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Abstract

We compute the asymptotic expansion of the degree of regularity for overdetermined
semi-regular sequences of algebraic equations. This degree implies bounds for the
generic complexity of Gröbner bases algorithms, in particular the F5 [Fau02] algorithm.
Bounds can also be derived for the XL [SPCK00] family of algorithms used by the
cryptographic community.

1 Motivations and Results

The worst-case complexity of Gröbner bases has been the object of extensive studies. In the
most general case, it is well known after work by Mayr and Meyer that the complexity is
doubly exponential in the number of variables. For subclasses of polynomial systems, the
complexity may be much smaller. Of particular importance is the class of regular sequences of
polynomials. There, it is known that after a generic linear change of variables the complexity
of the computation for the degree-reverse-lexicographic order is simply exponential in the
number of variables. Moreover, in characteristic 0, these systems are generic. Our goal is to
give similar complexity bounds for overdetermined systems, for a class of systems that we
call semi-regular.

The interest in overdetermined systems is not purely academic: there are a number of
applications, such as error correcting codes (decoding of cyclic codes), robotics, calibration,
cryptography,. . . . The security of many cryptographical primitives depends on the difficulty
of system-solving. Sometimes (in the case of “multivariate public-key cryptosystems”) the
public keys themselves become the system to be solved. Sometimes primitives can be cracked
if one can find a solution to an associated overdetermined system of algebraic equations over
a finite field. This is known as Algebraic Cryptanalysis and is currently one of the “hot”
topics in cryptography.
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In most cases, only the solutions over a finite field are required, rather than solutions in
the algebraic closure. Often the finite field is F2, and we may then think of the problem as
solving the original system of, say m, equations over F2 together with the field equations
x2

i = xi (i = 1, . . . , n). We would then have an overdetermined system of m + n equations.
For larger fields, the n field equations are of higher degree and the solution process is then
affected to a lesser extent.

Gröbner bases algorithms are rather little known by the cryptographers, who prefer to
use algorithms like Algorithm XL [SPCK00] (rediscovered in 1999 as an adapted version over
finite fields of Lazard’s proposed method of 1983 [Laz83]) and its variants. Since XL can be
seen as a particular case of Gröbner bases algorithms [AFI+04], the bounds for XL are at
least equal to the bounds derived in this paper (see also [YC04] for a specific study).

We now state more precisely our results. We consider polynomials (f1, . . . , fm) in K[x] =
K[x1, . . . , xn] where K is a field. We denote by di the total degree of fi, and by 〈f1, . . . , fm〉
the ideal generated by the fi’s.

The Hilbert series of this ideal is well known to be related to its Gröbner bases for orders
that refine the degree. In the case of a regular system this series is

Sm,n =

∏m
i=1(1 − zdi)

(1 − z)n
.

The degree of regularity dreg of the series is the smallest D such that the coefficient of zi

in the series Sm,n is equal to the value of the Hilbert polynomial at i for all i ≥ D. This
is precisely the highest degree in elements of a Gröbner basis for an order that refines the
degree, after a generic linear change of variables [Laz83, Giu84]. Easy manipulations on
series give for D the value we call the Macaulay bound :

dreg =
m∑

i=1

(di − 1) + 1. (1)

When the number of polynomials m is larger than the number n of variables, the series Sm,n

has negative coefficients. It turns out that for the semi-regular systems we consider, the de-
gree of regularity is then found to be the index of the first non-positive coefficient in Sm,n(z).
When working over F2[x1, . . . , xn] = F2[x]/〈x2

1 − x1, . . . , x
2
n − xn〉, we have to work with the

modified generating series

Tm,n(z) = (1 + z)n
/ m∏

i=1

(1 + zdi).

Again, the degree of regularity is the index of the first non-positive coefficient and it is a
bound for the highest degree of elements of a Gröbner basis for any order refining the degree.
The generating series Sm,n(z) and Tm,n(z) and associated degrees of regularity have also
appeared recently in cryptography to analyse the XL algorithm and its variant XL2 [YC04].
In [Fau02, BFS03, Bar04], we have shown that in all three cases (regular, semi-regular, semi-
regular over F2[x1, . . . , xn]), the Gröbner basis algorithm F5 does not perform any reduction

2



to 0 before degree dreg. This leads to complexity estimates in terms of the complexity of
linear algebra in dimension the number of monomials of degree at most dreg.

