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We show how computer algebra methods based on Gröbner basis computation and implemented
in the program FGb enable us to compute all the solution of the Cyclic 9 problem a previously
untractable problem. There are one type of infinite solutions of dimension two and 6156 isolated
points without multiplicities.

1 Introduction

The main purpose of this paper is to show how today efficient computer algebra
programs and algorithms can findautomaticallyall cyclic 9-roots1,2,3. The title of
this paper refer of course to the papers4,5. We quote from these papers:

“This paper presents some tricks which may be used when solving a system
of algebraic equations which is too complex to be handled directly by a symbolic
algebra system”. Here the goal is exactly the opposite since we want to use the
computer and the programs as black boxes.

In this paper we do not use the symmetry of the problem for computing the
solutions but we use the symmetry for the classification of the solutions.

Then Cyclicn problem is (with the conventionxn+1 = x1,xn+1 = x2, . . .):

(Cn) ( f1, . . . , fn−1, fn = 1) where fi =
n

∑
j=1

k+i−1

∏
k= j

xk

The Cyclicn has become a standard benchmark for polynomial system solving
and has now a long history. We would like to stress the close relationship of some
algebraic systems occuring in optimal design of filter banks. Cyclicn can be solved
for n≤ 7 by the most efficient computer algebra systems, but forn = 8 it requires
human interaction and software computations3. The casen= 9 is a very challenging
problem because it is

• a non zero dimensional system: we recall that ifm2 dividesn thenCn is at least
of dimensionm−1 (see6,7 and lemma 1.1). So forn = 9 we know thatC9 is of
dimension at least2.
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• a difficult system: with classical Buchberger algorithm it was impossible to
compute a Gr̈obner basis ofC9 even for a total degree ordering. Very recently
we propose a new algorithm for computing Gröbner basisF4 and it takes 15
days with this algorithm to compute a DRL Gröbner basis. The result request
1.7 Giga bytes on the hard disk. Consequently it is difficult to “solve” com-
pletely this problem. By solving, in this paper, we mean give a concise list
of solution as in4,5. Since the first version of this paper we have developped
new algorithms for computing Gröbner bases and it is now possible to solve the
Cyclic 10 problem: it is a zero dimensional system of degree 34940. But the
Cyclic 9 is still more interesting and in some sense more difficult since it is not
zero-dimensional.

The plan of this paper is as follows: in the first section we explain how to obtain
a decomposition into irreducible components mainly by using the FGb program and
the NTL library. We then provide in the second section a complete classification of
all the solutions of Cyclic 9 using the symmetries. The last section contains the clas-
sification of the solutions by their multiplicities. We begin by recalling the following
lemma (see also6,7):
Lemma 1.1 If m2 divides n, then the dimension of Cn is at least m−1.
Proof We setn1 = m, andn2 = n

n1
. We choosej to be an2 th primitive root of unity

(for instancej = e
2iπ
n2 ), then we claim that

Sn1, j(y0, . . . ,yn1−1) = (y0,y1, . . . ,yn1−1, jy0, . . . , jyn1−1, j2y0, . . . ,
j2yn1−1, . . . , jn2−1y0, . . . , jn2−1yn1−1)

is a solution of cyclicn as soon as(y0, ∙ ∙ ∙ ,yn1−1)
n2 = 1. The end of the proof is

a simple substitution to check that the original equations are satisfied.
Moreover, in the casen= 9, we have found a solution of dimension 2 and degree

2∗9 = 18.�

2 Decomposition into irreducible varieties

Let I be the ideal generated by the equationsC9 andV the associated variety, that is
to say the complex roots ofC9.

2.1 General decomposition

Theorem 2.1 The solutions of Cyclic9 can be decomposed in V= ∪113
i=1Vi. More

precisely, for each variety Vi we have computed a lexicographic Gröbner basis Gi.
Moreover all the components are zero dimension except Vi for i ∈ {111,112,113}
which are components of dimension2 and degree6.
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index 1, . . . ,18 19, . . . ,36 37, . . . ,54 55, . . . ,63
number 18 18 18 9

dimension 0 0 0 0
degree 2 4 12 24

index 64, . . . ,99 100, . . . ,108 109,110 111, . . . ,113
number 36 9 2 3

dimension 0 0 0 2
degree 48 216 972 6

that is to say C9 is a two dimensional variety of degree18with 6156isolated points.

