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Abstract

The design of two-dimensional filter banks yielding orthogonality and linear-phase filters, and
generating regular wavelet bases is a difficult task involving algebraic properties of multivariate
polynomials. Using cascade forms implies dealing with non-linear optimization. We turn the issue
of optimizing the orthogonal linear-phase cascade from [18] into a polynomial problem and solve
it using Grobner basis techniques and computer algebra. This leads to a complete description of
maximally flat wavelets among the orthogonal linear-phase family proposed in [18]. We obtain
up to 5 degrees of flatness for a 16x16 filter bank, whose Sobolev exponent is 2.11, making
this wavelet the most regular orthogonal linear-phase nonseparable wavelet up to the authors’

knowledge.
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1 Introduction

A major tool for the representation of 2-D signals such as images is the 4-band perfect reconstruction
filter bank. Basically, it consists of four 2-dimensional filters Hy, Hy, Hy, H3. The input signal is
filtered by each filter separately, and each filtered signal is downsampled by two horizontally and
vertically, thus generating 4 subsignals, that can be considered as a non-redundant representation
of the original signal. This paper addresses the issue of designing these filters. The most common
approach consists in designing separable filters, i.e. 2-D filters obtained by tensor product of 1-D
filters, since many design techniques are available for 1-D perfect reconstruction filter banks.

In the design, since a perfect reconstruction filter bank implements signal decomposition onto a
basis, we want this basis to be orthogonal : it also provides the energy preservation property between
space and transform domains. It is also desirable, in image processing, to use linear-phase filters,
which means (at least) centro-symmetric or centro-antisymmetric. A major point, at this stage, is
that these two properties cannot be simultaneously achieved by separable filter banks, except in the
Haar case. Thus, most filter banks used until now are separable and either orthogonal or linear-
phase. Since we want the filter bank to yield both properties, we shall consider nonseparable filter
banks in this paper. It is already known that nonseparable orthogonal linear-phase filter banks exist
[18, 28], but few design examples are available. Actually, the major design techniques for orthogonal

nonseparable filter banks (not necessarily linear-phase) are the following :

e Straightforward formulation of the design as an optimization of the filters’ coefficients under

the quadratic constraints for orthogonality (implying perfect-reconstruction) [36].

e Optimization of cascade forms ensuring orthogonality structurally [18, 29, 28]. It is to be
noticed that no complete cascade is until now available in the multidimensional case, due to
the lack of a factorization theorem. The main difficulty here appears when trying to optimize

the parameters of the cascade.

e State-space matrix representations [32] look to be a very promising approach to the design of

orthogonal multidimensional filter banks [33].

The design technique we propose derives from the cascade form approaches. It consists in looking
at the optimization issue as solving a set of polynomial equations and in solving these equations
using the computer algebra techniques known as Grobner bases.

It is well known that such filter banks may generate wavelet bases [5, 17]. In this case, the scaling



function ¢ is the limit of the subdivision process based on Hy and satisfies the two-scale equation :
$e,y) = Y 62w — 1,2y~ j)Ho(i,j) (1)
0]

The wavelets are linear combinations of integer translates of ¢ :

bilay) = 3 6(2e — i 2y — (i) 2)
balay) = 3 6(2e — i 2y — ) H(i, j) (3)
Ualay) = 3 6(2e — i 2y — ) Hy(i, j) (4)

It can be proven [7] that the resulting wavelets can exist and be N — 1 times continuously differen-
tiable only if the polynomials Hy,...Hs vanish as well as their derivatives up to order NV at these
aliasing frequencies (of flatness order N. It is known for 1-D dyadic systems that, in practice, im-
posing these vanishing moments is an efficient way to obtain some regularity [11], so that we expect
that designing maximally flat non-separable filter banks will provide regular wavelet bases.

More precisely, we consider a particular family of nonseparable filter banks for sampling matrix
21, holding structurally orthogonality and phase-linearity. This family [18] is defined by polyno-
mial matrix products including some angles that can be chosen arbitrarily. The coefficients of
Hy, H{, Hy, H3, seen as polynomials in variables z; and z; are thus polynomials in terms of the
cosines and sines of the angle parameters. The flatness equations for the polynomials Hy,...Hs are
linear combinations of the coefficients of the polynomials Hy,...Hs. Thus, the resulting system is
polynomial w.r.t. sines and cosines. This shows the principle leading to use techniques for solving
polynomial systems in this signal processing context. It should be emphasized that the application
of Grébner basis techniques to filter bank design is very different from [22].

In practice the straightforward application of existing algorithms to the polynomial system ob-
tained by writing the flatness equations in terms of the cascade parameters cannot design filters
with support larger than 6x6 and two degrees of flatness. In order to design filter banks with higher
regularity, we propose a substitution of variables, splitting the system into two smaller subsystems,
which makes possible the design of filters with support up to 16 x16 and five degrees of flatness.

