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We present an efficient algorithm for the transformation of a Grobner basis of a zero—
dimensional ideal with respect to any given ordering into a Grébner basis with respect to
any other ordering. This algorithm is polynomial in the degree of the ideal. In particular
the lexicographical Grdébner basis can be obtained by applying this algorithm after a
total degree Grobner basis computation: it is usually much faster to compute the basis
this way than with a direct application of Buchberger’s algorithm.

1. Introduction.

One of the main tools for solving algebraic systems is the computation of Grébner bases
(also called standard bases); we refer to Buchberger, (1965, 1970, 1979, 1985), Davenport
et al. (1986) and Becker, Weispfenning (1993) for basic facts on this notion. The fact that
the solutions come easily from the Grobner basis for the lexicographical ordering appears
in Trinks (1978). That the solutions of an algebraic system may be computed from the
Grobner basis for an other ordering on the monomials appears in Kobayashi et al. (1988);
in Lazard (1989), several algorithms are given for computing the solutions from a Grébner
basis (depending on the ordering), together with a discussion on the meaning of solving
an algebraic system.

The Grobner basis of an algebraic system strongly depends on the choice of the ordering
on the monomials. Different orderings have different advantages.

From a complexity point of view, the best ordering is the degree—reverse—lexicographi-
cal one; for this ordering, the computation of the Grobner basis of a system of polynomial
equations of degree d in n variables is polynomial in d™” if the solutions are finite in
number (Caniglia et al. 1988 and 1991); this complexity decreases to d™ if the solutions
at infinity are also finite in number (Lazard, 1983). In practice the computations are
generally much faster and much more feasible than with other orderings.

The pure lexicographical ordering leads to computations which are much longer than
with degree orderings and even are often untractable; the corresponding complexity has
been proved to be d°("") when the number of solutions is finite (Caniglia et al. 1988);
our algorithm reduces this complexity to d°(®)_ For a practical point of view, the basis
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given by this ordering is better suited for computing the solutions (Trinks, 1978; Gianni,
Mora, 1987; Lazard, 1989).

There are many other orderings between these extreme cases; especially there are the
elimination ones which appear in Bayer—Stillman’s Macaulay system.

Thus, an efficient algorithm for change of ordering is useful. We give such an algorithm
in the zero-dimensional case (finite number of solutions).

This algorithm is implemented in Axiom and in the experimental software Gb devel-
oped by one of us. Examples show that, for obtaining the basis for the lexicographical
ordering, it is usually much faster to compute the basis for the degree ordering and to use
our algorithm than a direct computation by Buchberger’s algorithm. In several examples
we get the basis for the lexicographical ordering where previous methods fail, even on
supercomputers.

Since the preliminary version of this paper (july 1989) the algorithms for comput-
ing Grobner bases have made substantial progresses, especially owing to Sugar strategy
(Giovini et al. 1991). It follows that some Grobner bases become easy to compute and
our algorithm is no more useful for them. However, much more Grébner bases may now
be computed and our algorithm is, in many cases, the only way for computing the lexi-
cographical one.

It should be also quoted here that the matrices which are computed by our proce-
dure Matphi appear now to be a fundamental tool for many aspects of solving process,
especially numerical solving (Auzinger and Stetter, 1988; Moller,1993).

The fact that, in our algorithm for changing the ordering, the old ordering may appear
only throughout these matrices, has another important application: our algorithm may
be used for computing the Grobner base after a linear or polynomial change of variables
(Gianni, Mora, 1987).

2. Definitions.

In this paper we will denote by K a field, by R = K[z1,...,z,] the ring of polynomials
in n variables with coefficients in K.

We will consider an ideal in R given by its Grébner basis G with respect to some
admissible ordering. We will say that an element f € R is reduced by G (or in normal
form with respect to G) if no element g € G has leading term that divides any term of f;
we will call reduction algorithm the algorithm that computes the normal form of a given
polynomial f. A Grobner basis is reduced if each of its elements is reduced by the others.

We will consider a zero—dimensional ideal, i.e. an ideal I such that the set of common
zeros of the polynomials in [ is finite in the algebraic closure of the field of coefficients;
this is equivalent to the fact that, for each variable z;, there is a polynomial in the
Grdébner basis for I, with a power of z; as a leading monomial, (Gianni et al., 1988).