Proof The proof of this theorem is done by computer algebra. The first and most
straightforward method is to use an algorithm for computing such a decomposition
(decomposition into primes, triangular systems, . . . ); unfortunately the size of cyclic
9 (and even cyclic 8) is far beyond the capacities of all the current implementation.
For this reason we have developed a new very efficient algorithm calledF7 for com-
puting decomposition into primes of an ideal: the algorithm rely heavily on Gröbner
basis8,9,10,11 computation but try to split the ideal in early stages; with this algorithm,
implemented in the Gb12 and FGb13 programs, it takes 3 days on a PC Pentium II
(400 Mhz with 512 Mega bytes of memory) to compute the decomposition. In view
of the fact that this algorithm is not yet published and cannot be described in a short
paper we give an alternate (and longer) proof. First we compute a Gröbner basis for
a DRL ordering as explained in14: it takes 15 days and the size of the result is 1.7
Giga bytes. Then we have to separate the non zero dimensional components: letI
be the ideal generated by the equations of Cyclic 9, we can use the known solutions
given by lemma 1.1 or use the first polynomials given byF7:

f1 = x5x9−x6x8 f2 = x3 +x6 +x9

then we can use the decomposition
√

I = I1 ∩ I2 ∩ I3 =
√

I +( f1, f2) ∩√
(I +( f1)) : ( f ∞

2 )∩
√

(I) : ( f ∞
1 ). Of course there is possibly some redundancy in

this decomposition. Computing a lexicographic Gröbner of I1 is straightforward
from the original equation and it is obvious to check that it is exactly the com-
ponent given by lemma 1.1. In order to computeI : ( f ∞

1 ) we add a new variable
u > x1 > ∙ ∙ ∙ > x9 and a new equationsu f1 = 1 and we compute a Gröbner for an
elimination ordering withu as the first block (about 10 hours). We proceed in the
same way for computing(I +( f1)) : ( f ∞

2 ) (20 minutes of CPU time). From this
first computations we find thatI2 (resp.I3) is a zero dimensional ideal of degree 469
(resp. 6156). Since we have now only zero dimensional systems we can use standard
tools to change the ordering to compute lexicographic Gröbner bases15,7 of I2, I3 (7
hours). Then we use the lextriangular algorithm16 implemented in Gb to obtaina
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decomposition into triangular systems. To find prime components in this decomposi-
tion we need to factorize some univariate polynomials: we use the powerful package
NTL 5.1 17. All the factorization are done easily (less than 10 minutes) except for
one polynomialP(x9) of degree 972 which was untractable (this is a “Swinerton
Dyer” example). Very recently a new algorithm18 was implemented by V. Shoup in
NTL and it takes only 32 min 57 sec and 1.3 Giga bytes of memory to factorP on a
alpha workstation 500 Mhz. With an even more recent algorithm of M. van Hoeij it
takes less than one minute. From this point all the components are in triangular form[
xα1

1 +h1(x1, . . . ,x9), . . . ,x
α8
8 +h8(x8,x9),h9(x9)

]
with h9 an irreducible polynomial.

We need now to factorize in algebraic extension: this is done simply by factorizing
with NTL a primitive element of each component (fortunately all the components are
close to the shape lemma form, that is to say∑8

i=1 αi is small). We have to remove du-
plicated components which can be very easily done since two identical components
have exactly the same lexicographic Gröbner basis. The total time for decomposing
theI2 andI3 represent less than 20% of the time for computing a DRL Gröbner basis.
�

Remark 2.1 The size of this decomposition in text format is2.5 Mega bytes.

2.2 Decomposition using the symmetry

For any polynomial p in x1, . . . ,xN and any permutationσ , set σ .p =
p(xσ(1), . . . ,xσ(N)). If F is finite subset, thenσ(F) = {σ(v) : ∀v∈ F}. In the rest of
the paperσ0 = (1,2,3,4,5,6,7,8,9) is the cyclic permutation.

Definition 2.1 A solution u= (u1, . . . ,u9) of Cyclic9 is invariantby
Shift σ0u = (u9,u1, . . . ,u8)
Mult if β 9 = 1, βu = (βu1, . . . ,βu9)

Association ũ = (u1u2, . . . ,u8u9,u9u1)
backward ← u = (x8,x7, . . . ,x1,x9)
↑ u ↑ k = (u1,u1+k,u1+2k, . . . ,u1+8k)

conjugate ū = (ū1, . . . , ū9)
We say that u is essentially real if u= βv where all the components of v are real

numbers andβ 9 = 1.

