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Abstract

We give a complete description of the Voronoi diagram of three lines inR
3. In particular, we show that

the topology of the Voronoi diagram is invariant for three lines in general position, that is, that are pairwise
skew and not all parallel to a common plane. The trisector consists of four unbounded branches of either a
non-singular quartic or of a cubic and line that do not intersect in real space. Each cell of dimension two
consists of two connected components on a hyperbolic paraboloid that are bounded, respectively, by three
and one of the branches of the trisector. The proof technique, which relies heavily upon modern tools of
computer algebra, is of interest in its own right.

This characterization yields some fundamental propertiesof the Voronoi diagram of three lines. In
particular, we present linear semi-algebraic tests for separating the two connected components of each two-
dimensional Voronoi cell and for separating the four connected components of the trisector. We also show
that the arcs of the trisector are monotonic in some direction. These properties imply that points on the
trisector of three lines can be sorted along each branch using only linear semi-algebraic tests.
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1 Introduction

The Voronoi diagram of a set of disjoint objects is a decomposition of space into cells, one cell per object, such
that the cell associated with an object consists of all points that are closer tothat object than to any other object.
In this paper, we consider the Voronoi diagram of lines inR

3 under the Euclidean metric.
Voronoi diagrams have been the subject of a tremendous amount of research. For points, these diagrams,

their complexity and optimal algorithms are well understood and robust efficient implementations exist for
computing them in any dimension (see for instance [1, 2, 4, 5, 6, 7, 14, 25,34]) even though some important
problems remain and are addressed in recent papers. The same is true for segments and polygons in two
dimensions [17].

For lines, segments, and polyhedra in three dimensions much less is known. In particular, determining
the combinatorial complexity of the Voronoi diagram ofn lines or line segments inR3 is an outstanding open
problem. The best known lower bound isΩ(n2) and the best upper bound isO(n3+ε) [35]. It is conjectured that
the complexity of such diagrams is near-quadratic. In the restricted case ofa set ofn lines with a fixed number,
c, of possible orientations, Koltun and Sharir have shown an upper boundof O(n2+ε), for anyε > 0 [19].

There are few algorithms for computing exactly the Voronoi diagram of linear objects. Most of this work
has been done in the context of computing the medial axis of a polyhedron,i.e., the Voronoi diagram of the
faces of the polyhedron [9, 23]. Recently, some progress has been made on the related problem of computing
arrangements of quadrics (each cell of the Voronoi diagram is a cell ofsuch an arrangement) [3, 18, 24, 31,
32]. Finally, there have been many papers reporting algorithms for computing approximations of the Voronoi
diagram (see for instance [10, 13, 16, 36]).

In this paper, we address the fundamental problem of understanding thestructure of the Voronoi diagram
of three lines. A robust and effective implementation of Voronoi diagrams of three-dimensional linear objects
requires a complete and thorough treatment of the base cases, that is the diagrams of three and four lines, points
or planes. We also strongly believe that this is required in order to make progress on complexity issues, and
in particular for proving tight worst-case bounds. We provide here a full and complete characterization of the
geometry and topology of the elementary though difficult case of the Voronoi diagram of three lines in general
position.

Main results. Our main result, which settles a conjecture of Koltun and Sharir [19], is the following (see
Figure 1).

Theorem 1 The topology of the Voronoi diagram of three pairwise skew lines that arenot all parallel to a
common plane is invariant. The trisector consists of four infinite branches of either a non-singular quartic1

or of a cubic and line that do not intersect inP3(R). Each cell of dimension two consists of two connected
components on a hyperbolic paraboloid that are bounded, respectively, by three and one of the branches of the
trisector.

The proof technique, which relies heavily upon modern tools of computer algebra, is of interest in its own
right.

This characterization yields some fundamental properties of the Voronoi diagram of three lines which are
likely to be critical for the analysis of the complexity and the development of efficient algorithms for computing
Voronoi diagrams and medial axis of lines or polyhedra. In particular, weobtain the following.

Theorem 2 Each of the branches of the trisector of three pairwise skew lines that arenot all parallel to a
common plane is monotonic in some direction. Furthermore, there is a linearsemi-algebraic test for

(i) deciding on which of the two connected components of a two-dimensionalcell a point lies,
(ii) deciding on which of the four branches of the trisector a point lies,

(iii) ordering points on each branch of the trisector.

1By non-singular quartic, we mean an irreducible curve of degree fourwith no singular point inP3(C).
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Figure 1: Voronoi diagram of 3 lines̀1, `2, and`3 in general position: (a) Voronoi 2D face of`1 and`2, i.e.,
set of points equidistant tò1 and`2 and closer to them than tò3. (b) Orthogonal projection of a 2D face on a
planeP with coordinate system(X,Y) such that the plane’s normal is parallel to the common perpendicular of
`1 and`2 and such that theX andY-axis are parallel to the two bisector lines (inP ) of the projection of̀ 1 and
`2 on P ; the face is bounded by four branches of a non-singular quartic.

The rest of the paper is organized as follows. The next section gives the proof of Theorem 1. In Section 3,
we present some fundamental properties of the Voronoi diagram of three lines and prove Theorem 2. Finally,
we give, in Section 4, a geometric characterization of the configurations ofthree lines in general position such
that their trisector contains a line.

2 Proof of Theorem 1

We consider three lines ingeneral position, that is, that are pairwise skew and not all parallel to the same plane.
The idea is to prove that the topology of the trisector is invariant by continuous deformation on the set of all
triplets of three lines in general position and that this set is connected. The result then follows from the analysis
of any example.

We show that the trisector is always homeomorphic to four lines that do not pairwise intersect. To prove
this, we show that the trisector is always non-singular inP

3(R) and has four simple real points at infinity. To
show that the trisector is always non-singular, we study the type of the intersection of two bisectors, which are
hyperbolic paraboloids.

We use the classic result that the intersection of two quadrics is a non-singular quartic (inP
3(C)) unless the

characteristic equation of their pencil has (at least) a multiple root. In orderto determine when this equation
has a multiple root, we determine when its discriminant∆ is zero.

This discriminant has several factors, some of which are trivially alwayspositive. The remaining, so-called
“gros facteur”, can be shown, using Safey’s software [26], to be never negative. This implies that it is zero
only when all its partial derivatives are zero. We thus consider the system that consists of thegros facteurand
all its partial derivatives, and compute its Gröbner basis. This gives three equations of degree six. We consider
separately two components of solutions, one for which a (simple) polynomialF is zero, the other for which
F 6= 0.

When F 6= 0, some manipulations and simplifications, which are interesting in their own rights,yield
another Gr̈obner basis, with the same real roots, which consists of three equations ofdegree four. We show
that one of these equations has no real root which implies that the system has no real root and thus that∆ = 0
has no real root on the considered component. We can thus conclude that, in this case, the trisector is always a
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Figure 2: (a) 3 lines in general position. (b) Ordering of the connected components of the cells of the Voronoi
diagram above each region induced by the projection of the trisector and silhouette curves of the bisectors;Ui j

andTi j denote the connected components of the cellVi j that are bounded by one and three arcs of the trisector,
respectively; the ordering over the small cell in the middle isT13 < T13 < T23 < T23.

non-singular quartic inP3(R). WhenF = 0, we show, by substitutingF = 0 in ∆ and by using the classification
of the intersection of quadrics over the reals [12], that the trisector is a cubic and a line that do not intersect in
P

3(R).
We can thus conclude that the trisector is always a non-singular quartic ora cubic and a line that do not

intersect in real space and thus that the trisector is always non-singularin P
3(R).

In the rest of this section, we prove Theorem 1.