DEFINITION 2.1. Given a zero dimensional ideal I in R and (G, <) a reduced Gribner
basis for I, we will call the natural basis determined by G of the K—vector space R/I, the
basis B(G) whose elements are the reduced monomials with respect to G. We will denote
by D(I) the dimension of the K—vector space R/I (the degree of the ideal I).

We will use the properties of the structure of vector space of R/I; for this reason we
want to analize a little closer the structure of the quotient ring and of the monomials
that generate it.
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DEFINITION 2.2. Let B(G) be the natural basis for R/I, let
M(G) = {z:b | be B(G), 1<i<n, :bgB(G)}
be the bordering of G.

The following proposition characterizes the elements of M(G).

PROPOSITION 2.1. Let I be a zero dimensional ideal, (G, <) be the reduced Grobner basis
with respect to an admissible ordering <, and B(G) be the natural basis of R/, then for
every element m € M(G) exactly one of the following conditions holds:
(i) For each x; dividing m, we have m/x; € B(Q); this is the case iff m is the leading
monomial of an element of G.
(i) m = z;my, for some j and some my, € M(QG).

PROOF. (%): This follows immediatly from the definitions of reduced Grébner basis and
of B(G).

(ii): Let x; such that z; divides m and m/x; € B(G); then my = m/z; € M(G). In
fact from m = x;my = z;b we have i # j and my/z; = b/x; is in B(G), because B(G) is
closed under division, by definition; thus my = z;(b/z;) € M(G). O

COROLLARY 2.1. Let k be the number of generators of a reduced Grébner basis for a
zero dimensional ideal I; then k < nD(I).

3. Computation of Normal Form

When we work in the vector space R/I and we consider the natural basis determined
by a given Grébner basis G, in order to find the coordinates of an element, we have
to compute its normal form with respect to G. This operation, as we remarked, can be
obtained by straight application of the Buchberger’s algorithm, but in this way we can
not estimate well the complexity of this step. For this reason we will take advantage
of the structure of vector space in order to construct an algorithm that will find the
coordinate of normal forms of elements of R/I in polynomial time : we will consider the
n-linear maps ¢; defined on the basis B(G) by

@i : m — Normal Form(z;m)

and we will study their properties. We remark that for every element b € B(G) and for
every i, either z;b € B(G) or z;b € M(G), the bordering of G, defined in the previous
section.

DEFINITION 3.1. Let I, (G,<) and B(G) be as in Proposition ??. We define T(G) =
(tijr) as the n x D(I) x D(I) tensor whose elements are:
tijk = j—th coordinate w.r.t. B(G) of the reduction by G
of the element ;b (br € B(G)).

The first result we obtain is :

PROPOSITION 3.1. In order to compute T(G), O(nD(I)?) arithmetic operations are suf-
ficient.
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PRrOOF. Consider MB(G) = B(G) | M(G) and order its elements with respect to <. We
will construct columns ;. by following the order in which the z;b; appear in MB(G).
Consider m = x;b. If m € B(G) then m is not reducible by G and so ¢;;, = 0 for j # k
and t;zr, = 1. Otherwise m € M(G) and so, by Proposition ??, either m is the leading
term of an element in G, g = m + ngl) ayby, and in this case tj = (—aq,. .., —aD(I))t
or m = xym' with m' € M(G) and m' < m. In this latter case, the coordinates of
m' = zsb, w.r.t. B(G), have already been computed and are stored in #44; 0, in order to
compute the #;., it is enough to add the coordinates (already computed) of the products
ziby, (by € B(G)), multiplied by the corresponding coefficients, i.e. z;by = zzsbp =
Ty, tsunby = Do Do tsuntiuwby. In this way we have to perform D(I)? operations in
order to compute t;«; and the result follows, since this has to be done at most nD(I)
times. O

REMARK 3.1. In order to compute T(G) it is necessary to order the monomials in
MB(G). For this purpose we can define a function NextMonom that sequentially “gener-
ates” the following monomial to consider. We shall discuss later about such a function.
In any case this function doesn’t involve any arithmetic operation.

REMARK 3.2. For ¢ = 1,...,n, the matrix associated to ¢; with respect to B(G) is tjxx-

We give now an algorithm that implements the construction described in the previous
proposition. As we remarked the columns of the matrices t;,, can be used to compute
the normal form of any element of the form x;p for a reduced polynomial p.

