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ABSTRACT
We consider the composition f = g◦ h of two systems g =
(g0, . . . ,gt) and h = (h0, . . . ,hs) of homogeneous multivariate
polynomials over a field K, where each gj ∈ K[y0, . . . ,ys] has
degree `, each hk ∈K[x0, . . . ,xr ] has degree m, and fi = gi(h0, . . . ,hs)∈
K[x0, . . . ,xr ] has degree n = ` ∙m, for 0≤ i ≤ t. The motivation
of this paper is to investigate the behavior of the decompo-
sition algorithm MultiComPoly proposed at ISSAC’09 [18].
We prove that the algorithm works correctly for generic de-
composable instances – in the special cases where ` is 2 or
3, and m is 2 – and investigate the issue of uniqueness of a
generic decomposable instance. The uniqueness is defined
w.r.t. the “normal form" of a multivariate decomposition, a
new notion introduced in this paper, which is of independent
interest.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algorithms
Algebraic Algorithms

General Terms
Algorithms.

Keywords
Functional Decomposition, Generic Uniqueness, Gröbner bases.

1. INTRODUCTION
Let K be an arbitrary field. The multivariate Functional De-
composition Problem (FDP) [23, 12, 30] is the problem of rep-
resenting a given polynomial f = ( f0, . . . , ft) ∈ K[x0, . . . ,xr ]t+1

as a functional composition:

( f0, . . . , ft) =
(
g0(h0, . . . ,hs), . . . ,gt(h0, . . . ,hs)

)
,

of polynomials g=(g0, . . . ,gt)∈K[y0, . . . ,ys]t+1 and h=(h0, . . . ,hs)
∈K[x0, . . . ,xr ]s+1 of smaller degree.
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FDP is a classical problem in computer algebra ([26, 21, 22,
23, 10, 29]) which has been thoroughly investigated in the
univariate case from an algorithmic as well as from a theo-
retical point of view; see [1, 5, 26, 21, 22, 20, 14, 27]. The
decomposition of univariate polynomials is a standard func-
tionality proposed by major computer algebra systems1.

For general multivariate decomposition, the situation is differ-
ent and probably more complicated. For instance, there is no
multivariate equivalent of Ritt’s theorem [27, 14] which is a
central tool in the univariate case. Typically, this makes it del-
icate to define a proper notion of nontrivial decomposition (for
instance see [23, 24]). In [23], von zur Gathen, Gutierrez and
Rubio have investigated several variants of FDP, the so-called
uni-multivariate, multi-univariate and single-variable decom-
positions, which are extensions of the univariate case. They
presented algorithms to solve these variants, together with
some theoretical results. It is only recently that algorithms
for decomposing general multivariate polynomials have been
proposed [17, 18]. The original motivation of these meth-
ods was in the cryptanalysis of multivariate cryptosystems
[16]. In this paper, we focus attention on the MultiComPoly
algorithm proposed at ISSAC’09 [18]. We are interested in
the behavior of the algorithm for generic decomposable in-
stances, in the special cases where ` is 2 or 3, and m is 2.
These are sufficient for the cryptanalytic applications. We
prove that the algorithm works correctly for generic decom-
posable instances, and returns a unique decomposition. The
uniqueness is defined w.r.t. the “normal form" of a multivari-
ate decomposition, a new notion introduced in this paper.

1.1 The MultiComPoly algorithm
In order to be self-contained, we briefly recall the principle of
the decomposition algorithm MultiComPoly [18]. Some of
the notation will be used in the rest of this paper. So, let f =
g◦h be the composition of g= (g0, . . . ,gt)∈K[y0, . . . ,ys]t+1 and
h= (h0, . . . ,hs) ∈K[x0, . . . ,xr ]s+1 of homogeneous multivariate
polynomials. Most decomposition techniques first determine
the right component h, then the left component g. The al-
gorithm of [18] is no exception. More precisely, MultiCom-
Poly recovers first the vector space L (h) = SpanK(h0, . . . ,hs)
spanned by the right component h. This vector space is ob-
tained by considering the ideal generated by high order dif-

1For instance, compoly of MAPLE
http://www.maplesoft.com/



ferentials of f :

∂ kI f =

〈
∂ k fi

∂xj1 ∙ ∙ ∙∂xjk
| 0≤ i ≤ t,0≤ j1 < ∙ ∙ ∙ < jk ≤ r

〉

,

for some k depending of the degree of g, where I f is the
ideal generated by the polynomials in f . It has been proved
[18] that there exists δ > 0 such that:

xδ
r hi ⊆ ∂ deg(g)−1I f , for all i,0≤ i ≤ s.

