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We show how computer algebra methods based é@b@ar basis computation and implemented

in the program FGb enable us to compute all the solution of the Cyclic 9 problem a previously
untractable problem. There are one type of infinite solutions of dimension two and 6156 isolated
points without multiplicities.

1 Introduction

The main purpose of this paper is to show how today efficient computer algebra
programs and algorithms can fimgitomaticallyall cyclic 9-roots®23. The title of
this paper refer of course to the papéPs We quote from these papers:

“This paper presents some tricks which may be used when solving a system
of algebraic equations which is too complex to be handled directly by a symbolic
algebra system”. Here the goal is exactly the opposite since we want to use the
computer and the programs as black boxes.

In this paper we do not use the symmetry of the problem for computing the
solutions but we use the symmetry for the classification of the solutions.

Then Cyclicn problem is (with the conventiox, 1 = X3, X1 = X2,...):

n k+i-1
(Cn) (fl’ vt fa= 1) wheref; = ZI I_l Xk
=1 k=]

The Cyclicn has become a standard benchmark for polynomial system solving
and has now a long history. We would like to stress the close relationship of some
algebraic systems occuring in optimal design of filter banks. Cyctian be solved
for n < 7 by the most efficient computer algebra systems, bunhfer8 it requires
human interaction and software computatidn§he case = 9 is a very challenging
problem because it is

e anon zero dimensional system: we recall thatdfdividesn thenC, is at least
of dimensiorm— 1 (se€®” and lemma 1.1). So far= 9 we know thatCy is of
dimension at leas2.
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e a difficult system: with classical Buchberger algorithm it was impossible to
compute a Gibner basis o€y even for a total degree ordering. Very recently
we propose a new algorithm for computingdBner basid, and it takes 15
days with this algorithm to compute a DRL @mer basis. The result request
1.7 Giga bytes on the hard disk. Consequently it is difficult to “solve” com-
pletely this problem. By solving, in this paper, we mean give a concise list
of solution as in®. Since the first version of this paper we have developped
new algorithms for computing ®bner bases and it is now possible to solve the
Cyclic 10 problem: it is a zero dimensional system of degree 34940. But the
Cyclic 9 is still more interesting and in some sense more difficult since it is not
zero-dimensional.

The plan of this paper is as follows: in the first section we explain how to obtain
a decomposition into irreducible components mainly by using the FGb program and
the NTL library. We then provide in the second section a complete classification of
all the solutions of Cyclic 9 using the symmetries. The last section contains the clas-
sification of the solutions by their multiplicities. We begin by recalling the following
lemma (see als®’):
Lemma 1.1 If m? divides n, then the dimension of @ at least m- 1.

Proof We setn; = m, andny = n—“l We choosg to be an; th primitive root of unity
2n .
(for instancej = e™ ), then we claim that

S]l,j (y07 e 7yn1—l) = (.y07y17 e 7Yn_1—17 Jy07 .. '.7 anl—L j2y07 ey
Jzyn1717 SRR an*lyoa ] an*lynlfl)

is a solution of cyclim as soon agyp, - - - 7yn1—1)n2 = 1. The end of the proof is
a simple substitution to check that the original equations are satisfied.

Moreover, in the case= 9, we have found a solution of dimension 2 and degree
2x9=18.0

2 Decomposition into irreducible varieties

Let| be the ideal generated by the equati@gandV the associated variety, that is
to say the complex roots .

