
Execution platform for high consuming parallel applications:
a case study for Gröbner basis

Position Paper
Jean-Charles Faugère

Bertil Folliot
Céline Boutros Saab

LIP6/CNRS Université Paris VI
case 168, 4 pl. Jussieu, F-75252 Paris Cedex 05

April 28, 2000

Abstract

Solving polynomial system is very common in various fields of mathematics, physics,
and so on. The main tool for solving this problem is ”Gröbner basis”. Practical complexity
is at most exponential both in time and space. This kind of applications have a crucial needs
in computing resources.

We have developed at the University Paris 6 a parallel algorithm (��) for computing
”Gröbner basis”. We describe in this paper a first implementation of the �� algorithm. It
runs on a set of heterogeneous workstations and needs a lot of manual administration in
order to produce complete results. Manual administration includes: execution of a profiler
in order to partition the data among the hosts, managing a list of available hosts (traditional
placement tools are not well adapted to such complexity, specially from the memory point
of view), managing faulty hosts or fault in the computation (with checkpoint and rollback to
a previous computation step).

Considering this kind of applications runs for weeks and needs several gigabits, the man-
ual administrator becomes rapidly the bottleneck of the computation. Based on our practical
experience, we propose an execution platform dedicated to high consuming parallel applica-
tions. We show that part of the administration can be operated dynamically.

1 Introduction

We aim to build an execution platform for automatic management of scientific application with
high resource consumption. These applications differs from classic ones by an important ex-
ecution time and a large amount of memory used in an unpredictable way. As an exemple of
a scientific application we consider the problem of solving polynomial equations systems with
Computer Algebra tools. One of the main tools for solving algebraic systems is the computa-
tion of Gröbner bases (also called standard bases) (see [Buc65, Buc70, Buc79, Buc85, Dav93]).
From a theoretical point of view the complexity in the worst case is very bad ����

�

� where �
is the number of unknowns. In practice, however, the experimental cost of the algorithms is far
better but extremely difficult to predict even for a human expert: huge systems of several Mega
bytes can be solved in few minutes while small systems with �� variables can be untractable with
today computers/algorithms.

Moreover, the execution environment is composed of a set of networked workstation which
are shared by many users and which may fail.

1

Stopping the execution and loosing all the results already produced because of a fault, a
machine’s overload or a lack of memory may cause the application to never terminate. Existing
solutions are usually based on checkpoints. This is insufficient for applications which fail be
cause of memory shortage. In that case re-executing the application from the checkpoint will
reproduce the same error. This problem is difficult to handle because the application itself should
be changed in order to try a new configuration, which hopeffuly will use less memory. This
problem may also occurs when workstations are overloaded as a new distribution as to be find.

In this paper, we focus only on the placement problem for such kind of applications. In prac-
tice, the main objective of a placement algorithm is to improve the application’s response time.
This is done by placing the application’s processes on a networked workstations. The decisions
are usually taken according to coarse grain information (global memory, global amount of com-
munications, ...). The placement decision, for efficiency reasons, relies on a restricted number
of information. This technique is efficient for small processes (with relatively short duration,
and consuming few resources), where a bad placement affects slightly the global execution. On
the other hand, for such Gröbner basis application’s processes which has an important execution
time, traditional placement approach are not appropriate. A bad placement of a such process can
lead to an important augmentation of the response time. We propose to realize a fine observation
of resources with a variable granularity depending on the needs of the placement algorithm.

2 Multi-criteria placement algorithms

A placement algorithm takes place at the processes’ level, distributing them on the workstation-
s in order to improve the application’s response time. The usual placement criterions are the
reduction of communications between stations, the distribution of memory usage and the load
balancing[BSS93]. In the literature, there is two types of placement, dynamic and static. A static
placement takes into account the application’s structure and the system configuration without
considering the resources usage. However, with a dynamic placement, as in GatoStar[FS94] or
Utopia [ZZWD93], the resources states and their evolutions are taken into account and have an
influence on the decisions. Involved criterions are the memory allocations, the system calls, the
load of the stations and the I/Os. The parameter’s values depends on the system evolution and a
continuous observation is essential.

