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Abstract — This paper revisits the topic of decoding
cyclic codes with Grébner bases. We introduce new
algebraic systems, for which the Grobner basis com-
putation is easier. We show that formal decoding for-
mulas are too huge to be useful, and that the most ef-
ficient technique seems to be to recompute a Grébner
basis for each word (online decoding). We use new
Grobner basis algorithms and “trace preprocessing”
to gain in efficiency.

I. INTRODUCTION

Let C be a cyclic code of length n over Fa, with defining set
Q C {1,...,n} and correction capacity ¢, and let o € Fom be
a primitive n-th root of unity. For any error e of weight v,
if Z7 denote the locators of e, we can compute its syndroms
S;=e(a') =377, Z]" Vi € Q. Aslong as v < ¢, the system
SyN, = { Si—X7_,Z;, i€Q } specialized for S; = Sf
has a unique solution (cf. [4]). To use the symmetry of the
problem, we introduce the symmetric functions of the locators:

SYM, = { 0j — le<m<1j Zyy o Zuy, § € [1,v] } The S;’s
and the o}’s associated to the Z;’s are also solutions of the
following system (cf. [1])

i—1 . )
vewros, ={ G TR 08T ey O
i j=193°i—3, )

A Grobner basis describes the set V(I) = {z € K : Vf €
I, f(x) = 0} of solutions of an ideal I C K[z1, ..., 2] where K
is the algebraic closure of K. To compute Vk(I) = Vg(I)NK’,
we have to add the field equations. We add a ™ to an ideal
to denote the ideal together with the field equations (Z;”rl —
Z]', S?m — SZ or 0']2-7” — O'j).

It has been shown that the problem of decoding cyclic codes
up to their true minimum distance can be solved by the use
of Grobner bases [3], with the algebraic system SyN; .

II. NEwW SYSTEMS AND THEIR PROPERTIES

Starting from the system (1), we eliminate the unknowns
syndroms S;, ¢ ¢ @ to obtain the new system BIN =
{S; — fi(o1,...,00) © € @}, where the f;’s are the Waring
functions. We show that this new system and the systems
SYM, and NEWTON, used in [3, 4] are closely related, and
that for these systems the field equations are not necessary:

Proposition 1. The ideals and their variety are related by:
(BING) = (SYN,SYM{ ) NTa[o,,S] =
(BIN) = (SYN,SYMy) NFa[0,,S] =

VE(SYN.,SYMqT) =

<NEWTON§§') NFso,,S]
(NEWTON,) N Fa[o,, ]
VE(SYN,SYMU)

VlF—z(NEWTON;ﬁ') = VE(NEWTONU)
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number of multiplications in Fom
251 7% 105 oI3:0 oI7d

Fom
73 | 13 | 2°

89 | 17 | 20 | 3,4,5,6,7,8
113 15 | 2°® | 3,4,5,6,7,8

15} 5] 153
20.1’2 .9’211.6’210.0’220.5’ 220.0
26,372 ,97212,07215,6721 ,87 223,9

Table 1: Decoding QR Codes

Proposition 2 (Uniqueness). Let S* C Fom be the syn-
drom of an error e of weight v < t, then the specialized sys-
tem BIN(S*) has a unique solution (o7,...,04) and Le(Z) =
Z;:O a;-‘Z“_j 1s the locator polynomial of e. In practice, the
Grébner basis of BIN(S™) is always {o1 + 07,...,00 + 05 }.

Proposition 3 (List Decoding). Ifv >t then the Grébner
basis of BIN(S™) gives all the possible errors of weight at most
v that have S* as syndroms.

With these new systems, we are able to do formal decoding
as well as online decoding. But the size of the formal formu-
las are so huge that the computation of the Grobner basis is
intractable, and even if we could obtain these formulas, the
cost of their evaluation would be much too large.

III. PRACTICAL DECODING
In practice we do online decoding with a subset of the system
BIN (we take the minimal number of equations to have a single
solution, and choose the equations of minimal degree to speed
the computation). This is a very general method, we only
need the length and the defining set of the cyclic code.

If the field is big enough (e.g. 22°), we use a general
method for solving systems with parameters: the behavior
of the Grobner basis computation is almost the same for all
the possible values of the syndroms corresponding to an error
of a given weight. Hence as a preprocessing, we can compute
a Grobner basis for BIN(S?,) for a random error e of weight
v, and record the trace of the computation (we do it as a C
program). Then for any error e, the C program executed on
BIN(S;) gives the values of the o;’s. This reduce drastically
the complexity of the online computation (by a factor 1000).