2.1 Preliminaries

Let `1, `2, and`3 be three lines in general position,i.e., that are pairwise skew and not all parallel to a common
plane. Refer to Figure 2(a). Let(X,Y,Z) denote a Cartesian coordinate system. Without loss of generality, we
assume that̀1 and`2 are both horizontal, pass through(0,0,1) and(0,0,−1) respectively, and have directions
that are symmetric with respect to theXZ-plane. More precisely, we assume that line`1 is defined by point
p1 = (0,0,1) and vectorv1 = (1,a,0), and line`2 by point p2 = (0,0,−1) and vectorv2 = (1,−a,0), a∈ R.
Moreover, since the three lines are not all parallel to a common plane,`3 is not parallel to the planez= 0, and
so we can assume that line`3 is defined by pointp3 = (x,y,0) and vectorv3 = (α,β,1), x,y,α,β ∈ R.

We denote byHi, j the bisector of lines̀i and` j and byVi j the Voronoi cell of lines̀ i and` j , i.e., the set
of points equidistant tòi and` j and closer to them than tòk, k 6= i, j. We recall the following well-known
elementary facts. The bisector of two pairwise skew lines is a right hyperbolic paraboloid, that is, has equation
of the formZ = γX Y, γ ∈R, in some coordinate system (see for instance[19]). The Voronoi cells are connected
and star-shaped [21].

2.2 Algebraic structure of the trisector, Part I

The trisector of our three lines is the intersection of two right hyperbolic paraboloids, sayH1,2 andH1,3. The
intersection of two arbitrary hyperbolic paraboloids may be singular; it may be a nodal or cuspidal quartic,
two secant conics, a cubic and a line that intersect, a conic and two lines crossing on the conic, etc (see [12,
Table 4]). We show here that the trisector is always non-singular by studying the characteristic polynomial of
the pencil ofH1,2 andH1,3.

Let Q1,2 andQ1,3 be matrix representations ofH1,2 andH1,3, i.e. the Hessian of the quadratic form asso-
ciated with the surface (see, for instance, [11]). Thepencilof Q1,2 andQ1,3 is the set of linear combinations
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of them, that is,P(λ) = {λQ1,2 + Q1,3, ∀λ ∈ R̄}. Thecharacteristic polynomialof the pencil is the determi-
nant,D(λ) = det(P(λ)), which is a degree four polynomial inλ. The intersection of any two quadrics is a
non-singular quartic, inP3(C), if and only if the characteristic equation of the corresponding pencil does not
have any multiple roots (inC) [33] (see also [12]). A non-singular quartic ofP

3(C) is, in P
3(R), either empty

or a non-singular quartic. Thus, since the trisector of our three lines cannot be the empty set inR3, the trisector
is a smooth quartic inP3(R) if and only if the characteristic equation of the pencil does not have any multiple
roots (inC).

The characteristic polynomial of the pencil is fairly complicated (roughly onepage in the format of Eq. (1)).
However, by a change of variableλ → 2λ(1+ α2 + β2) and by dividing out the positive factor(1+a2)2(1+
α2 + β2)3, the polynomial simplifies, without changing its roots, to the following, which we still denote by
D(λ) for simplicity.

D(λ) =
(

α2 +β2 +1
)

a2λ4−2a
(

2aβ2 +ayβ+aαx−βα+2a+2aα2−βαa2)λ3

+
(

β2 +6a2β2−2βxa3−6βαa3 +6yβa2−6aβα−2aβx+6αxa2 +y2a2−2aαy+x2a2−2yαa3 +6a2α2 +a4α2 +4a2)λ2

−2
(

xa−ya2−2βa2−β+2aα+αa3)(xa−y−β+aα)λ+
(

1+a2)(xa−y−β+aα)2 (1)

In the sequel, all polynomials are considered over the reals, that is forλ,a,α,β,x,y in R, unless specified
otherwise. We start by studying the sign ofD(λ).

Lemma 3 The characteristic polynomialD(λ) is never negative.

Proof. We prove that the real semi-algebraic setS = {χ = (λ,a,x,y,α,β)∈ R
6 | D(χ) < 0} is empty using a

development version of the RAGLIB Maple library [26] which is based on the algorithm presented in [28]. The
algorithm computes at least one point per connected component of such asemi-algebraic set and we observe
that, in our case, this set is empty. Before presenting our computation, we first describe the general idea of this
algorithm.

Suppose first thatS 6= R
6 and letC denote any connected component ofS . We consider hereD as a

function of all its variablesχ = (λ,a,x,y,α,β) ∈ R
6. The algorithm first computes the set of generalized

critical values2 of D (see [28] for an algorithm computing them). The image byD of C is an interval whose
endpoints3 are zero and either a negative generalized critical value or minus infinity. For anyv in this interval,
there is a pointχ0 ∈ C such thatD(χ0) = v, and the connected component containingχ0 of the hypersurface
D(χ) = v is included in the connected componentC . Hence, a point inC can be found by computing a point
in each connected component ofD(χ) = v. It follows that we can compute at least a point in every connected
component of the semi-algebraic setS defined byD(χ) < 0 by computing at least one point in every connected
component of the real hypersurface defined byD(χ) = v wherev is any value smaller than zero and larger than
the largest negative generalized critical value, if any. Finally, a randomlychosen pointp in R

6 also needs to
be added, ifD(p) < 0, to ensure that we find a point in every connected component ofS in the case where
S = R

6.
Now, computing at least one point in every connected component of a hypersurface defined byD(χ) = vcan

be done by computing the critical points of the distance function between the surface and a point, say the origin,

2Recall that the (real) critical values ofD are the values ofD at its critical pointsχ, i.e., the pointsχ at which the gradient ofD is
zero. The asymptotic critical values are similarly defined as, roughly speaking, the values taken byD at critical points at infinity, that
is, the valuesc∈ R such that the hyperplanez= c is tangent to the surfacez= D(χ) at infinity (this definition however only holds for
two variables,i.e., χ ∈ R

2). More formally, the asymptotic critical values were introduced by Kurdyka et al. [20] as the limits ofD(χk)
where(χk)k∈N is a sequence of points that goes to infinity while‖χk‖ · ‖gradχk

D(χk)‖ tends to zero. The generalized critical values
are the critical values and asymptotic critical values.The set of generalized critical values contains all the extrema of functionD, even
those that are reached at infinity.

3SinceS 6= R
6, the boundary ofC is not empty and consists of pointsχ such thatD(χ) = 0. The image of the connected setC by

the continuous functionD is an interval. Hence, zero is an endpoint of the intervalD(C ). The other endpoint is either an extremum of
D (and thus a generalized critical value) or minus infinity.
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that is, by solving the systemD(χ) = v, χ×grad(D)(χ) = 0. This conceptually simple approach, developed
in [27], is, however, not computationally efficient. The efficient algorithmpresented in [28] computes instead
critical points of projections, combining efficiently the strategies given in [30] and [29].

Table 1 (in Appendix F) shows the result of the computation of at least one point in every connected
component ofS .4 We observe that this set is empty, implying thatD(χ) > 0 for all χ ∈ R

6. It should be noted
that these computations are very fast: they take roughly 3 seconds of elapsed time on a standard PC. �

Let ∆ be the discriminant of the characteristic polynomialD(λ) (with respect toλ). Recall thatD(λ)
admits a multiple root if and only if its discriminant is zero.

Corollary 4 The discriminant∆ is never negative.

Proof. By Lemma 3,D(λ) is either always positive or has a multiple root. If a degree-four polynomial
is always positive, then it easily follows from the definition that its discriminantis positive [8, §3 p. 119].
Furthermore, if a polynomial has a multiple root then its discriminant is zero. �

Remark. The proof that∆ is never negative can also be proved with theRAGLIB library, as in the proof of
Lemma 3, but the computation is then a lot more time consuming (roughly 10 hours instead of 3 seconds).

The discriminant∆ of the characteristic polynomial, computed with Maple [22], is equal to

16a4(ax−y−β+aα)2(y+ax−aα−β)2 (2)

times a factor that we refer to as thegros facteurwhich is a rather large polynomial of which we only show 2
out of 22 lines:

gros facteur= 8a8α4y2 +7a4β2x4−4aβ3x+16a8β4x4 +32a4α2y2 +2a6α2β4x2 +38a8α2x2 +2y4β2a4α2 +44a8α2β2x2

· · ·+22a4y2β2x2 +y6a6 +α2y6a6−2βxαy5a6 +x6a6 +10βx3a7α2 +2yα3a7x2−32a3α2y2βx+28a3β2x2αy−24a2β3yαx. (3)

Lemma 5 The discriminant∆ is equal to zero if and only if thegros facteurand all its partial derivatives are
equal to zero.

