
Algebraic Cryptanalysis of Compact McEliece’s Variants –
Toward a Complexity Analysis

Jean-Charles Faugère1, Ayoub Otmani2,3, Ludovic Perret1, and Jean-Pierre Tillich2

1 SALSA Project - INRIA (Centre Paris-Rocquencourt)
UPMC, Univ Paris 06 - CNRS, UMR 7606, LIP6

104, avenue du Président Kennedy 75016 Paris, France
jean-charles.faugere@inria.fr, ludovic.perret@lip6.fr

2 SECRET Project - INRIA Rocquencourt
Domaine de Voluceau, B.P. 105 78153 Le Chesnay Cedex - France

ayoub.otmani@inria.fr, jean-pierre.tillich@inria.fr
3 GREYC - Université de Caen - Ensicaen

Boulevard Maréchal Juin, 14050 Caen Cedex, France.

Abstract. A new algebraic approach to investigate the security of the McEliece cryptosystem has been proposed
by Faugère-Otmani-Perret-Tillich in Eurocrypt 2010. This paper is an extension of this work. The McEliece’s scheme
relies on the use of error-correcting codes. It has been proved that the private key of the cryptosystem satisfies a
system of bi-homogeneous polynomial equations. This property is due to the particular class of codes considered
which are alternant codes. These highly structured algebraic equations allowed to mount an efficient key-recovery
attack against two recent variants of the McEliece cryptosystems that aim at reducing public key sizes by using quasi-
cyclic or quasi-dyadic structures. Thanks to a very recent development due to Faugère-Safey el Din-Spaenlehauer
on the solving of bihomogeneous bilinear systems, we can estimate the complexity of the FOPT algebraic attack. This
is a first step toward providing a concrete criterion for evaluating the security of future compact McEliece variants.

Keywords : public-key cryptography, McEliece cryptosystem, algebraic cryptanalysis, F5, bi-linear sys-
tems,.

1 Introduction

After more than thirty years now, the McEliece cryptosystem still belongs to the very few public key cryptosys-
tems which remain unbroken. Its security relies upon two assumptions: the intractability of decoding random
linear codes [7], and the difficulty of recovering the private key or an equivalent one. The problem of decod-
ing an unstructured code is a long-standing problem whose most effective algorithms [18, 19, 24, 10, 8] have
an exponential time complexity. On the other hand no significant breakthrough has been observed during the
past years regarding the problem of recovering the private key. Indeed, although some weak keys have been
identified in [20], the only known key-recovery attack is the exhaustive search of the secret polynomial Γ (z)
of the Goppa code, and applying the Support Splitting Algorithm (SSA) [23] to check whether the Goppa code
candidate is permutation-equivalent to the code defined by the public generator matrix.

Despite its impressive resistance against a variety of attacks and its fast encryption and decryption, McEliece
cryptosystem has not stood up to RSA for practical applications. This is most likely due to the large size of the
public key which is between several hundred thousand and several million bits. To overcome this limitation, a
trend had been initiated in order to decrease the key size by focusing on very structured codes. For instance,
quasi-cyclic code like in [17], or quasi-cyclic codes defined by sparse matrices (also called LDPC codes) [1].
Both schemes were broken in [22]. It should be noted that the attacks have no impact on the security of the
McEliece cryptosystem since both proposals did not use the binary Goppa codes of the McEliece cryptosystem.
These works were then followed by two independent proposals [6, 21] that are based on the same kind of idea



of using quasi-cyclic [6] or quasi-dyadic structure [21]. These two approaches were also broken in [16] where
for the first time an algebraic attack is introduced against the McEliece cryptosystem.