PROCEDURE 3.1. Matphi
Input :
< an admissible ordering.
Basis, a minimal reduced Grobner basis for a zero—dimensional ideal.
Output :
@li,m,m'] fori =1,...,n and for m, m' € B(G), such that @[, *, %] is the matrix
of the application p — NormalForm(x;p) for p a reduced polynomial.
Subfunctions :
NexztMonom removes the first element of ListOfNezts and returns it; returns nil
if the list is empty.
InsertNexts(monom) adds to ListOfNexts the products of monom by all vari-
ables, sorts this list by increasing ordering for < and remove duplicates.
Local variables :
ListOfNexts, the list of “next” monomials to be considered sorted by increasing
ordering for <.
Begin
monom := 1;
ListOfNexts := [];
while monom # nil do
if monom is a strict multiple of the leading term of some element of Basis
then
let monom = z;m with m reducible w.r.t. Basis;
[the test being true we have monom = x;m and m < monom;
thus NormalForm[m] = ) A\;m; has been previously computed
with m; € B(G) and m; < m]
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NormalForm[monom] := ) X\;NormalForm[z;m;];
[z;m; < monom, thus NormalForm[z;m;] has been previously
computed]

for each k such that monom = zpm' with m/' irreducible by Basis
do ¢[k, m",m'] := coefficient of m'" in NormalForm|[monom]
else if monom is the leading term of some element p of Basis
then
NormalForm[monom) := —rest(p);  [(i-e. p — leadingTerm(p)]
for each j such that monom = z;m
do ¢[j,m',m] := coefficient of m' in NormalForm|[monom]
else
NormalForm[monom] := monom;
InsertNexts(monom);
for each j such that monom = z;m
. 1 if m' = monom
do  ¢lj,m',m] := { 0 oftherwise
monom = NextMonom
end.

The correctness of this algorithm follows essentially from the proof of Proposition ?7.
The algorithm distinguishes the same three cases for the monomials to be considered: the
elements of Basis, that are irreducible, those which appear in the leading term of some
element of the Grobner basis, and the others. Only for the last group, the normal form
is not immediate. It is computed using the fact that the monomial has the form z;m,
where the normal form of m has been computed, and that the part of the matrix ¢;,
needed to multiply it by z; has also been computed. Let us also remark that the first test
(divisibility by some leading term) does not need any searching: for testing it suffices to
count the number of insertions in ListOfNexts, the test returns true if this number is less
than the number of variables explicitly appearing in it; for getting the decompositions
monom = xz;m, with irreducible or reducible m it suffices to remember from which
monomials monom was inserted. The second test (being the leading monomial) also does
not need any searching: if Basis is sorted by increasing leading monomial, the only leading
monomial which may be equal to monom is the first one which has not yet be equated
to it.

4. Change of Ordering

We analyze in this section the main algorithm of this paper, the algorithm for the
change of ordering.

PROPOSITION 4.1. Let I be a zero dimensional ideal and (G1,<1), the reduced Grébner
basis with respect to an admissible ordering <i. Given a different ordering <o, it is
possible to construct the Grobner basis (G2, <z2) with respect to the ordering <, with
O(nD(I)3?) arithmetic operations.

PROOF. From (G1,<1) we can construct B(G1) = {a1,...,apn)}, M(G1) and T(G1) as
in the previous section. We want to find the elements of B(G2) and (G, <2) . For this
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reason we will construct a matrix C' that will contain in the i—th column the coordinates
of each element b; € B(G3), with respect to B(G1).

We start with B(Gs) := {1} and M(G>) := 0 for constructing the new base iteratively
(the polynomial 1 is certainly in B(G2)). We consider m = min~,{z;b; |1 < j <n,b; €
B(G2),z;b; € B(G2) UM(G2)}. Three cases can arise:

1. m = leading term g, for some g to be inserted in G5

2. m has to be inserted in B(Gs)

3. m has to be inserted in M(G2), but m is a strict multiple of the leading term of
some g in Gs.

We can easily check if the third case holds: the leading term of g is strictly less than
m for any admissible ordering and has already been inserted in M(G2).

So we are left to consider case 1 or 2. Since, by construction, m = x;b; we can compute
its coordinates c¢(m)p with respect to B(G1) by using the table C (so far computed) and
T(G1) = (tijk):

m = .Z'jbz' =z chiak = chi(xjak) — chz’ thhkah —
k k k h
= Z(Z tinkCri)an = Zc(m)hah.
hok

h

At this point, if the vector ¢(m) is independent from the vectors in C, we are in the
case 2 and we have found a new monomial m € B(G2); otherwise the dependency relation
furnishes a new element g € Gs.

