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Abstract. We provide explicit formulae for realising the group law in
Jacobians of superelliptic curves of genus 3 and C3,4 curves. It is shown
that two distinct elements in the Jacobian of a C3,4 curve can be added
with 150 multiplications and 2 inversions in the field of definition of the
curve, while an element can be doubled with 174 multiplications and
2 inversions. In superelliptic curves, 10 multiplications are saved.

1 Introduction

The interest in the arithmetic of low genus algebraic curves has been spurred
by the fact that their Jacobians provide attractive groups to implement discrete
logarithm based cryptosystems. While the attention first focused on the simplest
types of curves, namely elliptic and hyperelliptic ones, it is shifting towards more
complicated ones in the form of superelliptic and more generally Ca,b curves. At-
tacks on high [5,6] and medium genus hyperelliptic cryptosystems [9,20] make
it seem advisable to concentrate on curves of genus at most 3, which leaves
superelliptic cubics and C3,4 curves. There are a number of generic algorithms
for computing L-spaces of arbitrary curves, thus implementing the arithmetic of
their Jacobian groups, like [13,15], to cite only the most recent ones. For superel-
liptic and Ca,b curves, faster special purpose algorithms have been developed,
relying either on Gröbner basis computation [1] or LLL on polynomials [8,12,3].
None of these articles provide a precise count of the number of operations for
the arithmetic of non-hyperelliptic curves of low genus.

In [2], the present authors identify special Jacobian elements, called “typi-
cal”, that, while admitting a special simplified representation by two polynomials
(cf. Section 2), yet cover the major part of the Jacobian. (In fact, in the cryp-
tographic context of a large finite base field and randomly chosen elements, one
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does not expect to ever encounter non-typical elements.) Then two algorithms
for adding typical elements are developed. The first algorithm is inspired by Can-
tor’s algorithm for hyperelliptic curves. The second one is obtained by applying
the FGLM algorithm for changing the ordering of a Gröbner basis, and yields
explicit formulae for the group law in terms of operations with polynomials.
These two algorithms for superelliptic cubics generalise readily to C3,4 curves.
A first quick implementation in the superelliptic case required about 250 mul-
tiplications in the underlying field for the algorithm à la Cantor, and about
200 multiplications for the formulae on the polynomial level, thus improving by
a factor of 3 on our implementation of the algorithm of [8].

Flon and Oyono use a slightly different approach in [7] to obtain explicit
formulae for the group law on typical elements.1 The formulae they give for
superelliptic cubics require 156 resp. 174 field multiplications (depending on
whether two distinct elements are added or an element is doubled) and 2 inver-
sions in the field. For C3,4 curves, they announce 177 resp. 198 multiplications
and again 2 inversions, without providing further details.

In the present article we show how a carefully optimised implementation of
our formulae allows to save up to 16 multiplications for superelliptic curves and
27 multiplications for C3,4 curves compared to [7]. We explain in detail how we
obtained a straight line program, suited for a straightforward implementation in
constrained environments such as smartcards, from the formulae manipulating
polynomials, and for the first time we provide details for C3,4 curves.

In the following section, we give a concise overview of superelliptic cubics and
C3,4 curves and relate without proof the algorithm developed in [2]. After a few
remarks on the underlying field arithmetic in Section 3, we present in Section 4
algorithms for computing with low degree polynomials. These algorithms serve
as a toolbox for transforming the formulae on the polynomial level into formulae
on the coefficient level, which we describe together with an exact operation count
in Section 5.

2 Jacobians of C3,4 Curves

Let K be a perfect field. A superelliptic curve of genus 3 or Picard curve over
K is a smooth affine curve C of the form C : Y 3 = f(X) with f ∈ K[X]
monic of degree 4; a C3,4 curve is more general and may additionally have a
term of the form h(X)Y with h ∈ K[X] of degree at most 2. The place at
infinity of the function field extension K(C)/K(X) corresponding to such a
curve is totally ramified and rational over K, whence the K-rational part of the
Jacobian of C is isomorphic as a group to the ideal class group of the coordinate
ring K[C] = K[X,Y ]/(Y 3 +hY −f). By the Riemann–Roch theorem, each ideal
class contains a unique ideal a of minimal degree #(K[C]/a) not exceeding 3,
and this ideal is called the reduced representative of the class. In the following,
1 Technically speaking, they compute a minimum with respect to the C3,4 order in