Theorem 2.2 For all k ∈ {1, . . . ,12}, for all i ∈ {0, . . . ,8} we have Vi+9k−8 =
σ i

0V9k−8 and σ(V109) = V109 and σ(V110) = V110. Moreover G9k−8, G109 and G110

are in shape lemma form.

Remark 2.1 The fact that all the components can be represented by a lexicographic
Gröbner basis is a remarkable fact since Cyclic n without decomposition is very far
from being shape lemma!

paper: World Scientific 2001 4



Proof This is done simply by substituting the variablesxi → xi+1, x9 → x1 and
recomputing a Gr̈obner basis: for allGj we apply the substitution, compute a lexi-
cographic Gr̈obner basis and then we identify the new component in the list of theo-
rem 2.1.�

In the rest of the paperG′k = G9k−8, G′13 = G109, G′14 = G110 andWk are the
corresponding varieties. Since all theG′k are in shape lemma for we can fix the

notationG′k =
[
g(k)

9 (x9),x8−g(k)
8 (x9), . . . ,x1−g(k)

1 (x9)
]
.

3 Classification of the solutions

We proceed degree by degree beginning with the non zero dimensional and low de-
gree varieties found in theorem 2.2.

3.1 Non zero dimensional components

Since we found only 3 components of dimension 2 and degree 6 it is obvious from
lemma 1.1 thatS3, j with j ∈ {e

2ıπ
3 ,e−

2ıπ
3 } describe all the non zero dimensional

components.

Remark 3.1 The solution(1,α,α2, . . . ,α8) whereα9 = 1, which is always a solu-
tion of the cyclic n problem, is a member of this infinite component.

3.2 Degree 2

It is straightforward from the Gröbner basis ofG′1 andG′2 to identify the following
patterns:

W1 =

(
1
a
,1,−

1
a
,−a,1,a,

1
a
,1,a

)

with a2 +3a+1 = 0

and

W2 =

(

1,1,1,1,1,1,1,
1
a
,a

)

with a2 +7a+1 = 0

3.3 Degree 4

So far we have not used the fact that if(x1, . . . ,xn) is a solution thenβ (x1, . . . ,xn) =
(βx1, . . . βxn) is also a solution ifβ 9 = 1. We defineβW to be{βw | w∈W}. Since
we are working with decomposition into irreducible components we should factorize
β 9−1 = (β −1)(β 2 + β +1)(β 6 + β 3 +1). For any Gr̈obner basisG in the listof
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theorem 2.1 such that the univariate equation inx9 is x2
9 + x9 + 1 or x6

9 + x3
9 + 1 we

introduce new variablesx1 > ∙ ∙ ∙ > x9 > y1 > ∙ ∙ ∙ > y9 and we add the equations
yix9 = x1, i = 1, . . . ,8, y9 = 1. Then we compute a lexicographical Gröbner and we
take the intersection withQ[y1, . . . ,y9]; we noteG

x9
the resulting Gr̈obner basis.

It is straightforward to see thatg(3)
9 (x9) = g(4)

9 (x9) = x2
9 + x9 + 1 (to be fully

rigorous we have to search this univariate polynomial in all the Gröbner bases

G19, . . . ,G36). We check that
G′3
x9

= G′1 and that
G′4
x9

= G′2. Consequently there is
no new solution of degree 4.

3.4 Degree 12

In exactly the same way we see thatg(5)
9 (x9) = g(6)

9 (x9) = x6
9 +x3

9 +1, and we check

that
G′5
x9

= G′2 and that
G′6
x9

= G′1.

3.5 Degree 24

We study the varietyW7. We have a polynomialg(6)
9 (x9) of degree 24. We compute

a DRL Gr̈obner basis ofG′6 in order to find algebraic relation and we keep only low
degree equations:

∑
i

xi = 0,x2x3 = 1,x1x4 = 1,x6x8 = 1,x5x9 = 1,x7 = 1

We have thus discovered the pattern of this component:

(
1
x4

,
1
x3

,x3,x4,
1
x9

,
1
x8

,1,x8,x9)