In the case of regular sequences, using the Macaulay bound then gives a very precise
complexity estimate in terms of the degrees di and the number n of variables. While we are
not able to give such a simple formula in the overdetermined case, we give an asymptotic
analysis of dreg. For simplicity, we restrict to the quadratic case (di = 2), and refer to [BFS04,
Bar04] for more general results and sketch of the proof. Our main results can now be stated.

Theorem 1. For m = n + k (k > 1 fixed) quadratic equations in n variables, the degree of
regularity dreg behaves asymptotically like

dreg =
m

2
− hk,1

√
m

2
(1 + o(1)), (2)

where Hk denotes the Hermite polynomial of order k and hk,1 is the largest zero of Hk.
For m = αn (α > 1 fixed) quadratic equations in n variables, the degree of regularity dreg

behaves asymptotically like

dreg = (α − 1

2
−
√

α(α − 1))n +
−a1

2(α(α − 1))
1
6

n
1
3 −

(

2 − 2α − 1

4(α(α − 1))
1
2

)

+ O(
1

n1/3
), (3)

where a1 ≈ −2.3381 is the largest zero of the classical Airy function.
For m = αn (α > 1 fixed) quadratic equations in n variables in F2[x1, . . . , xn], the degree

of regularity dreg behaves asymptotically like

dreg ∼
(

−α +
1

2
+

1

2

√

2α2 − 10α − 1 + 2(α + 2)
√

α(α + 2)

)

n. (4)

Intuitively, these results give a quantification of the gain obtained by adding more and
more information in the form of new equations.

These asymptotics results show that the logarithm of the complexity in the semi-regular
case is dominated by a linear term in n when m ∼ αn, hence is simply exponential (the
number of monomials with n variables at degree D = (c + o(1))n is simply exponential in
n, even when considering the field equations). See also [Die04] about previous conjectures
by cryptographers that XL may be able to solve the multivariate quadratic problem in sub-
exponential time.

These results also allow to quantify the consequences of the Frobenius criterion: consider
a sequence (f1, . . . , fn, x2

1 − x1, . . . , x
2
n − xn) ⊂ K[x], the degree of regularity is given by

dreg = 0.086 n + 1.04 n
1
3 − 1.47 + O(n− 1

3 ) if K has characteristic 0,

dreg = 0.09n + 1.00n
1
3 − 1.58 + O(n− 1

3 ) if K has characteristic 2.

This article is structured as follows. In Section 2 we recall the definitions and properties
of regular, semi-regular sequences and semi-regular sequences in F2[x1, . . . , xn]. Then in
Section 3, we give the proofs of the asymptotic expansions of dreg in the three cases presented
above.
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2 Regular and semi-regular systems

We consider polynomials (f1, . . . , fm) in K[x] where K is a field. We denote by di the total
degree of fi, by fh

i the homogeneous part of highest degree of fi and by I = 〈f1, . . . , fm〉 the
ideal generated by the fi’s.

2.1 Regular sequences

Algebraic properties of regular sequences [Mac16] are well known (Hilbert series, index of
regularity, . . . [CLO98, Lan02, Frö97]) and their behavior w.r.t. Gröbner bases computation
is well understood [Giu84, Laz83]. Moreover, if the field K has characteristic zero, regular
sequences are generic among all sequences (the integers n, m and di being fixed), that is
in the space of all sequences, non-regular sequences form an algebraic set of codimension at
least 1.

We recall definitions and properties of regular sequences. Geometrically, the system
(f1, . . . , fm) of homogeneous equations is regular when for each i = 1, . . . , m, the algebraic
set defined by (f1, . . . , fi) has codimension i. Algebraically, this is expressed by the fact that
fi is not a zero-divisor in the quotient K[x]/〈f1, . . . , fi−1〉. Regular sequences can also be
characterized by the set of relations between the fi’s: regular sequences can be viewed as
sequences for which no relation but the trivial ones (generated by fifj = fjfi) occurs.