the ideal itself and end up in the inverse class, while we compute a minimum in the
inverse class and end up with a reduced representative of the ideal itself.
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we shall only consider ideals not containing two distinct prime ideals above a
rational prime of K[X]. Such an ideal can be written as

a = (u, Y − v) with u, v ∈ K[X], u monic, deg v < deg u and u|v3 + hv − f ;

its degree is exactly deg u.
Most ideal classes (a proportion of 1 − 1

qO(1) in the case of a finite ground
field Fq) are represented by such an ideal satisfying furthermore deg u = 3 and
deg v = 2; we call these ideals “typical”. Conversely, it is shown in [2], that
for superelliptic curves of genus 3 a typical ideal is automatically reduced, and
the proof carries over to C3,4 curves. In the remainder of this article, we shall
only consider typical ideals and the cases where ideals and polynomials behave
in a typical way (for instance, the remainder of a polynomial of degree at least
n + 1 upon division by a polynomial of degree n is supposed to be n − 1).
Whenever these assumptions do not hold (which one does not expect to happen
in practice), one may have recourse to a slower generic algorithm. Alternatively,
one may develop specific formulae, that actually turn out to be simpler than in
the common case.

The product of two ideal classes, represented by ideals ai = (ui, Y − vi),
deg ui = 3, deg vi = 2, i ∈ {1, 2}, is obtained in two steps. The composition
step corresponds to ideal multiplication and yields a = (u, Y − v) = a1a2. Here,
u = u1u2 is monic of degree 6, and v of degree 5 is computed by interpolation.
In the addition case, where u1 �= u2 (and typically u1 and u2 are coprime), v is
obtained by Chinese remaindering as follows:

s1 = u−1
1 mod u2; t = s1(v2 − v1) mod u2; v = v1 + tu1. (1)

In the doubling case a1 = a2, a Hensel lift yields

s3 = (3v2
1 + h)−1 mod u1; w1 =

v3
1 + hv1 − f

u1
; t = −s3w1 mod u1;

v = v1 + tu1. (2)

The reduction step takes as input an ideal a = (u, Y − v) with u of degree 6
and v of degree 5, and outputs an equivalent ideal a′ = (u′, Y − v′) of degree 3,
which by [2] is the reduced representative of its class. Let e be the minimum
with respect to the C3,4 order of the ideal (u, Y 2 + vY + v2 + h) in the class of
a−1, that is, e is the element whose pole at infinity has minimal multiplicity. It
is shown in [2] for superelliptic curves and easily generalised to C3,4 curves that

e = tY 2 + ϕY + ψ,

where the polynomial t, of degree 2, is obtained by executing two steps of the
extended Euclidian algorithm on u and v, and ϕ = tv mod u; otherwise said,
there is a linear polynomial s such that su + tv = ϕ of degree 3. Moreover,
ψ = t(v2 +h) mod u. Then the reduced ideal a′ = e

ua = (u′, Y − v′) is computed
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as follows:

λ :=
t2f − ϕψ

u

µ :=
ϕ2 − tψ + t2h

u

u′ =
f

(
t(t2f − 3ϕψ) + ϕ3

)
+ ψ3 + h

(
tψ(th− 2ψ) + ϕ(t2f + ϕψ)

)

u2 (3)

v′ = µ−1λ mod u′

Here, all divisions by u are exact, that is with remainder zero.

3 Field Arithmetic

In the previous section, we have shown how to realise the arithmetic of C3,4
curves using a representation by polynomials. The main goal of this article is
to adopt a lower level point of view and to provide formulae for the coefficients
of the output polynomials in terms of those of the input polynomials. Thus,
the operations we consider as elementary are operations in the field defining the
curve. Our main motivation being potential cryptographic applications, we have
(not too small) finite fields in mind, but the final formulae will hold for any field.
However, for certain optimisations to work, we exclude fields of characteristic 2,
3 and 5. (As a side note, a superelliptic cubic is singular in characteristic 3, while
in characteristic 2, it has a special structure, which might make it less attractive
for cryptography, cf. [10].) There is only one division by 5 in our formulae; if
need be, it could be removed at the expense of a few extra multiplications.

