trapdoor in schemes based on such a one-way function, we start
from a carefully chosen algebraic system:

f = (f1(x1, . . . , xN ), . . . , fm(x1, . . . , xN )) ,

which is easy to solve. That is, for all c = (c1, . . . , cm) ∈ K
m, there is an efficient

method for describing or computing the zeroes of (f1(x1, . . . , xN ) = c1, . . . , fm(
x1, . . . , xN ) = cm). Then, in order to hide the specific structure of f , we compose
it by two linear (or affine) transformations – represented by invertible matrices
– (S, T ) ∈ GLN(K) × GLm(K), to create a seemingly difficult system of public
equations:

g(x) = (g1(x), . . . , gm(x)) = T (f1(S(x)), . . . , fm(S(x))) = T (f(S(x))) ,

with x = (x1, . . . , xN ).
The public key of such systems consists of the polynomials of g, and the secret
key is made up of the two matrices (S, T ) and sometimes also includes f .
To encrypt a message m ∈ K

N , we evaluate g at m, i.e., we compute:

c = (g1(m), . . . , gm(m)) .

To recover the correct plaintext from c, the legitimate recipient uses the bi-
jectivity of the linear transformations combined with the particular structure
of the polynomials of f . Namely, he computes a value m′ ∈ K

n such that
f(m′) = T−1 (c). This can be efficiently done due to the particular choice of
f . Finally, he recovers the message by evaluating m = S−1 (m′).

Note that this kind of cryptosystem can also be used to compute signatures. To
generate the signature s ∈ K

m of a message m, the decryption process is applied
to m. To verify a signature s ∈ K

m of a digest m ∈ K
m, one checks whether the

equality g(s) = m holds.
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There are plenty of proposals [19,23,22,14,24] based on this principle which ba-
sically differ in the way of constructing the polynomial f . In particular, the so-
called Hidden-Matrix (or HM) cryptosystem, which we consider in the present
paper, follows this general paradigm. We now detail the construction of f in this
case.

For the record, the HM scheme is based on the former [C] scheme [12]. It was
introduced in [20] to thwart an attack presented in this same paper. As pointed
in [20], it is possible to construct bi-linear relations relating any pair (plaintext,
ciphertext). In HM, the message m is a vector of length N = n2 over K. Let
Mn(K) be the set of matrices of size n×n over K. The set of m = n2 polynomials
f corresponds to the application F over Mn(K) defined as follows:

F : X �→ X2 + M · X,

where M ∈ Mn(K) is a given constant matrix. The public key g is as “usual”
T ◦ F ◦ S, with S : K

n2 → Mn (K) and T : Mn (K) → K
n2

two secret invertible
affine transformations.

Note that [25] proposes a perturbed [6] version of [C] and HM. The idea is
to add randomness in the polynomials of the public key. To do so, we randomly
generate a set of m polynomials f̃ with N variables and a linear transform
R : K

N → K
r. The inner polynomial f̃ , constructed as in [C] or HM, is then

perturbed by adding f̃ ◦ R to f , i.e. the inner polynomial is now:

f + f̃ ◦ R.

The rank of r must be small to make the image of f̃ ◦R sufficiently small. This
is a necessary condition for being able to decrypt [25,6].

3 Differential Property of HM, First Distinguisher

In this part, we present a differential property of the HM cryptosystem. This
allows us to efficiently distinguish the equations composing the public key of a
HM cryptosystem from a random system of quadratic equations. As previously
explained (section 2), the inner function of HM is:

F : X ∈ Mn (K) �→ X2 + M · X ∈ Mn (K) ,

with M a secret constant matrix of Mn (K).The differential of a function f is
defined by:

D f(x, y) = f(x + y) − f(x) − f(y) + f(0).