The paper is then divided as follows. In section 2, we present the cascade form we use in the
sequel, borrowed from [18]. We show how the issue of maximizing the flatness of filters of given
size can be turned into solving a polynomial system. Section 3 is devoted to the estimation of the
regularity of 2-D wavelets. The algorithm derives from mathematical results [7], and will be used as
an analysis tool for the resulting wavelets and filter banks. In section 4, we briefly present computer

algebra tools for solving polynomial systems, the Grobner basis notion, and the algorithms that are



currently available. Using these tools, we then present, in section 5, a substitution of variables and
a strategy to solve the problem. This provides the minimal size for achieving a given flatness order,
the number of remaining free degrees, and a parametrization of the family of the corresponding
filters for this flatness order. Examples for different filters’ sizes are described in section 6 : they are
obtained through an optimization of the remaining free degrees and we describe the resulting filter

banks in terms of regularity, frequency characteristics and performances in image compression.

2 Problem statement for maximally flat wavelet among the Kovacevic—

Vetterli family

The principle of our approach consists in considering a cascade form ensuring structurally orthogo-
nality and linear-phase and including some degrees of freedom which we optimize so as to maximize
the flatness. Straightforward approaches might have been considered, but writing the orthogonality
equations in the space domain leads to a system with very high numbers of variables and equations.
This cascade form let us reduce the number of variables, and allows to choose them freely, although
making any optimization a non-linear problem. We now describe the problem in more detail. This
cascade is not complete (i.e : not every orthogonal linear phase filter bank can be written under

this form). We first define this family of filter banks. Let us define

cosq; —sin oy 0 0 1 0 1 0
sin o  cosay 0 0 1 01 0 1
0 0  cosf; —sing; V2110 -1 o
| 0 0 sin 3; cosf; | |01 0 -1 |
(100 0] (10 0 o0 |
01 00 0 z 0 0
P = D(Zl, 2‘2) = (6)
00 01 0 0 =z 0
|00 1 0| [0 0 0 212
K
H(z) = R\WP [[ D(21, 22) PWR;W P (7)
=2

The filters Hy ... Hs are defined as
Hi(z) = 7-[2-70(23, zg) + ’Hi,l(zf, z%)zl + HLQ(Z’%, z%)zz + %i,g(zf, z%)zlzg (8)

where H; ; denotes the (7, 7) component of the matrix 7.



It is easy to check that the resulting filters Hg and Hy are centrosymmetric while Hy and Hjz are
centro-antisymmetric. Each filter then has linear phase and a square support of size 2K X 2K. It can
also be checked that the filter bank is orthogonal, meaning that we represent the input signal on an
orthogonal basis. Orthogonality implies that the analysis—synthesis system is perfect reconstructing
(when there is no quantization of the subband signals). These properties are ensured structurally,
whatever K might be. For given K, we have to choose the angles oy, ...ax and Bq,..., fx. We aim
at having maximally flat filters, while flatness of order N for the filters Hy ... Hs at given points
writes as follows : for all ky, ko, k1 + ko < N,

. %‘1 vanishes at (1,-1), (=1,-1), (-1,1) ;
1 2

o % vanishes at (1,-1), (1,1), (=1,1) ;
0z 0zy ’

% vanishes at (1,1), (-1,-1), (=1,1) ;
Zl Z

2

o %& vanishes at (1,-1), (=1,-1), (1, 1).
1 2

Straightforwardly, the coefficients of filters Hy,...Hs are polynomial w.r.t. the parameters

cos o, sin oy, cos 3;, 8in 3;, and the flatness equations are linear w.r.t. the coefficients of the filters,

making the whole system of equations, described by K and N, a set of polynomial equations.

3 Regularity estimates for two-dimensional wavelets

We look for wavelets that are continuously differentiable, as many times as possible. However,
among the functions that are continuous but not continuously differentiable for instance, some are
more regular than others. There are two common definitions of regularity, corresponding to two
families of functions’ spaces : the Sobolev (resp. Hélder) exponent of a function refers to the index
of the smallest Sobolev (Holder) space it belongs to. Estimating the Sobolev and Hélder exponents
of wavelets is not an easy task, but efficient algorithms exist for 1-D wavelets [11, 25].

There are, however, few regularity estimates for nonseparable wavelets in literature : Villemoes
proposes in [35] an estimate of Sobolev exponent in the quincunx case, and in [34] an estimate of
Hélder exponent in the quincunx case, if this exponent is less than 1. Cohen et al and Grochenig
propose in [7] an estimate of Sobolev exponent for general sampling matrices, which we will present
more precisely now for the sampling matrix 27. A lower bound of the Hélder exponent can also be
calculated [20], on the basis of [6].

The estimate needs a preliminary condition : The scaling funtion ¢ and its integer translates

must be a Riesz basis of the subspace they span. Assume that the so-called “Cohen’s condition”



[5] is met, which is always the case in practice, since we consider low-pass filters that do not vanish
in their pass-band. We then define the transfer operator T associated to |Hp|?, which acts on
2w Z*-periodic functions as :

() )

2
i, (w —}—27rek>

Tfw)=3
k=0

where
{eo,€1,€e2,e3} = {(0,0),(0,1),(1,0),(1,1)}

The finite dimensional space F of trigonometric polynomials whose Fourier coeflicients are supported
in [0,2K — 1]? is stable by T. For the sequel T denotes the restriction to F. If the spectral radius
of T is 1, if the eigenvalue 1 is the only unitary eigenvalue and has multiplicity 1, then the integer
translates of the scaling function are a Riesz basis of the subspace they span. This property is
assumed in the sequel.