For instance GatoStar, developped at the University Paris 6, is a fault tolerant load sharing
facility. It consists of a ring of hosts which exchange information about hosts’ functionning and
processes’ execution. Having this kind of information online allows to automaticaly recover
the system and quickly return it to operation, thus increasing the availability of the distributed
resources. Each host maintains a load vector which contains a view of all host loads. Periodically,
each host sends its vector to its immediate successor. Load messages are also used to detect host
failures. Processes are recovered from a previous checkpoint and communication messages are
”replayed” from a log. All this part is automatically managed by GatoStar [SF98]. The process
allocation algorithm can be operated according to the following criteria: hosts load, process
execution time, required memory, and communication between processes. In the application
description the programmer can specify appropriate allocation criter

2

However, allocation criteria are on a process basis, and can not be switched dynamically dur-
ing execution (for instance from memory intensive to computing intensive). More generally, the
main limitation of most algorithms are that they are based on a coarse grain observation of re-
sources (percentage of occupied memory, load of the workstation, ...) and dependencies between
processes. This granularity does not reflect the exact state of the system because it supplies an
approximate information and sometimes out of date (depending on the observation range). In
addition, the information collected is often insufficient to build an automatic execution manage-
ment of an application and to make a dynamic migration’s algorithm, a checkpoint insertions and
a new distribution.

3 Towards a fine grained observation

We propose an approach based on a more fine grained observation of the parameters. Such ob-
servation is expensive if it is systematically done, whereas a more finer grained is only necessary
during the decision steps [BDB95]. The importance of a variable granularity approach is that it
allows to reduce significantly the cost decreasing the amout of communications. Such approach
try to reduce the perturbations while supplying the maximum of information. Thus, placement
algorithm have the information at the time of the decision which is, in addition to the classical
data, the communication volume, the parallelisation degree, the memory really used as well as a
response time estimation.

The architecture of observation is distributed on a local network with a control server and
a set of observation agents on each site. The server subscribes to a set of information. Only
this information is sent back to the server. The agents save locally all the gathered information
for a post-mortern analyses. The implementation lay on a Network Message Server (NMS) lay-
er already developed in the LIP6 lab. The NMS provides an uniform and transparent control
integration of tools management [FF94]. The tool in our case is the adaptive grain monitor-
ing. Figure XX describes the prototype we are building. It is composed by ”monitoring agent”
running on each host on top of the NMS, and a ”control agent” centralized, in charge of select-
ing dynamically the information granularity. When the monitored system is stable, the cost of
monitoring is reduced by increasing the granularity of the information (time between informa-
tion exchange and amount of data transmitted). When the system enter an unstable phase, the
appropriate ”monitoring agents” are selected by the control agent to decrease the information
granularity. Only needed information is gathered and transmitted over the network, severly re-
ducing the overhead of the monitoring. This information will then be used by our load sharing
policy, that is still to developp.

4 Distributed observation architecture

The architecture of observation is distributed on a local network with a control server and a set
of observation agents on each site. The server subscribes to a set of information. Only those
informations are sent back to the server. The agents save locally all the gathered information for

3

a post-mortern analyses. The implementation lay on a NMS (Network Message Server) layer
already developed in the LIP6 lab.

5 Sketch of the algorithm

The algorithm �� is designed to solve polynomial systems of equations but it relies heavily on
linear computations. We first describe a parallel and efficient method for solving linear equations
then we give a sketch of the sequential algorithm and a description of the parallel version.