For a fixed x, this expression also defines the differential of f at the point x in
the y variable Dx f(y). Going back to the HM scheme, it follows from this that:

DF (X, Y ) = X · Y + Y · X. (1)
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It is interesting to remark that the differential of F is the same as the one of
X �→ X2 used in [C] ([20,21]). We now arbitrarily fix X = X0 ∈ Mn (K) and
consider the following equation in Y :

DX0 F (Y ) = X0 · Y + Y · X0 = 0. (2)

This equations yields n2 linear equations in the n2 coefficients of Y . For random
linear equations, the expected number of solutions is 1. In our case, the solutions
of these linear equations correspond to the matrices that commute with X0 (here,
we assume that the characteristic of K is two). Indeed, thanks to (1), we find
that:

DX0 F (Y ) = 0
⇔ X0 · Y = Y · X0.

First of all, any polynomial in X0 commutes with X0. For a well-chosen X0, the
dimension of the set of all polynomials in X0 over K is n. The exact number of
linearly independent matrices that commute with a given matrix can be found
in [15], chapter VIII. This number is given by the formula n1 + 3n2 + · · ·+ (2t−
1)nt, where n1, . . . , nt are the degrees of the non constant invariant polynomials.
This number is between n and n2 and about n in most cases. In any case, we can
clearly distinguish the set of equations deduced from (2) from a set of random
linear equations.

So far, we only considered the inner polynomials of the HM scheme, but the
same kind of property propagates throughout the public key g. We consider here,
for some fixed vector x0:

Dx0 g(y) = c0, (3)

where c0 = TL(S(0)), with TL standing for the linear component of T and c0

obtained as Dg(0, 0) over F2. Equation (3) then yields:

Dx0 g(y) = c0 ⇔ TL (S (x0) · S (y) + S (y) · S (x0)) = 0
⇔ S (x0) · S (y) + S (y) · S (x0) = 0.

S being an invertible application, the same reasoning as for F implies that
equation (3) has the same number of solutions than equation (2).

This gives an efficient distinguisher between n2 random quadratic equations
in n2 unknowns and the quadratic equations composing the public key g of the
HM scheme.

In addition, this permits to attack the perturbed version of [C], which cor-
respond to a HM scheme with a zero matrix M ([25]). We have all the tools
to adapt the attack described in [10] on a perturbed version of C∗. The attack
being very similar, we just outline it. The main goal is to recover the linear space
K that cancels the noise. More precisely, K is defined as the kernel of the affine
space R ◦ S. As in [10], it is possible to use a differential distinguisher to detect
whether a vector x is in K or not. Then, a basis of K can be found. As explained
in [10], once in possession of such a basis, one can cancel the noise and mount
an attack as against the basic [C] (i.e. find bilinear relations).
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4 Message-Recovery Attack

In this part, we first present experimental results when mounting a Gröbner-
based message-recovery attack against HM. As already mentioned, this attack
works in practice for (previously assumed) secure parameters of HM. This is due
to the fact that systems arising in HM are much easier to solve than random
algebraic systems of the same size. In particular, the maximum degree reached
during the computation of a Gröbner basis is bounded from above by a small
constant (3 or 4). This is supported by experimental and theoretical observations.

4.1 Experimental Results and Observations

We take interest in the message-recovery attack, which consists in recovering a
message from a given ciphertext. More precisely, let c = g(m) be an encryption
of a message m. To directly recover m from c, we have to solve a quadratic
system of equations induced by the polynomials of the public key. Namely, we
have to solve the following system of n2 quadratic equations in n2 variables:

g(x) − g(m) = 0.

Here, we assume that the algebraic system is over F2, as specified in [20] .
In the following table 2 we quote several experimental results obtained when

performing a Gröbner-based message-recovery attack on HM, using the F4 al-
gorithm available in the Magma Computational Algebra System. These results
have been obtained with a Xeon 4.2 Ghz 128 Gb of Ram. The attack have been
implemented with Magma (v. 15.7). In the table, we include:

– q: the size of the base field K

– n2: the number of variables of the system
– T : the total time needed for our attack
– Mem: the maximum memory usage
– Dreg: the maximal degree reached during the Gröbner basis computation.