2.1 General decomposition

Theorem 2.1 The solutions of Cycli® can be decomposed in ¥ U, More
precisely, for each variety;\ve have computed a lexicographicdbner basis G
Moreover all the components are zero dimension excefirM € {111,112 113}
which are components of dimensi2and degrees.
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index [1,...,18] 19...,36 [37...,54] 55...,63
number 18 18 18 9
dimensiopn 0 0 0 0
degee 2 4 12 24
index [64,...,9910Q...,108 109110(111...,113
number 36 9 2 3
dimensiop O 0 0 2
degee 48 216 972 6

that is to say @ is a two dimensional variety of degré8 with 6156isolated points.
Proof The proof of this theorem is done by computer algebra. The first and most
straightforward method is to use an algorithm for computing such a decomposition
(decomposition into primes, triangular systems, . ..); unfortunately the size of cyclic
9 (and even cyclic 8) is far beyond the capacities of all the current implementation.
For this reason we have developed a new very efficient algorithm dallfd com-
puting decomposition into primes of an ideal: the algorithm rely heavily dab@Ger
basis®%1911 computation but try to split the ideal in early stages; with this algorithm,
implemented in the G and FGb!3 programs, it takes 3 days on a PC Pentium I
(400 Mhz with 512 Mega bytes of memory) to compute the decomposition. In view
of the fact that this algorithm is not yet published and cannot be described in a short
paper we give an alternate (and longer) proof. First we computéhr@r basis for

a DRL ordering as explained #f: it takes 15 days and the size of the result is 1.7
Giga bytes. Then we have to separate the non zero dimensional componehts: let
be the ideal generated by the equations of Cyclic 9, we can use the known solutions
given by lemma 1.1 or use the first polynomials giverfay

f1 = XsXg — XeXg fo = X3+ X6+ Xo

then we can use the decompositiafl = I3 Nlx NIz = /1 +(f1, f2) N
V() s (£°)n /(1) 1 (). Of course there is possibly some redundancy in
this decomposition. Computing a lexicographico@ner ofl; is straightforward
from the original equation and it is obvious to check that it is exactly the com-
ponent given by lemma 1.1. In order to compute(f;°’) we add a new variable
u>x; >--- > Xg and a new equationsf; = 1 and we compute a @bner for an
elimination ordering withu as the first block (about 10 hours). We proceed in the
same way for computingl + (f1)) : (f5’) (20 minutes of CPU time). From this
first computations we find thdg (resp.ls) is a zero dimensional ideal of degree 469
(resp. 6156). Since we have now only zero dimensional systems we can use standard
tools to change the ordering to compute lexicographiabBer base$>’ of |5, 13 (7
hours). Then we use the lextriangular algorithfimplemented in Gb to obtaia
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decomposition into triangular systems. To find prime components in this decomposi-
tion we need to factorize some univariate polynomials: we use the powerful package
NTL 5.1 7. All the factorization are done easily (less than 10 minutes) except for
one polynomialP(xg) of degree 972 which was untractable (this is a “Swinerton
Dyer” example). Very recently a new algoriththwas implemented by V. Shoup in
NTL and it takes only 32 min 57 sec and 1.3 Giga bytes of memory to f&ctor a

alpha workstation 500 Mhz. With an even more recent algorithm of M. van Hoeij it
takes less than one minute. From this point all the components are in triangular form
[X]* +ha (X1, ..., Xg),...,Xg® + hg(Xs,Xo), ho(Xg) | With hg an irreducible polynomial.

We need now to factorize in algebraic extension: this is done simply by factorizing
with NTL a primitive element of each component (fortunately all the components are
close to the shape lemma form, that is to S8y, a; is small). We have to remove du-
plicated components which can be very easily done since two identical components
have exactly the same lexicographicoBner basis. The total time for decomposing
thel, andls represent less than 20% of the time for computing a DRali@er basis.

d

Remark 2.1 The size of this decomposition in text forma2.5 Mega bytes.

2.2 Decomposition using the symmetry

For any polynomial p in x1,...,xy and any permutationo, set o.p =
P(Xg(1),-- - Xo(ny)- If F is finite subset, thea (F) = {o(v) : Vv e F}. Inthe rest of
the papeop = (1,2,3,4,5,6,7,8,9) is the cyclic permutation.