Proof. The polynomial (2) is not equal to zero under our general position assumption. Indeed,a = 0 is
equivalent to saying that lines̀1 and`2 are parallel and the two other factors of (2) are equal to the square
of det(pi − p3,vi ,v3), for i = 1,2, and thus are equal to zero if and only if`i and`3 are coplanar, fori = 1,2.
It follows that (2) is always strictly positive. Thus, the discriminant∆ is equal to zero if and only if thegros
facteur is zero. Furthermore, by Corollary 4, thegros facteuris never negative, thus, if there exists a point
where thegros facteurvanishes, it is a local minimum of thegros facteurand thus all its partial derivatives
(with respect to{a,x,y,α,β}) are zero. �

Note that Lemma 5 says, in other words, that the zeros of∆ are the singular points5 of thegros facteur.
We now state our main lemma which implies that the discriminant is zero only if a simple condition is

satisfied.

Main Lemma The discriminant∆ is equal to zero only if y+aα = 0 or ax+β = 0.

Proof. By Lemma 5,∆ is zero if and only if thegros facteurand all its partial derivatives are zero. We prove
below that this implies that(y+aα)(ax+β)(1+α2 +β2)Γ = 0, where

Γ =
(

2a(yα−βx)−a2 +1
)2

+3 (ax+β)2 +3a2(y+aα)2 +3
(

1+a2)2
. (4)

4As an example where the set is not empty, we also present, in Table 1, the result of the computation of at least one point in every
connected component of the set ofχ ∈ R

6 such thatD(χ) > 0.
5Recall that the singular points of a surface are the points where all partialderivatives are zero.
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As the two terms(1+α2+β2) andΓ clearly do not have any real solutions, this proves the lemma. (We discuss
later how we found these terms.)

Consider the system in the variables{a,x,y,α,β,u,v,w, t} that consists of thegros facteur, its partial deriva-
tives, and the four equations

1−u(y+aα) = 0, 1−v(ax+β) = 0, 1−w(1+α2 +β2) = 0, 1− t Γ = 0. (5)

The gros facteurand its partial derivatives have a common zero (real or complex) such that (y+ aα)(ax+
β)(1+α2+β2)Γ 6= 0 if and only if this system has a solution. This follows immediately from the fact that the
equations (5) are linear inu,v,w, t.

The Gr̈obner basis of that system is reduced to the polynomial 1 (see Table 2) and thus the system has no
solution (over the complexes). This concludes the proof. �

The real difficulty in the proof of the Main Lemma is, of course, to find the equations (5) that rule out all
the imaginary components of the set of singular points of thegros facteur. Computing these components is the
actual key of the proof. We believe that the technique we used can be of some interest to the community as it is
rather generic and could be applied to other problems. We thus describe in Section 2.3 how these components
were computed before finishing the study of the algebraic structure of the trisector, in Section 2.4.

2.3 About the proof of the Main Lemma

We show in this section how we computed, for the proof of the Main Lemma, the equations of (5) which
correspond to hypersurfaces containing the zeros of the discriminant.

Basically, we proceed as follows. We start from the system of equations of thegros facteurand all its partial
derivatives and use the following techniques to study its set of solutions, or more precisely to decompose it into
components defined by prime ideals6. This could theoretically be done by a general algorithm computing such
a decomposition, however, all existing implementations are far from being capable of handling our particular
problem or even a simpler sub-problem (see Remark 6).

If the (reduced) Gr̈obner basis of some system contains a polynomial which has a factor, sayF , the solutions
of the system splits into two components, one of which such thatF = 0, the other such thatF 6= 0. We study
separately the two components. One is obtained by adding the equationF to the system and the other is obtained
by adding the equation 1− t F and eliminating the variablet; indeed, there is a one-to-one correspondence
between the solutions of the initial system such thatF 6= 0 and the solutions of the system augmented by
1− t F . Sometimes, frequently in our case, the componentF 6= 0 is empty, which corresponds to the situation
where the elimination oft results in the polynomial 1 (inducing the equation 1= 0). Note that in some cases
the system contains a polynomial which is a square, sayF2, thus the component such thatF 6= 0 is obviously
empty and we can addF to the system without changing its set of solutions (this however changes theideal).
This operation of addingF to the system frequently adds embedded components to the variety of solutions
which explains why, later on in the process, empty components are frequently encountered when splitting into
two components.

Our computations, presented in Table 3, are performed in Maple [22] usingthe Gr̈obner basis package FGb
developed by J.-C. Faugère [15] . We use two functions,

fgb gbasis(sys,0,vars1,vars2)andfgb gbasiselim(sys,0,var1,var2)7,
that compute Gr̈obner bases of the systemsys; the first uses a degree reverse lexicographic order (DRL) by
blocks on the variables ofvars1andvars2(wherevars2 is always the empty set in our computation) and the

6An idealI is prime ifPQ∈ I impliesP∈ I or Q∈ I .
7The functiongbasis(sys,DRL(var1,var2),elim)with or without the optional last argumentelim can also be used alternatively of

these two functions
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second one eliminates the variablevars1and uses a reverse lexicographic order on the variables ofvars2. (The
second parameter of the functions refer to the characteristic of the field, here 0.)

We do not show in Table 3 the Gröbner bases which are too large to be useful, except in the case where
the basis is reduced to 1 (when the system has no solution). We instead only report the first operand of each
polynomial of the base; an operand? means that the polynomial is the product of at least two factors; an
operand ˆ means that the polynomial is a power of some polynomial; an operand + means that the polynomial
is a sum of monomials.

Our computation goes as follows. We first simplify our system by consideringa = 2 because otherwise the
Gröbner basis computations are too slow and use too much memory to be performedsuccessfully. We first see
after computing,bs1, the Gr̈obner basis of our system, thaty+2α appears as a factor of one polynomial. This
splits the solutions into those such thaty+2α = 0 and the others. We will study separately (in Lemma 7) the
former set of solutions and we only consider here the solutions such thaty+2α 6= 0. This is done by adding the
polynomial 1−u(y+2α) to the system, whereu is a new variable; indeed there is a one-to-one correspondence
between the solutions of the initial system such thaty+2α 6= 0 and the solutions of the resulting system.

The termy+2α corresponds fairly clearly to the polynomialy+aα with a = 2, and because of the sym-
metry of our problem we also study separately the solutions such thatax+β = 0. Since we assumeda= 2, we
only consider here the solutions such that 2x+β 6= 0, by adding to the system the polynomial 1−v(2,x+β).
Finally, we also add 1−w(1+α2 +β2) to the system, without changing its set of real of real roots; we do this
because the term 1+ α2 + β2 appears in the leading coefficient ofD(λ) which suggests that some component
of solutions (without any real point) might be included in 1+ α2 + β2. (It should be noted that adding this
polynomial to the system changes the resulting Gröbner basis, which shows that this addition indeed removes
some imaginary component from the system.) We compute the Gröbner basis,bs2, of that system, eliminating
the variablesu,v,w, which gives a system of four polynomials of degree six.

We then compute the Gröbner basis ofbs2, eliminating the variablex. This gives a basisbs3 which is
reduced to one polynomial of the formP2. We thus addP to the systembs2 (we do not add it tobs3 since
bs3 does not depend onx). The Gr̈obner basis,bs4, of the new system contains several polynomials that are
products of factors. We see that if we add to the system the constraint thatthe third factor of the first polynomial
is not zero, the resulting system has no solution. We thus add this factor to thesystem and compute its Gröbner
basisbs5. We operate similarly to getbs6. The basisbs6 contains no product or power and we compute its
Gröbner basis,bs7, eliminatingy (eliminatingx gives no interesting basis). The last polynomial ofbs7 is a
power and we proceed as before to getbs8. We proceed similarly until we get to the basisbs12.