There are a thousand and one ways of organising the computations, so an
optimality criterion is needed. Naturally, this should be the running time of a
group operation in the Jacobian, which will ultimately depend on the concrete
implementation and the concrete environment. A reasonable and theoretically
tractable approximation is the number of elementary field operations. In many
situations (over not too small finite fields, for instance, but not over the rational
numbers) additions and subtractions take a negligible time compared to mul-
tiplications and inversions (divisions being realised as an inversion followed by
a multiplication). Notice that multiplications by small natural numbers can be
realised by a few additions, so they come for free.

Moreover, we do not count divisions by small constants (precisely, 2, 3 and
5) either. For instance, in a prime finite field Fp, represented by {0, . . . , p− 1},
division of an element a by 2 is trivial: either a is even, then it may be divided
by 2 as an integer; or it is odd, then a + p is even and a+p

2 is a representative
of the result in {0, . . . , p− 1}. Slightly less straightforward, a division of a by 3
may be realised by first computing the remainder of a upon division by 3. Since
4 ≡ 1 (mod 3), this is a matter of splitting a in blocks of two bits using bit
masks and shifts and adding these base 4 digits, much as the test for divisibility
by 9 of a number in decimal notation. Then, one adds the appropriate multiple
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of p and divides by 3. For the remainder modulo 5, an alternating sum of base 4
digits may be used. In a general finite field, represented as a vector space over
Fp, divisions by small constants can be carried out coordinate wise.

Finally, this leaves us with two variables to minimise, the number of multipli-
cations and the number of inversions, and there is a trade off between these two.
Depending on the library for finite field arithmetic, an inversion usually takes
between three and ten times as long as a multiplication. We therefore tried to
eliminate as many inversions as possible, as long as this introduced only a few
extra multiplications. For instance, two independent inversions of field elements
a and b may be replaced by one inversion and three multiplications as follows:

u = (a · b)−1, a−1 = u · b, b−1 = u · a.

4 Polynomial Arithmetic

Once the algorithm of Section 2 exhibited, the remaining task is no more con-
nected to geometry, but rather to the topic of symbolic computation. The ratio-
nal formulae given there are expressed in terms of operations with polynomials;
it remains to phrase them in terms of their coefficients. A straightforward imple-
mentation of the polynomial arithmetic involved is of course trivial; the problem
of minimising the number of field operations, however, appears to be hard. The
only feasible approach we have found consists of performing local optimisations
on pieces of the formulae.

In this section, we review different approaches and algorithms of polynomial
arithmetic useful for this task. All of them are well-known in the symbolic compu-
tation community; however, textbooks often focus on the asymptotic behaviour
of the algorithms and do not treat the very small instances we are interested in.
While commenting on our choices for the concrete case of C3,4 curves, we hope
that the following overview will be helpful in further situations.

4.1 Multiplication

Let M(m,n) denote the number of field multiplications carried out for multi-
plying two polynomials with m resp. n coefficients, that is, of degree m− 1 and
n − 1; and let M(n) := M(n, n). If useful, we indicate the employed algorithm
by a subscript. For instance, the “näıve” method has M(m,n) = mn. A trivial
improvement arises when one or both polynomials are monic; in the latter case,
the equation
(Xm−1 +f(X))(Xn−1 +g(X)) = Xm+n−2 +f(X)Xn−1 +g(X)Xm−1 +(fg)(X)
shows that at the expense of a few additions, only M(m−1, n−1) multiplications
are needed.

A substantial improvement is obtained by Karatsuba’s multiplication [16].
Using the relation (aX+b)(cX+d) = a ·cX2 +

(
(a+b) ·(c+d)−ac−bd)X+b ·d,

it achieves MK(2) = 3, and, by recursively splitting the polynomials in half,

MK(2m, 2n) = 2m−n3n for m ≥ n.
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Generalisations by Toom [21] and Cook [4] to the product of two polynomials
with three coefficients yield MTC(3) = 5, and the analogous recursive strategy
may be applied.

4.2 Exact Division

The simplest way of computing the quotient and remainder of v = vnX
n +

vn−1X
n−1 + · · · divided by u = umX

m + um−1X
m−1 + · · · is the schoolbook

method: invert um; the first term of the quotient, u−1
m vnX

n−m, is then computed
with one multiplication; multiply it back by u, subtract from v; and continue in
the same way.