This method is implemented in Maple, and call the C soft-
ware FGb from the third author to compute a Grobner basis.
FGb is an implementation of the algorithm F4 [2].
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1 Introduction

This paper revisits the topic of decoding cyclic codes with Grobner bases. It has been shown that the
problem of decoding cyclic codes up to their true minimum distance can be solved by the use of Grobner
bases [CRHT94c, CRHT94b, LVY97]. The principle is to rewrite the decoding problem into an algebraic
system of equations, which must have the following properties:

1. Decoding property: its solutions are closely related to the error e,
2. Computational property: the computation of its solutions can be done in reasonable time.

But as long as a Grébner basis computation is used to find the solutions, the computational times vary a
lot. For details on ideals, Grébner basis and polynomial system solving, the reader should refer to [CLO97].

Motivated by the problem of decoding quadratic residue (QR) codes, for which no general decoding
algorithm is known, we improve on several points. First we introduce modified systems, without high degree
equations, which still have the decoding property but for which the Grébner basis computation is much
easier. The Grobner basis computation can be done either as a preprocessing, with the parameters taken as
variables, or for each word to be decoded, with the parameters computed from the word. In the first case
(formal decoding), we get formulas and we just have to compute the parameters and to evaluate the formulas
to decode a word. In the second case (online decoding), we compute for each word the parameters and a
Grobner basis of the specialized system, but each system has less variables and the Grébner basis is much
easier to compute than in the formal case.

We show on the example of the [41,21,9] QR code that the size of formulas obtained in the formal Grébner
basis is too large to be useful, since the remainder evaluation for each word takes too much time. Hence,
even if the formal computation can be achieved, the online decoding approach seems to be faster. We get
efficient and automatic decoding algorithms which work for any cyclic code and enable to decode above the
true minimum distance. We give many examples of decoding (for BCH codes of length 75, 511, for QR codes
of length 73, 89, 113, 151 and for a code of length 75 which does not belong to a known class of codes).
Moreover, using a general compilation method useful for systems with parameters, we improve the efficiency
of our algorithms: for each cyclic code, we automatically generate a C program which, executed on any
word, gives the corresponding solution without computing directly a Grobner basis. We know exactly the
complexity of the decoding algorithm (i.e. the number of arithmetic operations) for any of these programs.
For any weight v, we get all the codewords at distance less than or equal to v from the error, hence we are
able to decode above the correction capacity of the code.

The paper is organized as follows: we recall in Section 2 basic facts about cyclic codes, and previous work.
We introduce in Section 3 our new systems and show that they satisfy the decoding property. We study the
size of the formulas for the [41,21,9] QR code. Section 4 presents various examples of decoding algorithms
by online Grobner basis computation, in particular the compilation method used for more efficiency. We
explain how it decodes above the correction capacity of the code. We give finally in Section 5 many examples
of decoding algorithms, with computational times and complexity.



2 Notations and previous work

Let C be a cyclic code of length n over Fy, with defining set @ C {1,...,n} and correction capacity ¢, and
let o € Fym be a primitive n-th root of unity.

If ¢ = ¢+ e is the received word, where e(z) = Z:};& erx” is the error of weight v to be decoded, if
r1,...,Ty locate the positions of the non-zero e,’s, we define the following quantities: for 1 < 7 < v let
Zj = " denote the locators of the error, L(Z) = H§:1 (Z-2Zj))=Z"+01Z" ' +---4+0y_1Z + 0, denote
the locator polynomial of e and S; = e(a?) = Z§:1 Z! denote the elementary power functions of the Z;’s for
1 <i < n. From the received word ¢ we are able to compute the syndroms of e, Sf = e(a’) = &(a?) Vi€ Q.