The basisbs12 consists of three polynomials of degree four (which is a simplification overbs2 which
consists of four polynomials of degree six). We observe that the last polynomial ofbs12 is

Γ2 = (4yα−4βx−3)2 +3(2x+β)2 +12(y+2α)2 +75,

which is always positive over the reals.
We have thus proved that all the complex solutions, such thata = 2, of the initial system (thegros facteur

and all its partial derivatives) satisfy(1+α2 +β2)(y+2α)(2x+β)Γ2 = 0.
Finally, to get the polynomialΓ of Formula (4), we performed the same computation witha = 3 anda = 5

andguessedΓ as an interpolation of the polynomialsΓ2, Γ3, andΓ5.
Note that all the computation for a fixeda takes roughly eight minutes of elapsed time on a regular PC.

Remark 6 All the computations from bs2 to bs12 amounts to finding polynomials that have a power which is
a combination of the elements of bs2 (i.e. which are in the radical of the ideal generated by bs2). Thus these
computations would be advantageously replaced by a program computingthe radical of an ideal8. Unfortu-
nately, all available such programs fail on the ideal generated by bs2 either by exhausting the memory or by

8The radical of an idealI is the ideal{x | xn ∈ I for somen∈ N}.
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running unsuccessfully during several days and ending on an error.It is therefore a challenge to improve these
programs so that they are able to automatically do this computation.

2.4 Algebraic structure of the trisector, Part II

Lemma 7 The discriminant∆ is equal to zero if and only if

y = −aα and x=
β(2a2 +1)±2

√

a2(1+a2)(α2 +β2 +1)

a
, or (6)

x = −β
a

and y=
α(2+a2)±2

√

(1+a2)(α2 +β2 +1)

a
. (7)

Proof. We refer to Table 5, Appendix F, for the computations. By the Main Lemma,∆ = 0 impliesy+aα = 0
or ax+ β = 0. Substitutingy by −aα in ∆ gives an expression of the formf0 f 2

1 . Similarly, substitutingx
by −β/a in ∆ gives an expression of the formg0g2

1 (recall thata 6= 0 since the lines are not coplanar, by
assumption). It follows that∆ = 0 if and only if y+aα = fi = 0 or ax+ β = gi = 0, for i = 0 or 1. The
fi andgi are polynomials of degree two inx andy, respectively. Solvingf1 = 0 in terms ofx directly yields
that the systemy+aα = f1 = 0 is equivalent to (6). Similarly, solvingg1 = 0 in terms ofy yields (7). On the
other hand, we prove that the solutions ofy+aα = f0 = 0 andax+β = g0 = 0 are included in the set of
solutions of (7) and (6), respectively, which concludes the proof. Because of lack of space, we omit here this
proof (see Appendix A for a complete proof). �

Lemma 8 If ∆ = 0, the trisector of̀ 1, `2, and `3 consists of a cubic and a line that do not intersect in real
space.

Proof. By Lemma 7,∆ = 0 if and only if System (6) or (7) is satisfied. By symmetry of the problem (we
omit here the specification of the symmetry) we only need to consider one of thecomponents of (6) and (7).

Hence, it is sufficient to show that the systemy = −aα, x = β(2a2+1)
a +2

√

(1+a2)(α2 +β2 +1) implies that
the trisector consists of a cubic and a line that do not intersect. We assume in the following that this system is
satisfied and that∆ = 0. We refer to Table 6 for the computations.

We first show that the characteristic polynomial of the pencil generated bythe bisectors is always strictly
positive. Recall that the characteristic polynomial is never negative (seeLemma 3). It is thus sufficient to
prove that it is never zero, or equivalently, that its product with its algebraic conjugate (obtained by changing
the sign of

√

(1+a2)(α2 +β2 +1)) is never zero. This product is a polynomialT in a,α,β,λ. We compute,
similarly as in the proof of Lemma 3, at least one point per connected component of the real semi-algebraic set
{χ = (a,α,β,λ) ∈ R

4 | T(χ)− 1
2 < 0}. The resulting set of points is empty, henceT(χ) is always greater or

equal to 1/2. It thus follows that the characteristic polynomial is always strictly positive.
Since the characteristic polynomialD(λ) is always strictly positive and its discriminant∆ is zero,D(λ)

admits two (conjugate) double imaginary roots. Letλ1 andλ2 denote these two roots. Recall thatD(λ) =
detP(λ) with P(λ) = λQ1,2 + Q1,3 whereQi, j is the matrix associated with the hyperbolic paraboloidHi, j . It
follows from the classification of the intersection of quadrics [12, Table 4]that either (i)P(λ1) andP(λ2) are
of rank 3 and the trisectorH1,2∩H1,3 consists of a cubic and a line that do not intersect or (ii)P(λ1) andP(λ2)
are of rank 2 and the trisector consists of two secant lines.

We now prove thatP(λ1) andP(λ2) are of rank 3. We compute the Gröbner basis of all the 3×3 minors of
P(λ) and of the polynomial 1− tΨ with

Ψ = (1+a2)(1+α2 +β2)(ax−y−β+aα)(y+ax−aα−β).

The basis is equal to 1, thus the 3×3 minors ofP(λ) are not all simultaneously equal to zero whenΨ 6= 0.
Furthermore,Ψ 6= 0 for anyx,y,a,α,β in R such that the lines̀1, `2, and`3 are pairwise skew (see (2) and the
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proof of Lemma 5). Thus the rank ofP(λ) is at least 3. The rank ofP(λi), i = 1,2, is thus equal to 3 since
detP(λi) = 0. We can thus conclude that when∆ = 0 the trisector consists of a cubic and a line that do not
intersect in real space. �

We now state a proposition that shows that the trisector admits four asymptotes that are pairwise skew and
gives a geometric characterization of their directions.

Proposition 9 The trisector of̀ 1, `2, and`3 intersects the plane at infinity in four real simple points. Further-
more, the four corresponding asymptotes are parallel to the four trisectorlines of three concurrent lines that
are parallel to`1, `2, and`3, respectively.

Proof. The trisector is the intersection of two hyperbolic paraboloids. Any hyperbolic paraboloid contains
two lines at infinity. Hence the intersection, at infinity, of any two distinct hyperbolic paraboloids is the inter-
section of two pairs of lines. The intersection of these two pairs of lines consists of exactly four simple real
points unless the point of intersection of the two lines in one pair lies on one line of the other pair. Because of
lack of space, we omit here the proof that this cannot happen under ourassumptions and the characterization
of the four asymptotes (see Appendix B for a complete proof). �

Theorem 10 The trisector of three lines in general position consists of four infinite smoothbranches of a
non-singular quartic or of a cubic and a line that do not intersect in real space.

Proof. As mentioned in the beginning of Section 2.2, the trisector of tree lines consists of a smooth quartic
unless the discriminant∆ is zero. Lemma 8 and Proposition 9 thus yield the result. �

2.5 Topology of the Voronoi diagram

We omit the proof of the following first lemma because of lack of space (see Appendix C for a proof).

Lemma 11 There is a one-to-one correspondence between the set of ordered triplets of lines (in general posi-
tion) and the set of affine frames of positive orientation.

Corollary 12 The set of triplets of lines in general position is connected.

Theorem 13 The topology of the Voronoi diagram of three lines in general position is invariant.