The Sobolev exponent of the scaling function ¢ is defined as follows, where ® denotes the Fourier

transform of ¢ :
52:sup{s>O;/<1+|]w\|2)s|<l>(w)|2dw<oo} (10)
We assume that Hy has flatness order N, which means that N is the largest integer such that :

vk € {1 3}, + V 7. " Ho s =0 11
< ] =
{ ) ) }a 91,92, Q1 T QG2 = 1V, ) %19 1212( ek) ( )

The Sobolev exponent sy of ¢ is given as :

_ _loep (12)
2log 2

52

where p denotes the spectral radius of T restricted on the subspace F of trigonometric polynomials
vanishing at (0,0) as well as all their partial derivatives up to order N.

It can be shown [20] that the spectrum of 7" is made of the spectrum of T restricted to E and of
the eigenvalues 27% for 0 < k < N, with multiplicity k4 1. For example, the Matlab implementation

of the Sobolev estimate consists in writing the matrix of T as :
Aliy ) = a2/ (4K = 1)) = /(K = 1)), 20%AK — 1)) - GHAK - 1))) (13)

where a(k, 1) denote the Fourier coefficients of |Hg(w)|?, / the integer division and % the remainder

of the integer division. The spectrum is calculated and p is extracted from the set of eigenvalues.



4 Computer Algebra and Grobner bases

We now review some major algorithms for solving multivariate polynomial systems. The reader is
also referred to [16, 30, 8] for a more detailed introduction. In order to give an intuitive presentation
of these notions we frequently use analogies with linear algebra well known concepts.

In the following, a polynomial is a finite sum of terms and a term is the product of a coefficient

and a monomial.

4.1 Simplification of polynomial systems

Solving linear systems consits in studying vector spaces, and similarly solving polynomial sys-
tems consists in studying ideals. More precisely, we define a system of polynomial equations
P, = 0,...,Pp = 0 as a list of multivariate polynomials with rational coeflicients in the alge-

bra Q[Xy,..., Xn]. To such a system we associate Z, the ideal which is generated by Pi,..., Pg;

R

it is the smallest ideal containing these polynomials, and also the set of Z P,Uy, where the Uy, are
k=1

in Q[X1,...,Xn]. Since the P vanish exactly at points where all polynomials of Z vanish, it is

equivalent to studying the system of equations or the ideal 7.

For a set of linear equations, one can compute an equivalent triangular system by “canceling” the
leading term of each equation. A similar method can also be done for multivariate polynomials. Of
course we have to define the leading term of a polynomial, or in other words ordering the monomials.
Thus we choose an ordering on monomials compatible with the multiplication. In this paper we

only use three kinds of ordering:
e “lexicographic” order : (Lex)

2% = glonman) <ILex 2P = z(B1bn) o FigVi=1...00, a; = 3; and oy, < B4, (14)

e “degree reverse lexicographic” order : (DRL)

w(alv"'iaN) <DRL w(Bh“ﬂﬁN) ¢> .’L‘((Zk ak)iﬁN7"'7Bl) <Lex .’L‘((Zk Bk)7aN7-'-7al) (15)

e “DRL by blocks” order : (DRL,DRL) we split the variables into two blocks, @ = (v, ...,an) =
(a1, .., ani—1), (anr, ..., an)) = (o, @) for some N’ < N.

(O{I,O(”)

T <prr.orr 7P & (1% <prp ™ )or((of = B') and «*" <ppp 27" (16)

Now we can define the leading monomial (resp. term) of a polynomial as its monomial (resp.
term) with highest degree. To cancel the leading terms of the polynomials p = 9z%y + --- and

q = 3zy? + --- we compute r = yp — 3xq; r is called the S-pol of p and ¢:

|



S-pol(polynomial p, polynomial ¢, < a monomial ordering)
t, = LeadMon (p, <)

t, = LeadMon(g, <)
lem(t,,t lem(t,,t
(pola) Tty 1),

return
q tp

In the special case where the S-pol is simply r = p — uq (e.g. p=22%y+---and ¢ = ay +-- ),
we say that p is reducible by ¢ and that r is the reduction of p by ¢:

Reducible(polynomial p, polynomial ¢, < a monomial ordering)
if LeadMon(¢,<) divides LeadMon(p,<) then return true
else return false

end if

Reduce(polynomial p, polynomial ¢, < a monomial ordering)
Lead Term(p, <)

LeadTerm(q, <)

if Reducible(p,q), then return p —

9

else return p

end if

We can extend straightforwardly this definition for reducing a polynomial by a list of polynomials:

Reduce(polynomial p, list of polynomials 1=[¢y,...,q, , < a monomial ordering)]
for k from 1 to n do
if Reducible(p,qx,<) then return Reduce(Reduce(p,qz,<),/,<)
end if
end for

return p.