Algebraic cryptanalysis is a general framework that permits to assess the security of theoretically all cryp-
tographic schemes. So far, such type of attacks has been applied successfully against several multivariate
schemes and stream ciphers. The basic principle of this cryptanalysis is to associate to a cryptographic primi-
tive a set of algebraic equations. The system of equations is constructed in such a way to have a correspon-
dence between the solutions of this system, and a secret information of the cryptographic primitive (for instance
the secret key of an encryption scheme). In the case of the McEliece cryptosystem, the algebraic system [16]
that has to be solved has the following very specific structure:

McEk,n,r (X,Y) =
{

gi,0Y0X j
0 + ∙ ∙ ∙+gi,n−1Yn−1X j

n−1 = 0

∣
∣
∣ i ∈ {0, . . . ,k−1}, j ∈ {0, . . . , r −1}

}
(1)

where the unknowns are the Xi ’s and the Yi ’s and the gi, j ’s are known coefficients with 0≤ i ≤ k−1, 0≤
j ≤ n− 1 that belong to a certain field Fq with q = 2s. We look for solutions of this system in a certain

extension field Fqm. Here k is an integer which is at least equal to n− rm. By denoting X def
= (X0, . . . ,Xn−1)

and Y def
= (Y0, . . . ,Yn−1) we will refer to such an algebraic system by McEk,n,r(X,Y). This algebraic approach

as long as the codes that are considered are alternant codes. It is important to note that a Goppa code can also
be seen as a particular alternant code. However, it is not clear whether an algebraic attack can be mounted
efficiently against the original McEliece cryptosystem because the total number of equations is rk, the number
of unknowns 2n and the maximum degree r −1 of the equations can be extremely high (e.g. n = 1024and
r −1 = 49).

But in the case of the tweaked McEliece schemes [6, 21], it turns out that is possible to make use of this
structure in order to reduce considerably the number of unknowns in the algebraic system. This is because
of the type of codes that are considered: quasi-cyclic alternant codes in [6] and quasi-dyadic Goppa codes in
[21]. In particular, it induces an imbalance between the X and Y variables. Moreover, it was possible to solve
efficiently the algebraic system thanks to a dedicated Gröbner bases techniques. Finally, it was also observed
experimentally in [16] but not formally proved that the complexity of the attack is mainly determined by the
number of remaining variables in the block Y.

The motivation of this paper is to revisit the FOPT algebraic attack [16] in view of the recent results on bilinear
systems [14]. This permits to make more precise the dependency between the security of a McEliece (and its
variants) and the properties of the algebraic system (1). This is a first step toward providing a concrete criterion
for evaluating the security of future compact McEliece variants.

2 On the Solving of McEk,n,r(X,Y)

Thanks to a very recent development [14] on the solving of bi-linear systems, we can revisit the strategy used
in [16] to solve McEk,n,r(X,Y). Moreover, this permits to evaluate the complexity of computing a Gröbner
bases of McEk,n,r(X,Y) for compact variants of McEliece such as [6, 21]. Before that, we briefly recall basic
facts about the complexity of computing Gröbner bases [9, 11–13].

2.1 Extracting a Bi-Affine System from McEk,n,r(X,Y)

As explained, McEk,n,r(X,Y) is highly structured. It is very sparse as the only monomials occurring in the
system are of the form YiX

j
i , with 0≤ i ≤ k−1 and 0≤ j ≤ r −1. It can also be noticed that each block of

k equations is bi-homogeneous, i.e. homogeneous if the variables of X (resp. Y) are considered alone. More
precisely, we shall say that f ∈ Fqm[X,Y] is bi-homogeneous of bi-degree (d1,d2) if:

∀α ,μ ∈ Fqm, f (αX,μY) = αd1μd2 f (X,μY).



Note that the equations occurring in McEk,n,r(X,Y) are of bi-degree ( j,1), with j,0≤ j ≤ r −1.

We briefly recall now the strategy followed in [16] to solve McEk,n,r(X,Y). The first fundamental remark is
that there are k linear equations in the n variables of the block Y in McEk,n,r(X,Y). This implies that all the
variables of the block Y can be expressed in terms of nY′ ≥ n− k variables. From now on, we will always
assume that the variables of the block Y′ only refer to these nY′ free variables. The first step is then to rewrite
the system (1) only in function of the variables of X and Y′, i.e., the variables of Y \Y′ are substituted by
linear combinations involving only variables of Y′.

In the particular cases of [6, 21], the quasi-cyclic and dyadic structures provide additional linear equations in
the variables of X and Y′ which can be also used to rewrite/clean the system. In the sequel, we denote by
McEk,n,r(X′,Y′) the system obtained from McEk,n,r(X,Y) by removing all the linear equations in X and Y.