5.1 How to solve linear systems of equations

Let � be the number of bits of the hardware arithmetic (� � �� or �).
We explain briefly how one can solve a linear system �� � � in parallel when � (resp. �)

are � � � (resp � � �) matrices with integer coefficients. In computer algebra integers have
arbitrary lengths (the only limit is the size of memory), they are called bignums, as opposed to
machine integers. In practice each entry of the matrices can have hundred or thousand of digits.
One of the most efficient way to solve linear systems is to use multi-modular computations. Let
��� 	 	 	 � �� be small prime numbers (by small we mean ��
 ��). For each prime we can solve the
subproblem���� � �� where �� � ���� �� and �� � ���� ��. This computation is much faster
than the original problem since all the computations can be done with the hardware arithmetic
(the complexity is ����� where � is the size of the matrix �). From this point we can apply the
Chinese Remainder Theorem and applying the formula:

���� �
��
���

�
����

��

�
���� where ���� �

��
���

��� �� �
��

����
��� ��

and it is easy to see that we have constructed a solution of the problem �������� � ���� where
���� � ���� ���� and ���� � ���� ����. The solution � of the original problem is not a vector
of integers but a vector of rationals ���

��
� 	 	 	 � ��

��
�; in order to recover the true solution we have to

apply the following lemma:

Lemma 5.1 (Lifting lemma) If ����

, �
 ��

 and �
� � ���� then we can compute
�� and �� from ������� by applying the extended gcd algorithm for the integers to ������� and ����
(������� is the �-nth component of the vector ����).

In practice things are a little more difficult since we do not know
 in advance (even it
is possible to compute a rough estimate of
). The second difficulty is that sometimes (the
probability is small but not zero) �� divides ������ and the computation ���� � �� failed. In that
case we say that �� is a “bad prime”.

As a final remark we notice that the problem of reducing a matrix to a row echelon form is
particular case of the previous problem.

4

5.2 Description of the �� algorithm

We use the notations of [Bec93] for basic definitions: � is the ground ring, �
�� � �
��� 	 	 	 � ���
is the polynomial ring. In practice � will be � the (big) integers or �

	�
the integers modulo a

prime �. We denote by � , the set of all terms in these variables. We choose
 an admissible
ordering on � . We give only a sketch of the algorithm �� and we refer to [Fau99] for a complete
description:

Algorithm ��

Input:
�
� a list of polynomials
��� 	 	 	 � �
�

 an ordering of �

Output: a list of polynomials.
���� �� ��������� ��� � � � �
 � � ��
� �� �
while ���� �� � do
��� �� ������������
���� �� ����	���
Construct the matrix �� �� Symbolic Preprocessing�����
��� 	 	 	 � �
��
 � �� Reduction to Row Echelon Form of ��

� �� �
 �
for !
 ��"#� �� such that ! �� � do
� �� �
 � and �
 �� !
���� �� ���� � �������
� ��� � �
 ��

return
��� 	 	 	 � �
�

Thus the algorithm can be viewed as a succession of matrix computations each computation
can be decomposed in two steps: a “symbolic” step (this step generates the matrices ��� ��� 	 	 	

computed by Symbolic Preprocessing) which does not depend on the ground field � and the real
computation (the matrices �� �� 	 	 	 computed by Reduction to Row Echelon Form). Actually
the Symbolic Preprocessing function returns a list
����� ����� 	 	 	 � ����� ����� where ��
 � is a term
and the constructed matrix is:

� �

�
����

�� �� �� � � �

������ � � � � � �
������ � � � � � �
...

...
...

... � � �
������ � � � � � �

	

� (1)

where ��� ��� 	 	 	 is the set of all the terms occurring in
������ � 	 	 	 � ��� � ��� � and � means a
non zero element. Hence the coefficients of matrix are shared between the rows and we have to
store only the “shape” of the matrix that is to say the indexes of the non zero elements. The shape
of matrix is also independent of the ground field. For each row � of the matrix we associate the

5

number �� such that the coefficients of ��� are the non zero entries of the row � (the order is the
monomial ordering
). After the reduction to row echelon form the shape of the matrix is:

 �

�
����������

�� �� �� ���� �

�
�� � � 	 	 	 � � � � � �
�
�� � � 	 	 	 � � � � � �

. . . � � � � �
�
�� � � � � � � � � � � �

� � � � � � � � � � �
...