If the remainder is of no interest or known to be zero, then it is not necessary
to multiply back by all of u. In fact, it suffices to consider only the leading
terms of u and v, while the lower ones determine the remainder. The k leading
coefficients of the quotient are obtained with one inversion and

1 + · · · + k (4)

multiplications. If moreover u is monic, then the inversion and the multiplications
by u−1

m are saved, resulting in

1 + · · · + (k − 1) (5)

multiplications. Letting k = n − m + 1 yields the full quotient. As observed
by Jebelean [14] in the case of integer division, if the division is exact, that is,
the remainder is zero, then it is also possible to work with only the trailing
coefficients of u and v from right to left; in fact, his algorithm amounts to the
division of the reciprocal polynomials of u and v. The number of operations is
unaffected, but the algorithm deploys its benefits when used to work from both
sides simultaneously as suggested by Schönhage in [19], using the k lowest and
n − m + 1 − k highest coefficients for some k. For given u and v, the value
k =

⌊
n−m+1

2

⌋
is optimal. If the effort for computing u and v is to be taken into

account, other choices may be preferable; for instance, we shall use k = 1 most
of the time.

4.3 Short Product

As seen in Section 4.2 on exact divisions, one is sometimes interested in only the
trailing (or leading) coefficients of a polynomial. If this polynomial is the result
of a multiplication, then these coefficients are obtained by what is known as a
“short product”. In the case of trailing coefficients, it can be seen as the product
of truncated power series, returning upon input of two polynomials u and v of
degree n − 1 their product modulo Xn. Instead of computing the full product
of u and v and then truncating, Mulders suggested the following algorithm [17]:
choose a cutoff point k ≥ n

2 , and write

u = u0 + u1X
k and v = v0 + v1X

k.
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Then uv mod Xn is computed recursively as

u0v0 +
(
(u0v1 mod Xn−k) + (u1v0 mod Xn−k)

)
Xk

by a full and two short products. If S(n) denotes the number of field multi-
plications required for computing a short product modulo Xn, we obtain the
recursive formula

S(n) = M(k) + 2S(n− k).

Hanrot and Zimmermann [11] showed that if the full product is computed by
Karatsuba’s algorithm, then the optimal cutoff point k is the largest power
of 2 not exceeding n. For instance, a short product modulo X3 is computed
by a full Karatsuba product of order 2 and two further field multiplications,
resulting in altogether S(3) = 5 multiplications. This is the same number as
for the full product by the Toom–Cook approach, but fewer additions and no
division by 3 are required. It is to be expected that with Toom–Cook as the basic
multiplication method, the optimal cutoff point will be once or twice a power of
3; then S(4) becomes S(4) = MTC(3) + 2S(1) = 7. To generalise to products of
polynomials of different degrees, let for d ≥ m ≥ n the value S(m,n; d) denote
the number of multiplications required to compute the product modulo Xd of
a polynomial of degree m− 1 with one of degree n− 1. Then for a cutoff point
k ≤ n we obtain

S(m,n; d) = M(k) + S(m− k, k; d− k) + S(n− k, k; d− k).

For instance, S(4, 3; 4) with Toom–Cook and k = 3 becomes

S(4, 3; 4) = MTC(3) + S(1, 3; 1) + S(0, 3; 1) = 5 + 1 + 0 = 6.

4.4 Interpolation

Karatsuba and Toom–Cook multiplication essentially work by evaluating the
factors at small arguments (say, 0, 1, −1, 2, · · · ), multiplying the values and
interpolating the result. Additionally, they treat the values at “∞”, that is
the leading coefficients, separately. Of course, this approach can be extended
to higher degree polynomials as long as the base field has a sufficiently large
characteristic so that the interpolation points are different. Evaluating a (low
degree) polynomial in small integers requires only additions and multiplication
by (small) constants, interpolation uses also divisions by (small) integers. So in
our model, these steps cost nothing. One thus obtains a complexity of

M(m,n) = m+ n− 1.