This system McEk,n,r(X′,Y′) being naturally overdetermined, we can “safely” remove some equations. In
[6, 21], the system McEk,n,r(X′,Y′) is always defined over a field of characteristic two. It makes sense
then to consider the set of equations of McEk,n,r(X′,Y′) whose degree in the variables of X′ is a power
of 2, i.e. equations of bi-degree (2 j ,1). We obtain in this way a sub-system of McEk,n,r(X′,Y′), denoted
BiMcEk,n,r(X′,Y′), having nX′ and nY′ variables and at most k ∙ log2(r) equations. This system is a “quasi"
bi-linear system over Fm

2 as McEk,n,r(X′,Y′) viewed over F2 is bi-linear. Note that some constant terms can
occur in McEk,n,r(X′,Y′), so the system is more precisely affine bi-linear.

Proposition 1. Let BiMcEk,n,r(X′,Y′)⊂ Fqm[X′,Y′] be the system from McEk,n,r(X′,Y′) by considering
only the equations of bi-degree (2 j ,1). This system has nX′ + nY′ variables, at most k ∙ log2(r) equations
and is affine bi-linear.

2.2 On the Complexity of Solving Affine Bi-Linear Systems

Whilst the complexity of solving general bi-homogenous system is not known, the situation is different for bi-
affine (resp. bi-linear) systems. In particular, the theoretical complexity is well mastered, and there is a now a
dedicated algorithm for such systems [14]. As already explained, our equations are “quasi" bi-linear as we are
working with equations of bi-degree (1,2 j) over a field of characteristic 2. The results presented in [14] can
be then extended with a slight adaptation to the context.

A first important result of [14] is that F5 [13] algorithm is already optimal for “generic" (random) affine bi-linear
systems, i.e. all reductions to zero are removed by the F5 criterion. Another fundamental result is that the
degree of regularity of a square generic affine bi-linear system is much smaller than the degree of regularity of
a generic system. It has been proved [14] that:

Proposition 2. The degree of regularity of a square generic affine bi-linear system in X’ and Y’ is bounded
by 1+ min(nX′ ,nY′), where nX′ and nY′ are the number of variables in the blocks X′ and Y′ respectively.
Hence, the maximal degree occurring in the computation of a DRL Gröbner basis is also bounded by (2).

Remark 1. This bound is sharp for a generic square affine bi-linear system and is much better than the usual
Macaulay’s bound for a similar quadratic system (that is to say a system of nX′ + nY′ quadratic equations in
nX′ +nY′ variables): 1+min(nX′ ,nY′) � 1+nX′ +nY′ .

Since BiMcEk,n,r(X′,Y′) is a bilinear system it is reasonable to derive the bound:

Proposition 3. Let BiMcEk,n,r(X′,Y′) be as defined below. The maximum degree reached when computing
a Gröbner basis of BiMcEk,n,r(X′,Y′) is smaller than 1+min(nX′ ,nY′).

Remark 2. Note that the bound is not tight at all. In our situation the affine bi-linear systems are overdetermined
whilst [14] only considered systems with at most as many variables than the number of equations.



Finally, it appears [14] that the matrices occurring during the matrix version of F5 can be made divided into
smaller matrices thanks to the bi-linear structure. Let dim(Rd1,d2) =

(d1+nX′

d1

)(d2+nY′

d2

)
. More precisely, the ma-

trices occurring at degree D during the matrix F5 on a bi-linear systems are of size:
(

dim(Rd1,d2)− [td1
1 td2

2 ]HS(t1, t2)
)
×

dim(Rd1,d2) for all (d1,d2) such that d1+d2 = D,1≤ d1,d2 ≤D−1, where the notation [td1
1 td2

2 ]HS(t1, t2)
stands for the coefficient of the term td1

1 td2
2 in the Hilbert bi-serie HS(t1, t2) defined in the appendix.

As pointed out, these results hold for a bi-linear system. For an affine bi-linear, this can be considered as a
good (i.e. first order) approximation. The idea is that we have to “bi-homogenize" the affine bi-linear system
which corresponds to add some columns. We can then estimate the space/time complexity of computing a
Gröbner basis of BiMcEk,n,r(X′,Y′).