Proof. Consider three lines in general position and a bisector of two of them. The bisector is a hyperbolic
paraboloid which is homeomorphic to a plane. The trisector lies on the bisector and it is homeomorphic to four
lines that do not pairwise intersect, by Theorem 10. Hence the topology ofthe regions that lie on the bisector
and are bounded by the trisector is invariant by continuous deformation onany connected set of triplets of lines
(in general position). The topology of these regions is thus invariant by continuous deformation on the set of all
triplets of lines in general position (by Corollary 12). It follows that the topology of the two-dimensional cells
of the Voronoi diagram is invariant by such a continuous deformation. The Voronoi diagram is defined by the
embedding inR3 of its two-dimensional cells, hence its topology is also invariant by continuousdeformation.
�

Proof of Theorem 1. Theorem 1 follows from Theorems 10 and 13 and from the computation of anexample
of a two-dimensional cell of the Voronoi diagram (for instance the one shown in Figure 1). �

3 Properties of the Voronoi diagram and algorithms

We present here some fundamental properties of the Voronoi diagram and algorithms for separating the two
components of each two-dimensional Voronoi cell and the four components of the cell of dimension one.
Because of the lack of space, we omit all proofs (see Appendix D for proofs). We start by presenting two
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properties, one on the asymptotes of the trisector and one on the incidence relations between cells, which
directly yield an unambiguous labeling of the components of the trisector.

LetVi j denote the Voronoi cell of lines̀i and` j and letUi j andTi j denote the connected components ofVi j

that are bounded by one and three arcs of the trisector, respectively (see Figure 1).

Proposition 14 Exactly one of the four branches of the trisector of three lines in general position admits only
one asymptote. Let C0 denote this branch. Each cell Ui j is bounded by a branch distinct from C0 and every
such branch bounds a cell Ui j .

Let Ck, k= 1,2,3, denote the branches of the trisector that bound the component Ui j , i, j 6= k. The labeling
of the four branches of the trisector by C0, . . . ,C4 is unambiguous.

Note that differentiating betweenC1 andC2 cannot be done by only looking at the cellV12 (Figure 1) but has to
be done by looking at the other cellsV13 andV23. Differentiating betweenC1 andC2 on Figure 1 can be done
by computing (using the algorithm described below) a vertical ordering (along theZ-axis) of the components
Ui j andTi j and determining the branchCk for whichUi j appears only on side of the branch (see Figure 2(b)).

We now present two important properties of trisector of the Voronoi diagram of three lines̀1, `2, and`3 in
general position and a simple algorithm for separating the two components of atwo-dimensional Voronoi cell.
We consider the(X,Y,Z) frame described in Step (i) of the algorithm below.

Proposition 15 The orthogonal projection of the trisector of`1, `2, and`3 onto the XY-plane has two asymp-
totes parallel to the X-axis and two asymptotes parallel to the Y-axis.

Proposition 16 Every branch of the trisector of̀1, `2, and`3 is monotonic with respect to the Y-direction (or
every branch is monotonic with respect to the X-direction).

Algorithm to compute a linear halfspace,Hi j , that containsUi j and whose complement containsTi j .
(i) Consider a Cartesian coordinate system(X,Y,Z) such that theZ-axis is parallel to the common per-

pendicular of̀ i and` j and such that theX andY-axis are parallel to the two bisector lines, in a plane
perpendicular to theZ-axis, of the projection of̀i and` j onto that plane.

(ii) In this frame, compute all the critical values of the trisector with respect to the X-axis and with respect
to theY-axis. Exchange theX- andY-axis if there is no critical value with respect to theX-axis.

(iii) Compute the twoX-values of the two trisector asymptotes parallel to theXZ-plane. If the minimum of
these values is smaller than the smaller critical value, then change the orientationof the three axes.

(iv) Compute a value ˜x larger than the smaller critical value and smaller that all the other critical valuesand
the two asymptoteX-values. The halfspace,Hi j , of equationX < x̃ containsUi j and the halfspaceX > x̃
containsTi j .

This linear semi-algebraic test for separating the componentsUi j andTi j and Proposition 14 gives directly
a linear semi-algebraic test for separating the components of the trisector.

Proposition 17 For any point p on the trisector, if p belongs to a halfspace Hi j , then it lies on Ck, otherwise,
if p belongs to none of the Hi j , it lies on C0.

Finally, the above algorithm and Propositions 16 and 17 give Theorem 2.

4 Configurations of three lines whose trisector contains a line

We present here a geometric characterization of the position of three lines ingeneral position such that their
trisector contains a line (i.e., consists of a cubic and line). We show that, if the trisector of three lines in general
position contains a line, then the centerO of a parallelepiped associated to the lines is on the trisector line
which is the line throughO and parallel to the interior trisector of an associated frame. Because of lack of
space, we omit here the description of the parallelepiped and frame (which are the ones of Lemma 11), the
precise meaning of interior trisector, and all proofs (see Appendix E fordetails). Conversely, we also show that
if the direction of the lines are not in some special configuration, then the trisector contains a line if and only if
it contains the center of the associated parallelepiped.
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A Proof of Lemma 7

We give here a complete proof of Lemma 7 which states:

The discriminant∆ is equal to zero if and only if

y = −aα and x=
β(2a2 +1)±2

√

a2(1+a2)(α2 +β2 +1)

a
, or (6)

x = −β
a

and y=
α(2+a2)±2

√

(1+a2)(α2 +β2 +1)

a
. (7)

We refer to Table 5, Appendix F, for the computations. Recall that, by the Main Lemma,∆ = 0 implies
y+ aα = 0 or ax+ β = 0. Substitutingy by −aα in ∆ gives an expression of the formf0 f 2

1 . Similarly,
substitutingx by −β/a in ∆ gives an expression of the formg0g2

1 (recall thata 6= 0 since the lines are not
coplanar, by assumption). It follows that∆ = 0 if and only ify+aα = fi = 0 orax+β = gi = 0, for i = 0
or 1.

Recall also that thefi andgi are polynomials of degree two inx andy, respectively, and that solvingf1 = 0
in terms ofx directly yields that the system

y+aα = f1 = 0 (8)

is equivalent to (6). Similarly, solvingg1 = 0 in terms ofy yields that the system

ax+β = g1 = 0 (9)

is equivalent to (7).
We now show that the solutions ofy+ aα = f0 = 0 are included in the set of solutions of (7). The

polynomial f0 is the sum of two squares. It follows thaty+aα = f0 = 0 if and only if

y+aα = a2α2−1+aβx = ax+β = 0. (10)

We show below that the polynomials of (9) are included in the ideal generatedby the polynomials of (10). This
implies that (9) is, roughly speaking, less constrained than (10) and that the set of solutions of (9) contains the
solutions of (10). Hence the solutions ofy+aα = f0 = 0 are contained in the set of solutions of (9) and thus
in the set of solutions of (7).

We prove that the polynomials of (9) are included in the ideal generated by the polynomials of (10) by
showing that the normal form of every polynomial of (9) with respect to theGröbner basis of the polynomials
of (10) is zero. This is done using the functionnormalf (of Maple) which computes the normal form of a
polynomial with respect to a Gröbner basis.

We prove similarly that the solutions ofax+ β = g0 = 0 are included in the set of solutions of (8) and
thus of (6), which concludes the proof.

B Proof of Proposition 9

We prove here Proposition 9 which state:

The trisector of̀ 1, `2, and`3 intersects the plane at infinity in four real simple points. Furthermore,
the four corresponding asymptotes are parallel to the four trisector lines ofthree concurrent lines
that are parallel tò 1, `2, and`3, respectively.

14



The intersection with the plane at infinity of the bisector of lines`1 and`2 consists of the lines at infinity in
the pair of planes of equationXY = 0 (the homogeneous part of highest degree in the equation of the bisector
of lines`1 and`2 which is equal toZ = − a

1+a2 X Y). This pair of planes is the bisector of the two concurrent
lines that are parallel tò1 and`2, respectively. Note that the lines at infinity in this pair of planes are invariant
by translation of the planes. We thus get that the lines at infinity of the bisectorof any two lines̀ i and` j are
the lines at infinity in the pair of planes that is the bisector to any two concurrent lines that are parallel tòi and
` j , respectively.

It follows that the points at infinity on the trisector of`1, `2, and`3 are the points at infinity on the trisector
lines (the intersection of bisector planes) of three concurrent lines that are parallel tò 1, `2, and`3, respectively.
It remains to show that this trisector consists of four distinct lines.