But the interpolation approach is not limited to simple multiplications; it can
be extended to arbitrary polynomial and even rational formulae as long as the
result is a polynomial, that is, all divisions are exact. For instance, the polyno-
mial u′ as computed in (3) is monic of degree 3, so it can be reconstructed by
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computing the values of u′ − X3 in 0, 1 and −1. Each value requires as many
field multiplications as there are polynomial multiplications in the numerator of
the formula, after adding parentheses and suitably reusing common subexpres-
sions, and additionally a squaring and an inversion of the corresponding values
of u in the denominator and a multiplication by the inverses. As mentioned in
Section 3, the different inversions may be pooled into only one if one is willing
to spend more time with multiplications.

4.5 Extended Euclidian Algorithm

The classical extended Euclidian algorithm, upon input of two polynomials r−1
and r0 with deg r−1 ≥ deg r0, computes the greatest common divisor d of r−1
and r0 together with multipliers a and b such that

d = ar−1 + br0.

It proceeds by iterated divisions with remainder, until the remainder vanishes,
and thus requires a certain number of inversions. The greatest common divisor
is only defined up to multiplication by constants, and it is possible to modify the
algorithm to use pseudodivisions without field inversions (this is essentially the
subresultant algorithm). Keeping track of the multipliers u and v then requires
extra multiplications. Assume by induction that remainders ri−1 and ri and
multipliers ai−1, ai, bi−1 and bi are given such that

ri−1 = ai−1r−1 + bi−1r0 and ri = airi−1 + bir0;

the initial values being a−1 = b0 = 1, a0 = b−1 = 0.
Let � be the function that to a polynomial associates its leading coefficient.

Then the pseudodivision of ri−1 by ri yields a quotient qi+1 and a remainder
ri+1 such that

�(ri)deg ri−1−deg ri+1ri−1 = qi+1ri + ri+1,

ai+1 = �(ri)deg ri−1−deg ri+1ai−1 − qi+1ai and bi+1 = �(ri)deg ri−1−deg ri+1bi−1 −
qi+1bi satisfy ri+1 = ai+1r−1 + bi+1r0.

We analyse the most common case in more detail, where deg r0 = deg r−1 −
1 and the remainder degrees drop by 1 in each step, that is, all the qi have
degree 1. Letting ri−1 = αXk + βXk−1 + · · · and ri = γXk−1 + δXk−2 + · · · ,
the next quotient is computed as qi+1 = γ · αX + (γ · β − δ · α). This requires
3 multiplications in the general case, 1 multiplication if ri−1 or ri are monic and
comes for free if both of them are monic.

The next remainder is obtained as ri+1 = �(ri)2 · ri−1 − qi+1 · ri, using
interpolation with 1 + 2 deg ri multiplications (or just deg ri if ri is monic).

Now, �(ri)2 is known, and computing ai+1 is free for i = 0, and requires
1 multiplication for i = 1 andM(1,deg ai−1+1)+M(2,deg ai+1) = i−1+M(2, i)
multiplications for i ≥ 2. If furthermore r0 is monic, then a2 = −q1 comes also
for free, and a3 = �(r2)2 + q1 · q2 requires only M(2) = 3 multiplications.
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Obtaining bi+1 is free for i = 0 and requires M(2) = 3 multiplications for
i = 1 and M(1,deg bi−1 + 1) +M(2,deg bi + 1) = i+M(2, i+ 1) multiplications
for i ≥ 2.

The following table summarises the number of multiplications carried out to
compute the greatest common divisor, a and b, depending on the degree n of
r0, that is, the number of division steps, and on the monicity of r−1 and r0. It
is assumed that polynomials are multiplied using interpolation as explained in
Section 4.4.

n generic r−1 monic r0 monic
gcd a b gcd a b gcd a b

1 6 0 0 4 0 0 2 0 0
2 14 1 3 12 1 3 7 0 3
3 24 5 9 22 5 9 16 3 9
4 36 11 17 34 11 17 27 9 17

4.6 Modular Division by Linear Algebra

One ingredient in our formulae for superelliptic arithmetic is the computation
of v′ = µ−1λ (mod u), where µ is of degree 1, λ of degree 2, and u monic of de-
gree 3. This computation can be carried out by first determining µ−1 mod u by
the extended Euclidian algorithm as described in Section 4.5 and division by the
greatest common divisor, a constant in the base field; then multiplying by λ and
finally reducing modulo u. In our implementation, these steps require 22 mul-
tiplications and one inversion. In this section, we describe a different approach,
saving 2 multiplications. The problem to be solved is much less generic than
those of the previous sections; the proposed solution, relying on linear algebra,
is quite general, however, and may also be applied to different constellations of
degrees.