It is easy to see that the whole construction needs O((n)D(I)?) operations. In fact
the computation of ¢(m) involves only the product of a matrix by a vector of size D(I).
If an echelon form of the matrix C' is maintained, for testing linear independency and
incrementing C, only O(D(I)?) are needed. O

We describe now an algorithm that implements the construction of the previous propo-
sition. We will call NewBasis the procedure that transforms a Grébner basis of a zero
dimensional ideal with respect to some given ordering into a new one with respect to a
new ordering. In this algorithm we will call NormalForm the function that returns the
reduced form of a polynomial with respect to the given basis, without specifying the
algorithm used for this purpose. We will discuss again later about this function.

PROCEDURE 4.1. NewBasis
Input :
< a new admissible ordering.
oldBasis, a Grobner basis of a zero—dimensional ideal, with respect to some
ordering.
Output :
newBasis, the reduced Grdbner basis of the ideal generated by oldBasis with
respect to the ordering <.
Subfunctions :
NormalForm(polynom), returns the reduced form of a polynomial with respect
to oldBasis.
NextMonom, removes the first element of ListOfNexts and returns it, returns
nil if the list is empty.
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InsertNexts(monom), adds to ListOfNexts the products of monom by all vari-

ables, sorts this list by increasing ordering for < and remove duplicates.
Local variables :

staircase, the list of leading monomials of the elements of newBasis;

MBuasis, a list of pairs [a;, b;] where [...,a;,...] is the list of monomials which
are in normal form with respect to newBasis and b; = NormalForm(a;),
the normal form of a; with respect to oldBasis. We select elements from
each pair with selectors first and second,

ListOfNexts, the list of “next” monomials to be considered sorted by increasing
ordering for <.

Begin

MBasis := []; staircase := []; newBasis := []; ListOfNexts := [];

monom := 1;

while monom # nil do
if monom is not a multiple of some element of staircase

[We are in case (1) or (2) of the proof of Proposition ?7?]
then
vector := NormalForm(monom);
if there exist a linear relation: [case(1)]
vector + Y, c v Basis MvSecond(v) =0
then
pol == monom + Y 5. A, first(v);
newBasis := cons(pol, newBasis );
staircase := cons(monom, staircase);
else [case (2)]
MBasis := cons([monom,vector], MBasis);
InsertNexts(monom);
monom := NextMonom
end Newbasis.

Correctness of the algorithm: Suppose, for the moment, that the main loop is finite.
We first prove that the elements of MBasis are linearly independent modulo the ideal
generated by oldBasis: if this were false, there would be a linear combination P = )~ A;m;
of elements of MBasis which is a polynomial in ideal(oldBasis). Then

NormalForm(P) = Z Ai NormalForm(m;) =0

and this gives a relation which implies that the algorithm would put in staircase rather
than in MBasis the greatest of the m; such that \; # 0.
The elements of newBasis are in ideal(oldBasis): if

P = monom + Z ApMy
is such an element, then
NormalForm(P) = NormalForm(monom) + Z Ay NormalForm(m,) =0

by construction of P.
Finally the elements of staircase are the leading monomials of the elements of newBasis:
this is clear because the loop works with increasing monomials.
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Now, each monomial which is not in MBasis nor in staircase is multiple of some element
of staircase. This is clear if the monomial appeared in ListOfNexts; otherwise suppose
that the monomial is of the form mimsy where m; is in MBasis and maximal for this
property. In this case the monomial, if not in MBasis, is multiple of some element which
appeared in ListOfNexts and was not put in MBasis; it has been put in staircase or is
a multiple of some element of staircase. Thus, the normal form of a polynomial with
respect to newBasis is a linear combination of elements of MBasis and the normal form
of an element of ideal(oldBasis) is zero (first assertion above).

This proves that newBasis is a Grobner basis for the new ordering; it is minimal
and reduced because, by construction, none of its monomials is a multiple of a leading
monomial other than itself.

We have now to prove that the algorithm NewBasis stops; we are in the zero dimen-
sional case; so the maximal number of linearly independent irreducible polynomials is
the (finite) dimension of the quotient of the polynomial ring by the ideal, i.e. the number
of irreducible monomials for any Grébner Basis. Thus the number of iterations which
increase MBasis is finite. When MBasis is complete ListOfNexts may no more increase,
thus the number of remaining iterations is bounded.