From now on, we shall distinguish an actual value from an indeterminate (variable) by appending a
% to it. For instance S} is a value given to the indeterminate S;. We also use the following notations:
Zv = (Zj)jE[l,v]a Oy = (Uj)je[l,v]a ﬁ = (Si)iEQ7 S = (Sl)zQQ As lOIlg as v <t, the system

v
POWER FUNCTIONS { S; — Z Zi, i€Q (1)
=1

specialized for S; = S} has a unique solution (cf. [RTCY92] pp. 981) and the error can be corrected. In
addition to the system (1), the syndroms S} and the elementary symmetric functions o7 of then Z;’s are
solutions of the following systems:

SYMMETRIC FUNCTIONS { 0 — Z Zi, - 7, J € [1,v] (2)
l1<"'<lj

S; + E;;ll ojSi,j + i0; 1€ [1,1)]

Si+z§:1 Ujsi,]' i€ [v,v+n— ].] (3)

NEWTON’S IDENTITIES {

and the Z;’s are n-th roots of unity, hence Z;‘H -Z;=0,1<j<w.
These systems have already been studied [CRHT94c, CRHT94b, LVY97, CRHT944a]. P. Loustaunau and
E. Von York prove in particular in [LVY97] that a Grébner basis of the system

SZ—EU_ VA 1€Q
sy 4
{ ZH - 7 j€[1,v] )

for a Lexicographical order such that Z, > S (where Z, are variables and S are parameters) contains
polynomials that become the locator polynomial of an error when specialized on the syndroms S} of the
error. Hence, the precomputation of a Grébner basis for this system in F»[Z,,,S] gives formulas, and the
decoding algorithm is: for any error e, evaluate the formulas on the syndroms of e. It works also as an online
decoding: for any error e, specialize the system (4) on the syndroms of e, and compute the Grébner basis of
this system in Fom [Z,] for a lex order, then it consists of only one polynomial, the locator polynomial of e.

For the formal decoding, the burden of Grobner basis computation is supported only during prepro-
cessing, but in almost all cases the computation is infeasible. This comes from the high degree polynomials
always contained in the Grébner basis (e.g. S?" —S;), which follows from the field equations Z}’H —Z;. It
makes the computation of the formal Grébner basis intractable for codes of length greater than 31 for QR
codes. Even when the precomputation can be achieved, we will see in the next section that the size of the
formulas seems to be too large to be used for a fast decoding, since its evaluation on syndroms would have
a cost corresponding to it size.

3 New Systems of positive dimension

We consider the new systems obtained from the preceding ones by removing the fields equations. We prove
in proposition 2 that they have good properties for the decoding problem. We show in section 4 that these
systems are also very efficient from the computational point of view.



Using the Newton’s identities (3), we eliminate the unknowns syndroms S;, i ¢ Q by successive substi-
tutions, and we obtain the system for the weight v

(BINU){Si—fi(O'l,... ,UU):O ’LEQ

where the f;’s are the Waring functions (see [LN97] pp. 30):

(ip+ig+---+i, -1 . ;
fi(gla"'agv): E ) .'v 'Z'O’il...(f:)”
) . . SRR
i1+200+- -+ Vi, =1

Proposition 1. We have the following relations between those systems:

<BINU> = <Sz — ZZ; i€ Q;Uj - Z Zl1 "'le .7 € [1,’1}]) ﬂF2 [Qvﬂﬁ]
j=1

l1<"'<lj
i—1 v
= <Si+ZUjSi—j+iUi; 1€ [1,’1}],51,4_1'-{—20']'51,4_1'_]', s [1,n]>ﬂF2[gv,§]
Jj=1 Jj=1

and this ideal is a prime one (see [CLO97] chapter 7 §4).

The main difference with the preceding systems is that, because we removed the field’s equations, the set
of solutions associated with the ideal contains now solutions in the algebraic closure of Fam . The following
proposition show that these parasitic solutions (solutions in the algebraic closure not corresponding to a
codeword) are well known, and that the computations of the real solutions is still easy.

Proposition 2 (Unicity). We denote by V (I) the variety associated with an ideal I, and by I1; the projec-
tion eliminating the | first coordinates, i.e. Ij(xy1,...,x) = (i41,...,2r). Let S* C Fom be the syndrom
of an error e € Fy[z]/(z™ — 1) of Hamming’s weight v < t, where t is the correction capacity of the code.

o the specialized system (BIN,(S™)) has a unique solution (o%,...,0%) and L.(Z) = Z;ZO U;-‘Z”*j is the
locator polynomial of e.

b Elwa 3'(O-)lka s 70-::1) such that (O-Ia s 70;70t—wa§*) € V(BINt) and (Ot—w+17§*) ¢ Ht—w+1 (V(BINt))
The weight of e is therefore exactly v = w and E;'):o U;Z”_j is the locator polynomial L.(Z) of e.