We slightly restrict the usual definition of regular sequences in the affine case so that our
complexity results can apply. This restriction is discussed in Section 2.2.

Definition 2. A homogeneous sequence of polynomials (f1, . . . , fm) is regular if for all i =
1, . . . , m and g such that

gfi ∈ 〈f1, . . . , fi−1〉
then g is also in 〈f1, . . . , fi−1〉.

An affine sequence of polynomials (f1, . . . , fm) is regular if the homogeneous sequence
(fh

1 , . . . , fh
m) is, where fh

i is the homogeneous part of fi of highest degree.

Classical properties of homogeneous regular systems are:

Theorem 3. (i) (f1, . . . , fm) is regular if and only if its Hilbert series is given by

Πm
i=1(1 − zdi)

(1 − z)n
(5)

(ii) after a generic linear change of variables, the highest degree of elements of a Gröbner
basis for the DRL order is bounded by the index of regularity

m∑

i=1

(di − 1) + 1

(iii) (f1, . . . , fm) is regular if and only if there are no reduction to 0 in Algorithm F5,
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Proof. The proof of the property (ii) can be found in [Laz83, Giu84]. Property (iii) is
proved in [Fau02]. The property (i) follows directly from [Lan02, Theorem 6.6 p. 436]; see
also [Frö97, p. 137].

2.2 Linear algebra, Gröbner basis algorithms and Algorithm XL

The link between polynomial system solving and linear algebra was described by Macaulay
in [Mac16] where he generalized Sylvester’s matrix (for the resultant of two univariate poly-
nomials) to multivariate polynomials. The idea is to construct a matrix in degree d whose
lines contain all multiples of the polynomials fi (i = 1, . . . , n) in the original system by
monomials t such that deg(tfi) ≤ d, the columns representing a basis of monomials up to
degree d. It was observed by Lazard [Laz83] that for a large enough degree d, ordering the
columns according to a monomial ordering and performing row reduction without column
pivoting on the matrix (a particular Gaussian Elimination) is equivalent to Buchberger’s
Gröbner basis algorithm.

The XL algorithm was designed to solve a system of multivariate polynomials that has
only one solution over a finite field. It constructs the Macaulay matrix in a given degree and
solves the resultant system using sparse matrix methods. There are several variants of this
algorithm (e.g. XL2). It can be shown that at the degree of regularity dreg, a semi-regular
system (see definition in the next Section) will be solved using XL2 [YC04].

One of the main difficulties with this Macaulay matrix is that many rows are linearly
dependent upon the previous ones and a lot of time is wasted to produce 0 during the
Gaussian Elimination. Faugère’s F5 criterion [Fau02] can be used to avoid useless rows in
the Macaulay matrix coming from the relations fifj = fjfi. The matrix version of the F5

algorithm [Bar04] constructs incrementally in the degree, then in the number of polynomials
a submatrix of the Macaulay matrix in degree d that is full rank for regular sequences and
for semi-regular sequences as d < dreg. The algorithm stops when a large enough degree has
been reached, which is dreg for semi-regular homogeneous sequences.

For affine sequences, the F5 criterion applies without any changes in a matrix version
of F5 as long as there is no fall of degree, which is equivalent to a reduction to 0 for the
homogeneous part of highest degree of the polynomials. This justify our definition of regular
(and semi-regular) sequences for affine systems. For an affine regular sequence, we can just
run the F5 matrix algorithm up to degree dreg, and then end the computation by running
another algorithm like F4 [Fau99] for instance. The rate-determining step is the first part.