Write µ = µ1X +µ0, λ = λ2X
2 + λ1X + λ0 and v′ = x2X

2 + x1X + x0 with
unknown x2, x1, x0. Then, by degree considerations, there is a further unknown
value γ such that µv + γu = λ. Comparing coefficients, we obtain a system of
four linear equations in four variables, in which the equation γ = −µ1x2 can be
substituted immediately. Performing Gaussian elimination yields the solution

x2 = α−1β

x0 = µ−1
0 (λ0 + µ1u0x2)

x1 = µ−1
0 (λ1 + µ1(u1x2 − x0)

with

α = (µ2
1u1 + µ2

0 − (µ0µ1)u2)µ0 − (µ1u0)µ2
1

β = −λ1(µ0µ1) + λ0µ
2
1 + λ2µ

2
0.

α and β are computed with 11 multiplications. Then α and µ0 are inverted
simultaneously with 3 multiplications and one inversion as described in Section 3.
The computation of x2, x0 and x1 then requires 1 + 2 + 3 = 6 multiplications
(reusing the expression µ1u0 needed for α), for a total of 20 multiplications and
one inversion.
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5 Explicit Formulae

In this section, we develop explicit formulae for the composition and reduction
steps, counting precisely the number of field multiplications and inversions. To
keep the presentation readable, we use the building blocks of polynomial arith-
metic of Section 4; expanding these to formulae involving only field operations
is a trivial task.

We use two little tricks to speed up the computations. First, it is possible to
complete the fourth power in f ; after the linear change of variables X �→ X− f3

4
we may assume that f = X4 + f2X

2 + f1X + f0. The impact of this observation
is not very high, since f is hardly used in the formulae (it is mainly implicitly
present in the relations v3 + vh ≡ f (mod u)).

Second, the composition step involves the extended Euclidian algorithm, and
the resulting greatest common divisor is normalised to be 1. This normalisation
step requires an inversion, which can be saved by modifying the output of the
composition to be (u, v, d) with d in the base field such that the real ideal product
is given by (u, Y − d−1v). The composition step being of little interest per se,
there is no harm done as long as this modification is taken into account in the
reduction process.

5.1 Composition – Addition

Theorem 1. On input of two ideals a1 = 〈u1, Y − v1〉 and a2 = 〈u2, Y − v2〉
such that ui|v3

i +vih−f and gcd(u1, u2) = 1, and assuming the typical behaviour
of the remainder degrees during the Euclidian algorithm, polynomials u and v
and a field element d such that a1a2 = 〈u, Y − d−1v〉 can be computed with
37 multiplications.

Proof. We first compute u = u1u2 by Toom–Cook multiplication with 5 field
multiplications. Then, implementing (1), we determine s1 of degree 2 and d such
that s1u1 ≡ d (mod u2) by applying the extended Euclidian algorithm to u2
and u1 − u2. According to the table in Section 4.5, with n = 2 and r−1 monic
this needs 12 + 3 = 15 multiplications. We then compute t1 = s1(v2 − v1) with
5 multiplications and the quotient q of the result by u2 with 1 multiplication
according to (5). The polynomial t = t1 − q · u2 of degree 2 is then obtained
by interpolation on three points with 3 multiplications for the values of q · u2.
Finally, v = d · v1 + u1 · t is computed with M(1, 3) +M(3) = 8 multiplications.

5.2 Composition – Doubling

With the preparations of Section 4, the composition part of doubling is as
straightforward as addition, but it requires noticeably more operations.

Theorem 2. On input of an ideal a1 = 〈u1, Y − v1〉 such that u1|v3
1 + v1h− f ,

and assuming the typical behaviour of the remainder degrees during the Euclidian
algorithm, polynomials u and v and a field element d such that a2

1 = 〈u, Y −d−1v〉
can be computed with 61 multiplications.
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Proof. We use the notation introduced in (2). First, we compute u = u2
1 and

v2
1 with 5 multiplications each. To obtain w1, we start with the four highest

coefficients of v3
1 + v1h− f = v2

1 · (v1 +h)− f using S(4, 3; 4) = 6 multiplications
(see Section 4.3). An exact division by u1 yields w1 with 6 multiplications as
shown in (5). The next step is to determine s3 of degree 2 and d in the base field
such that s3 · (3v2

1 + h) ≡ d (mod u1). By the table in Section 4.5, this requires
19 multiplication since n = 3 and r−1 is monic.