o if 6* = (65,...,57) is such that (6*,5") € V(BINt), then L¢(Z) divides L(Z) = Z;ZO &;-‘Zt’j and
L.(Z) can be obtained considering the factors of L(Z) with odd multiplicity and distinct from Z. More

precisely, L(Z) = p{* ---pi* Z* = L.(Z) = p§“ mod 2) "'pgfk mod 2)

Proof. Omitted because of space requirements. O

This means that if we compute a Grébner basis of (BIN) for a degree ordering with ¢ > S, we will get
formulas for the o;’s in terms of the S;’s of minimal degree. We expect these equations to be of degree one,
but even if they are of high degree, they have a unique root when specialized on a syndrom.

Any syndrom S; gives an equation of degree i. If we take all these equations, we get equations of high
degree, and the Grébner basis is hard to compute. A first remark is that if i € Q and 2i € Q we have the
relation S2; = S?, so we only need to consider the odd syndroms. Moreover, if we select a subset E C Q and
obtain linear equations for o; in the Grébner basis of {S; — fi(¢) : i € E} then we have decoding formulas.

Example. We have reproduced for the QR code [31,16,7] the formulas found by hand in [RYT90]. The
full Grébner basis contains 32 polynomials, but we can select one linear polynomial for each ¢;, which gives
valid formulas provided that the coefficient in o; does not vanish when specialized on a syndrom.

When trying the same computation for the QR code 41, which odd syndroms are {1, 5, 9, 21, 23, 25, 31,
33, 37, 39}, we were not able to get linear formulas: either the Grobner basis could not be computed, either o4
appeared as a free variable (when too much equations were removed). We use as in [RTCY92] the fact that -1
is a syndrom, hence the relation o3 = S4p0y is satisfied. More generally, eliminating the unknowns syndroms
starting from the last, we can derive as for the system (BIN) equations o7~%S; = f,_;(Z==2 Lygn—i

oo T oy v



which are polynomials of degree n —i + 1. Here we get another equation S3s0f + 03 + 030303 + 030201 +
o303 +040509+03020,. We use 5 equations given by the syndroms {1,5,9,36,40}. The first and the last one
are used to eliminate the variables o; and 3. The Grobner basis for the syndroms {5, 9} gives a polynomial
P, of degree 5 in o4, and the Grébner basis for the syndroms {9,36} gives a polynomial P, of degree 4
in g4. The formal gcd of these two polynomials in o4 could be computed using Magma, and we obtained
a linear polynomial in o4, which coefficients are polynomials in Sy, S5, S9, Ss36, S40 of total degree 170, and
with 29828 terms. This indicates that, in general, the size of the linear formula with formal parameters is
very large, and even if it can be obtained, it is useless for decoding. Thus the idea of doing precomputation
of formal Grobner basis is not relevant for effective decoding of cyclic codes.

4 Practical decoding

We turn back to the original approach of [CRHT94c, CRHT94b], and consider in this Section online decoding.
For each word e, we construct the system BIN(S™), and compute its Grobner basis over Fom . The system
has a unique solution (cf. Proposition 2), and it turns out that formulas of degree one are obtained (but we
did not proved that there is no multiplicity). This means that the Grobner basis has in practice the shape

o1+ 0}
o2 + 05

BIN(S™) : (5)

oy + 0}
where the 0’s are the actual coefficients of the locator polynomial.

We use a general method for solving systems with parameters. A specialization property (see [FGT01])
tells us that the result of an online Grébner basis computation over Fam is the specialization of the formal
Grobner basis over Fo. This property seems to extend to the fact that all steps of the computation of the
specialized basis are the specialization of all steps of the computation of the formal basis. In other words, the
behavior of the Grobner basis computation is the same for all the possible values of the syndroms, provided
that it corresponds to an error of a given weight. We use this remark to drastically reduce the complexity
of the online computation (we gain a factor 1000).

We describe the method in the particular case of the F4 algorithm ([Fau99]), because this is the one we
use in practice, but it also applies to other algorithms. The F4 algorithm uses the correspondence between
polynomial algebra and linear algebra. It constructs several matrices from polynomials, and uses linear
algebra to compute the Row Echelon form for each of these matrices (see [Fau99] for more details).