For sequences over F2 containing the field equations x2
i = xi, the matrices constructed

by F5 are no longer full rank, because of the Frobenius morphism. Another criterion, called
the Frobenius criterion [BFS03, Bar04], can be used to avoid useless rows in the Macaulay
matrix coming from the relations fifi = fi. The F5 algorithm in a matrix version with the
Frobenius criterion constructs full rank matrices for semi-regular sequences over F2.
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2.3 Semi-regular sequences

Regular systems have at most as many polynomials as variables; we generalize this definition
to overdetermined systems [Bar04, BFS04]:

Definition 4. The degree of regularity of a homogeneous ideal I = 〈f1, . . . , fm〉 is defined
by

dreg = min

{

d ≥ 0 | dimK({f ∈ I, deg(f) = d}) =

(
n + d − 1

d

)

= #
monomials
of degree d

}

This definition implies that for any monomial ordering refining the degree, all monomials
in degree dreg are leading terms for an element of the ideal. Thus dreg is clearly an upper
bound on the degree of the elements of a Gröbner basis for such a monomial ordering.

Definition 5. A homogeneous sequence of polynomials (f1, . . . , fm) is semi-regular if for all
i = 1, . . . , m and g such that

gfi ∈ 〈f1, . . . , fi−1〉 and deg(gfi) < dreg

then g is also in 〈f1, . . . , fi−1〉.
An affine sequence of polynomials (f1, . . . , fm) is semi-regular if the sequence (f h

1 , . . . , fh
m)

is semi-regular, where fh
i is the homogeneous part of fi of highest degree.

Properties of semi-regular sequences are:

Proposition 6. Let (f1, . . . , fm) be a sequence of m polynomials in n variables, fi being of
degree di. Then:

(i) The sequence (f1, . . . , fm) is semi-regular if and only if the Hilbert series of the homo-
geneous sequence (fh

1 , . . . , fh
m) is given by

[

Sm,n(z)
]

,

where
[∑

i≥0 aiz
i
]

=
∑

i≥0 biz
i with bi = ai if aj > 0 ∀0 ≤ j ≤ i and bi = 0 otherwise.

(ii) For m ≤ n, the sequence (f1, . . . , fm) is regular if and only if it is semi-regular. In
other words, the notion of semi-regularity coincides with the notion of regularity.

(iii) The degree of regularity of a semi-regular sequence (f1, . . . , fm) is the index of the first
non-positive coefficient in the series Sm,n(z).

(iv) For a semi-regular system, there is no reduction to 0 in Algorithm F5 for degrees smaller
than dreg. Moreover, the total number of arithmetic operations in K performed by F5

(matrix version) is bounded by

O

((
n + dreg

n

)ω)

.
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Proof. We prove property (i) for homogeneous equations. Consider the exact sequence

0 → (K[x]/〈f1, . . . , fi−1〉)d−di

fi→ (K[x]/〈f1, . . . , fi−1〉)d → (K[x]/〈f1, . . . , fi〉)d → 0

then as long as d < dreg the associated Hilbert functions verify the relation [CLO98]

HF〈f1,...,fi−1〉(d − di) − HF〈f1,...,fi−1〉(d) + HF〈f1,...,fi〉(d) = 0

for all d < dreg. Moreover, HF〈f1,...,fi〉(d) = 0 for all i and d and HF〈0〉(d) =
(

n+d−1
d

)
which

implies the following relations for the Hilbert series:

HS〈f1,...,fm〉(z) =

∞∑

d=0

HF〈f1,...,fm〉(d)zd =
[ m∏

i=1

(1 − zdi)
/

(1 − z)n
]

.

Conversely, consider the exact sequence

0 → Kd−di
→ (K[x]/〈f1, . . . , fi−1〉)d−di

fi→ (K[x]/〈f1, . . . , fi−1〉)d → (K[x]/〈f1, . . . , fi〉)d → 0

where K is the kernel of the multiplication map by fi. For all d < dreg the kernel is necessary
Kd−di

= {0}, hence by Definition 5 the sequence is semi-regular.
Property (ii) is a consequence of (i) and Theorem 3 (i). By definition the degree of

regularity of a homogeneous sequence is the first d for which HF〈f1,...,fm〉(d) = 0, which
proves property (iii). For property (iv) see [Bar04].

Let us mention another definition that extends the notion of regular sequences to overde-
termined systems. In [PR03], the authors define semi-regular sequences as follows:

Definition 7 (Semi-regular sequences [PR03]). A sequence of forms (f1, . . . , fm) of
degrees (d1, . . . , dm) in K[x] is called a semi-regular sequence if for all i = 1, . . . , m, the mul-

tiplication map (K[x]/〈f1, . . . , fi−1〉)a−di

fi→ (K[x]/〈f1, . . . , fi−1〉)a are linear maps of maximal
rank for all a.