Definition 2.1 A solution u= (ug,...,ug) of Cyclic9 is invariantby

Shift Oou = (Ug, Uy, ...,Ug)
Mult if B9=1, Bu= (Buy,...,Bug)
Association 0= (uiUy,...,UgUg, UgUy)
backwad — U= (Xg,X7,...,X1,Xq)
7 u T k= (Ug,Us4k, Upok, - - -, Uit8k)
conjugate u=(ug,...,Ug)

We say that u is essentially real ieiBv where all the components of v are real
numbers angB® = 1.

Theorem 2.2 For all k € {1,...,12}, for all i € {0,...,8} we have Vo8 =
G(I)VQk—S and G(Vlog) = V109 and O'(Vllo) = V110. Moreover Gy_g, Giog and G g

are in shape lemma form.

Remark 2.1 The fact that all the components can be represented by a lexicographic

Grobner basis is a remarkable fact since Cyclic n without decomposition is very far
from being shape lemmia

paper: World Scientific 2001 4




Proof This is done simply by substituting the variables— X1, X9 — X3 and
recomputing a Gibner basis: for alG; we apply the substitution, compute a lexi-
cographic Gobner basis and then we identify the new component in the list of theo-
rem2.1.00

In the rest of the papeB, = Gok_s, G5 = G109, Gj4 = G110 andW are the
corresponding varieties. Since all tB are in shape lemma for we can fix the

notationG,, = ggo (X9), X8 — ggq (X9),..., X1 — g<1k) (xQ)} .

3 Classification of the solutions

We proceed degree by degree beginning with the non zero dimensional and low de-
gree varieties found in theorem 2.2.

3.1 Non zero dimensional components

Since we found only 3 components of dimension 2 and degree 6 it is obvious from
lemma 1.1 thatSsj with j € {ez%T,e*Z%} describe all the non zero dimensional
components.

Remark 3.1 The solution(1,a,a?,...,a®) wherea® = 1, which is always a solu-

tion of the cyclic n problem, is a member of this infinite component.
3.2 Degree 2

It is straightforward from the Gibner basis o6} andG, to identify the following
patterns:

1 1 1 .
Wy = (,1,—,—a,1,a,,1,a) witha®+3a+1=0
a a a
and
1 T
W, = 1,1,1,1,1,1,1,5,a witha“+7a+1=0
3.3 Degree 4

So far we have not used the fact thapif, . .., x,) is a solution therB(x, ..., X,) =
(Bx1,... Bxn) is also a solution iB° = 1. We defingBW to be{Bw | w € W}. Since

we are working with decomposition into irreducible components we should factorize
B°—1=(B—1)(B%+B+1)(B%+B%+1). For any Gbbner basiss in the listof
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theorem 2.1 such that the univariate equatiomgifis X3 + Xg + 1 or x§ +x3 + 1 we
introduce new variableg; > --- > Xg > y; > --- > yg and we add the equations
ViXg =X1,i=1,...,8,y9 = 1. Then we compute a lexicographicald®Bner and we
take the intersection witR[y1, ..., yg|; we notex% the resulting Gabner basis.

It is straightforward to see th@éa) (x9) = ggl) (X9) = X5+ X9 + 1 (to be fully
rigorous we have to search this univariate polynomial in all thébBer bases

Gig,...,Gzs). We check that% =G and that%1 = G,. Consequently there is
no new solution of degree 4.

3.4 Degree 12

In exactly the same way we see tiggt (xo) = o (xo) = X§ + >3+ 1, and we check

Gl G
thats® = G and that;? = G;.