It should be noted that the output of the reduction of a polynomial by an arbitrary list depends

on the order of the polynomials in the list.

4.2 Grobner bases

We can now give a sketch of the Buchberger [2, 3, 4] algorithm which can be seen as a constructive

definition of Grobner bases:



Grobner(polynomials fi,...f,, < a monomial ordering)
Pairs = {[f, [, 1< i < j < n)
while Pairs # () do
Choose and remove a pair [f;, f;] in Pairs

fn-l-l = Reduce(s_p()l(fiv fj7 <)a [flv ey fn]v <)
if f,+1 # 0 then

n=n-+1
Pairs = Pairs\U{[fi, fn], 1 <i< n}
end if

end while

return [fi,..., f,]

Definition 1 The output G of the algorithm is called a Grébner basis of T for the order <

Theorem 1 G has the following properties:

(i) G is an equivalent set of generators of .
(i) A polynomial p belongs to T if and only if Reduce(p,G) =0

(iii) The output of Reduce(p,G) does not depend on the order of the polynomials in the list. Thus
this is a canonical reduced expression modulus Z, and the Reduce function can be used as a

simplification function.

(iv) From G it is easy to compute the number of complex solutions (counted with multiplicities) of

the input system.
(v) If < is lexicographic, G has a ‘simple form” (this will be made more precise later).

Solutions of an algebraic system could be of a variety of kinds that can be classified w.r.t. their

algebraic dimension. For example :

e finite number of isolated points, in which case we say that the dimension is 0,
e curves, the dimension is 1,

e surfaces, the dimension is 2.

If a system has different kinds of solutions (e.g isolated points and curves) then the global dimension
is the maximum dimension of each component.
Another meaningful interpretation of the dimension is that it corresponds to the remaining free

degrees when all of the equations are satisfied.



4.3 Lexicographic Grobner bases

The computation time depends strongly on the monomial order that is used: In general, Grobner
bases for a lexicographic ordering are much more difficult to compute than the corresponding DRL
Grobner base (we have an intermediate situation for a block (DRL, DRL) ordering). On the other
hand, this computational cost is however worth it, because the lexicographic Grébner basis has
a more or less triangular structure which is suitable for further processings. Fortunately, we can

compute efficiently lexicographic Grébner basis with a different method:
First compute a DRL Grobner basis.

Then change the ordering by applying a special algorithm [13, 14].

4.4 Zero dimensional systems

Note that when d = 0 in T the first equation (1) is a univariate polynomial. It is also possible to
impose ky = --- = k, = 1 (Rational Univariate Representation [26]). As a consequence it is possible

for zero dimensional system to carry out very efficiently the following :

e count exactly all complex/real roots (with or without multiplicities)[23, 26].
e isolate real roots with the desired precision (no rounding errors).
e compute floating point approximation of complex/real solutions (rounding errors) [1].

Unfortunately the algebriac systems occuring in this paper are not zero dimensional.

4.5 Positive dimensional systems

Since the number of solutions is infinite, things are more difficult; we use the last concepts/algorithms/implement
15]: it is possible to rewrite a lexicographic Grobner base as a (finite) union of triangular sys-

tems [9, 19]:
k
System = U T;
=1

Each T} is a triangular system of dimension d; (hence the dimension of the whole system is max(d;)).

The structure of a triangular system of dimension d is (eventually permuting some variables):

“kd+1 h(d+1) (1‘1,...,l‘d) kd-}-l_l h(d+l) (1‘1,...71‘d) kd+1_2 _

Tap1 T h%d+1)(x1,...,xd)xd+1 + h§d+1)(x1,...,xd)xd+1 =0 (d+1)
kd+2 h1d+2) (zl,...,xd+1) kd+2—1 hgd+2) (Il,...,l‘d+1) kd+2—2

ahat? 4 z 4 o TlenTdil) +oo=0 (d+2

T d+2 h(d+2) (xl,...,xd+1) d+2 h(()d+2) (Il,...,xd+1) d+2 ( )
(n) (n)

k RV (21, 0®n1) ko1 Ry (21,0 0®n—1) |2

4+ T 4 T A o= () n
n h(() (xl,...,xd+1) n h(() )(.’Z,'l,...,.’l,‘d+1) n ( )

10



where all the hz(-j) are polynomials.

4.6 Computer algebra systems

There is a Groébner function in every computer algebra system (Maple, Mathematica, Axiom, ...),
but it must be emphasized that these implementations are very inefficient compared to recent soft-
ware; even the specialised softwares (Magma, Singular, Macaulay, Asir) are unable to solve the most
difficult systems of the paper. Two of the authors have developped efficient C/C++ software in

their respective field :

e Gb !is devoted to the computation of Grébner basis and triangular systems . To give a rough
estimate of the efficiency, one can say that a Grobner basis computation > 1 sec in Gb is

impossible in Maple. For 16x16 filters, we will use FGb[15] the successor.

e RS? is specialised for the study of real roots. For instance, RS can isolate, by intervals with
rational bounds and in few seconds, all of the real roots of an algebraic system (degree 40)

whose coefficients contains 300 digits or more.