Management of NextMonom: When inserting monomials in ListOfNexts, it is useful to
remember that it is obtained as the product of a variable by a monomial with known nor-
mal form; this is easy to implement with pointers. The same monomial may be obtained
several times. When removing duplicates, it is useful to store in a counter the number
on insertions of the monomial in ListOfNexts; this make the test if monom is a multiple
of some element of staircase very easy: the quotient of an element of staircase or MBasis
by any variable is necessary in MBasis, but this is false for the other monomials (see
Proposition ??); thus the test may be replaced by if the number of insertions of monom
in ListOfNezxts is greater than the number of variables in monom, which is much faster.

To conclude this section we want to make few remarks on the function NormalForm.
At first, let us remark that NormalForm is called on monomials of the form m = z;m’
where m' is in MBasis and its normal form has been computed and stored in vectBasis.
Thus, if p is the normal form of m/, the normal form of m may be obtained by

NormalForm(m) = Normal Form(Normal Form(z;) X p).

It is much more efficient to apply the reduction process to z;p than to m, because the
first one may be obtained from the second one by a partial reduction. The extra cost
for finding x; and p is very low: it suffices, in the procedure InsertNexts(m), to store in
ListOfNexts, with x;m, the variable z; and a pointer to the normal form of m (which is
the actual value of vector).

In summary, as we have shown in section 2 we could use the procedure Matphi and
in this way obtain a polynomial time algorithm, but the method described in the last
paragraph seems to be the best in practice.

5. Complexity; case of fields with unit cost.

In this section we will summarize all the results on complexity we obtained in the pre-
vious sections. The results are rather different if the operations in the field of coefficients
take a constant time, or if we take into account the growth of the coeflicients. In this
section, we consider only the first case.

As the size of a multivariate polynomial may exponentially depend on its representa-
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tion, we need a convenient measure of the size of the input. It appears that two parameters
are important:
the number n of variables;
the number D = D(I) of monomials which are in normal form; it is the number of
elements in the natural basis B(G) and does not depends on the ordering, being
also the number of common zeros (with multiplicity) of the polynomials in the
ideal generated by oldBasis and the dimension as a vector space of the quotient
of the polynomial ring by this ideal.

We will prove that NewBasis is polynomial in D and n for fields with unit cost. This
implies that NewBasis is a polynomial algorithm for a natural representation of data,
which we define now.

As a polynomial in normal form with respect to oldBasis has at most D terms, we
may consider a dense representation for such polynomials: the list of coefficients of the
irreducibles monomials. With this representation, D is also the size of a polynomial in
normal form.

Now, the size of the input for this representation is nD + k(n + D), where k is the
number of polynomials in oldBasis: the list of the irreducible monomials has size n.D
and each polynomial in the basis is represented by its leading monomial (size n) and its
reductum (size D).

By corollary ??, k is at most nD; it is at least n for a zero—dimensional ideal; thus:

PROPOSITION 5.1. If the size of the elements of the field of coefficients is 1, then, with
the above representation, the size S of the input of NewBasis satisfies

2nD +n? < S <nD?+n%D + nD.

REMARK 5.1. In practice, except when D is very small, the number of elements of a
Grobner basis is less than D, and S < D? + 2nD.

We are now ready to state and prove our result of complexity.

THEOREM 5.1. If the basis field operations need an unit time, algorithm NewBasis im-
plemented with Matphi needs O(nD3?) field operations; the rest of the computation, es-
sentially the monomial manipulations, needs a total time of O(n?D?) with an elementary
implementation of ListOfNexts or of O(n?Dlog(nD)) if this list is implemented as an
efficient priority queue.

For the above representation of the input data, algorithm NewBasis is polynomial, on
a field with unit cost for operations.

PRrooF. Consider first the complexity of the monomial operations; as quoted above, the
tests do not need searching, but only need to compare monomials, which needs a time of
O(n); thus, the main time is devoted to the management of ListOfNexts; this list has a
length of at most nD; if it is sorted, InsertNexts is a merge with a list of length n, and
this merge needs O(nD) comparisons of monomials (time O(n)); this gives a total time
of O(n *nD % D), InsertNexts being called D times.

It may be remarked that ListOfNexts may be viewed as a priority queue with nD inser-
tions and nD deletions of the least element; methods for implementing priority queues are
well known, which need a total time proportional to the number of insertions/deletions
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times the logarithm of the maximal length of the list; this has to be multiplyed by the
time of the comparisons, giving the improved result in the theorem.