3.5 Degree 24

We study the variety\,. We have a polynomiegge) (x9) of degree 24. We compute
a DRL Gibner basis o6; in order to find algebraic relation and we keep only low
degree equations:

D% =0x=1xDy=1xXg=1x%X=1x7=1
1
We have thus discovered the pattern of this component:

11 « 11 1, g, Xo)
Xa'xa B g g

We can try to simplifyggﬁ)( 9): we remark thaBWy C V for B° = 1; from the
observation thaB® — 1 = (B — 1)(B2+ B +1)(B% + B3+ 1) we should find in the
decomposition of theorem 2.1 some varieties of degre@£= 48 and 6x 24 = 144.
Since it is not the case for 144 we conclude that the var#ty for a®+a3+1=0
is not irreducible, or in other words (since = 1) that the univariate polynomial
ggﬁ) (x9) is not irreducible ovef(a). We add a new variable and the equation
a®+a®+1 =0 toGj and we decompose the resulting variéyin U; UU; UUs.
All the U; are of degree 48. We can keep only one factor,$agnd we find

0 = %8+ (5a2+2—5a +5a5)xg” + (—20a2 — 15a° — 22+ 20a +5a%) xg® +

(—150 + 1502 +9+5a° — 10a%) x° + (5— 10a — 10a* + 10a?) xg*

+ (—15a +15a%+9+5a° — 10a*) xg* + (—20a2 — 15a° — 22+ 200 + 50*) xg?

+(5a%2+2-50+5a%)x+1=0

(
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This representation of the solutions is not satisfactory suegredW,) = 24
and we have now 48 solutions. We remark that the coefficier§ ofin be rewritten

5a2+2-5a+5a%=2-5(a+1) and similarly for the other coefficients. Thus

gge) is invariant if replacex by a the complex conjugate af. So we replacé)(a)
by Q(y) wherey is a root of the minimum polynomial af + % = coga) = cog &)
(hencey is a root of & — 6x+ 1 = (x— cos &) (x— cos 4F)) (x — cog &F))). We
note also thayge) is a self reciprocal polynomial and we add the new variablg =
Xi +% ands(x) =x — x% We recompute a new decomposition in 3 varieties of degree
24 and we found:

H(xs) = c(xo)* + (20y%+10y—8)c(x)® + (—60y? —40y+4)c(x9)? +
(—40y?+23) c(xg) + 120y + 100y — 9 =0

the next equation isc(xg)? — s(xg)? = 4 and for all the other variables
i € {1,2,3,4,5,6,8} we introduce in the same wag(xi) = R(c(Xa),y), S(X) =
Qi(s(xg),y). We giveRs:

392498@(xg) = —233959G&(xq)%y2 — 2784c(xe)’y + 1252564&(xg)° +

3678516&(xg)°y2 — 227106@®(xo)’y — 202859%(xg)> + 3673462@(x9)y? +

653832Z(xg) y— 23201914(Xg) + 20909524’2 +8944278/— 17802043

Forally= cos(z%") andk € {1,2,3} we check thaH(c(xg)) has four real roots

C(Xg) = r}k): -2< rgk) < rg‘) <2and2< \r(3k>| < |rflk)| and we can computgxg) =

+1/c(X9)2 — 4 and we find two real roots whejp= 3,4 and two complex roots of
modulus one whernj = 1,2. In the first case it is obvious (since we have a shape
lemma form) that all the other coordinates are reals. In the second case we check
(numerically for instance) that all the other coordinates are also of modulus one.

For the _patterr(%, %7X37x47 %, %,1,x8,x9) it is obvious that the length of the
association is 3.

3.6 Degree 48

W can be represented by one of thed@mer basisGys,...,Gss; among these
Grobner bases we find one, s@y, such that the univariate polynomiab@-+x3 -+ 1.