A basis of L (h) is obtained by computing a DRL (degree re-
verse lexicographical) Gröbner basis [6, 7, 8, 9] of ∂ deg(g)−1I f :
xδ , for a suitable δ > 0. More precisely, we compute a trun-
cated [11] Gröbner basis G of ∂ deg(g)−1I f : xδ . If #G = s+1,
then SpanK(G) = L (h). From the knowledge of L (h), it is
well known [28] that the left component g can be recovered
by solving a linear system of equations. This is studied in
more generality in Section 4.

1.2 Organization of the paper
We study in detail the behavior of MultiComPoly for generic
decomposable instances. The paper is organized as follows.
In Section 2, we introduce more precisely the decomposi-
tion problem studied here, and fix some further notation. In
Section 3, we focus on the first part of MultiComPoly which
computes the vector space L (h). Let the notation be as in
subsection 1.1, and G be the set of polynomials computed
during the first step of MultiComPoly in Section 3, we prove
that the property:

SpanK(G) = L (h).

is generic (in the sense of the Zariski topology). We first
prove that the set of elements for which this property fails
is contained in a closed algebraic set. The second part of
the proof, which is the most difficult, consists of finding par-
ticular decomposable instances for which we can prove the
property. As a side remark, we mention that the genericity of
semi-regular sequences [2, 3, 4] is a well known conjecture of
Fröberg [19] whose bottleneck is to simply find a semi-regular
sequence. In our context, we consider in Section 3 rather
simple family of decomposable instances. For this family, we
prove that the equality SpanK(G) = L (h) indeed holds. To do
that, we describe the exact structure of the truncated Gröb-
ner basis G for the family under consideration. After that,
we study in Section 4 the property of the linear system cor-
responding to the recovery of the left component when the
right component is known. We conjecture that for a “generic”
h, the system has maximal rank and thus is overdetermined.
This conjecture has been proven in the previous sections for
the examples considered there.
All in all, we prove that MultiComPoly computes a “unique"
decomposition, w.r.t a normal form, for generic decompos-
able instances.

2. FUNCTIONAL DECOMPOSITION
Rather than the general multivariate Functional Decomposi-
tion Problem (FDP) problem (see [23, 12, 30]), we consider
throughout this paper the homogeneous variant. Thus for
any positive integers ` and m, we have the following problem.

FDP(`,m)
Input: f = ( f0, . . . , ft)∈K[x0, . . . ,xr ]t+1 homogeneous polyno-
mials, all of the same degree.

Output: Either “no decomposition” or homogeneous polyno-
mials

(
g=(g0, . . . ,gt),h=(h0, . . . ,hs)

)
∈ K[y0, . . . ,ys]t+1×K[x0, . . . ,xr ]s+1

all of degree ` and m, respectively, such that f = g◦h.

Trivial decomposition may occur when ` = 1 or m= 1, and we
assume in the rest of this paper that ` > 1 and m> 1.

DEFINITION 1. f ∈K[x0, . . . ,xr ]t+1 is decomposable if there
exists (g,h) such that f = g◦h with deg(g) > 1 and deg(h) > 1.
The pair (g,h) is an (`,m) decomposition of f if (g,h) is a de-
composition of f with deg(g) = ` and deg(h) = m.

Linear substitutions introduce inessential nonuniquenesses
of decompositions. Indeed, any invertible linear combination
A∈GLs(K) of (h0, . . . ,hs) leads to a decomposition of f , since

f (x1, . . . ,xr ) =
(
g(y0, . . . ,yr )A

−1)◦
(
h(x0, . . . ,xr )A

)
.

