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On the complexity of Gröbner basis computation of
semi-regular overdetermined algebraic equations
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Abstract

We extend the notion of regular sequence ([Mac16]) to overdetermined system of al-
gebraic equations. We study generic properties of Gröbner bases and analyse precisely
the behavior of the F5 [Fau02] algorithm. Sharp asymptotic estimates of the degree of
regularity are given.

We consider polynomials (f1, . . . , fm) in k[x1, . . . , xn] where k is a field. In this extended abstract, we
restrict attention to homogeneous polynomials. We denote by di the total degree of fi.

Introduction

Gröbner bases [Buc65, CLO98] are a fundamental tool to study algebraic equations in theory and practice.
Complexity of Gröbner bases has been the object of extensive studies. Since Gröbner bases can be used to
solve polynomial systems, their complexity is at least that of polynomial system solving. It turns out that it
is not difficult to encode NP-complete problems (Knapsack problem, k-SAT, . . . ) into polynomial systems;
hence polynomial system solving is hard which shows that the worst-case complexity cannot be expected
to be good.
Actually, while the worst-case is at least “double exponential”1, the generic behaviour is much better. For
instance, if the algebraic system has only a finite number of common zeros at infinity, then, its Gröbner
Basis for any ordering may be computed in a time polynomial in dn where d = maxidi. In that case, for
the degree–reverse–lexicographical (DRL) ordering, the highest degree of elements of the Gröbner basis is
bounded very precisely [Laz83, Giu94] by

The Macaulay bound :

n
∑

i=1

(di − 1) + 1. (1)

These bounds should be compared with BézoutŠs theorem, stating that the number of solutions, when finite,
is bounded by Πidi, and is exactly Πidi in the homogeneous case. This picture leads to natural questions
that are (partially) adressed in the full version of the article:

Where are “random” systems? What is their complexity ? What about overdetermined systems?

The goal of the article is to extend the bound (1) when the number of equations is larger than the number of
variables and to derive sharp bounds on the complexity for the F5 algorithm. The interest of overdetermined
systems is not purely academic: many systems appearing in cryptography have been based on the problem of
solving a system of algebraic equations over the finite field F2, and in many cases the interesting solutions
are only solutions in F2 and not in its algebraic closure: one has to solve the original system of, say m,
equations over F2 together with the field equations xi (xi − 1) = 0 (i = 1, . . . , n). Thus the total number
of equations is m + n. Other applications are: error correcting codes (decoding of cyclic codes), robotic,
calibration, . . .

Regular systems

The F5 algorithm was designed so that it ensures no “useless” reduction to 0 when the input system is
regular. We recall the definition of regularity (regular sequence, Macaulay):

1more precisely cste2
2

n
10 where n is the number of variables
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Definition 1. (f1, . . . , fm) is regular if for all i = 1, . . . , m, fi is not a zero-divisor in the quotient ring
k[x1, . . . , xn]/(f1, . . . , fi−1). In other words if there exists g such that

gfi ∈ Ideal(f1, . . . , fi−1)

then g is also in Ideal(f1, . . . , fi−1).

Classical properties of regular systems are:

Theorem 2. (i) (f1, . . . , fm) is regular if and only if its Hilbert series is given by

H(t) =
Πm

j=1(1 − tdj )

(1 − t)n
(2)

(ii) after a generic linear change of variables, the highest degree of elements of a Gröbner basis for the
DRL order is less than

n
∑

i=1

(di − 1) + 1

Semi-Regular systems

Unfortunatelty regular systems do not exist when the number of polynomials is larger than the number of
variables. We have to modify slightly the definition of regularity:

Definition 3. A zero-dimensional overdetermined system (f1, . . . , fm) (m ≥ n) is d-regular when for all
i = 1, . . . , m, if there exists g such that

deg(g) < d − di and gfi ∈ Ideal(f1, . . . , fi−1)

then g is also in Ideal(f1, . . . , fi−1).