Semi-regular sequences according to our definition are more general than semi-regular
sequences according to Definition 7: the latter ones have the property that any sub-sequence
f1, . . . , fi of polynomials is also semi-regular, which is not true for our semi-regular sequences
(e.g. {f1 = x2

1, f2 = x1x2, f3 = x2
2}). As a consequence, property 1 from Theorem 6 is false

for semi-regular sequences according to Pardue-Richert, but our complexity bounds still
apply to their sequences.

2.4 Semi-regular sequences over F2

Consider now the case of a system (f1, . . . , fm) of m equations in n variables with coefficients
in F2, together with the field equations xi(xi − 1) = 0. Hence the system to be solved
contains m + n equations in n variables over the field F2. An additional difficulty comes
from the property that in the quotient ring F2[x1, . . . , xn] = F2[x]/〈x2

1 + x1, . . . , x
2
n + xn〉,
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every polynomial f belonging to the ideal 〈f1, . . . , fm〉 is fixed by the Frobenius morphism
p → p2, i.e. is a solution of the equation f 2 = f .

Hence we must slightly modify the definition of semi-regular sequence to take the Frobe-
nius morphism into account. First, let us consider only homogeneous polynomials: we
keep only the homogeneous part of greatest degree of the field equations x2

i , then every
homogeneous polynomial of degree d satisfies the relation f 2 = 0 in the quotient ring
F2[x]/〈x2

1, . . . , x
2
n〉. The degree of regularity dreg is defined as before:

Definition 8. The degree of regularity of a homogeneous ideal I = 〈f1, . . . , fm〉 in the
quotient ring F2[x]/〈x2

1, . . . , x
2
n〉 is defined by

dreg = min

{

d ≥ 0 | dimF2({f ∈ I, deg(f) = d}) =

(
n

d

)

= #
square free
monomials of degree d

}

Definition 9. A homogeneous sequence (f1, . . . , fm) ⊂ F2[x]/〈x2
1, . . . , x

2
n〉 is semi-regular

over F2 if for all i = 1, . . . , m and g such that

gfi ∈ 〈f1, . . . , fi−1〉 and deg(gfi) < dreg

then g is also in 〈f1, . . . , fi−1, fi〉
An affine sequence of polynomials (f1, . . . , fm) ⊂ F2[x1, . . . , xn] is semi-regular over F2 if

the homogeneous sequence (f h
1 , . . . , fh

m) ⊂ F2[x]/〈x2
1, . . . , x

2
n〉 is semi-regular over F2, where

fh
i is the homogeneous part of fi of highest degree.

Remark: Definition 5 says that for semi-regular sequences, the only polynomials g such
that gfi ∈ 〈f1, . . . , fi−1〉 are those belonging to 〈f1, . . . , fi−1〉 (together with a condition on
the degrees). But in F2[x]/〈x2

1, . . . , x
2
n〉 every polynomial fi verifies fifi = 0. This explains

the difference between Definitions 5 and 9.
A modified version of Algorithm F5 so that useless relations are not computed is described

in [Bar04]. With this definition and the new F5 criterion, properties of semi-regular sequences
are preserved:

Proposition 10. Let (f1, . . . , fm) ⊂ F2[x1, . . . , xn] be a sequence of m polynomials in n
variables, fi being of degree di. Then:

(i) The sequence (f1, . . . , fm) is semi-regular over F2 if and only if the Hilbert series of the
homogeneous sequence (f h

1 , . . . , fh
m) ⊂ F2[x]/〈x2

1, . . . , x
2
n〉 is given by

[

Tm,n(z)
]

,

(ii) If (f1, . . . , fm) is a semi-regular sequence over F2 then its degree of regularity is the
index of the first non-positive coefficient in the series Tm,n(z).