As in the univariate case, it is convenient to define a “normal
form" [21, 22, 20] of a decomposition. In the univariate case,
a polynomial h is said to be original if h(0) 6= 0. A univariate
decomposition

(
g,h
)

of f is called normal if h is original and
monic (i.e., leading coefficient equal to 1). We introduce a
similar notion for the multivariate case.

DEFINITION 2. We consider homogeneous monic polyno-
mials, whose leading coefficient in the DRL order equals 1.
A decomposition (g,h) of such an f is in normal form if the
polynomials ((g0, . . . ,gt),(h0, . . . ,hs)) are homogeneous and
monic and (h0, . . . ,
hs) is an m-Gröbner basis (a Gröbner basis up to degree m)
w.r.t. DRL order (i.e., degree reverse lexicographical). Two
decompositions (g,h) and (g̃, h̃) of f are equivalent if their
normal forms are equal.

In the multivariate case, the fact that (h0, . . . ,hs) are homoge-
neous implies in particular h(0) = 0. One might view homo-
geneous as a natural extension of the concept of original. In
addition, if the polynomials of h are an m-Gröbner basis, then
the polynomials (h0, . . . ,hs) are, in particular, monic. Note that
if h is a m-Gröbner basis, then (h0, . . . ,hs) is also a basis of
the K-vector spanned by h0, . . . ,hs; a natural and canonical
representative of equivalent decompositions. Note that Mul-
tiComPoly actually computes the normal form of a decom-
position.

We fix some notation for the remainder of this paper. For r ≥ 1
and δ ≥ 0, we write:

Pr,δ = { f ∈K[x0, . . . ,xr ] : f homogeneous, and deg( f ) = δ}

for the vector space of homogeneous polynomials of degree
δ . A basis of Pr,δ , denoted Mr (δ ), is given by the set of all
monomials of degree δ . Thus dim(Pr,δ ) = #Mr (δ ). We define
the composition map:

γs,`,r,m : Ps,` ×Pr,m → Pr,`,m
(g,h) 7→ g◦h

and write Dr,`,m = Im(γs,`,r,m) for the set of (`,m) decompos-
ables. Finally, we state the framework in which we prove our
results.

DEFINITION 3. Let F be an algebraic closure of K, and
E`,m ⊂ F [y0, . . . ,ys]t+1×F [x0, . . . ,xr ]s+1 be the set of homoge-
neous polynomials (g0, . . . ,gt) of degree `, and (h0, . . . ,hs) of
degree m. We say that a property is generic if the set of el-
ements in E`,m verifying this property is a non-empty Zariski-
open subset; i.e., the property is verified for all elements of
E`,m except for an algebraic set of codimension one.



We recall that in order to prove that a certain property is
generic, it is sufficient to show the following

1. First: show that the set of points/elements for which
the property fails is the zero of a system of polynomial
equations. This defines the complement of an open set
with respect to Zariski topology.

2. Second: prove that the Zariski-open subset is not empty;
which means that we have to prove that the property is
valid at least on one specific example. The examples
that we exhibit are actually defined over the ground field
K, and we avoid reference to its algebraic closure in the
following.

3. GENERIC UNIQUENESS OF THE RIGHT
COMPONENT

We consider here the first part of MultiComPoly on the set
Dr,`,m of (`,m) decomposables. The aim of the first part is to
obtain a basis of the vector space L (h). As explained in the
introduction, this vector space is obtained from the truncated
m-Gröbner basis G of ∂ `−1I f : xδ

r , for a suitable δ > 0, w.r.t.
DRL. In [18], it is proved that SpanK(G) is also a basis of
L (h) as a K-vector space, if #G = s+1. We prove here that
the property

SpanK(G) = L (h)

is generic for the set of Dr,2,2 of (2,2) decomposables, and for
the set of Dr,3,2 of (3,2) decomposables.

3.1 Roadmap of the proof
In both cases Dr,2,2 and Dr,3,2, the general strategy is identical
although the technical details differ. As explained previously,
a proof of genericity is divided into two steps. We provide
here a high level description of the strategy in our context.