Let `′1, `′2, and`′3 be the three concurrent lines through the origin that are parallel to`1, `2, and`3, respec-
tively, and suppose, for a contradiction, that their trisector does not consist of four distinct lines. This implies
that the line of intersection of the two bisector planes of two lines, say`′1 and`′2, is contained in one of the
bisector planes of two other lines, say`′1 and`′3. The intersection of the bisector planes of`′1 and`′2 is the
Z-axis. It follows that one of the bisector planes of`′1 and`′3 is vertical, hencè ′

1 and`′3 are symmetric with
respect to a vertical plane and thus`′3 is contained in theXY-plane. Therefore,̀′1, `′2, and`′3 lie in theXY-plane,
contradicting the general position assumption, which concludes the proof.

C Proof of Lemma 11

We prove here Lemma 11 which states:

There is a one-to-one correspondence between the set of ordered triplets of lines (in general posi-
tion) and the set of affine frames of positive orientation.

Consider three lines̀1, `2, and`3 in general position and refer to Figure 3. For the three choices of pairs of
lines`i , ` j , consider the plane containing`i and parallel tò j , the plane containing̀j and parallel tò i , and the
region bounded by these two parallel planes. The general position assumption implies that these regions have
non-empty interiors and that no three planes are parallel. The intersection of these three regions thus defines a
parallelepiped. By construction, each of the lines`1, `2, and`3 contains an edge of that parallelepiped. These
lines are pairwise skew thus exactly two vertices of the parallelepiped are not on the lines. Each of these two
points induces an affine frame centered at the point and with basis the threeedges of the parallelepiped oriented
from the point to the lines̀1, `2, and`3, in this order. One of the points (C on the figure) defines a frame of
positive orientation, the other defines a frame of negative orientation (C′ on the figure). This construction
exhibits a one-to-one correspondence between the set of ordered triplets of lines (in general position) and the
set of affine frames of positive orientation, which concludes the proof.

D Proofs of Section 3: Properties of the Voronoi diagram and algorithms

We present here the missing proofs of Section 3. We first prove three lemmas that, together, prove Proposi-
tion 14.

Lemma 18 Exactly one of the four branches of the trisector of three lines in general position admits only one
asymptote.

Proof. By Proposition 9, the trisector admits foursimpleasymptotes, for all triplets of lines in general
position. It follows that the property that exactly one of the branches of the trisector has only one asymptote is
invariant by continuous deformation on the set of triplets of lines in generalposition. The result thus follows
from Corollary 12 and from the observation that the property is verified on one particular example (see Fig 1).
�
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`1

`2

`3

C

C′

v1 v2

v3

Figure 3: The parallelepiped formed by`1, `2, and`3 and the associated frame(C,v1,v2,v3) of positive orien-
tation.

We denote byC0 the branch of the trisector that admits only one asymptote (see Figure 1), andC1, C2, and
C3 the three others (the ordering of these three branches is, for the moment, arbitrary).

Let Vi j denote the Voronoi cell of lines̀i and` j . Let Ui j andTi j denote the connected components ofVi j

that are bounded by one and three arcs of the trisector, respectively (see Figure 1).

Lemma 19 Each cell Ui j is bounded by a branch Ck, k = 1,2,3, and every such branch bounds a cell Ui j .

Proof. This property is invariant by continuous deformation on the set of triplets oflines in general position.
It is thus sufficient to prove it for any three given lines in general position, `1, `2, `3, as defined in Section 2.1.
We consider in theXY-plane the arrangement of the (orthogonal) projection of the trisector andof the silhouette
curves (viewed from infinity in theZ-direction) of the bisectors (see Figure 2(b)); these silhouette curves consist
of only two parabolas since the bisector of lines`1 and`2 has no such silhouette (its equation has the form
Z = cstXYand thus any vertical line intersects it). By construction, for all vertical lines intersecting one given
(open) cell of this arrangement, the number and ordering of the intersection points between the vertical line and
all the pieces of the three bisectors that are bounded by the trisector is invariant. For any point of intersection,
we can easily determine (by computing distances) whether the point lies on a Voronoi cellVi j . We can further
determine whether the point belongs to the componentUi j or Ti j by using the linear separation test described
below. We thus report the ordering of the componentsUi j andTi j above each cell of the arrangement in the
XY-plane for a given example; see Figure 2(b).

We can now observe that there is a one-to-one correspondence between the three branchesC1, C2, andC3

and the componentsU12, U13, andU23 such that the component appears only on one side of the corresponding
branch9. It follows that each of the branchesC1, C2, andC3 bounds a cellUi j . �

SinceUi j is, by definition, bounded by only one arc of the trisector, Lemmas 18 and 19directly yield the
following property.

Lemma 20 Let C0 denote the only branch of the trisector that admits only one asymptote and Ck, k = 1,2,3,
denote the branches of the trisector that bound the component Ui j , i, j 6= k (see Figure 1). This labeling of the
four branches of the trisector by C0, . . . ,C4 is unambiguous.

We now consider any three lines`1, `2, and`3 in general position (pairwise skew and not all parallel to a
common plane) and an associated Cartesian coordinate system(X,Y,Z) such that theZ-axis is parallel to the
common perpendicular of̀1 and`2 and such that theX andY-axis are parallel to the two bisector lines, in a
plane perpendicular to theZ-axis, of the projection of̀1 and`2 onto that plane.10 Note that the orientations of

9Namely,U13 (resp.U23 andU12) appears on only one side of the lower-right (resp. upper-right andleft-most) branch.
10Note that this setting is slightly different than the one described in Section 2.1 since, here, any triplet of three lines in general

position can be moved continuously into another while the associated frame moves continuously; however, if the initial and final
triplets of lines are in the setting of Section 2.1, it is not necessarily possible toensure that, during the motion, all triplets of lines
remain in this setting.
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the axis are not specified (except for the fact that the frame has a positive orientation) and that theX andY-axis
can be exchanged. We now prove Proposition 15 which states:

The orthogonal projection of the trisector of`1, `2, and`3 onto the XY-plane has two asymptotes
parallel to the X-axis and two asymptotes parallel to the Y-axis.

Proof of Proposition 15. By proposition 9, the four asymptotes of the trisector are parallel to the four trisector
lines of three concurrent lines parallel to`1, `2, and`3. The bisector to two lines through the origin and parallel
to `1 and`2 is the pair of planes of equationXY = 0. Hence the asymptotes of the trisector are parallel to lines
that lie in the pair of planesXY = 0. The orthogonal projection of the asymptotes on theXY-plane are thus
parallel to theX- or Y-axis. It follows that the number of asymptotes (in projection) that are parallel to the
X-axis (resp.Y-axis) is invariant by continuous deformation on any connected set of triplets of lines in general
position. The result follows from the fact that, on a particular example (seeFigure 1), there are two asymptotes
parallel to theX-axis and two others parallel to theY-axis and that the set of triplets of lines in general position
is connected (Corollary 12). �

We assume in the following thatthe asymptote of C0 is parallel to the YZ-plane(as in Figure 1) by ex-
changing, if necessary, the role ofX andY. We now prove Proposition 16 which states:

Every branch of the trisector of̀1, `2, and l3 is monotonic with respect to the Y-direction.

Proof of Proposition 16. Let P denote any plane parallel to theXZ-plane. The arcC0 intersects planeP an
odd number of times (counted with multiplicity) sinceC0 has only one asymptote (Proposition 14) which is
parallel to theYZ-plane. Furthermore, by Proposition 15, the trisector has two other asymptotes parallel to the
XZ-plane. Hence planeP intersects the trisector in two points at infinity andC0 an odd number of times (in
affine space). The trisector thus intersectsP in at least three points in real projective space. There are thus four
intersection points (in real projective space) since there are four intersection points in complex space (since
the trisector is of degree four) and if there was an imaginary point of intersection, its conjugate would also be
an intersection point (since the equations of the plane and quadrics have real coefficients) giving five points of
intersection.