We can try to simplifyg(6)
9 (x9): we remark thatβW7 ⊂V for β 9 = 1; from the

observation thatβ 9−1 = (β −1)(β 2 + β + 1)(β 6 + β 3 + 1) we should find in the
decomposition of theorem 2.1 some varieties of degree 2×24= 48 and 6×24= 144.
Since it is not the case for 144 we conclude that the varietyαW7 for α6+α3+1= 0
is not irreducible, or in other words (sincex7 = 1) that the univariate polynomial

g(6)
9 (x9) is not irreducible overQ(α). We add a new variableα and the equation

α6 + α3 +1 = 0 to G′6 and we decompose the resulting varietyW̃6 in U1∪U2∪U3.
All the Ui are of degree 48. We can keep only one factor, sayU1 and we find

g(6)
9 = x9

8 +
(
5α2 +2−5α +5α5

)
x9

7 +
(
−20α2−15α5−22+20α +5α4

)
x9

6 +(
−15α +15α2 +9+5α5−10α4

)
x9

5 +
(
5−10α−10α4 +10α2

)
x9

4

+
(
−15α +15α2 +9+5α5−10α4

)
x9

3 +
(
−20α2−15α5−22+20α +5α4

)
x9

2

+
(
5α2 +2−5α +5α5

)
x9 +1 = 0
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This representation of the solutions is not satisfactory sincedegree(W7) = 24
and we have now 48 solutions. We remark that the coefficient ofx7

9 can be rewritten
5α2 +2−5α +5α5 = 2−5

(
α + 1

α
)

and similarly for the other coefficients. Thus

g(6)
9 is invariant if replaceα by ᾱ the complex conjugate ofα. So we replaceQ(α)

byQ(γ) whereγ is a root of the minimum polynomial ofα + 1
α = cos(α) = cos(2π

9 )
(henceγ is a root of 8x3−6x+ 1 = (x− cos(2π

9 ))(x− cos(4π
9 ))(x− cos(8π

9 ))). We

note also thatg(6)
9 is a self reciprocal polynomial and we add the new variablec(xi) =

xi + 1
xi

ands(xi) = xi− 1
xi

. We recompute a new decomposition in 3 varieties of degree
24 and we found:

H(x9) = c(x9)
4 +

(
20γ2 +10γ−8

)
c(x9)

3 +
(
−60γ2−40γ +4

)
c(x9)

2 +(
−40γ2 +23

)
c(x9)+120γ2 +100γ−9 = 0

the next equation isc(x9)2 − s(x9)2 = 4 and for all the other variables
i ∈ {1,2,3,4,5,6,8} we introduce in the same wayc(xi) = Pi(c(x9),γ), s(xi) =
Qi(s(x9),γ). We giveP8:

3924989c(x8) = −2339596c(x9)
3γ2 − 2784c(x9)

3γ + 1252564c(x9)
3 +

3678516c(x9)
2γ2 − 2271060c(x9)

2γ − 2028597c(x9)
2 + 36734620c(x9)γ2 +

6538322c(x9)γ−23201914c(x9)+20909524γ2 +8944278γ−17802043

For allγ = cos(2kπ
9 ) andk∈ {1,2,3} we check thatH(c(x9)) has four real roots

c(x9) = r(k)
j : −2< r(k)

1 < r(k)
2 < 2 and 2< |r(k)

3 |< |r
(k)
4 | and we can computes(x9) =

±
√

c(x9)2−4 and we find two real roots whenj = 3,4 and two complex roots of
modulus one whenj = 1,2. In the first case it is obvious (since we have a shape
lemma form) that all the other coordinates are reals. In the second case we check
(numerically for instance) that all the other coordinates are also of modulus one.

For the pattern( 1
x4

, 1
x3

,x3,x4,
1
x9

, 1
x8

,1,x8,x9) it is obvious that the length of the
association is 3.

3.6 Degree 48

W8 can be represented by one of the Gröbner basisG48, . . . ,G56; among these
Gröbner bases we find one, sayG′8, such that the univariate polynomial isx6

9+x3
9+1.