Let us compute now the number of field operations. In Matphi we have to compute
at each non trivial iteration, a linear combination of D vectors of dimension D, which
needs D? field operations. Thus Matphi needs O(nD?) field operations. The linear algebra
computations in NewBasis, in the whole, is equivalent to triangularize a D x nD matrix,
thus it needs also a time of O(n.D?), which finishes the proof of the theorem. (]

6. Complexity in bit operation with growth of coefficients.

If we try to take into account the growth of the coefficients, it appears that it is Matphi
which introduces a growth which is exponential in nD; we have seen that NewBasis may
be computed in a time which is exponential in n, but polynomial in D. We conjecture
that this exponential behaviour is unavoidable. This conjecture is supported by looking
at the size of coefficients in example (V) of next section.

For the complexity analysys in this section we restrict ourselves to the case where
the old ordering is a degree ordering (i.e. degree(m) < degree(n) implies m < n for
monomials m and n); this is not a strong restriction, because Buchberger’s algorithm is
unefficient with other orderings, and, thus, NewBasis is mainly useful for changing from
a degree ordering to another ordering.

For taking into account the growth of coefficients, the use of Matphi is no longer conve-
nient; thus, in this section we will use the first optimized implementation of NormalForm
described in Section 4; that is, we will apply the standard reduction process only on the
product of a polynom in normal form by a variable.

We introduce a new measure of the size of the problem, E that is the number of
monomials that are not greater (for the old ordering) than any monomial of the form
x;m for some irreducible monomial and some variable. Thus E is the maximal number
of different monomials which may appear in the normal form computation in NewBasis.

Before proving that NewBasis is polynomial in n and E, it is useful to give estimates
for E.

PROPOSITION 6.1. For a degree ordering, we have
[
n n!D!
If the mazimal degree of the irreducible monomials for the (old) basis is d then

!
B< n+d+1 :(n+d+1).-
= n al(d+ 1)!

The monomials counted by E are of degree at most D or d + 1; thus, the number of
such monomials is at most the number of monomials of degree at most D or d + 1.

REMARK 6.1. In most cases, for degree-reverse—lexicographical ordering, there are few
of the monomials counted by E which are not of the form z;m with m reduced; thus E is
not much greater than D; thus the exponential behaviour appears only with very special
(non generic) examples.

We are now able to compute the complexity of NewBasis; taking into account the
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growth of coefficients introduces a difference only in the normal form and linear algebra
computations; it has been quoted above that the linear algebra part is equivalent to the
triangularization of a D x B matrix where B < E is the number of iterations of the
main loop of NewBasis; thus, the linear algebra part is polynomial, provided that the
reduction of a ¥ x E matrix is a polynomial problem over the field of coefficients.

In the computation of a normal form, a step of reduction of a polynomial p by an
element f of the Grébner basis consists in replacing p by some linear combination p—cm f
where c is a coefficient and m a monomial; each polynomial which appears may be viewed
as the vector of its coefficients; this vector is of length E, by definition of E; it is easy to
see that the vector representing p — ¢m f is the product of the vector representing p by a
triangular matrix depending only on m and f, because c is such that the leading term of
cmf is the same as the corresponding term of f; the coefficients of this matrix are 0, 1
or the quotients of the coefficients of f by its leading coefficient. The number of steps of
reduction for computing the normal form is at most E, the number of monomials which
may be reduced. Thus a call to NormalForm corresponds to a product by E matrices of
a vector which is a shifted result of NormalForm or represents a monomial; NormalForm
being called at most F times its result is a column of the product of at most E? matrices
with the coefficients of the initial Grébner basis as entries.

Thus, the part of NewBasis dealing with coefficients consists in computing some prod-
ucts of matrices and triangularizing the resulting matrix. If both parts are polynomial
problems, the whole is a polynomial algorithm. Before stating this, we need a definition.

DEFINITION 6.1. A field is polynomial, if there exist polynomial algorithms for solving
the following problems:

Triangularize o k x k matriz with coefficients in the field.

Compute the product of k matrices k X k.

PROPOSITION 6.2. The following fields are polynomial: Finite fields, rational number
field, multivariate rational fractions over the preceedings (with dense representation).

For finite fields, it is easy. The other fields are quotient fields; thus we may choose
a common denominator at the beginning and work on the integers or on a polynomial
ring over the integers. It suffices to show that both problems need a polynomial number
of operations and that the field elements which appear during the computations have a
polynomial size.