Therefore the trisector intersects planeP in two points inR
3, one of which lies onC0. Since there are an

odd number of intersection points onC0, planeP intersectsC0 exactly once and any other branch exactly once.
�

We now prove the correctness of the algorithm, presented in Section 3, which we recall here for clarity.

Algorithm for computing a linear halfspace, Hi j , that containsUi j and whose complement containsTi j .
(i) Consider a Cartesian coordinate system(X,Y,Z) such that theZ-axis is parallel to the common per-

pendicular of̀ i and` j and such that theX andY-axis are parallel to the two bisector lines, in a plane
perpendicular to theZ-axis, of the projection of̀i and` j2 onto that plane.

(ii) In this frame, compute all the critical values of the trisector with respect to the X-axis and with respect
to theY-axis. Exchange theX- andY-axis if there is no critical value with respect to theX-axis.

(iii) Compute the twoX-values of the two trisector asymptotes parallel to theXZ-plane. If the minimum of
these values is smaller than the smallest critical value, then change the orientation of the three axes.

(iv) Compute a value ˜x larger than the smaller critical value and smaller that all the other critical valuesand
the two asymptoteX-values. The halfspace,Hi j , of equationX < x̃ containsUi j and the halfspaceX > x̃
containsTi j .

Proof of correctness. For simplicity, we assume without loss of generality thati and j are equal to 1 and 2,
respectively. By Proposition 16, the trisector has no critical point in theX or Y-direction. Since we exchange,
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in Step (ii), theX- andY-axis if there is no critical value with respect to theX-direction, we have that there is
no critical point with respect to theY-direction.

First note that the asymptotes of the trisector are never vertical (i.e., parallel to theZ-axis) because other-
wise, by Proposition 9 and since`1 and`2 are horizontal, the linè3 would be horizontal (its direction would be
the symmetric of the one of̀1 with respect to a vertical plane), contradicting the general position assumption.

It thus follows, since the directions of the asymptotes, projected on theXY-plane, are parallel to theX
or Y-axis (by Proposition 15) that the oriented directions of the asymptotes of thebranches of the projected
trisector are invariant (in the direction±X or ±Y) by continuous deformation on the set of triplets of lines in
general position (which is connected by Corollary 12).

Hence, it follows from the analysis of one configuration (see Figure 1) that the two projected asymptotes
of the branchC3 have the same oriented direction. ThusC3 has (at least) a critical point with respect to this
direction, whith is thus+X or −X since there is no critical point with respect to theY-axis. Assume that this
direction is the−X direction (as in Figure 1), by changing, if necessary, the orientation of the axis.

We also get from the configuration depicted in Figure 1 that two other projected branches of asymptote that
are parallel to theX-axis are in the+X direction.

Furthermore, the plane,P , parallel to theYZ-plane through the critical point ofC3 does not intersect the
trisector in any other intersect point inR3 because this intersection has multiplicity two, the plane intersects the
trisector in two points at infinity (by Proposition 15), and the trisector has degree four (it is the intersection of
two quadrics). The same argument (applied to another critical point) implies that C3 has no other critical point
and that the trisector has no critical value smaller that the one associated to thecritical point ofC3.

Hence, planeP separates (except for the critical point) the branchC3 from the other branches and the plane
of equationX = x̃ strictly separatesC3 from the other branches and leavesC3 to its left (in the direction−Y).
Hence the halfspaceX < x̃ containsU12 and the halfspaceX > x̃ containsT12.

It remains to show that the orientation of theX-axis obtained in Step (iii) of the algorithm is the same as
the one we have considered so far. Consider the twoX-values of the two trisector asymptotes parallel to the
XZ-plane. We prove that the maximum of these values is larger than the largest critical value. This implies the
result since, if the orientation of theX-axis was its opposite, then it would be changed in Step (iii).

As before, by continuity and by analyzing one particular example, we havethat two of the asymptotes of
the branches ofC1 andC2 have direction+X (in projection) and the two others have direction+Y and−Y.
We consider here the trisector and its asymptotes in projection on theXY-plane and we refer to vertical, right
and left in a standard way in the(X,Y) frame. Suppose for a contradiction that there exists a critical point
on C1 ∪C2 that is left of their vertical asymptote. Then a vertical line,L , through this critical point would
intersect the trisector at this point, with multiplicity two, and at two other points at infinity (by Proposition 15).
However, since the critical point is right of the vertical asymptote ofC1 andC2, line L intersects the trisector
somewhere else (or with higher multiplicity), which is not possible since the trisector has degree four. �

Note finally that the trisector has generically four critical points with respectto theX-direction, one onC3,
one onC1∪C2 and two onC0 since it has an asymptote parallel to theY-axis (in projection). Furthermore, the
trisector has no other critical points for the following reason. The projection (on theXY-plane) of the trisector
is a curve of degree four. Furthermore, it has degree two inX and degree two inY because the curve intersects
any line parallel to theX- or Y-axis in at most two points since there are two other points of intersection at
infinity (by Proposition 15). The critical points are points on the curve suchthat the curve’s partial derivative
with respect toY is zero. This partial derivative is of degree one inY and two inX, hence eliminatingY in the
curve’s equation give an equation inX of degree four.
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E Configurations of three lines whose trisector contains a line

We present here a geometric characterization of the position of three lines ingeneral position such that their
trisector consists of a cubic and line. We need some properties of the trisector of the concurrent lines supported
by the three vectors of an affine frame (the frame described in Lemma 11, where the vectors are the edges of
the parallelepiped of Figure 3 issued fromC).

Let us consider a basis(v1,v2,v3) of the vector spaceR3 equipped with its Euclidean structure (the usual
dot product relative to the canonical basis) and named1,d2,d3 the lines supported byv1,v2,v3.

Lemma 21 The trisector of the lines d1,d2,d3 supported by the vector basis(v1,v2,v3) consists in four lines
or eight half lines passing through the origin.

Given a point p different from the origin on this trisector, its dual coordinates< p,v1 >,< p,v2 >,< p,v3 >
are non null. Thus their signs are constant on each of the eight half lines of the trisector. These signs induce a
one to one correspondence between the half lines and the eight possibilitiesfor a triplet of signs.

Proof. The trisector being the intersection of two of the bisectors, which are pairs of orthogonal planes, the
first assertion is immediate.

If < p,v1 >=< p,v2 >=< p,v3 >= 0, thenp is orthogonal to the three vectorsv1,v2 andv3 and therefore
null. If < p,v1 >= 0 and< p,v2 > 6= 0, then the projection ofp on the plane(v1,v2) is not null, lies on the
bisector line ofv1 andv2 in this plane and is orthogonal tov1. This is a contradiction since the bisector of two
distinct concurrent lines is never orthogonal to one of them and this shows that all the< p,vi > are not null.

The last assertion is immediate for an orthogonal basis and follows for the other bases from the connexity
of the set of all the bases of positive orientation. �

Lemma 22 With the same notation, if one branch of the trisector of the lines d1,d2,d3 is in the plane(v1,v2),
then each of the planes(v1,v3) and(v2,v3) contains another branch of the trisector.

Proof. As above, we may suppose, without loss of generality thatv1 = (1,a,0),v2 = (1,−a,0) andv3 =
(α,β,1). The trisector is defined by the equationX Y = 0 and a homogeneous equation of degree two inX,Y,Z.
The hypothesis implies thus that the trisector contains either the point(0,1,0) or (1,0,0). Substituting in
the second equations of the trisector, we find respectivelya2(1+ α2)−β2 = 0 or a2 α2−β2−1 = 0, which
characterize algebraically our hypothesis. Using the symmetry with respectto the planeX =Y, we may restrict
ourselves to the first case.

SubstitutingX = 1,Y = 0 andβ = a
√

1+a2 in the second equation of the trisector and solving the resulting
equation inZ shows that the points(1,0,−a+

√
1+a2) and(1,0,−a−

√
1+a2) belong to the trisector. A

simple determinant computation shows that they lie respectively on the planes(v2,v3) and(v1,v3). �

Definition 23 We nameinterior trisectorthe line of the trisector of d1,d2,d3 on which the three signs of the
< p,vi > are equal.