5 Design of maximally flat filters among the Kovacevic—Vetterli
family
Solving the problem of obtaining maximally flat filters divides into many parts :
1. Generating the system of equations.
2. Substituting the variables by using computation of Grébner basis techniques.
3. Determining, for given K the highest possible, N.
4. Describing the family of the filters satisfying equations (K, N).
5. Choosing the remaining free degrees so as to obtain good properties.

6. Analyzing the resulting filters in terms of time—frequency localization, of regularity and of

performances in an image compression system.

Yhttp://posso.lip6.fr/GB.html
http://medicis.polytechnique.fr/~rouillie /rs /rs.html

11



5.1 Straightforward approach

The only example provided in [18] is a solution to the (3,2) system. In fact, this (3,2) problem can
be solved by using computer algebra software as a “black box” : let us write the equations as a
polynomial system in cosines and sines of the angles. There are 6 angles, so that there are 12 variables
in the polynomial system. For each H;, 0H;/dz1,0H;/0z,, we consider vanishing moments equations
at 3 points, which makes 36 equations altogether, and we have to add the 6 equations imposing
sin? + cos? = 1. Grobner basis computation can then be carried out, and a zero-dimensional system
is obtained. Triangular systems (in this case the Rational Univariate Representation) provide the

roots explicitely, since the first polynomial factorizes in terms of degree four. We thus obtain 64

explicit solutions in the form [cosay,...,cos(3,sinay,...,sinf3] e.g. :
V2 VISV2 T 1 V2 VIV2 V15 V15 V2 V2
SPTs ovr sty oo o

These solutions correspond basically to 2 different filter banks. However, the solution which is
different from the one presented in [18] is not better than the previous one in terms of space-frequency
localization or of regularity.

Actually, this is the only example where the straightforward approach can be applied, because

in other cases the system is not zero-dimensional.

5.2 Generating the system

It takes few lines of code to implement directly in Maple (or a similar system) the matrix formulation
described in section 2. But for K > 6 and N > 4 it takes several hours to generate the equations
and for K > 8 it is impossible to obtain the results.

The first idea consists in working with 2 X 2 complex matrices instead of 4x4 real matrices.
It is easy to identify a linear transform in IR* with a linear transform in €2 if it holds a positive
determinant. Not all of the matrices in the product have a positive determinant, making the
identification a little more tricky. More precisely the matrix P will be considered simultaneously

with a neighbour matrix so as to make the identification possible, as follows :

1 0 0 0
0 z O 0
PD(Zl,ZQ)P = (17)
0 0 2129 0
(00 0 2

12



and similarly

1 1
z z
pl =] ™ (18)
29 2122
L ?122 | L ?2 |

We will then consider, instead of

N
2 2 1
H(z{, z5) (19)

22

2122

the following cascade of processings. Using Eq. 18, we start with the vector

1+:z
Ug = ! (20)

(Zl —|— i)ZQ

we consider the matrices one after the other. When considering W, the current vector is multiplied

by

1 1
(21)
1 -1
When considering R;, the current vector is multiplied by
eial O (22)
0 P

When considering PD(z,22)P, the following processing is applied to the current vector v =

(u(1),u(2))"
| rwy + iy o)
2129 R(u(2)) + i29Z(u(2))

This approach lets us divide the number of variables by 2 and decrease dramatically the number
of terms in each equations (because we replace products of sums by products of monoms). The
resulting equations are polynomials in €' and €',

We also notice that we consider the derivatives at given points and so it is useless to compute huge
polynomials in zy, z3, calculate the derivatives and then evaluate them at these points afterwards.
A much more efficient way consists in dealing with finite order expansions at these points, directly

providing the equations for all derivatives. In addition, as we consider derivatives at points (-1,-1),(1,-

1), (1,1) and (-1,1), we observe that each equation writes as a sum of terms such as e(Fn+72+7x)

13



where v; denotes either «; or §;; thus each term can be coded efficiently as a 32 bit word for K < 16
and the multiplication of the two terms becomes a simple bitwise operation. The previous cascade

of processings was implemented in C, and the resulting program generates quickly the equations.

5.3 A substitution of Variables

However, there are still a large number of equations: the size of the generated system is more than
60 mega bytes for K = 8 ! We now propose a substitution of variables. Combined with an efficient
use of Grobner bases tools (in particular we use the reduction function as a simplification process),
it provides a much nicer formulation of the issue. Basically, we solve the issue by induction for N

(detailed below), and we propose the following substitution of variables :

ay — by

a = a- (24)
po= 210 (25)
ap = a’“;b’“—“’““;b’““ fork=2...K—1 (26)
By = a’““;b’““—“’“;rb’“ fork=2...K -1 (27)
ag = % (28)
Pr = bi— w (29)

and we obtain the following results :

Theorem 2 (i) Equations can be reduced to 2 sub-systems, one depending only on the aj, and
the other one only on by. Both sub-systems are identical. In each sub-system there are only

K wvariables (compared to 4K in the first formulation).