For the matrix product problem, the element which appear are, at most, the sum
of k¥=! products of k terms; for the triangularization problem, with Bareiss algorithm
[BAR], the coefficients which appear are determinants, thus the sum consists of at most
k! products of k terms; it is easy to verify that this produces results of polynomial size,
proving the proposition.

THEOREM 6.1. NewBasis, with the first optimisation described in Section 4 is polynomial
in E over polynomial fields.

REMARK 6.2. We leave to the reader the determination of the degree of the complexity
of NewBasis over an explicit field, such as the rational numbers; this is easy, but not very
important: it follows from the proof and from practical experiments (see below) that the
time of the computations depends mainly on the size of the results. Thus prohibitive
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computations may only appear when the result is “too big to be useful”, and the real
asymptotic behaviour does not appear in practical computations. In other words, on most
entries, the algorithm is polynomial of low degree with respect to the size of the output.

Finally, we may apply the previous results of complexity to the whole computation of
the Grobner basis.

THEOREM 6.2. Let I be a zero—dimensional ideal of n—variate polynomials over a poly-
nomial field, generated by polynomials of degree at most d. If the generators of I have
only a finite number of common zeros at infinity, then, its Grobner Basis for any ordering
may be computed in a time polynomial in d™. If the set of zeros at inﬁnity is not finite,
then the same conclusion is true for a time which is polynomial in d" .

Proor. If the set of zeros at infinity is finite, Lazard, 1983, has proved that the Grébner
basis for the degree—reverse—lexicographical ordering may be computed in time polyno-
mial in d", and contains polynomials of degree at most nd —n + 1; it follows immediately
that the monomials counted by E are at most of this degree and that £ < e™d"™ where
e is the basis of naturals logarithms. Thus applying NewBasis on this basis needs also
a time which is polynomial in d".

If the ideal is zero—dimensional but not necessarily at infinity, Caniglia et al., 1991
have shown that one may compute, in time do(”2), a new set of generators which are of
degree d°™ and have no zeros at infinity. With this new set of generators, the second
part of the theorem follows from the first one. O

7. Examples.

In this section, we define some typical example and list various computer times achieved
on them as well some related parameters such that the number of solutions or the number
of digits in the highest coefficient of the output.

We give two timing tables: the first one appeared in the first version of this paper and
correspond to the state of the art in 1988. The computation were done on a computer
IBM 4381 (3.5 to 4 Mips). The second one correspond to present state of the art (1993):
The computer is now a SUN Sparc 10, and Grobner base computations are done using
Sugar strategy (Giovini et al., 1991) (or, for the cyclic 7-th roots, a recent algorithm not
yet published); the Grobner base implementation as well as the change base ordering are
those of the software GB developed by J.C. Faugere.

7.1. CYCLIC n-TH ROOTS

In the group S, of permutations of {1,...,n}, let us consider oq the cycle (1,2,...,n)
and @, the cyclic subgroup generated by oq.
The cyclic n-th roots system is defined by:

T+ Dy o+ + T,
Yoe, To(W)To(2),
Cn) 2o, To(1)Ta(2) Ta(3);

2oea, To(l) " Ta(n-1)
ml...xn_l
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7.2. AUXILIARY SYSTEM IN CYCLIC 7-TH ROOTS

This is the cyclic 7-th roots system in which we made the following change of variables:

1 1 1
r1=1 z3=a, z3=b, w4=c¢, Tz=—, Te=, =
a b c
This lead to the system:

a?bc + ab*c + abc? + abe + ab + ac + be,
Aux a’?b’c + ab*c® + a’bc + abc + be +a + ¢,
a?b?c® + a’b’c+ ab’c +abc +ac+c+1

7.3. CAPRASSE’S SYSTEM

It is the system:

Y2z + 2zyt — 2z — 2,

—232 4+ dxy?2 + 4x2yt + 293t + 422 — 10y? + 422 — 10yt + 2,
2yt + 2t? — x — 22,

—22° + 4y22t + dz2t? + 2yt® + dxz + 422 — 10yt — 102 + 2

Cap

7.4. MODIFYED CYCLIC 5-TH ROOTS

The next example shows that some systems are not stable at all. For instance if, in
the cyclic 5-th roots system, we change the monomial abcd into abc, we obtain a system
which has nearly the same number of solutions, that is to say 64 instead of 70, but its
Grobner basis for the lexicographical ordering needs two hundred pages of listing and
contains numbers with two hundred digits! It is the system:

a+b+c+d+e,
ab+ bc + cd + ae + de,
Mod abc + bed + abe + ade + cde,
bed 4 abee + abde + acde + bede,
abcde — 1

7.5. RESULTS.

In the first table, the columns correspond to five examples defined above. The compu-
tations are done on the rational number field or on the integers modulo 1831; the values
in the table, which correspond to this latter case, are denoted by Z. The rows are labelled
by the following values:

n is the number of variables.