We compute%8 and we findG,. (since the direct computation of the lexicographical

Grobner basis is a little more difficult we can first change the orderinggofrom
lexicographical to DRL with the algorithr, or FGLM, then add new variables
and the new equations, compute a DRLo@mer and finally change the ordering
again to obtain a lexicographical @mer basis). In exactly the same way we find

/ / /
% = % = Gf. We find also%1 = G, with the polynomiak3 + xg + 1. There is no

new solution of degreé8.
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3.7 Degree 216

The study of\, is much more difficult: first we compute a DRL &ner but we do

not find interesting algebraic relation of small degree. We know from theorem 2.2
thatWj, can be represented &40, - - . , Gios, SO that (up to renumberin§)oo.i =
O'(i)Vloo. It is easy to show by computation that we have also

2k
e Vigo=Viork ke {l,...,8}

Since it is not possible to find patterns as usual it is necessary to give a hame to
all the roots ofg*?(xg) (all the roots are complex, ..., 2216 (the choice of the
indices is arbitrary).

By inspecting the Gibner basis we remark that the univariate polynomial
(the unknown isxg) in Gigp and in Gipz = oé‘Gloo are the same; we con-
clude immediately that there exists a permutatmnof {1,...,216} such that
(X1, X2, X3, Za (k) » X5, X6, X7, X8, Z) € Wiz for k € {1,...,216}. Moreover we can de-
duce that all the other univariate polynomials have the same rootsgthxg)

multiplied by somee’?" . With the help of the mpsSolVé& program we can compute

all the complex roots af(*? (xg) with guaranteed numerical approximation (we take
100 digits), then plug in these values in the other coordinates; we can identify the
value ofk for each coordinate i ,:

2
3

=y 21
(Zal(me 1Zo,(0€ ° 5 Zo3(0€ 2 5 Zoy (k)

£8m +4n +2r £8m
Zos(k)€ 9 1 Zog(€ ° sZoy(K)€ 1 Zog(k)€ O Zk)

where all theoj are permutations ofl, ..., 216}. Itis also possible to represent
X1,%2,%3,Xs andxg as a product of two rootg, z, andxs,x; as a product of 3 roots
zj,2j,2j,. Describing in a better way these permutations is still an open issue.

3.8 Degree 972

At first glance it may seem surprising that we have only two components of de-
gree 972. But by theorem 2.2 we know th@W;3 = W3 so that all the univari-

ate in all the variablesgy, ..., Xg are the same. We deduce that all the coordi-
natesxy,...,Xg are permutations of the same set of roots.Gy and G/, we re-
mark thatgi(13> (xg) = gglfi) (xg) fori e {1,...,8}, so that if(xq,...,Xo) € Wiz then

— X = (Xg,...,X1,X9) € Wi (read backward the solution) or with our notations
o'Wz = W4 with 0’ = (9,8,7,6,5,4,3,2,1). The invariance by multiplication by
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9th root of unity is obvious sinog'gla) (x9) = Plog(Xg) wherePyggis an irreducible and

self reciprocal polynomial of degree 108 ayfa3) (X9) = XoQi (X9) fori € {1,...,8}.

It is possible to simplify the expression Bfps: since all the coordinates have
the same minimal polynomial we introduce a new varigb(g/e choose the ordering
X1 > --- > Xg > E) and a new equatiold — e, wheree; = 32 + - - - is the elementary
symmetric function of degree 2 ixy,...,x9. We compute a new lexicographical
Grodbner basis and find a univariate ponnomiaEanz(Eg).

Q12(X) = X*?+6601155911730349056 + - --

Following a suggestion of D. Lazar®, it is even possible to split the field
defined byQ1» using the program Karft through the Magm&? interface: leu,v be
two new variables then we have a polynomialijm, E of degree 2 irE, a polynomial
in u,v of degree 3 iru and a univariate polynomial of degree 2in

We can separate the rootsRfgin two sets of same sizej < --- < rsythe real
roots, and{z, ..., Zs4} the complex roots. Let

Ry = (r1,r30,r54,r25,19,23,11,1 40, 21)

we compute from this solutioR;;1 = R, 7 2. We check that:
e all the coordinates dRy, . ..,Rs are all the real roots d?,gg.

e Ry,...,Rs are inW3

o {a(i)e%rRk li,je{1,...,9} ke {1,...,6}} are all the 486 essentially real so-
lutions ofWa.