... � � �
... � � � � �

� � � � � � � � � � �

	

�

(2)

the sequential �� algorithm is much faster than other algorithms (mainly the Buchberger
algorithm):

6 7 8 9

Axiom

M
ap

le
 5

.5

Singular

FGb

Asir

Magma

Gb

Cocoa

Posso (Rouillier)

Cyclic n - Big Integer - DRL Groebner Basis

22d 11h

8d 5h

1d 2h

10s

3h 30m

Macaulay 2

Comparison of the �� algorithm for a standard benchmark $%�����

5.3 Description of the parallel algorithm

In the current version of the implementation the following tasks are managed by the operator:

a) We compute

�� � prevPrime����
���� � prevPrime���� for � � �� �� 	 	 	

6

where prevPrime��� return the biggest prime � such that �
 �.

b) we apply the �� algorithm mod �� and we store in a database �:

 the shape of the generated matrices ��� ��� 	 	 	 � ��

 the time �� of the computation.

 the amount of memory
� use by the program.

c) let ��� ��� 	 	 	 � �
 the current list of available processors and
� the physical memory of the
processor ��.

Parallel Algorithm ��

Input:
�
� a list of polynomials
��� 	 	 	 � �
�
D a distributed database

for � �� � to � do
� �� �, ���� ��“compute”
failed�� �
while ���� �� “end” do

for � �� � to � do
Æ �� floor���

��

�
�� �� �, !� �� �
 Æ, � �� �
 Æ
 �
for � �� � to � do

run on the processor ��: Reduction to row echelon form �� modulo ������ .
if the computation failed then

failed�� failed �������
Compute the row echelon form �� modulo 	���

failed using the Chinese Remainder
formula.

Try to recover the row echelon form of �� in � using the lifting lemma.
if the lifting lemma does not failed then

Store in the database the coefficients of ��

���� ��“end”

7

Matrix A1,A2,...
Coefficients of Ai mod pj
Rational coefficients of Ai

Database

Modular Computation
 mod p0

Computation of the row
Echelon Form of Aj
mod pl,...,ph

Chinese Remainder
+ Lifting

Processor i

the estimated CPU is � �� � ��&�
� where � is the maximum coefficient in the result.

0

200

400

600

800

1000

1200

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291

Memory usage for Cyclic � on Alpha Workstation

6 Some measures

The figure 1 represents the evolution of RSS (Resident Set Size) during the execution of the FGB
application for two different polynomial system. One of them is a polynomial system with 7

8

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

28000

0 50 100 150 200 250 300

R
S

S
 in

 K
O

Time in seconds

Result for C7 5 0 4
Result for C8 5 0 4

Figure 1:

variables and the second one has 8 variables. We notice that there is no relation between the two
curves (we wanted to represent also the curve of the polynomial system of complexity 6 but it
was unvisible on the graph). In fact, the two curves have the same form but they are not related;
from observing the execution time or the RSS allocation of the application for 7 variables, we
can’t deduce the RSS needed nor the execution time for an execution of an application with 8
variables. This is due to the irregularity of this application which is directly related to data input.

The figure 2 represents the evolution of RSS during the execution of the FGB application for
polynomial system with 8 variables but for different number of vector. We notice that the general
shape of the curves is the same; the allocation of RSS is proportionnal to the number of vector.
However, the execution of a system with 8 vectors is faster and less RSS consumming then the
same system with 7 vectors. This is certainly due to a memory shortage and is directly related to
the memory and cache size of the workstation. We can consider that the system with 8 variables
is the most suitable on this configuration, and it is interesting to find the relation between the
memory and cache size and the execution time.