For instance, a quadratic system of equations is 2-regular if the equations are linearly independent. The
maximum expected value of d is given by the following definition:

Definition 4. We define the degree of regularity of a zero dimensional ideal I = Ideal(f1, . . . , fm) (m ≥ n)
by

dreg = min

{

d ≥ 0 | dimk({f ∈ I, deg(f) = d}) =

(

n + d − 1
d

)}

This definition implies that for any monomial ordering refining the degree, all monomials in degree dreg are
leading terms for an element of the ideal. Thus dreg is clearly an upper bound on the degree of the elements
of a Gröbner basis for such a monomial ordering.

Definition 5. A dreg-regular system is called semi-regular.

Thus when m = n a regular (zero-dimensional) system is also semi-regular. The following proposition
gives a way to compute dreg efficiently:

Proposition 6. For a semi-regular system with m ≥ n polynomials, the degree of regularity is the index of
the first nonpositive (≤ 0) coefficient in the series H(t).

We can now state one of the main results of this article:

Theorem 7. For a d-regular system, there is no reduction to 0 in the algorithm F5 for degrees smaller than
d. Moreover, for a semi-regular system, the total number of arithmetic operations in k performed by F5 is
bounded by

O

((

n + dreg

n

)ω)

Where the exponent ω < 2.39 is the exponent in the complexity of matrix multiplication.
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Asymptotic Analysis

The method is the following: the k-th coefficient of the series H(t) is given by the Cauchy integral repre-
sentation

I(k) =
1

2ıπ

∮

Πm
i=1(1 − tdi)

(1 − t)n

dt

tk+1
(3)

A preliminary analysis reveals that the degree of regularity grows roughly linearly with n, that is to say
λ =

dreg

n
is equivalent to some constant at infinity. The analysis is then based on computing the asymp-

totic expansion of I(λn) for fixed λ, and then determining an asymptotic expansion λ(n) that makes this
behaviour vanish asymptotically.
By using the saddle-point method, we are able to prove:

Theorem 8. The degree of regularity of a semi-regular system of m = n + k homogeneous polynomials of
degree d1, . . . , dn+k in n variables behaves asymptotically like

dreg =

m
∑

i=1

di − 1

2
− αk

√

√

√

√

m
∑

i=1

(d2
i − 1)

6
+ O(1) when n −→ ∞

where αk is the largest zero of the k-th Hermite polynomial.

For instance, for quadratic systems we have dreg ≈ m−αk

√
2m

2 .When m = n + 1, α1 = 0 and the result
found is in agreement with the exact result due to Szanto [Sza04].
A similar analysis can be done when m = αn (α ≥ 1 being fixed); using the coalescent saddle points
method a full asymptotic expansion can be computed:

Theorem 9. The degree of regularity of a semi-regular system of m = αn homogeneous polynomials of
degree d1, . . . , dαn in n variables behaves asymptotically like

dreg = φ(ρ)n − a1
3

√

(

−
1

2
φ′′(ρ)ρ2

)

n + · · · when n −→ ∞

where φ(z) = z
1−z

− 1
n

∑m

i=1
diz

di

1−zdi
, ρ is the zero of φ′(z) that minimize φ(ρ) > 0 (an algebraic number)

and a1 is the largest zero of the classical Airy function.

For instance for quadratic equations and m = 2n we can greatly improve the Macaulay bound dreg ≤ n+1
with the new estimate:

dreg = 0.0858 n + 1.04 n
1
3 − 1.47 +

1.71

n
1
3

+ O

(

1

n
2
3

)

Extensions

The full version of the article includes several extensions. We give a definition of semi-regular systems
for nonhomogeneous polynomials and we can deduce from our analysis a bound on the complexity of
the Gröbner basis computation. Another extension is the boolean case: application of Gröbner bases in
cryptography involves overdertermined systems over the field F2 and moreover the solutions themselves are
sought in F2. In that case, it is convenient to modify the algorithm F5 so that extra “useless” lines coming
from the new syzygy f 2

i = fi are not computed. This results in an efficient algorithm that has been used
to break a cryptographic challenge [FJ03]. The analysis proceeds as before, the degree of regularity being
now the first nonpositive coefficient in the series (1+t)n

Πm
i=1

(1+tdi )
. A complexity bound for solving algebraic

system using the algorithm XL can be derived from this analysis and the link between XL and Gröbner
bases [AFI+04].
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