8



(iii) For a semi-regular sequence over F2, there is no reduction to 0 in Algorithm F5 for
degrees smaller than dreg. Moreover, the total number of arithmetic operations in F2

performed by F5 (matrix version including the Frobenius criterion) is bounded by

O

((
n

dreg

)ω)

Where the exponent ω < 2.39 is the exponent in the complexity of matrix multiplication.

Proof. The proof of property (i) is almost the same as for Theorem 6. The exact sequence
is now (where F2[x] = F2[x]/〈x2

1, . . . , x
2
n〉):

0 → (F2[x]/〈f1, . . . , fi〉)d−di

fi→ (F2[x]/〈f1, . . . , fi−1〉)d →
(
F2[x]/〈x2

1, . . . , x
2
n, f1, . . . , fi〉

)

d
→ 0

then as long as d < dreg the associated Hilbert functions verify the relation

HF〈x2
1,...,x2

n,f1,...,fi〉(d − di) − HF〈x2
1,...,x2

n,f1,...,fi−1〉(d) + HF〈x2
1,...,x2

n,f1,...,fi〉(d) = 0

for all d < dreg. Using the limit conditions, we get the Hilbert series:

HS〈x2
1,...,x2

n,f1,...,fm〉(z) =
∞∑

d=0

HF〈x2
1,...,x2

n,f1,...,fm〉(d)zd =
[

(1 + z)n
/ m∏

i=1

(1 + zdi)
]

.

The converse of property (i) is proved exactly as for Proposition 6. Property (ii) is a
consequence of the definition of the degree of regularity. For property (iii) see [Bar04].

3 Asymptotic Analysis

This section is devoted to the proof of Theorem 1.
We are looking for the first index d for which the d-th coefficient of the series Sm,n (resp.

Tm,n) is non-positive. Our method consists in three steps:

• write the d-th coefficient of the series using the Cauchy integral representation, for
instance:

In(d) = sd,m(n) =
1

2ıπ

∮

Sm,n(z)
dz

zd+1
=

1

2ıπ

∮

enf(z)dz (6)

where the integration path enclose the origin and no other singularity of Sm,n(z)

• compute the dominant term in (6) in terms of d and n as n → ∞, d being considered
as a parameter,

• determine the asymptotic expansion of d that makes this behavior vanish asymptoti-
cally: this gives the first term of the asymptotic expansion of dreg.
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By repeatedly doing this process in the neighborhood of the already computed asymptotic
expansion of dreg, we get the whole asymptotic expansion of dreg.

For the second step we use the saddle-point and the coalescent saddle points methods,
which are standard tools from asymptotic analysis [Hwa97, CFU57, Won89]. The saddle
points are the roots of f ′(z).

The saddle-point method consists in deforming the integration path to go through the
saddle points (see Figure 1) and showing that asymptotically, a small portion of the integra-
tion path on both sides of each saddle point contributes most of the integral. A dominant
saddle point is a saddle point such that its contribution is exponentially large compared to
the contribution of the other saddle points. In our case we will get one dominant saddle
point, and we prove that locally, the integrand can be approximated by a Gaussian function,
the error term becoming exponentially small as n → ∞.

Figure 1: A simple saddle point. Figure 2: Two coalescing saddle points.

The other case we encounter is the case of two dominant saddle points that coalesce for a
particular value d0 of the parameter d (see Figure 2): we use here a more sophisticated analy-
sis based on the coalescent saddle points method [CFU57]. This method gives an asymptotic
expansion of the integral uniformly valid in a neighborhood of d0, and approximates locally
the integrand by a cubic function, thus revealing the connexion with the Airy function.

We write the d-th coefficient of the series using the Cauchy integral representation

In(d) =
1

2ıπ

∮

(1 − z)m−n(1 + z)mz−d−1dz (7)

Jn(d) =
1

2ıπ

∮

(1 + z)n(1 + z2)−mz−d−1dz (8)

We distinguish two cases : the case m = n + k for a fixed integer constant k > 0, and the
case m = αn for a fixed constant α > 1.
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3.1 Few more equations than unknowns: the case m = n + k.