1. To define the algebraic set, we will adopt a linear al-
gebra point of view. In this context, it is not difficult to
see that the condition L (h) 6= SpanK(G) implies a de-
fects in the rank of a certain matrix. By considering
generic polynomials, it is possible to construct an al-
gebraic system whose variables correspond to the co-
efficients of a right component. This algebraic system
vanishes as soon as the right component h is such that
L (h) 6= SpanK(G).

2. We prove then that the Zariski-open set is not empty by
providing suitable explicit examples. This is the most
difficult part of the proof. Here, we will use use a poly-
nomial point of view. We consider the following family
f = g◦h∈ Dr,`,2 of (`,2) decomposables:

• r = s= t and g = (y`
0, . . . ,y

`
s),

• for all i with 0≤ i ≤ s, hi = ∑s
j=i x

2
j .

3.2 (2,2) decomposition
We first consider the basic case of a decomposable f ∈Dr,2,2.
Let then ((g0, . . . ,gt),(h0, . . . ,hs)) be a (2,2) decomposition of
f . In this situation, we have to consider the ideal:

∂I f =

〈
∂ fi
∂xu

| 0≤ i ≤ t, and 0≤ u≤ r

〉

.

generated by the partial derivatives of f . This is due to the

fact that for all 0,1≤ i ≤ t, fi = gi(h0, . . . ,hs) = ∑0≤ j,k≤r g(i)
j,khjhk,

with gi = ∑0≤ j,k≤sg(i)
j,kyjyk. Thus

∂ fi
∂xu

= ∑
0≤ j,k≤s

g(i)
j,k

(

hj
∂hk

∂xu
+hk

∂hj

∂xu

)

.

Each partial derivative ∂ fi
∂xu

is a linear combination of elements

{xj ∙hk}
0≤k≤s
0≤ j≤r . For the analysis, it is convenient to consider the

(
(t +1) ∙ (r +1)

)
×
(
(s+1) ∙ (r +1)

)
matrix:

A =













∙ ∙ ∙ ∙ ∙ ∙ xj ∙hk ∙ ∙ ∙ ∙ ∙ ∙
∂ f0
∂xu

∙ ∙ ∙
... ∙ ∙ ∙

∂ fi
∂xu

∙ ∙ ∙
... ∙ ∙ ∙

∂ ft
∂xu

∙ ∙ ∙













(1)

where the ((i,u),( j,k))-entry equals the coefficient of xj ∙ hk

in ∂ fi
∂xu

. If Rank(A) = #Columns(A) = (s+1) ∙ (r +1), then each

xj ∙hk can be expressed as a linear combination of ∂ fi
∂xu

leading
in particular to

xrhi ∈ ∂I f , for all i,0≤ i ≤ s. (2)

Let G be a truncated 2-Gröbner basis of ∂I f : xr . Our goal is
to prove that

SpanK(G) = L (h). (3)

This condition (3) is clearly a necessary condition of success
of MultiComPoly. The set of decomposable for which (3) is
not fulfilled is an algebraic set. Indeed, the failure of condi-
tion (3) is due to a defect in the rank of two sub matrices of
(1) (see [18]). It remains to prove that this Zariski-open set
is nonempty. To do so, we consider the following particular
decomposable instance f = g◦h∈ Dr,2,2:

• r = s= t and g = (y2
0, . . . ,y

2
s)

• for all i,0≤ i ≤ s, hi = ∑s
j=i x

2
j .

To show that (3) is fulfilled for this family, we need several
intermediate results.

LEMMA 3.1. Let f = g◦h∈ Dr,2,2 be as defined previously.
For all i,0≤ i ≤ s, we have:

∂ fi
∂xu

=

{
4xuhi = 4xu ∑s

j=i x
2
j if u≥ i,

0 if u < i.

PROOF.

fi = h2
i ,

∂ fi
∂xu

= 2hi
∂hi

∂xu
.

Due to the particular choice of h, ∂ fi
∂xu

= 0 if u < i. For all u≥ i,
∂ fi
∂xu

= 4xuhi = 4xu ∑s
j=i x

2
j .

From this, we deduce the following.



LEMMA 3.2. For all i ≤ s and u > i:

∂ fi
∂xu

−
∂ fi+1

∂xu
= 4xux2

i ,

with the convention that fs+1 = f0.