We compute
G′8
x9

and we findG′7. (since the direct computation of the lexicographical
Gröbner basis is a little more difficult we can first change the ordering ofG′8 from
lexicographical to DRL with the algorithmF2 or FGLM, then add new variables
and the new equations, compute a DRL Gröbner and finally change the ordering
again to obtain a lexicographical Gröbner basis). In exactly the same way we find
G′9
x9

=
G′10
x9

= G′7. We find also
G′11
x9

= G′7 with the polynomialx2
9 +x9 +1. There is no

new solution of degree48.
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3.7 Degree 216

The study ofW12 is much more difficult: first we compute a DRL Gröbner but we do
not find interesting algebraic relation of small degree. We know from theorem 2.2
thatW12 can be represented byG100, . . . ,G108, so that (up to renumbering)V100+i =
σ i

0V100. It is easy to show by computation that we have also

e
2kπ
9 V100 = V101+k k∈ {1, . . . ,8}

Since it is not possible to find patterns as usual it is necessary to give a name to
all the roots ofg(12)(x9) (all the roots are complex):z1, . . . , z216 (the choice of the
indices is arbitrary).

By inspecting the Gr̈obner basis we remark that the univariate polynomial
(the unknown isx9) in G100 and in G103 = σ4

0G100 are the same; we con-
clude immediately that there exists a permutationα of {1, . . . ,216} such that
(x1,x2,x3,zα(k),x5,x6,x7,x8,zk) ∈W12 for k ∈ {1, . . . ,216}. Moreover we can de-

duce that all the other univariate polynomials have the same roots thang(12)(x9)

multiplied by somee
2kπ
9 . With the help of the mpsSolve19 program we can compute

all the complex roots ofg(12)(x9) with guaranteed numerical approximation (we take
100 digits), then plug in these values in the other coordinates; we can identify the
value ofk for each coordinate ofW12:

(
zσ1(k)e

±2π
3 ,zσ2(k)e

±4π
9 ,zσ3(k)e

±2π
3 ,zσ4(k),

zσ5(k)e
±8π

9 ,zσ6(k)e
±4π

9 ,zσ7(k)e
±2π

3 ,zσ8(k)e
±8π

9 ,zk

)

where all theσ j are permutations of{1, . . . ,216}. It is also possible to represent
x1,x2,x3,x5 andx8 as a product of two rootszi1zi2 andx6,x7 as a product of 3 roots
zj1zj2zj3. Describing in a better way these permutations is still an open issue.

3.8 Degree 972

At first glance it may seem surprising that we have only two components of de-
gree 972. But by theorem 2.2 we know thatσ0W13 = W13 so that all the univari-
ate in all the variablesx1, . . . , x9 are the same. We deduce that all the coordi-
natesx1, . . . ,x9 are permutations of the same set of roots. InG′13 andG′14 we re-

mark thatg(13)
i (x9) = g(14)

9−i (x9) for i ∈ {1, . . . ,8}, so that if(x1, . . . ,x9) ∈W13 then
← x = (x8, . . . ,x1,x9) ∈W14 (read backward the solution) or with our notations
σ ′W13 = W14 with σ ′ = (9,8,7,6,5,4,3,2,1). The invariance by multiplication bya
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9th root of unity is obvious sinceg(13)
9 (x9) = P108(x9

9) whereP108 is an irreducible and

self reciprocal polynomial of degree 108 andg(13)
i (x9) = x9Qi(x9

9) for i ∈ {1, . . . ,8}.
It is possible to simplify the expression ofP108: since all the coordinates have

the same minimal polynomial we introduce a new variableE (we choose the ordering
x1 > ∙ ∙ ∙> x9 > E) and a new equationE−e2 wheree2 = x1x2+ ∙ ∙ ∙ is the elementary
symmetric function of degree 2 inx1, . . . ,x9. We compute a new lexicographical
Gröbner basis and find a univariate polynomial inE, Q12(E9).

Q12(X) = X12+6601155911730349056X11+ ∙ ∙ ∙

Following a suggestion of D. Lazard20, it is even possible to split the field
defined byQ12 using the program Kant21 through the Magma22 interface: letu,v be
two new variables then we have a polynomial inu,v,E of degree 2 inE, a polynomial
in u,v of degree 3 inu and a univariate polynomial of degree 2 inv.

We can separate the roots ofP108 in two sets of same size:r1 < ∙ ∙ ∙< r54 the real
roots, and{z1, . . . ,z54} the complex roots. Let

R1 = (r1, r30, r54, r25, r9, r23, r11, r40, r21)

we compute from this solutionRi+1 = R̃i ↑ 2. We check that:

• all the coordinates ofR1, . . . ,R6 are all the real roots ofP108.

• R1, . . . ,R6 are inW13

•
{

σ i
0e

2 jπ
9 Rk |i, j ∈ {1, . . . ,9} k∈ {1, . . . ,6}

}
are all the 486 essentially real so-

lutions ofW13.