Considering the computation of a Grébner basis of BIN(S} ) for a given error e of weight vy, we can
record the trace of the computation (in our case the program which compute the Grébner basis generate
another C program). Now let e be another error of weight vy, we can run the C program on the syndroms
of e. It successively constructs matrices, in the same way as for ey, and perform linear algebra on it, as for
eo. The fact that experimentally we always obtain exactly the Grobner basis of BIN(S¥) comfort the idea
that the specialization property extends to all steps of the computation. These considerations justify the
following algorithm:

e PREPROCESSING: compute a Grobner basis for BIN,(S},) for a randomly chosen error eq of weight v,
and record the trace of all linear algebra computations performed (for instance as a C program).

e DECODING: for an error e, execute the C program on BIN, (S}) and get the values of the o;’s.

The benefits of using such a C program instead of using a generic algorithm for computing Grobner basis is
the gain in efficiency. Indeed, the C program only performs linear algebra operations, in a prescribed manner.
Using an analogy, it is the same as performing a Gaussian elimination with all the pivoting elements and
the row operations known in advance.

Let us note that the execution of the C program succeeds only if the error e has the same weight v as eg.
For a given code C correcting ¢ errors, a decoding algorithm consists in ¢ programs Py, ..., P;, one for each
possible weight. To decode, execute the programs in sequence, starting from P; to P;, until the resulting



% of errors having ng solutions of weight 3 and n4 of weight 4)
(ng,ma) | (0,1) | (0,2) | (1,1) | (0,3) | (1,2) | (0,4) | (1,3) | (0,5) | (1,4)
31% | 29,64 | 4,94 | 14,84 | 59% | 5,9% | 4,4% | 1,54 2

Figure 1: Decoding the errors of weight 4 for the QR code of length 31.

[ k d t number of number number of random tests
errors | solutions of x | giving more than 1 solution

93 [ 175 | 95 | 47 | 48 to 49 1 2154 0/100000
50 1 216.9 0/100000

51 1 222.7 0/1000

91 | 184 | 91 | 45 | 46 to 47 1 2152 0/100
48 1 2157 0/100

49 1 2198 0/100

50 1 2255 0/100

Figure 2: Decoding BCH Codes [511, k, 0] beyond ¢ over Fs;o

system does not contain 1. Note that now, contrarily to the computation of a Grobner basis using a general
algorithm, we are able to predict the time needed for the decoding (see Section 5). As we only perform
linear algebra, we can give explicitly the number of arithmetic operations in the field Fom that are needed
to decode a word.

Indeed, the set of solutions of the system BIN,(S™) is the set of all the errors of weight less than or equal
to v which have S* as syndroms. As long as there exists only one error of weight less than v with syndroms
S*, this error can be decoded, even if v is greater than ¢. In the other cases, this enables to do list decoding
up to the weight v. The size of the list is not known, and may be large. Note also that the complexity of the
Grobner basis computation increases with the size of the list. We illustrate this result with the [31,16,7] QR
code: we made an exhaustive search for all errors of weight 4 (there are 31465 of them). As we can see in
Figure 1, 31% of these errors can be decoded (i.e. there is a single codeword at minimal distance less than
or equal to 4), and for 4.9% of them the set of solutions of BIN4(S™) contains one solution of weight 4 and
one solution of weight 3. This set of solutions is always of size at most 5.

5 Results

We present here results for some selected codes. For each code, we give the number of multiplication (*) in
the field Fam which occurred during the execution of the C programs.

Figure 2 presents the decoding of two BCH codes of length 511, with designed distance 93 and 91, above
their correction capacity. We are able to decode far beyond the correction capacity of the code. For instance,
for the BCH code [511,175,93] the true minimum distance is 95, hence it corrects 47 errors, but we are able
to correct up to 51 errors. Figure 3 shows decoding algorithms for some QR codes (for which no decoding
algorithm was known before).

We compare finally in Figure 4 two codes of length 75 : the BCH code [75,31,7] and a code of type [75,33,7]
and defining set {1, 3,25} which does not belong to a known class of codes. Our method is independent of
taking the code in a specific class, any cyclic code can be decoded in the same way. We chose a code which
is better than the corresponding BCH code (it has the same length, the same minimum distance, but its
dimension is smaller, and it behaves a little better above 4 errors).
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