Recall that we consider the DRL ordering � with x0 � ∙∙ ∙ � xs.

LEMMA 3.3. Let i ≤ s. Then

LT�

(
∂ fi
∂xi

)

= x3
i ,

where LT� stands for the leading term.

PROOF. Here, ∂ fi
∂xi

= 4xi ∑s
j=i x

2
j . Hence:

LT�

(
∂ fi
∂xi

)

= xi LT�

(
s

∑
j=i

x2
j

)

= x3
i .

We now describe explicitly the leading terms of ∂I f .

LEMMA 3.4. Let f = g◦h ∈ Dr,2,2 be the particular exam-
ple defined previously. The leading terms of a truncated 3-
Gröbner basis of ∂I f are:

[
x3

s

]
∪

[
xsx2

s−1,x
3
s−1

]
∪

[
xsx2

s−2,xs−1x2
s−2,x

3
s−2

]

∪ ∙∙ ∙

∪
[
xsx2

0,xs−1x2
0, ∙ ∙ ∙ ,x2x2

0,x
3
0

]
.

PROOF. Clearly

∂I f =

〈
∂ fi
∂xu

| 0≤ i ≤ u≤ s

〉

=

〈
∂ fi
∂xu

| 0≤ i < u≤ s

〉

+

〈
∂ fi
∂xi

| 0≤ i ≤ s

〉

=

〈
∂ fi
∂xu

−
∂ fi+1

∂xu
| 0≤ i < u≤ s

〉

+

〈
∂ fi
∂xi

| 0≤ i ≤ s

〉

=
〈

xux2
i | 0≤ i < u≤ s

〉
+

〈
∂ fi
∂xi

| 0≤ i ≤ s

〉

.

Since LT�
(

∂ fi
∂xi

)
= x3

i , the leading terms are pairwise distinct.

This proves that
[
xux2

i | 0≤ i < u≤ s
]
+

[
∂ fi
∂xi

| 0≤ i ≤ s

]

,

is a 3-Gröbner basis of ∂I f .

Finally:

COROLLARY 3.1. Let K be a field of characteristic 6= 2,
and let f = g◦ h ∈ Dr,2,2 be the particular example defined
previously. The truncated 2-Gröbner basis of ∂I f : xs is ex-
actly

[
x2

0, . . . ,x
2
s
]
= L (h).

PROOF. It is a well known property of the DRL ordering
that for a polynomial f , xs| f iff xs|LT�( f ). Consequently, the
polynomials in ∂I f of degree 3 divisible by xs are, thanks to

Lemma 3.4: ∂ f0
∂xs

= 4xs∑s
j=0x2

j and xsx2
i for 0 ≤ i < s. Conse-

quently, the truncated 2-Gröbner basis of ∂I f : xs is:
〈

s

∑
j=0

x2
j ,x

2
0, . . . ,x

2
s−1

〉

=
〈

x2
s,x

2
0, . . . ,x

2
s−1

〉
.

Finally, is not difficult to see that a basis of L (h) is also[
x2

0, . . . ,x
2
s
]
.

3.3 (3,2) decomposition
We now consider a (3,2) decomposable f =( f0, . . . , ft)∈Dr,2,3.
In this case, we start from the ideal generated by the second
order partial derivatives:

∂ 2I f =

〈
∂ 2 fi

∂xu∂xp
| 0≤ i ≤ t, and 0≤ u, p≤ r

〉

.

According to [18], each generator of the previous ideal is
a linear combination of elements {xjxk ∙hq}

1≤q≤s
1≤ j,k≤r . As previ-

ously, it is convenient to consider the (t ∙ r(r +1)/2)× (s∙ r(r +
1)/2) matrix:

A =














∙ ∙ ∙ ∙ ∙ ∙ xjxk ∙hq ∙ ∙ ∙ ∙ ∙ ∙
∂ 2 f0

∂xu∂xp
∙ ∙ ∙

... ∙ ∙ ∙
∂ 2 fi

∂xu∂xp
∙ ∙ ∙

... ∙ ∙ ∙
∂ 2 ft

∂xu∂xp
∙ ∙ ∙














In a similar way, if Rank(A) = #Columns(A), then each x2
r ∙ hi

can be expressed as a linear combination of ∂ 2 fi
∂xu∂xp

leading

in particular to

x2
r hi ∈ ∂I 2

f , for all i,0≤ i ≤ s. (4)