In the initial paper [12,20,21], the authors advised to take the parameter n such
as n2 ≥ 64 (which would correspond to n2 ≥ 80 nowadays). Hence, the first
major observation is that the attack can be mounted in practice. In fact, the
scheme is broken for all practical parameters. A second important remark is that

q n2 T Mem Dreg

2 64 138 s. 1.4 Gb. 3

2 81 685 s. 5.8 Gb. 3

2 100 6249 s. 19 Gb. 3

2 121 6 h. 56 Gb. 3

2 144 26 h. 171 Gb. 3

Fig. 1. Experimental results for the Gröbner-based message-recovery attack over F2
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q n2 T Mem Dreg

65521 25 13 s. 60 Mb. 4

65521 36 790 s. 500 Mb. 4

65521 49 2.7h 3 Gb. 4

Fig. 2. Experimental results for the Gröbner-based message-recovery attack

Dreg is always equal to the same value 3. In the next section, we will explain this
systematic behavior. Namely, the maximum degree reached during the Gröbner
basis computation is upper-bounded by 3 over F2. In general (K �= F2), it is
bounded by 4. This makes our attack polynomial (in the number of variables).

4.2 Explaining the Degree of Regularity

In this part, we explain the experimental behavior observed in Subsection 4.1.
Namely, we explain why the maximum degree reached during a Gröbner basis
computation is so low for HM (experimentally bounded by 3 or 4), compared
with random algebraic equations. This degree, called degree of regularity, is the
key parameter for understanding the complexity of Gröbner basis computations
Indeed, the complexity of computing a Gröbner basis is polynomial in the degree
of regularity Dreg, namely the complexity is:

O(NωDreg ),

which basically correspond to the complexity of reducing a matrix of size NDreg

(2 < ω ≤ 3 is the “linear algebra constant”, and N the number of variables of
the system). The behavior of the degree of regularity Dreg is well understood
for regular (and semi-regular) systems of equations [1,3,2,4]. On the contrary, as
soon as the system has some kind of structure, this degree is much more difficult
to predict. In some particular cases, it is however possible to bound the degree of
regularity (see the works done on HFE [9,11]). But it is an hard tack in general.
We show here that we can predict the apparition of many quadratic or linear
polynomials during the computation of a Gröbner basis of the ideal generated by
the public equations of HM. This permits to explain why the degree of regularity
is bounded from above by 3 over F2 and 4 otherwise.

To simplify the analysis, it is sufficient to restrict our attention to the equa-
tions generated by the “secret” (or inner) polynomials. Indeed, the degree of
regularity of an ideal is generically left invariant by any linear change of the
coordinates or generators, that is to say, in our case, we can omit S and T and
bound the degree of regularity of the ideal generated by the secret polynomials
given by F . Let A be a matrix of Mn (K). We consider the ideal I generated by
the inner equations F (X) − F (A):

I =
〈
X2 + M · X − A2 − M · A〉

.

In the following, we set B = F (A), i.e., A2 + M · A = B. We also define Δ as:

Δ = X2 + MX − B = 0.
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The ideal I considered is the ideal generated by all the components of Δi,j =
0, 1 ≤ i, j ≤ n. Our goal is to explain the bound on the degree of regularity of
this ideal.

Case M = 0. To give an intuition of the phenomena observed regarding this
degree of regularity, let us start with the easy case where M = 0 (note that this
case corresponds in fact to the [C] scheme broken in [20] in a quite similar way).
We have F (X) = X2 and Δ = X2 − B = 0. Let us consider the two following
matrix equations:

X · Δ = X3 − X · B = 0
Δ · X = X3 − B · X = 0.