7 Conclusion

Traditional load sharing execution plateform are adapted for a number of high consuming appli-
cation. We have presented the case of the FGb application used for computing Gröbner basis.
Based on our experience with several execution plateform developements, GatoStar for load
sharing and fault tolerance, and the Network Message Server for integration of control in soft-

9

0

5000

10000

15000

20000

25000

30000

35000

40000

0 50 100 150 200 250 300 350

R
S

S
 in

 K
O

Time in seconds

Result of C8 5 0 4
Result of C8 6 0 4
Result of C8 7 0 4
Result of C8 8 0 4

Figure 2:

ware environement, we proposed an other approach to execute applications such as FGb. We
have shortly described the adaptative grain monitoring environment, that will be the basis of our
new execution plateform. The selected information will then be interpreted by our allocation
algorithm in order to manage data placement, migration and execution rollback when needed
resources are not available, as well as classical load sharing topics such as keeping track of avail-
able hosts and restoring the processes after a crash. We hope that such a plateform will greatly
simplify the task of the application designer and that execution administration can be mostly
automatic. Moreover, several system tools (as graphical monitoring of the current state of the
computation, or a distributed database keeping track of previous execution profiler), reduce both
implementation and administration times.

References

[Bec93] Becker T. and Weispfenning V. Groebner Bases, a Computationnal Approach to Com-
mutative Algebra. Graduate Texts in Mathematics. Springer-Verlag, 1993.

[Buc65] Buchberger B. Ein Algorithmus zum Auffinden der Basiselemente des Restklassen-
ringes nach einem nulldimensionalen Polynomideal. PhD thesis, Innsbruck, 1965.

[Buc70] Buchberger B. An Algorithmical Criterion for the Solvability of Algebraic Systems.
Aequationes Mathematicae, 4(3):374–383, 1970. (German).

10

[Buc79] Buchberger B. A Criterion for Detecting Unnecessary Reductions in the Construction
of Gröbner Basis. In Proc. EUROSAM 79, volume 72 of Lect. Notes in Comp. Sci.,
pages 3–21. Springer Verlag, 1979.

[Buc85] Buchberger B. Gröbner Bases : an Algorithmic Method in Polynomial Ideal Theory.
In Reidel, editor, Recent trends in multidimensional system theory. Bose, 1985.

[Dav93] Davenport J.H. and Siret Y. and Tournier E. Calcul Formel. Masson, 1993. 2� édition
révisée.

[Fau99] Faugère J.C. A new efficient algorithm for computing Gröbner bases (F4). Journal of
Pure and Applied Algebra, 139(1–3):61–88, June 1999.

[BDB95] A. Baggio, D. Prun, X. Bonnaire. Intrusion Free Monitoring: an observation engine
for message server based applications. In Proc. 10th Int. Symp. on Computer and
Information Sciences, pp. 541-548, 1995.

[BSS93] G. Bernard, D. Stve, and M. Simatic. A Survey of Load Sharing Networks of Work-
stations. Distributed Systems Engineering Journal, 1, 1993.

[FF94] Karim Foughali, Bertil Folliot. TOPIC-SE: Tool Based Open Platform for Integration
of Control Software Environments. Information and Software Technology, 36(7):427-
433, 1994.

[FS94] Bertil Folliot, Pierre Sens. GatoStar: A Fault Tolerant Load Sharing Facility for Parallel
Applications. Dependable Computing EDCC-1, Berlin, Germany. Lecture Notes in
Computer Science 852, K. Echtle, D. Hammer and D. Powell eds. Springer-Verlag, pp.
581-598, 1994.

[SF98] Pierre Sens, Bertil Folliot. The STAR Fault Tolerant Manager for Distributed Operating
Environments. Software — Practice and Experience, 28(10):1079-1099, 1998.

[ZZWD93] S.Zhou, X.Zheng, J.Wang, P. Delisle. Utopia: A Load Sharing Facility for Large,
Heterogeneous Distributed COmputer Systems. Software — Practice and Experience,
23(12):1305-1336, 1993.

11