D is the number of solutions of the system.

dinp is the maximal degree of the input polynomials.

7 is the CPU time of the computation. With a subscript, it is the time of Buchberger’s
algorithm for computing the Grébner basis for the corresponding ordering (de-
gree reverse lexicographical or lexicographical); without index, it is the time for
passing from the first ordering to the second with NewBasis. By convention, a
value of oo means that the computation ran out of memory without giving any
result.
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G is the saving of time, i.e. G =

Tlex
Tdegt+T "

doyt is the degree of the univariate polynomial of the Grébner basis for lexicograph-
ical ordering. This measure, in some way, “the regularity of a system”, because
for a random choice of inputs, we have D = d,ut.
k is the number of polynomials which appear in the Grébner basis for the ordering

labelled in subscript.

h is the height of coeflicients in the Grébner basis (number of decimal digits).

The following values have been computed for comparing the complexity with D? and

nD?3.

a is the constant which would appear in the complexity of NewBasis if it were O(d®),

that is o = 721300

order to get values which are close to 1.

B is an heuristic measure of the exponent of the complexity: We suppose that 7
c¢D?, and we compute ¢ from this formula applied to example C(6) and j
3 (because linear algebra has a generally a complexity of O(n?)); thus 3

log T—logc
log D

where 7 is in seconds. The scale of 1000 has been chosen in

B' : The same as 3, but we suppose that 7 = anB'; we also adjust the constant
with system C(6) and ' = 3; thus ' =

log 7—log(cn)

log N
Table 1.
C(5) C(6) Aux Cap Mod
n 5 6 3 4 5
D 70 156 20 56 64
dinp 5 6 6 4 5
dout 15 48 20 20 61
Kiex 10 17 3 7 16
Kdeg 19 44 15 24 23
deg 3 11 4 3 9
Ries 6 23 9 8 207
Tlew 24297 oo 1h25°52”  31°38” oo
Tdeg 93” 3h24°507 1’31” 33” 26°42”
T 1’557 33’11” 56” 1’27 2h37°15”
Tlex 14°8” o0 8’30” 9447 o0
Tdeg 59” 45°54” 47 327 14°56”
T 1’567 29’417 31” 128” 2827
G 7 [e's) 35 15.8 o]
G 4.9 00 6.5 4.9 o)
« 0.335 0.52 35 0.5 36
B 2.89 3 3.86 2.99 4.02
B 2.94 3 4.10 3.16 4.06
«a 0.34 0.47 3.875 0.5 6.42
B 2.91 2.99 3.68 3.0 3.61
B8 2.79 2.85 3.68 3.0 3.5

t This computation has been done with a Lisp program. With the algorithm of SCRATCHPAD II it

would take nearly 82 hours of CPU.



Computation of Zero—dimensional Grébner Bases by Change of Ordering 15

It should be noticed that the size of the coefficients (parameter h) is always much
bigger for the lexicographical ordering than for the degree ordering; thus the difficulty of
computing Grobner basis for the lexicographical ordering appears also in the size of the
output.

Values of a and 3 previously given show that for ‘reasonable systems’ (‘reasonable’
means that size of results are not too big) a good approximation of complexity is O(D?).

Next table corresponds to the time which is actually needed for the same examples
(on a Sun station Sparc 10). As it appears, our algorithm is slower than the direct
computation of the Grobner base for the lexicographical ordering, when the latter is
easy; nevertheless it remains useful for more difficult examples, and allows to compute
Grobner bases which would remain impossible without it.

Empty entries correspond to computations which have not been tried, being already
too long with modular integers.

Table 2.
C(5) C(6) C(7) Aux  Cap Mod
n 5 6 7 3 4 5
D 70 156 924 20 56 64
Tlee 0752  >T7h4l’ 46”43 0723

Tdeg 0735 13782 24h26°40” 1 0”17 0720 4767
T 0773 22”17 30h23°45” 1”55 0”75 16’35”

Tiew 0718 9785 >5h 0”15 0712  >5hi
Taeg 0712 1797 8'20” 0705 0705 0778
T 1710 11730 38747 0”13 0760 57
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