(ii) ay and by are equal to —% mod 7.

Hence we make a second subtitution of variables :
1 i(ap—ar) i(br—b1) -
A1:B1:§, Ap = "7 B = "% for k=2...K (30)

Now, let us briefly describe the induction. For N = 1, we observe directly that the system
S(K,1) reduces to the constraint on a; and by, as already mentioned in [18]. Assume that the
reverse lexicographic degree Grobner basis GB4 (K, N — 1) of the system S4(K, N — 1) is known.
It provides directly the reverse lexicographic degree Grébner basis GB(K, N — 1) of the system
S(K,N —1). Using finite order expansions, S(K,N) is obtained as equations in Ay, 1/Ak, Bk,

14



1/By and ¢ with equation 2 + 1 = 0. This system is reduced by the family GB(K, N — 1), and
further reduced by using the fact that 1/Bj is the inverse of B. At this point, we observe that
the resulting system can be split into two subsystems, S4(k, N) depending on Ay and 1/A4; and
SB(K, N) depending on By and 1/Bj.

By this inductive calculation, we obtain the following as an equivalent system to the system

(K,N) :

Theorem 3 For K < 10,N < 6, the system (K, N) that A,, ..., Ax must satisfy is {Fa, ..., En}

where:

E, iAkZO

Es ZAIC (Z;A - zk—:HA)
S
L T T

These equations have been checked by computer algebra for K < 10, and we conjecture that
they hold for any K. For N < 4 the computation can be done by hand.

This means that all solutions to the problem (K, N) correspond to solutions to the above equa-
tions where all coordinates lie on the unit circle.

Unfortunately all of the methods described in section 4 give all of the complex solutions of an
algebraic system (]z|2 = 1 is not an algebraic equation). So we use the following trick: as the
polynomials have rational coefficients, the conjugate of a solution is a solution, hence for a solution
with coordinates on the unit circle, the set of the inverses of the coordinates is also a solution. We
introduce the new variables A} and the equations A;A} — 1 = 0; then A} must satisfy the same
equations as Ag. The resulting system contains all of the admissible solutions we look for (where
all coordinates yield modulus 1), and other parasite solutions, but this trick helps in reducing
dramatically the number of “bad” solutions.

For a further description of the solutions of this system, we need a list of triangular systems (we
got previous results by using only reverse lexicographic degree Grébner bases) whose computation
is much easier. For systems such as (8,5), the computation of the lexicographic Grébner basis is a

very difficult task, making it necessary to use recent and efficient computer algebra algorithms.

15



Let Sk n be the system with variables Ay and A} (where A; A} =1).

The computation is then carried out in five steps :

1. Computation of the Grobner basis of Sk n with DRL order, the variables being ordered as
[A1,..., Ar, AL, ... AR

2. Computation of the Grobner basis of Sk with a (DRL,DRL) order and two blocks [A], ..., A%]
and [Aq,..., Ak].

3. In the resulting system just keep the equations involving the Ax only. This a DRL Grobner

basis (elimination theorem).
4. Computation of the lexicographic Grébner basis of this subsystem “by change of ordering”.
5. From the latter basis compute a list of triangular systems

The only restriction is that this algebraic approach describes all of the complex solutions of these
systems, while we are only interested in the unitary ones. This point has to be considered for each

particular system.

5.4 Maximal flatness for given K and maximally flat filter banks

Statement 1 For a given K < 9, we can compute the mazimal N such that the system Sk n has

admissible solutions. The exact values N max are reported in Table 1.

The method is as follows : first we show how to find a candidate for Nmaz and then we prove
(with computations) that it was correct.

Let us consider the following procedure:

ComputeNmax(integer K)
N=1
repeat
Compute Gi n a DRL basis of Sk n
if G v = {1} or Gk N is zero-dimensional then return N — 1
end if
N=N+1

end repeat

If Nmaz = ComputeNmax(K), 3 < K < 9, we claim that Sk Nmaz+1 has no admissible solu-

tions.
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If Gk Nmaz+1 = {1} then the statement is obvious ; otherwise we introduce the new variable cx
and the equation 2cx — Ax — ALK = 0, so that cx = cos(Af) is a real number with modulus less
than 1 for any unitary Ag ; by calculating a Grébner basis, a degree-2 equation in cx is obtained,
so that we just have to check by hand that this equation has no real solution with modulus less than

1.
Lemma 1 (i) S33 is zero-dimensional and Sk Npmaz 05 positive-dimensional for 3 < K < 9.
(1)) For K <9, Sk Nmaz has admissible solutions.

When we want to prove that solutions with modulus 1 to the system exist (the system is generally
not zero-dimensional) we have to add extra equations to make the system zero-dimensional. We
rewrite the system so that we look for real roots, and calculate how many there are. For each system
we have found a zero-dimensional system holding modulus 1 roots by adding equations setting some
coordinates to 1.