If we subtract them, we obtain the new equation X ·Δ−Δ·X = X ·B−B ·X = 0,
which provides n2 linear equations in the Xi,j unknowns and allow to solve the
system.

Going back to Gröbner bases, these equations would appear when using a
Gröbner-based algorithm. Such an algorithm applied on I, starts by generating
equations of degree one more (namely 3) from the equations given by Δ = 0.
In particular, the equations constituting the matrix equation X · Δ = 0 as well
as the ones corresponding to Δ · X = 0 appear. Notice that by reductions, the
equations given by X ·Δ− Δ ·X = 0 also appear during computation. In other
words, after just one step of computation, we get the n2 linear equations which
allow to solve the system.

In the previous case M = 0, we proved that many linear equations appear
when considering equations of degree 3. In the general case M �= 0, something
similar is not necessarily likely to happen. However, we will show that also
many new quadratic (and sometimes linear) equations appear when considering
equations of degree 3 in the general case.

To generalize the previous observation, we need to introduce the following
definition:

Definition 1. We denote by I≤d the set of all polynomials of I, of degree less
or equal to d.

During the computation, the polynomials generated are obtained by multiply-
ing previously obtained polynomials by monomials and applying possible reduc-
tions. Thus, the degree of the polynomials generated during the computation
keeps growing until new low-degree polynomials appear, due to reductions of
polynomials of higher total degree. In the case of HM, we rapidly (in the sense
that we do not need to generate polynomials of high degree) obtain many low-
degree polynomials, which explains that the computation ends quickly. This fact
is developed in the following parts.

Field of Arbitrary Characteristic. We show here that plenty of new quadratic
equations are generatedduring the computation of a Gröbner basis of I. This result
remains valid whatever the characteristic of K is. Additional properties occur when
K = F2, that are given later.
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Proposition 1 shows that n2 quadratic equations are obtained at every new
step of the Gröbner basis computation. Moreover, the polynomials generated are
obtained by multiplying previously obtained matrix equations of degree 2 by X .

Proposition 1. For all k ≥ 1, there exist matrices Ak, Bk, Ck and Dk such
that:

Pk = X(Mk + Ak)X + Bk · X + X · Ck + Dk ∈ I≤3.

This result is obtained by using the same idea as for the case M = 0. Proofs of
this proposition is given in appendix A.

In this general case, we experimentally observe that the degree of regularity
is bounded by 4, i.e., the Gröbner basis algorithm doesn’t need to generate
polynomials of degree higher than 4 to terminate.

Case K = F2. We now focus on the specific case where K = F2, which is
the classical setting. In this case, not only we get the quadratic equations of the
general case, but we also get additional linear equations, described in the proposi-
tions below. Here again, all these equations appear while generating polynomials
of degree at most 3 in the Gröbner basis computation.

Proposition 2. Let Q0 = tr((M +I)X )−tr(B), tr denoting the trace operator.
We have that the equations composing Q0 are in I≤3.

Proposition 3. Let the notations be as in Proposition 1. For all k ≥ 1, we
define Qk = (X + Bk · X + X · Ck + Dk)(Mk + Ak). For all k ≥ 1, the linear
equation given by the trace of Qk, tr(Qk), is in I≤3:

tr((X + BkX + X · Ck + Dk)(Mk + Ak)) ∈ I≤3.

The Qk polynomials are deduced from the Pk. Proofs of these propositions can
be found in the appendix A.2.

We experimentally observe that the degree of regularity is only 3 in the case
where K = F2, which means that these low-degree equations even allow to end
the computation after generating polynomials of total degree no higher than 3.

Summary. To summarize, the table below gives the number of low-degree equa-
tions generated during the Gröbner basis process and their degree, depending
on the different cases studied. The index kmax is the number of steps needed in
the F4/F5 algorithm1 to compute I≤d. The value of kmax sometimes dictates the
number of low-degree polynomials appearing during the computation. For in-
stance, the polynomials indexed by k described in proposition 3 or proposition 1
are obtained at some step k of the establishment of I≤d. Once again, Dreg stands
for the degree of regularity reached. The validity of the results below have been
experimentally verified for up to n2 = 144 for K = F2 (and n = 49 in other
cases).