This case is only concerned with the integral In(d). It is convenient to write it as

In(d) =
1

2ıπ

∮

(1 − z)m−n

︸ ︷︷ ︸

g(z)

(1 + z)mz−d−1

︸ ︷︷ ︸

F (z)=enf(z)

dz =

∮

g(z)enf(z)dz (9)

There is only one single saddle point z0 = 1
m

d+1
−1

, root of f ′(z) = m
1+z

− d+1
z

.

Proposition 11. For m = n + k, the dominant term in (7) is

In(d) ∼ (1 + z0)
m+1(1 − z0)

m−n

√
2πz

d+1/2
0 m1/2

which vanishes only if z0 = 1, i.e.

dreg ∼
m

2
(10)

For z0 = 1 − ∆z with ∆z → 0 as n → ∞ then

In(d) ∼ 2n+ 3
2
k+ 1

2

√
π
√

m
k+1

Hk

(√
m

23/2
∆z(1 + o(1))

)

where Hk denotes the Hermite polynomial of order k. This term cancels for ∆z = 23/2√
m

hk,1

where hk,1 is the largest zero of Hk. Hence the degree of regularity behaves asymptotically
like

dreg =
m

2
− hk,1

√
m

2
(1 + o(1)) (11)

Proof. All computational details of the proof can be found in [Bar04]. A preliminary analysis
reveals that the degree of regularity grows roughly linearly with n, that is to say we can
restrict our asymptotic analysis of In(d) to the case 1 < ε1 ≤ n+k

d+1
≤ ε2 < ∞.

The saddle point being real, we choose as integration path:

• A vertical segment L, having for middle z0. Let us denote by z1 and z2 its endpoints,
z1 being of negative imaginary part, and by 2N its length, with N = θ0

1+z0

√
z0

2
. θ0 will

be fixed later on.

• An arc of circle C centered at the origin, joining z1 and z2 and crossing the negative
real axis.

Let us write In(d) = IL + IC and θ0 = 1
nα , simple estimates show that

∣
∣
∣
F (z2)

F (z0)

∣
∣
∣ ≤ 2 exp

(

−(ε1 − 1)n1−2α

2ε1ε2

)

for n large enough and
1

4
< α <

1

2

and

∣
∣
∣
∣

IC

F (z2)

∣
∣
∣
∣

≤ 4π

ε1 − 1

(
ε1 + 1

ε1 − 1

)k

11



so that
∣
∣
∣
∣

IC

F (z0)

∣
∣
∣
∣
= O(

1

nM
) for all M > 0 as θ0 =

1

nα
and

1

4
< α <

1

2

The dominating part of the integral is concentrated on the segment L around the saddle
point. We make the change of variables u = i

(1+z0)
√

2z0
(z − z0) in the integral IL to get a real

integral:

IL

F (z0)
=

(1 + z0)
√

2z0

2π

∫ N

−N

g(z(u)) exp
[
m
(
−u2 + O(u3)

) ]
du

the O(u3) term being uniform in d and n. We apply the Laplace method as in [dB81] and
get the dominant term

IL

F (z0)
∼ (1 + z0)

√
2z0

2π

∫ ∞

−∞
g(z0)e

−mu2

du =
(1 + z0)

√
z0√

2π
g(z0)

1√
m

In the neighborhood of z0 = 1−∆z, applying again the Laplace method we find the dominant
term of the integral to be

IL

F (z0)
∼ (1 + z0)

√
2z0

2π

∫ ∞

−∞
g(z(u))e−mu2

du

=

(
(1 + z0)

√
2z0

)k+1

2π
√

m
k+1

∫ ∞

−∞
(x + ıu)ke−u2

du with x =
1 − z0

(1 + z0)
√

2z0

√
m

∼ 2n+ 3
2
k+ 1

2

√
π
√

m
k+1

Hk

(√
m

23/2
∆z(1 + o(1))

)

with Hk(x) = 2k
√

π

∫∞
−∞(x + ıu)ke−u2

du the k-th Hermite polynomial.