There are many interesting facts reported in Table 1. The first fact is that it is possible to
achieve high flatness if the filters’ support is large enough. We conjecture that an arbitrary flatness
is possible, and we prove it until 5. The second fact is that on the whole the systems are not
zero-dimensional. There are an infinite number of maximally flat wavelets, so that we will look for
wavelets optimizing a property amongst this set of maximally flat wavelets. This is to be compared
to the 1-D dyadic case, where the maximally flat orthogonal wavelets of given size are finitely many

[10].

5.5 Optimizing the remaining parameters

In terms of computer algebra, this means that the tools developped for zero-dimensional systems
cannot be used directly, and this reminds the applicative need for extending the zero-dimensional
tools to arbitrary systems. Therefore, the recent algorithms for the computation of the lexicographic
Grébner basis, and the triangular systems are of the highest interest to us. They provide explicitly
all of the parameters as a function of 2 or 4 free degrees. The following theorem reduces the number

of systems to be studied :

Theorem 4 For 2 < K < 9, all of the admissible solutions of Sk Nmaz are solutions of one
triangular system Tr (see 4.5). The number of free parameters in Tk is equal to the number of free

parameters in the whole system Sk Nmaz-

This is a by product of the triangular systems theory and was implemented in Axiom by Marc

Moreno Maza [19].
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The optimization among the maximally flat wavelets consists in choosing these free degrees
according to a criterion. Many possible criteria can be considered, and we have mainly considered

3 of them :

Symmetry : The low-pass filter is structurally centro-symmetric, but we would like to be closer to

an axial symmetry for the low-pass filter. This can be turned into a quadratic criterion.

Frequency selectivity : Frequency selectivity : we minimize the energy of the low-pass filter

outside [—a, a] X [—a, a], which means maximizing :

/_/_ o (wr, w) 2oy sy = Z_%lHo(i,j)Ho(k,Z) (/_acos((i— k)wl)dw1> </_acos((j (1)?2)dw2>
31

Energy compaction : We consider the energy compaction for a class of signals :

EZHO(Zvj)HO(k7Z)E[m(z7])$(k7l)] (32)

5,7 k,l
with the correlations given by E[z (i, j)z (k,[)] = pl*=**li=!l and p = 0.9.

These criteria are optimized with respect to remaining free degrees with a conjugate gradient

algorithm.

6 Design examples
For each example we give:
e The shape of the solutions i.e. of Tx

e Optimized filters for various criteria and their Sobolev exponent.

6.1 Examples for N =2

After the the substitution of variables, the system (3,2) is very easy to solve, because we just have
to find two unitary complex points Ay and Az such that Ay + A3 = —%. There are a finite number
of solutions, and they are easy to calculate : we, of course, obtain the filter banks we got by the
straightforward application of computer algebra tools looking for real roots of polynomial systems.

If we increase K, we are still able to describe the sets of solutions. For K =4, N = 2 is still the
maximal possible flatness. There is, for both subsystems, a degree of freedom, which can be seen

geometrically. Its optimization for various criteria is easy to carry out. For all criteria mentionned
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above, the resulting filters hold Sobolev exponents larger than 1, so that the corresponding scaling
function and wavelets are at least continuous.

For K = 5, we know that the maximally flat wavelets hold N = 3. However, we might choose to
relax some of the flatness constraints so as to improve some other characteristics. E.g., we study the
system (5,2). It can be shown to be of dimension 4, and it has a very nice geometric interpretation,
depicted in Fig. 1. It is then clear that for each subsystem two parameters can be chosen, if the
angle between A; and A4 is not to close to m. However the optimization of the 4 free degrees is
a difficult task, and the solutions to (5,3) have nice properties in terms of symmetry, frequency
localization and energy compaction, so that we could not improve numerically these characteristics

by relaxing some of the flatness constraints.

6.2 Examples with N =3

The minimal filter size in order to achieve 3 vanishing moments is 10x10 (K = 5). The solutions
of the system (5,3) are described by the lexicographic Grobner basis. In each subsystem, a variable
can be freely chosen in [—sy,s;] modulo 27 where s; ~ 2.652. The next variable is obtained by
solving a second degree equation, and the other ones by linear equations.

If we optimize the symmetry criterion, the resulting filter is depicted in Fig. 2. The filters
obtained by optimising the other criteria are very close to this one, although there are very different
filters among the maximally flat ones (see eg in figure 2 the filter obtained by maximizing the energy
compaction property). All of these filters hold a Sobolev exponent of around 1.46.

For the system (6,3), it is possible to calculate the lexicographic Grébner basis and even to write
the system as a union of triangular systems, one of them yielding 4 free degrees. However, the filters
we obtained by the optimization procedure of the free degrees are similar to the one obtained in the

(5,3) case.

6.3 Examples with N =4

The smallest size for achieving 4 vanishing moments is 14x14. Once again, the lexicographic basis
provides all variables as a function of 2 free degrees. It consists of an equation in Ag of degree 4
with coefficients that are polynomials in A7. The kth equation is implying A7_j, ... A7 and is linear
in A7_y.