1 i.e., the F4 algorithm which uses the F5 criteria [8].
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Case M = 0 K = F2 K �= F2

Nb of quadratic eqs 0 kmax · n2 kmax · n2

Nb of linear eqs n2 kmax 0

Total Nb of quadratic eqs 0 n3 n3

Total Nb of linear eqs n2 n 0

Dreg 3 3 4

Remark 1. Notice that we assume kmax to be equal to n. Indeed, the equations
obtained at step k are related to Mk as explained in the propositions above.
Hence, after n steps, the equations obtained may then be related to previous
ones since Mn reduces to a combinations of powers of M of lower degree2. It is
then reasonable to set kmax = n. In this case, we obtain many new low-degree
equations (as quoted in the second part of the table), which allow to understand
why the computation ends quickly, and also the difference with K �= F2, and
K = F2.

Finally, we have computed for several parameters the theoretical degree DTheo
reg of

a semi-regular system [1,3,2,4] having the same number of variables and the same
number of equations than an instance of HM (but including the new equations
generated).

q n2 DTheo
reg

2 64 3
2 81 4
2 100 4
2 121 4
2 144 4

65521 36 4
65521 49 4

This is another indication that the maximum degree reached in HM should be
small.

5 Conclusion

In this paper we showed that the Hidden Matrix of [20] is broken. We presented
two very efficient distinguishers. The first one is based on solving a system of
linear equations deduced from the differential of the public key. The second
distinguisher is much stronger since it allows to recover a plaintext from a ci-
phertext. We observed a very specific behavior during the computation, which
we were able to theoretically explain, as for the HFE cryptanalysis [9,11]. More-
over, we derive an attack on the perturbed version of [C] described in [25]. In
the original paper [20], the authors did not recommend the use of their scheme,
because they suspected not to have noticed some weaknesses; this paper confirms
the fears of the authors.
2 This comes from the Cayley-Hamilton theorem.



Cryptanalysis of the Hidden Matrix Cryptosystem 251

References
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correcteurs et à la cryptographie. PhD thesis, Université de Paris VI (2004)
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A Proofs of the Propositions

This annex gathers the proofs of the propositions of Section 4.2.

A.1 Proofs of the Propositions in the General Case

Lemma 1. We have the following n2 quadratic equations in I≤3:

P1 = X · M · X + (B + M2)X − X · B − M · B ∈ I≤3.

Proof. Let Δ be as defined in 4.2. The idea is to write X2 = B−M ·X . We then
remark that there are two ways to obtain X3, multiplying the previous equation
by X on the left or on the right:

X3 = X · B − X · M · X,
X3 = B · X − M · X2

= B · X − M · X2 + MΔ
= B · X − M (B − M · X)
= B · X − M · B + M2 · X

By subtracting the two equations we obtain Δ · X − X · Δ − M · Δ = X · M ·
X +

(
B + M2

)
X − X · B − M · B ∈ I≤3.

It is actually possible to generalize this idea.

Proposition 1. For all k ≥ 1 there exist matrices Ak, Bk, Ck and Dk such that:

Pk = X(Mk + Ak)X + Bk · X + X · Ck + Dk ∈ I≤3.

http://eprint.iacr.org/
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Proof. We will proof this result by induction on k. According to lemma 1, the
equations induced by P1 are in I≤3. Thus, we have:

A1 = 0
B1 = B + M2

C1 = −B

D1 = −M · B.