Let G be truncated 2-Gröbner basis of ∂I 2
f : x2

r . Again, we
want to prove the necessary condition of success of Multi-
ComPoly:

SpanK(G) = L (h). (5)

Similarly to the (2,2) case, it is clear that set of h satisfying
(5) is a Zariski-open set. The main task is to show that it
is nonempty. We consider the same type of decomposable
f = g◦h∈ Dr,3,2 as previously:

• r = s= t and g = (y3
0, . . . ,y

3
s),

• for all i,0≤ i ≤ s,hi = ∑s
j=i x

2
j .

In what follows, we set fs+1 = hs+1 = 0. The idea is to split the
ideal ∂ 2I f into several parts:

∂ 2I f = H1∩H2∩H3

where:

H1 =
〈

∂ 2 fi+1
∂xu∂xp

− ∂ 2 fi
∂xu∂xp

| i < u < p≤ s
〉

H2 =
〈

∂ 2 fi+1
∂x2

u
− ∂ 2 fi

∂x2
u
| 0≤ i < s and i ≤ u≤ s

〉
+
〈

∂ 2 fs
∂x2

s

〉

H3 =
〈

∂ 2 fi+1
∂xi ∂xp

− ∂ 2 fi
∂xi ∂xp

| 0≤ i < s and i ≤ p≤ s
〉

It turns out that we can predict accurately the leading terms of
a 4-Gröbner basis of each ideals and that they are all distinct.
For that, we need several technical lemmas.

LEMMA 3.5. For i ≤ u < p≤ s, we have:

∂ 2 fi
∂xu∂xp

= 24xuxphi

∂ 2 fi+1
∂xu∂xp

− ∂ 2 fi
∂xu∂xp

= 24x2
i xuxp if u > i.

∂ 2 fi
∂x2

u
= 6

(
hi +4x2

u
)

hi .

(6)



Consequently ,if the characteristic of K is not 2 or 3, H1 =〈
x2

i xuxp | i < u < p≤ s
〉
.

PROOF.

fi = h3
i ,

∂ fi
∂xu

= 3h2
i

∂hi

∂xu
.

Due to the particular choice of h, ∂ fi
∂xu

= 0 if u < i and for all

u≥ i, ∂ fi
∂xu

= 6xuh2
i . Now, let i ≤ u≤ p≤ s, we have ∂ 2 fi

∂xu∂xp
=

12xuhi
∂hi

∂xp
= 24xuxphi , if u 6= p.

= 6h2
i +24x2

uhi , if u = p.

Finally, if u 6= p and u > i, then ∂ 2 fi+1
∂xu∂xp

− ∂ 2 fi
∂xu∂xp

= xuxp(hi+1−

hi) = xuxpx2
i .

LEMMA 3.6. The leading terms w.r.t a DRL ordering of a
truncated 4-Gröbner basis of H3 have the following shape:

x3
i xp for 0≤ i < s and i ≤ p≤ s. (7)

PROOF. We have:

∂ 2 fi+1

∂xi∂xp
−

∂ 2 fi
∂xi∂xp

= 0−
∂ 2 fi

∂xi∂xp
= −24xixp(x

2
i + ∙ ∙ ∙+x2

s).

Thus the leading term is x3
i xp.

LEMMA 3.7. We consider the following N×N integer ma-
trix:

AN =










5 1 ∙ ∙ ∙ 1 1
1 5 ∙ ∙ ∙ 1 1
...

...
. . .

...
...

1 1 ∙ ∙ ∙ 5 1
1 1 ∙ ∙ ∙ 1 5










.

Then det(AN) = (N+4)22N−2.

PROOF. By summing up the rows of the matrix AN we ob-
tain the following vector:

v =
[

(N+4) ∙ ∙ ∙ (N+4)
]
.