We study now the complex solutions: &1, Uy, Up, Uz, U3, U3} be the subset
of {z1,...,2s4}, the complex roots of modulus one. For the complex solutions the
pattern oMWz is

|x1) =1 1111 X X

1| = 3)67)(57)67)(737)(67 7,X8,X9
If G is the solution corresponding tey = u; , i = 1,2,3, we setC =
.o2jm

{a(')e'TCk li,je{1,...,9 ke {1,2,3}}; all the 486 complex solutions are ob-

tained by takingC andC the complex conjuates.
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3.9 Number of solutions with multiplicities

The calculations we have done up to now have only taken into account the algebraic
varietyand not the ideal itself. So we have lost the multiplicities of the solutions. In
this section we will prove that there are 6642 isolated points with multiplicities. All
the computations are independant of the other sections so it is also a way to check
the results.

Proposition 3.1 Let | an ideal and g a polynomial. If:1gs=1:¢5"1 =1 : g” then

I=(+(@)Nn(:¢)

Further inspection of th& ; components (dimension 2) reveals the fact that
X3+ X + Xg is @ an invariant. (This polynomial was also used in the proof of theo-
rem 2.1). So we takgo = X3+ Xg +Xg andl = (fy,..., fg, fg— 1) the original system
of equations.

We first compute the ideal quotie(it: go) by the standard algorithm (séép.
195). We found an ideal of dimension 0 and degree 6642. Then we comnpgfe
by computing(l 4+ (1 —t*go)) NK[x1, ..., Xo] (see! ex 8) and we found also an ideal
of dimension 0 and degree 6642. So we conclude that in our case

(I'go) = (1 :9g) and = (I :go) N (I + (o))

The computation ofl 4 (go)) is so simple that we obtain immediately a decom-
position in 3 components of dimension 2.

The other part; = (I : gg) is more difficult and we sketch the proof: we in-
troduce a new variable and the new ideal, = 11 + (t — z?zlixi). We compute
J =12NQ[Xe,t] and we check thak is still a zero dimensional ideal of degree 6642
(in other words; = H;i(xg,t) whereH; is a bivariate polynomial, = 1,...,8). We
compute a lexicographical Gbner basis of, and we found

b= (+...,U(t)(xg+...),U(t)V (1))
whereU andV are square-free univariate polynomials (moreaed(U,V) =
1).V is of degree 5994 and of degree 162. We use the fast Primary Decomposition
algorithm?2 for two variables:
b= Xo+...,V({)N((Xo+...)2U%1)

Theorem 3.1 The number of isolated points of the Cyclic ®iplem
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5994 solutions of multiplicityt
162 solutions of multiplicityt
6642=5994+4*162 all solutions witimultiplicities
6156=5994+162 | all solutions withoumultiplicities

3.10 Summary of the results
Theorem 3.2 If V is a variety, setp = (1,2,3,4,5,6,7,8,9), ' = 051, o\V)=

{odv |j=0,....8} and &' (V) = {€%"V | j =0,...,8} then the set ¥,qjc o of all
the complex solutions of cyclic 9 can be written as:

VCycIic 9= ﬁ/(ﬁ(wl UW, UVV7)) U ﬁ(le) UW3U U/(W13) U 83 e%ﬂ

and the number of isolated points99.(2+ 2+ 24) +9.216+ 2.972= 6156
The number of isolated with multiplicities is 6642.

Remark 3.2 The size of WUW, UW, UW oUW 3 is 379kbytes.

4 Conclusion

We have presented an automatic method based 6br@r basis computations for
solving the Cyclic 9 problem. Thanks to this systematic approach we can claisify

the solutions and removing the well known symmetries. This paper shows also that it
is now possible to compute a decomposition into primes for a very difficult example.
Using completely the symmetries to describe more easily the biggest components is
still an open issue. How to use the symmetries to solve efficiently such a problem
remains also a challenging problem.
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