We suppose that property is true for Pk, k ≥ 1. It then holds that:

−Pk · X = X(Mk+1 + Ak · M − Ck)X − X(Mk · B + Ak · B)
+(Bk · M − Dk)X − Bk · B

= X(Mk+1 + Ak+1)X + Bk+1 · X + X · Ck+1 + Dk+1

= Pk+1,

with the relations:
Dk+1 = −Bk · B
Ak+1 = Ak · M − Ck

Ck+1 = −Mk · B − Ak · B
Bk+1 = Bk · M − Dk.

The equations constituting the components of Pk+1 are clearly in I3. This proves
the proposition.

A.2 Proofs of the Propositions from the Case K = F2

We start by presenting a general lemma on matrices in Mn (K). Let D ∈
Mn (K). In the following, tr(D) stands for the trace of D ∈ Mn(K) and CD

for the characteristic polynomial of D. From now on, we always assume that
K = F2.

Lemma 2. It holds that CD(z) = CD2(z) and tr(D2) = tr(D).

Proof. Let λ ∈ K be an eigenvalue of D. That is to say, there exists u �= 0 such
that D ·u = λu. Then we have D2 ·u = M ·λu = λ2u. Hence λ2 is an eigenvalue
of D2. We also denote:

CD(z) = (z − λ1) · · · (z − λn)
= zn + s1z

n−1 + . . . + sn,

and
CD2(z) = (z − λ2

1) . . . (z − λ2
n)

= zn + σ1z
n−1 + . . . + σn,

with si (resp. σi) the i-th elementary symmetric polynomial in λi (resp. in λ2
i ).

Remark that we have σi = s2
i = si. Indeed, all these elements are in F2. This

proves the first claim, namely that CD(z) = CD2(z).
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For the second claim of this lemma, we notice that tr(D) (resp. tr(D2)) is the
coefficient of zn−1 in CD(z) (resp. in CD2(z)). As CD(z) = CD2(z), the result
follows.

From that, we can predict the appearing of new equations during the Gröbner
basis computation.

Proposition 2. Let Q0 = (M +I)X −B. The linear equation tr (Q0) is in I≤3.

Proof. The application tr being a linear form and since X2+M ·X = B, we have
tr(X2)+ tr(M ·X) = tr(B). Thanks to lemma 2, we have that tr(X2) = tr(X);
which gives the result announced.

More generally:

Lemma 3. If Q1 = X ·M + (B + M2)X ·M −X ·B ·M −M ·B ·M , then the
linear equation tr(Q1) is in I≤3.

Proof. According to Lemma 1, we know that:

P1 = X · M · X + (B + M2)X − X · B − M · B ∈ I≤3

More precisely, the n2 equations given by the components of P1 are in I≤3).
Now, multiplying P1 by M on the right yields:

X · M · X · M + (B + M2)X · M − X · B · M − M · B · M ∈ I≤3 (�).

Thanks to Lemma 2 on the trace, we have that tr(X ·M ·X ·M) = tr((X ·M)2) =
tr(X · M). Thus applying the trace to (�) implies:

tr
(
X · M + (B + M2)X · M − X · B · M − M · B · M) ∈ I≤3,

as announced.

The preceding result was deduced from the existence of P1 (Lemma 1). However,
it is possible to obtain a similar result for all Pk’s of Proposition 1.

Proposition 3. Let the notations be as in Lemma 1 of Section 4.2. For all
k ≥ 1, we have that:

Qk = tr((X + BkX + X · Ck + Dk)(Mk + Ak)) ∈ I≤3.

Proof. From Proposition 1, we deduce that for all k ≥ 1:

Pk = X(Mk + Ak)X + Bk · X + X · Ck + Dk ∈ I≤3.

By multiplying on the right by Mk + Ak, we have:

(X(Mk + Ak))2 + (Bk · X + X · Ck + Dk)(Mk + Ak) ∈ I≤3.

Now tr((X(Mk + Ak))2) = tr(X(Mk + Ak)) by lemma 2. Finally, we obtain:

tr((X + Bk · X + X · Ck + Dk)(Mk + Ak)) ∈ I≤3.
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