However, the computation of the variables from the free degrees includes solving a degree-4
equation, which means, in general, choosing one of the 4 solutions. This is done numerically, and

the problem is that numerical algorithms cannot follow a root, which implies that the variables are
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not continuous functions of the degrees of freedom. This makes the optimization of the remaining
degrees of freedom more difficult, but in any case interesting filter banks can be designed. Different
filter banks are obtained, depending on the chosen root of the degree-4 equation. For instance, in
figures 4, 5, and 6, we present filters optimizing the symmetry criterion for different roots. They hold
similar qualities in terms of symmetry, but are qualitatively different. They hold similar Sobolev

exponents, between 1.78 and 1.80.

6.4 Examples with N =5

Calculating the Grobner basis for the system (8,5) cannot be done without recent algorithms. De-
spite the numerical solving of a 4th degree equation, very interesting filters have been obtained, such
as those depicted in Fig. 9 and Fig. 10. The Sobolev regularity is 2.11. The corresponding scaling

function and wavelets are orthogonal, linear-phase and continously differentiable.

6.5 Application to image compression

We now present some experimental results on the application of these filter banks holding simulta-
neously orthogonality and phase-linearity to image compression. We introduced these new filters in
the compression scheme presented in [21]. It consists of scalar quantization of the subband signals
followed by a Universal Variable Length Coding [12]. The wavelet packet tree is chosen according
to a rate-distortion criterion [24], as well as the quantization steps [27].

We consider Lena256 at 0.5 bpp. With Daubechies’ filters with length from 6 to 16, we obtain
a Peak Signal to Noise Ratio between 30.40 and 30.75 dB. With our nonseparable filters, we obtain
28.4 dB with the 6x6 filter bank, around 29.6 dB for the 8x8 filter banks, and between 30.42 and
30.57 dB for the 10x10 to 16x16 filter banks. Different filter banks hold very close performances,
so that changing the image or the coding scheme may change the hierarchy. In other words all these
filters may be considered as equivalent. This is illustrated by figure 8, depicting the rate-distortion
curves for separable Daubechies filters of length 14, nonseparable filter with support 6 x 6 from [18]
and nonseparable filter bank from figure 6.

Among the non-separable filter banks, the best results are obtained with the 10x10 filter bank
which has been optimized w.r.t. energy compaction (Fig. 3). The 14x 14 filter bank in Fig. 6 follows,
and then the other 10x10 and 14x 14 filter banks, and then the 16x16 filter bank. This means that
16 x16 does not ensure enough resolution in space domain.

These results do not take into account the subjective quality of the images. Subjectively, the

images encoded by the non-separable filter bank schemes cannot be said to be better or worse than
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the ones from good separable schemes.

7 Conclusion

The results of our study concern four scientific communities :

e From a computer algebra applications point of view, it is one of the major applications of
computer algebra in digital signal processing, and this area looks to be a promising application
field for computer algebra, especially the filter bank area. In addition, the problem has been

solved using the most recent techniques for the Grobner bases computation.
e From the point of view of the wavelet field, it is the first example of bidimensional orthogonal
linear-phase wavelets which are continuously differentiable.

e From the point of view of the filter bank design, the design examples are convincing : the
resulting filters have good frequency characteristics, and it has been shown that the remaining

free degrees can be chosen so as to optimize various criteria.

e From the image compression point of view, it is interesting to have new filter banks hold-
ing simultaneously orthogonality, centrosymmetry and regularity, and in addition with good
frequency characteristics. Relating our results to these of [31] suggests that improved com-
pression efficiency can be achieved by future work on design techniques for such non separable

filters.

Further work might also include the study of other cascade forms for filter banks, or a proof that

arbitrarily high flatness and regularity can be achieved in this filter bank family.
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2
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Table 1: Maximal flatness N for a filter bank with size 2K from [18] and dimension of the corre-

sponding system.
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Figure 1: Geometric interpretation for solving the system (5,2).
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Figure 2: Frequency response of a 10x10 filter with flatness order 3, optimized w.r.t. symmetry

criterion.
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Figure 3: Frequency response of a 10x10 filter with flatness order 3, optimized w.r.t. the energy

compaction property.
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Figure 4: Frequency response of a 14x14 filter with flatness order 4, optimized w.r.t. symmetry

criterion (first root in maple sense).
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Figure 5: Frequency response of a 14x14 filter with flatness order 4, optimized w.r.t. symmetry

criterion (second root in maple sense).
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Figure 6: Frequency response of a 14x14 filter with flatness order 4, optimized w.r.t. symmetry

criterion (third root in maple sense).
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Figure 8: Rate-distortion curves for separable Daubechies filters of length 14 (dashed line), nonsep-
arable filter with support 6 x 6 from [18] (circles) and nonseparable filter bank from figure 6 (solid

line).
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Figure 9: Scaling function and wavelets (Hy and Hy) associated to the 16 x 16 filter bank depicted

in Fig. 7. It is a solution to the (8,5) problem, whose Sobolev exponent is 2.11.
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Figure 10: Scaling function and wavelets (H; and Hg) associated to the 16 x 16 filter bank depicted

in Fig. 7. It is a solution to the (8,5) problem, whose Sobolev exponent is 2.11.
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