We study now the complex solutions: let{u1, ū1,u2, ū2,u3, ū3} be the subset
of {z1, . . . ,z54}, the complex roots of modulus one. For the complex solutions the
pattern ofW13 is

(

|x1|= 1,
1
x̄9

,
1
x̄8

,
1
x̄7

,
1
x̄6

,x6,x7,x8,x9

)

If Ci is the solution corresponding tox1 = ui , i = 1,2,3, we setC ={
σ i

0e
2 jπ
9 Ck |i, j ∈ {1, . . . ,9} k∈ {1,2,3}

}
; all the 486 complex solutions are ob-

tained by takingC andC̄ the complex conjugates.
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3.9 Number of solutions with multiplicities

The calculations we have done up to now have only taken into account the algebraic
varietyand not the ideal itself. So we have lost the multiplicities of the solutions. In
this section we will prove that there are 6642 isolated points with multiplicities. All
the computations are independant of the other sections so it is also a way to check
the results.

Proposition 3.1 Let I an ideal and g a polynomial. If I: gs = I : gs+1 = I : g∞ then

I = (I +(gs))∩ (I : gs)

Further inspection of theS3, j components (dimension 2) reveals the fact that
x3 + x6 + x9 is a an invariant. (This polynomial was also used in the proof of theo-
rem 2.1). So we takeg0 = x3+x6+x9 andI = ( f1, . . . , f8, f9−1) the original system
of equations.

We first compute the ideal quotient(I : g0) by the standard algorithm (see11 p.
195). We found an ideal of dimension 0 and degree 6642. Then we computeI : g∞

0
by computing(I +(1− t ∗g0))∩k[x1, . . . ,x9] (see11 ex 8) and we found also an ideal
of dimension 0 and degree 6642. So we conclude that in our case

(I : g0) = (I : g∞
0 ) andI = (I : g0)∩ (I +(g0))

The computation of(I +(g0)) is so simple that we obtain immediately a decom-
position in 3 components of dimension 2.

The other partI1 = (I : g∞
0 ) is more difficult and we sketch the proof: we in-

troduce a new variablet and the new idealI2 = I1 + (t −∑9
i=1 ixi). We compute

J2 = I2∩Q[x9, t] and we check thatJ2 is still a zero dimensional ideal of degree 6642
(in other wordsxi = Hi(x9, t) whereHi is a bivariate polynomial,i = 1, . . . ,8). We
compute a lexicographical Gröbner basis ofJ2 and we found

J2 =
(
x2

9 + . . . ,U2(t)(x9 + . . .),U2(t)V(t)
)

whereU andV are square-free univariate polynomials (moreovergcd(U,V) =
1). V is of degree 5994 andU of degree 162. We use the fast Primary Decomposition
algorithm23 for two variables:

J2 = (x9 + . . . ,V(t))∩
(
(x9 + . . .)2,U2(t)

)

Theorem 3.1 The number of isolated points of the Cyclic 9 problem
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5994 solutions of multiplicity1
162 solutions of multiplicity4

6642=5994+4*162 all solutions withmultiplicities
6156=5994+162 all solutions withoutmultiplicities

3.10 Summary of the results

Theorem 3.2 If V is a variety, setσ0 = (1,2,3,4,5,6,7,8,9), σ ′ = σ−1
0 , O(V) =

{σ j
0V | j = 0, . . . ,8} andO ′(V) = {e

2 jıπ
9 V | j = 0, . . . ,8} then the set VCyclic 9 of all

the complex solutions of cyclic 9 can be written as:

VCyclic 9 = O ′(O(W1∪W2∪W7))∪O(W12)∪W13∪σ ′(W13)∪S
3,e

2ıπ
3

and the number of isolated points is9.9.(2+ 2+ 24)+ 9.216+ 2.972= 6156.
The number of isolated with multiplicities is 6642.

Remark 3.2 The size of W1∪W2∪W7∪W12∪W13 is 379kbytes.

4 Conclusion

We have presented an automatic method based on Gröbner basis computations for
solving the Cyclic 9 problem. Thanks to this systematic approach we can classifyall
the solutions and removing the well known symmetries. This paper shows also that it
is now possible to compute a decomposition into primes for a very difficult example.
Using completely the symmetries to describe more easily the biggest components is
still an open issue. How to use the symmetries to solve efficiently such a problem
remains also a challenging problem.
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