For all 1≤ i < N, we subtract from the i-th row of AN the vector
1

N+4v. Hence:

det(AN) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

4 0 ∙ ∙ ∙ 0 0
0 4 ∙ ∙ ∙ 0 0
...

...
. . .

...
...

0 0 ∙ ∙ ∙ 4 0
N+4 N+4 ∙ ∙ ∙ N+4 N+4

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= (N+4)4N−1

LEMMA 3.8. If the characteristic of K is larger than s+ 4,
then H2 = 〈x2

j hi | 0≤ i ≤ s and i ≤ j ≤ s〉.

PROOF. Clearly H2 =
〈

∂ 2 fi
∂x2

u
| 0≤ i ≤ s and i ≤ u≤ s

〉
.

From the expression (6) of ∂ 2 fi
∂x2

u
we deduce that:








∂ 2 fi
∂x2

i

...
∂ 2 fi
∂x2

s








= 6As−i+1






x2
i hi
...

x2
s hi






Since the characteristic of K is > s+4, we know from lemma
3.7 that det(As−i+1) 6= 0 and thus

〈
∂ 2 fi
∂x2

i

, ∙ ∙ ∙ ,
∂ 2 fi
∂x2

s

〉

= 〈x2
i hi , . . . ,x

2
shi〉

LEMMA 3.9. If the characteristic of K is > s+ 4, it holds
that H2 = 〈x4

0, x2
0 x2

1,x
4
1,x

2
0 x2

2,x
2
1 x2

2,x
4
2, . . . , x2

0 x2
s,x

2
1 x2

s, . . . ,x
2
s−1x2

s,x
4
s〉.

PROOF. We set Ii = 〈x2
i hi , . . . ,x2

shi〉. From lemma 3.8 we
know that H2 = I0 ∩Is. We prove by induction that Ii
modIi+1∩∙∙ ∙∩Is = 〈x2

i x2
i , . . . ,x

2
i xs〉.

For i′ = s the property is true since Is = 〈x4
s〉.

Now we assume that the property is true for all i′ > i. This
implies that for all j > i:

x2
j hi = x2

j x2
i +

s

∑
k=i+1

x2
j x

2
k −→Ii+1∩∙∙∙∩Is

x2
j x

2
i ,

where −→I stands for the reduction modulo I .
Finally x2

i hi = x4
i +∑s

j=i+1x2
i x2

j −→〈x2
i+1hi ,∙∙∙ ,xshs〉 x4

i . Consequently

the property is also true if i′ = i.

We now summarize our results.

COROLLARY 3.2. Let f = g◦h∈Dr,3,2 be the particular ex-
ample defined previously. If the characteristic of K is larger
than s+4, the truncated 2-Gröbner basis of ∂I 2

f : x2
s is

[
x2

0, . . . ,x
2
s

]
= L (h)

PROOF. According to the previous lemmas 3.5, 3.6, and
3.9, the leading terms of H1, H2, and H3 are pairwise dis-
tinct. We deduce a 4-Gröbner basis of ∂I 2

f . Hence, the

polynomials in ∂I 2
f of degree 4 divisible by x2

s are in H3.
The result comes from the fact that these s+ 1 polynomials
are the monomials

[
x2

0x2
s, . . . ,x

2
sx2

s
]
.

4. GENERIC UNIQUENESS OF THE LEFT
COMPONENT

The left component of a decomposition can recovered by
solving a linear system as soon as h (or any basis of L (h) is
known. Indeed, given f and h, a solution g to f = g◦h can be
described by a system of linear equations. This system has

α = (t +1)

(
r +n

r

)

equations, each corresponding to one monomial in f . The
coefficients in this linear system are polynomials in the coef-
ficients of h. The unknowns correspond to the coefficients of
g are

β = (t +1)

(
s+ `

s

)

in number. When can we expect g to be uniquely determined
by f and h? Generically, this corresponds to the question of
whether α ≥ β .

THEOREM 4.1. 1. If s≤ r +`(m−1) and `≤ r, then α ≥
β .