Proposition 4. . The time complexity of computing a DRL-Gröbner basis GDRL of BiMcEk,n,r(X′,Y′) is

bounded from above by Tα = ∑ d1 +d2 = D
1≤ d1,d2 ≤ D−1

(
dim(Rd1,d2)− [td1

1 td2
2 ]HS(t1, t2)

)α
dim(Rd1,d2), with α =

ω −1,2≤ ω ≤ 3 and D = min(nX′ ,nY′)+1.

It is worth to mention that, for the cryptosystems considered in [16], the number of free variables nY′ in Y′ can
be rather small (typically 1 or 2 for some challenges). We have then a theoretical explanation of the practical
efficiency observed in [16]. In addition, we have a concrete criteria to evaluate the security of future compact
McEliece’s variants, namely the minimum of the number of variables nX′ and nY′ in the blocks X′ and Y′

respectively should be sufficiently “big". This will be further discussed in the last section.

To conclude this section, we mention that the goal of the attack is compute the variety (i.e. set of solutions) V
associated to McEk,n,r(X′,Y′). As soon as we have a DRL-Gröbner basis GDRL of BiMcEk,n,r(X′,Y′), the
variety can be obtained in O

(
(#V )ω) thanks to a change of ordering algorithm [15]. We have to be sure that

the variety V has few solutions. In particular, we have to remove parasite solutions (corresponding to Xi = Xj

or to Yj = 0). A classical way to do that is to introduce new variables ui j and vi and add to McEk,n,r(X′,Y′)
equations of the form: ui j ∙ (Xi −Xj)+ 1 = and vi ∙Yi + 1 = 0. In practice, we have not added all theses
equations; but only few of them (namely 4 or 5). The reason is that we do not want to add too many new
variables. These equations and variables can be added to BiMcEk,n,r(X′,Y′) whilst keeping the affine bi-
linear structure. To do so, we have to add the vi to the block X′, and the variables ui j to the block Y′. So, as
we add only few new variables, the complexity of solving BiMcEk,n,r(X′,Y′) with these new constraints is
essentially similar to Proposition 4.

3 Comparison of Theoretical complexity with Experimental Results

In the table below, we present the experimental results obtained in [16] for BCGO and MB schemes. For
the sack of comparison, we include a bound on theoretical complexity of computing a Gröbner bases of
BiMcEk,n,r(X′,Y′) using the estimation Ttheo≈ T1 as obtained in Section 2 proposition 4. Regarding the
linear algebra, this is a bit optimistic. However, as already pointed our, we have been also rather pessimistic
regarding others parameters. For instance, we are not using the fact that the systems are overdetermined, and
we have also only considered a sub-system of McEk,n,r(X′,Y′).

All in all, this bound permits a give a reasonable picture of the hardness of solving BiMcEk,n,r(X′,Y′). It is of
course not sufficient to set parameters, but sufficient to discard many weak compact variants of McEliece.
We briefly discussed of the theoretical complexity obtained for the first row of the second column. As explained,
we have used the formula (3). We have computed the coefficient [td1

1 td2
2 ]HS(t1, t2) by using the explicit for-

mula of HS(t1, t2) provided in the appendix using the explicit values of nX′ = 59 and nY′=7, and assum-
ing that the system is square; in that case the degree of regularity is 8. For this parameter, the sub-system
BiMcEk,n,r(X′,Y′) has actually 288equations (of degree 2,3 and 5). Hence, it is interesting to compute [2,
4, 3, 5] the degree of regularity of a semi-regular system of the same size: we found a regularity of 11 leading



Table 1. Cryptanalysis results for [6] (m= 2)

C
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e

q ` n0 nY′ Se
cu

rit
y

[6
]

nX′ Time (Operations, Memory) Ttheo

A16 28 51 9 3 80 8 0.06sec (218.9 op, 115Meg) 217

B16 28 51 10 3 90 9 0.03sec (217.1 op, 116Meg) 218

C16 28 51 12 3 100 11 0.05sec (216.2 op, 116Meg) 220

D16 28 51 15 4 120 14 0.02sec (214.7 op, 113Meg) 226

A20 210 75 6 2 80 5 0.05sec (215.8 op, 115Meg) 210

B20 210 93 6 2 90 5 0.05sec (217.1 op, 115Meg) 210

C20 210 93 8 2 110 7 0.02sec (214.5 op, 115Meg) 211

QC600 28 255 15 3 600 14 0.08sec (216.6 op, 116 Meg) 221

Table 2. Cryptanalysis results for [21].