Indeed, tracing the errors carefully shows that Hk

(√
m

23/2 ∆z(1 + o(1))
)

can be written as

Hk

(√
m

23/2
∆z

)

+
k√
8m

Hk+1

(√
m

23/2
∆z

)

+ O(m−1),

Since Hk+1(z)/Hk(z) = z for large z, the asymptotics will be valid as long as the second
term goes to zero, which works out to k = o(m1/3). Since hk,1 =

√
2k + 1 + O(k−1/6), the

above is consistent with the uniform asymptotics of the next section (as it should be).

3.2 More equations: the case m = αn.

A similar analysis can be done when m = αn (α > 1 being fixed) for both generating series.
In this case, the factor (1 − z)k is not a small perturbation any longer, and the integral are

12



written as

In(d) =
1

2ıπ

∮

(1 − z)m−n(1 + z)mz−d−1

︸ ︷︷ ︸

F (z)

dz =

∮

enf(z)dz (12)

Jn(d) =
1

2ıπ

∮

(1 + z)n(1 + z2)−mz−d−1

︸ ︷︷ ︸

FJ(z)

dz (13)

Let us consider first the integral In(d). The behavior of the integrand changes qualitatively

and the integral is then dominated by two conjugate saddle points z±
0 = 1±

√
∆

2((2α−1)− d+1
n

)
where

∆ = 4
(

d+1
n

)2
+4(1−2α)d+1

n
+1. It vanishes for d+1

n
= λ±

0 with λ±
0 = α− 1

2
±
√

α(α − 1) > 0.
As d+1

n
6= λ±

0 , both saddle points are simple and for d+1
n

= λ±
0 there is a double real positive

saddle point, denoted by z0.
As long as d+1

n
does not belong to the neighborhood of λ±

0 , the contributions of these
saddle points to the integral are conjugate values whose sum does not vanish. This qualitative
analysis reveals that a new phenomenon must occur for the integral to vanish: the parameter
d must be such that the saddle points coalesce, giving rise to a double saddle point. This
happens when both F ′ and F ′′ vanish and these equations are sufficient to give the first order
behavior of dreg.

A more precise analysis (the coalescent saddle-points method [CFU57]) is achieved by
capturing the coalescence of z±

0 by means of a cubic change of variables f(z) = P (u) =
u3

3
− ζu + η, where ζ

3
2 = 3

4
(f(z−0 )− f(z+

0 )) and η = 1
2
(f(z−0 ) + f(z+

0 )) are chosen so that the
values of P at its saddle points −

√
ζ and

√
ζ are the same as that of f at z−

0 and z+
0 . The

integral is then renormalized, and leads to a proven [CFU57] full asymptotic expansion:

In(d) = enη

[

Ai(n
2
3 ζ)

n
1
3

∑

m≥0

Bm

nm
+

Ai′(n
2
3 ζ)

n
2
3

∑

m≥0

Cm

nm

]

(1 + o(1))

where Ai is the classical Airy function (the Am and Bm coefficients can be expressed in
terms of f and its derivatives at z±

0 ). By repeatedly canceling the dominant term in the
asymptotic expansion of In(d), we get the asymptotic expansion of dreg and the second part
of the Theorem.

This asymptotic analysis applies to the integral Jn(d) to get the third part of the Theorem
exactly in the same way: the only changes is that there are three saddle points, two are
conjugate and the last one is real and its contribution to the integral is negligible.

4 Conclusion

We provide a definition of semi-regular sequences in the general case and over the finite field
F2, for which we conjecture that almost all sequences are semi-regular: over any field of
characteristic 0 it is another form of Fröberg conjecture [Frö85], and over a field of positive

13



characteristic we conjecture that the proportion of semi-regular sequences tends to 1 as the
number of variables tends to infinity.

For such systems, we provide sharp asymptotic complexity bounds for the degree of
regularity as the number of variables n → ∞, that imply complexity bounds for the Gröbner
basis computation. Those asymptotics are very precise compared to the true value of the
degree of regularity even for small values of n (n ≥ 3).

From a cryptographical point of view, for m = αn equations, the global complexity of
solving “random” systems is simply exponential in n, even for quadratic equations: “random”
systems remain exponential, therefore out of reach as soon as n ≥ 80 for instance, and are
a good source of difficult problems for the design of cryptosystems.
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