2. If s= r + `(m−1), m≥ 2, and ` ≤ r, then α ≥ β .



3. If s> r + `(m−1) and r ≤ `, then α < β .

4. If s≥ (r + n)(n+ 1)/(`+ 1)− `, `,m≥ 2, and ` ≤ r ≤ 2`,
then α < β .

PROOF. (1) We have

α ≥ β ⇔ (r+n)r

r! =
(r+n

r

)
≥
(s+`

s

)
= (s+l)`

`! (8)

⇔ (r +n)l (r +n− `)r−` ≥ r!
`! (s+ `)` = (s+ `)`rr−`, (9)

where xr = x ∙ (x− 1) ∙ ∙ ∙ (x− r + 1) is the falling factorial (or
Pochhammer symbol). We have r + n− ` = r + `(m− 1) ≥ r
and r +n≥ s+ `, so that the inequality (9) holds.

(2) Let k = r +n = s+ `. We have n≥ m` ≥ 2`, and

α ≥ β ⇔
(k

r

)
≥
(k

s

)

⇔ |r−n|
2 = |r − k

2 | ≤ |s− k
2 |

= |2r+2n−2`−(r+n)|
2 = |r+n−2`|

2 = r+n−2`
2

⇔ |r −n| ≤ n+ r −2`.

If r ≥ n, then this holds since 0 ≤ 2n− 2` = 2`(m− 1), and
otherwise we have |r −n| = n− r ≤ n+ r −2`, since ` ≤ r.

(3) Similarly to (1), we write

α < β ⇐⇒ (r +n)`(r +n− `)n−` < (s+ `)`nn−`.

Since r ≤ `, the latter inequality is satisfied by assumption.

(4) We write

r!
t +1

α = (r +n)r = (r +n) ∙ ∙ ∙ (n+1), (10)

r!
t +1

β = (s+ `)`
r!
`!

= (s+ `)`rr−` (11)

= (s+ `) ∙ ∙ ∙ (s+1) ∙ r ∙ ∙ ∙ (`+1). (12)

In both products, we multiply the first and last terms, the sec-
ond and second last terms, etc. The resulting biproducts are
(r + n− i)(n+ 1+ i) and (s+ `− i)(` + 1+ i), respectively, for
0≤ i < r − `. The assumption on s implies s+ ` > r +n, as in
3, since (n+ 1)/(`+ 1) > 1. In particular, we have r < s, and
for i ≥ 0

• (r +n)(n+1)− `(`+1) ≤ s(`+1),

• (r + n)(n+ 1)− (s+ `)(`+ 1)− i(s− r) < (r + n)(n+ 1)−
(s+ `)(`+1) ≤ 0,

• (r +n− i)(n+1+ i) ≤ (s+ `− i)(`+1+ i).

Since r −`≤ `, the factors not absorbed in these r −` biprod-
ucts are

• (r + n− (r − `)) ∙ ∙ ∙ (n+ 1+ r − `) = (n+ `) ∙ ∙ ∙ (n+ r − ` +
1) in (10),

• (s+ `− (r − `)) ∙ ∙ ∙ (s+1) = (s+2`− r) ∙ ∙ ∙ (s+1) in (12).

(These products are empty if r = 2`.) The assumption guar-
antees that n+ `− i < s+ 2`− r − i for i ≥ 0, and α < β fol-
lows.

0

1

2

3

4

5

6

0 1 2 3 4 5
ρ

σ

m − 1

m 2 − 1

5. CONCLUSION
In order to visualize the result, we divide the variables by `,
obtaining ρ = r/` and σ = s/`. In the figure on the opposite
page, we have α ≥ β in the green striped area, α < β in the
red hashed area, and α = β on the diagonal line.
For our application, we think of ` and m (and hence n) as
being fairly small, and of r and s as being substantially larger.
Thus the right-hand striped area in the figure is relevant for
us.
If α < β , then the system for solving f = g◦h is underdeter-
mined and has either no or many solutions. If α ≥ β , we have
at least as many equations as unknowns. We conjecture that
for a “generic” h, the system has maximal rank and thus is
overdetermined. By trying to solve it, we determine whether
a solution exists or not.
The central result of this paper is the proof in the preceding
sections of this conjecture in the cases (2,2) and (3,2).
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