C
ha

lle
ng

e

q nY′ ` n0 Se
cu

rit
y

nX′ Time (Operations, Memory) Ttheo

Table 2 22 7 64 56 128 59 1,776.3 sec (234.2 op, 360Meg) 265

Table 2 24 3 64 32 128 36 0.50sec (222.1 op, 118Meg) 229

Table 2 28 1 64 12 128 16 0.03sec (216.7 op, 35Meg) 28

Table 3 28 1 64 10 102 14 0.03sec (215.9 op, 113Meg) 28

Table 3 28 1 128 6 136 11 0.02sec (215.4 op, 113Meg) 27

Table 3 28 1 256 4 168 10 0.11sec (219.2 op, 113Meg) 27

Table 5 28 1 128 4 80 9 0.06sec (217.7 op, 35Meg) 26

Table 5 28 1 128 5 112 10 0.02sec (214.5 op, 35Meg) 27

Table 5 28 1 128 6 128 11 0.01sec (216.6 op, 35Meg) 27

Table 5 28 1 256 5 192 11 0.05sec (217.5 op, 35Meg) 27

Table 5 28 1 256 6 256 12 0.06sec (217.8 op, 35Meg) 27

Dyadic256 24 3 128 32 256 37 7.1 sec (226.1 op, 131 Meg) 229

Dyadic512 28 1 512 6 512 13 0.15sec (219.7 op, 38 Meg) 28

to a cost of 285.2 for the Gröbner basis computation (using the Macaulay’s bound with ω = 2). It is expected
that a new results of the degree of regularity of generic overdetermined bi-linear systems would lead to tighter
bounds.

As a conclusion, one can see that the theoretical bound (3) provides a reasonable explanation regarding the
efficiency of the attack presented in [16]. In particular, it is important to remark that the hardness of the attack
seems related to d = min(n′X,n′Y). The complexity of the attack clearly increases with this quantity. For the
design of future compact variants of McEliece, this d should be then not too small. Regarding the current state
of the art, it is difficult to provide an exact value. Very roughly speaking, BiMcEk,n,r(X′,Y′) can be considered
as hard as solving a random (overdetermined) algebraic system with d = min(nX′ ,nY′) equations over a big
field. With this in mind, we can say that any system with d ≤ 20 should be within the scope of an algebraic
attack.
Note that another phenomena, which remains to be treated, can occur. In the particular case of binary dyadic
codes, the Gröbner basis of BiMcEk,n,r(X′,Y′) can be easily computed, but the variety associated is too big.
This is due to the fact that the Gröbner basis is “trivial" (reduced to one equation) and not provides then enough
information. This is typically due to the fact that we have used only a sub-set of the equations

(
of bi-degree

(2 j ,1)
)

. So, the open question is how we can use cleverly all the equations of McEk,n,r(X′,Y′) in the binary
case.
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A Hilbert Bi-Series

We say that an ideal is bihomogeneous if there exists a set of bihomogeneous generators. The vector space
of bihomogeneous polynomials of bi-degree (α ,β ) in a polynomial ring Rwill be denoted by Rα ,β . If I is a
bihomogeneous ideal, then Iα ,β will denote the vector space I ∩Rα,β .

Definition 1 ([14]). Let I be a bihomogeneous ideal of R. The Hilbert bi-series is defined by

HSI (t1, t2) = ∑
(α ,β )∈N2

dim(Rα,β /Iα,β )tα
1 tβ

2 .

For bi-regular bilinear systems, [14] provide an explicit form of the bi-series.

Theorem 1. Let f1, . . . , fm ∈ Rbe a bi-regular bilinear sequence, with m≤ nX′ +nY′ . Then

HSIm(t1, t2) =
(1− t1t2)m+NnX′+1(t1, t2)+NnY′+1(t1, t2)

(1− t1)nX′+1(1− t2)nY′+1 ,

where

Nn(t1, t2) = t1t2(1− t2)
n

m−n

∑̀
=1

(1− t1t2)
m−n−`

[

1− (1− t1)
`

n

∑
k=1

tn−k
1

(
`+n−k−1

n−k

)]

.