We then reduce w1, which is of degree 3, modulo the monic u1 by subtracting
the appropriate multiple of u1, obtained with 3 multiplications; multiply by
s3 with M(3) = 5 multiplications and reduce again modulo u1, which takes
1 multiplication for the quotient and 3 multiplications for the remainder, yielding
t in a total of 12 multiplications.

Finally, v is obtained multiplying v1 by d and t by u with M(3, 1)+M(3) = 8
multiplications.

Notice that for adding as well as for doubling, the composition step is not
more costly on C3,4 than on superelliptic curves.

5.3 Reduction

Theorem 3. On input of an ideal a = 〈u, Y − d−1ṽ〉 such that u|(d−1ṽ)3 +
d−1ṽh − f , u monic of degree 6, ṽ of degree 5, the reduced representative a′ =
〈u′, Y − v′〉 in the ideal class of a can be computed with 113 multiplications and
2 inversions. In the superelliptic case, 10 multiplications may be saved.

Proof. To facilitate keeping track of the total number of multiplications, from
time to time we provide their balance, having the number for the superelliptic
case precede that for the general C3,4 case.

0/0

We use the notation of Section 2. Let furthermore v = d−1ṽ, and denote the
coefficient of a polynomial in front of Xi by a subscript i. The first step of the
algorithm consists of finding the minimum e = tY 2 + ϕY + ψ of a with respect
to the C3,4 order, where the polynomial t, of degree 2, is obtained by executing
two steps of the extended Euclidian algorithm on u and v, ϕ = tv mod u is of
degree 3 and ψ = tv2 + th mod u is of degree 5. Notice that e is defined only up
to multiplication by constants; we shall compute the representative with leading
coefficient 1 for the C3,4 order, that is, with ψ monic. Inspection of (3) shows
that then also u′ will be monic, and no further normalisation will be needed.

To avoid inverting d, we shall use ṽ in the place of v, and correct the poly-
nomials later on. Thus, we determine t̃ of degree 2, ϕ̃ of degree 3 and a linear
polynomial ζ such that ϕ̃ = t̃ṽ mod u = t · ṽ − ζ · u. Using the algorithm of Sec-
tion 4.5, the computation of t̃ and ζ requires 17 multiplications. By carrying out
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the Euclidian algorithm symbolically and simplifying the resulting formulae by
hand, one may save 2 squarings as follows. The δi designate temporary variables.

δ1 = u4 · ṽ5 − ṽ3

δ2 = u5 · ṽ5 − ṽ4

δ3 = δ1 · ṽ5 − δ2 · ṽ4
t̃2 = δ3 · ṽ5
ζ1 = t2 · ṽ5
δ4 = δ3 · u5

δ5 = δ2 · ṽ3 + δ4 − ṽ5 · (ṽ5 · u3 − ṽ2)
t̃1 = δ5 · ṽ5
ζ0 = ṽ5 · (t1 − δ2 · δ3)
t̃0 = (δ5 − δ4) · δ2 + δ1 · δ3

15/15

The polynomial ϕ̃ is obtained via interpolation from t̃, ṽ, u and ζ with 8 mul-
tiplications. Then, we compute polynomials ψ̃ and ξ such that

ψ̃ = ϕ̃ṽ mod u = ϕ̃ · ṽ − ξ · u,
the correction by the additional term th in the definition of ψ being postponed.
Computing the 3 leading coefficients of ϕ̃ṽ takes S(3) = 5 multiplications, and
the three coefficients of the quotient ξ by the monic u are obtained with 3 multi-
plications. Then ψ̃ may be computed by interpolation on six points with 12 mul-
tiplications.

43/43

Since we worked with ṽ instead of v, the polynomials t̃, ϕ̃ and ψ̃ have to be
adjusted by powers of d, at the same time as making ψ̃ monic. We profit from
the inversion of ψ̃5 by computing simultaneously the inverse of u0, which will be
needed later on, with 3 multiplications and one field inversion as described in
Section 3. Then, we obtain the minimum e via

t = (ψ−1
5 d · d) · t̃, ϕ = (ψ−1

5 · d) · ϕ̃, ψ = ψ−1
5 · ψ̃ + th.

As will become clear in the following, we do in fact not need the coefficients ϕ1,
ψ1 and ψ2, whence this step can be carried out with 11 multiplications in the
superelliptic case. When h �= 0, the computation of t0h0 requires an additional
multiplication, and ψ3 and ψ4 need the two leading terms of th, obtained with
S(2) = 3 multiplications.

57/61

Define the polynomials λ and µ of degree 2 and 1, respectively, as in the
equations before (3). In the following, we shall perform polynomial arithmetic
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“from both sides” as described in Section 4.2. All constant coefficients are com-
puted separately. For instance, λ0 and µ0 are obtained with 7 multiplications
if h = 0, including those by the already computed u−1

0 . For C3,4 curves, µ0 re-
quires additionally the computation of t20h0, which is obtained with one extra
multiplication since t0h0 has already been used for ψ0.

For µ1 = −t2, there is nothing to do. Taking into account that f4 = 1, f3 = 0
and ψ5 = 1, the numerator of λ starts with

(t22 − ϕ3)X8 + (2t1 · t2 − ϕ2 − ϕ3 · ψ4)X7 + · · · ,

and these coefficients are computed with 3 multiplications. The two leading terms
of the quotient by u require another multiplication, so that the total number of
multiplications for λ and µ becomes 11 in the superelliptic and 12 in the C3,4
case.

68/73

The polynomial u′ of the result is computed via (3). For h = 0, the constant
coefficient u′

0 is easily seen to be computable with 7 multiplications, reusing
values like ϕ2

0 already needed for λ0 or µ0. If h �= 0, then the term

h0 · (
t0ψ0 · (t0h0 − 2ψ0) + ϕ0 · (t20f0 + ϕ0ψ0)

)

requires only the 3 additional multiplications marked with a dot.
75/83

For the high degree part of u′, we compute the leading terms of the numerator
X15 + αX14 + βX13 + · · · of (3) as

α = t2 · (λ2 − 2(ϕ3 + h2)) + 3ψ4,

β = 3(t1 · λ2 + ψ3 + ψ2
4) − t2 · (3ϕ2 + 2h1) + (ϕ2

3 − 3t2 · ψ4) · ϕ3

+h2 · (
t22 · (h2 + ϕ3) + (ϕ2

3 − 3t2ψ4) − t2ψ4 − 2t1
)
,

where we have used the relation λ2 = t22 − ϕ3. These quantities are obtained
with 7 multiplications in the superelliptic case and 9 multiplications in the case
of C3,4 curves. Then the leading coefficients of u′ are given by

u′
3 = 1, u′

2 = α− 2u5, u
′
1 = β − u5 · (2u′

2 + u5) − 2u4

with 1 multiplication.
83/93

Finally, v′ is computed as v′ = µ−1λ mod u with 20 multiplications and one
inversion as described in Section 4.6.

103/113
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In the following table, we summarise the number of multiplications carried
out by our algorithm for adding or doubling divisors, totalling the efforts for the
composition and the reduction step. We distinguish between ordinary multipli-
cations and squarings in the base field. While we did not pursue this distinction
in the present article due to space restrictions, separating these two numbers is
a simple exercise. The number of inversions is always 2.

superelliptic C3,4
mult. sqr. m.+s. mult. sqr. m.+s.

addition 129 11 140 139 11 150
doubling 143 21 164 153 21 174

6 Concluding Remarks

Formulae for the arithmetic of hyperelliptic curves of genus 3 are reported in [18].
They require 76 field multiplications and one inversion for adding two distinct
elements, and 71 multiplications and one inversion for doubling an element.
While our formulae for superelliptic and C3,4 curves need more operations, the
factor of only about 2 shows that C3,4 curves constitute a reasonable alternative
to hyperelliptic curves for cryptographic use.

Availability of the Formulae

The Magma code of our formulae can be downloaded from the web at the
address

http://www.lix.polytechnique.fr/Labo/Andreas.Enge/C34.html

Acknowledgement. Thanks to Pierrick Gaudry for his comments on our work.
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