We say that the configuration of the directions of the lines isspecialif the case of Lemma 22 occurs.

Remark that the interior trisector is the axis of the cone of revolution circumscribing the three vectors
v1,v2,v3 and that the three other lines of the trisector are the axes of the circumscribing cones obtained by
changing the sign of one of thevi .

Theorem 24 If the trisector of three lines in general position contains a line, then the center O of the paral-
lelepiped associated to the lines is on the trisector line which is the line through O and parallel to the interior
trisector of the associated frame.

Conversely, if the direction of the lines are not in the special configuration, then the trisector contains a
line if and only if it contains the center of the parallelepiped.

Proof. With the parameters defined above, the coordinates of the center of the parallelepiped, easy to com-
pute, areX = (ax+ β)/(2a),Y = (aα + y)/2,Z = 0. The equations of the trisector simplify easily to zero,
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when substituting these coordinates and Equations (6) or (7) (in that order) in them. This proves that, if the
trisector contains a line, the center of the parallelepiped lies on the bisector. As the set of triplets of lines whose
trisector contains a line has at most four connected components (see Equations (6) and (7)), it suffices, by con-
tinuity, to choose a sample set of values for the parametersa,α,β to prove that the center of the parallelepiped
is on the line. Witha = 3/2,α = β = 2 the computation is easy, since no square root appears.

We have already seen that the asymptotic directions of the trisector are the branches of the trisector of the
edges of the parallelepiped supporting the basis vector of the associated frame. We have thus to prove that the
direction of the line in the trisector is the interior trisector of the frame. If we circularly permute the lines, the
origin of the frame is invariant and the basis vectors are permuted. Thus, the interior trisector is invariant while
the other branches are permuted. As the line in the trisector of the skew lines isalso invariant, its direction is
necessarily that of the interior trisector.

To prove the converse, we substituteX,Y,Z in the equations of the trisector by the coordinates of the
center. The first equation becomes(β + ax)(y+ aα) = 0. Substitutingy by −aα (resp. x by −β/a) in the
second equation of the trisector, we get a polynomial which factors intoa2 α2−β2−1 (resp.a2(1+α2)−β2)
and a polynomial which, solved inx (resp.y), gives Equation (6) (resp. Equation (7)). As the first factors are
the equations of the special configurations, this finishes the proof. �
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F Maple-sheet computations

Computation of at least a point per connected component ofD(λ,x,y,α,β,a) < 0
> vars:=[lambda,x,y,alpha,beta,a]:
> new_sa_component_hyp_neg(D,vars);

Pre-process...............
Computing critical values of a polynomial mapping from Cˆ6 t o C
Computing asymptotic critical values of a polynomial mappi ng from Cˆ6 to C
"****************Enter in internal", [x, y,alpha, beta, a ], [], [], [lambda]}
End of pre-process...............
Computing sampling points in a real hypersurface
Computing Critical Points using FGb (projection on lambda)
Computing Asymptotic Critical Values of u restricted to a hy persurface
Computing Critical Points using FGb (projection on x)
Computing Asymptotic Critical Values of x restricted to a hy persurface
Computing Critical Points using FGb (projection on y)
Computing Asymptotic Critical Values of y restricted to a hy persurface
Computing Critical Points using FGb (projection on alpha)
Computing Asymptotic Critical Values of alpha restricted t o a hypersurface
Computing Critical Points using FGb (projection on beta)
Computing Asymptotic Critical Values of beta restricted to a hypersurface
Computing Critical Points using FGb (projection on a)
Computing Critical Points using FGb (projection on beta)
Computing Asymptotic Critical Values of beta restricted to a hypersurface
Computing Critical Points using FGb (projection on a)
Isolating real solutions of a zero-dimensional system usin g RS
Isolating real solutions of a zero-dimensional system usin g RS
Isolating real solutions of a zero-dimensional system usin g RS
Isolating real solutions of a zero-dimensional system usin g RS
Isolating real solutions of a zero-dimensional system usin g RS
Isolating real solutions of a zero-dimensional system usin g RS
Isolating real solutions of a zero-dimensional system usin g RS
Isolating real solutions of a zero-dimensional system usin g RS

[]

Computation of at least a point per connected component ofD(λ,x,y,α,β,a) > 0
> new_sa_component_hyp_neg(-D,vars);

[.............................]

[
{

x = 0,λ = 0,a = −6752988915
8589934592,α = −1,y = 0,β = 0

}

,
{

x = 0,λ = 0,a = 6752988915
8589934592,α = −1,y = 0,β = 0

}

,
{

x = 0,λ = 0,a = −6752988915
8589934592,y = 0,β = 0,α = 1

}

,
{

x = 0,λ = 0,a = 6752988915
8589934592,y = 0,β = 0,α = 1

}

,
{

x = 0,a = −6752988915
8589934592,λ = 2,α = −1,y = 0,β = 0

}

,
{

x = 0,a = 6752988915
8589934592,λ = 2,α = −1,y = 0,β = 0

}

,
{

x = 0,a = −6752988915
8589934592,λ = 2,y = 0,β = 0,α = 1

}

,
{

x = 0,a = 6752988915
8589934592,λ = 2,y = 0,β = 0,α = 1

}

]

Table 1: For the proof of Lemma 3.

21



> Gamma:=(2*a*(y*alpha-x*beta)-(aˆ2-1))ˆ2+3*(a*x+beta )ˆ2+3*aˆ2*(y+a*alpha)ˆ2+3*(aˆ2+1)ˆ2;

Γ := (2a(αy−βx)−a2 +1)2 +3(xa+β)2 +3a2 (y+aα)2 +3(1+a2)2

> [gros_fact, op(convert(grad(gros_fact,[a,x,y,alpha,b eta]),list)),
> 1-u*(y+a*alpha), 1-v*(a*x+beta),1-w*(1+alphaˆ2+betaˆ 2),1-t*Gamma)]:
> fgb_gbasis_elim(%,0,[u,v,w,t],[a,x,y,alpha,beta]);

pack_fgb_call_generic: "FGb: 965.76 sec Maple: 975.98 sec "

[1]

Table 2: For the proof of the Main Lemma.
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> sys:=subs(a=2,[gros_fact,op(convert(grad(gros_fact, [a,x,y,alpha,beta]),list))]):

> bs1:=factor(fgb_gbasis(sys,0,[x,y,alpha,beta],[])): map(uu->op(0,uu),%), op(1,bs1[3]);

[+, +, ∗, +, +, +, +, +, +], y+2α
> [op(bs1),1-u*(y+2*alpha), 1-v*(2*x+beta),1-w*(1+alph aˆ2+betaˆ2)]:
> bs2:=factor(fgb_gbasis_elim(%,0,[u,v,w],[x,y,alpha, beta])): map(uu->op(0,uu),%),map(degree,%);

[+, +, +, +], [6, 6, 6, 6]

> bs3:=factor(fgb_gbasis_elim(bs2,0,[x],[y,alpha,beta ])):map(uu->op(0,uu),%);

[ˆ]
> bs4:=factor(fgb_gbasis([op(bs2),op(1,bs3[1])],0,[x, y,alpha,beta],[])):map(uu->op(0,uu),%);

[∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, +, +, +, +]

> fgb_gbasis_elim([op(bs4),1-u*op(3,bs4[1])],0,[u],[x ,y,alpha,beta]);

[1]

> bs5:=factor(fgb_gbasis([op(bs4),op(3,bs4[1])],0,[x, y,alpha,beta],[])):map(uu->op(0,uu),%);

[+, +, +, +, +, ∗, +, +, +, +, +, +, ∗, +, +, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, +, +, +, +]

> fgb_gbasis_elim([op(bs5),1-u*op(3,bs5[6])],0,[u],[x ,y,alpha,beta]);

[1]

> bs6:=factor(fgb_gbasis([op(bs5),op(3,bs5[6])],0,[x, y,alpha,beta],[])):map(uu->op(0,uu),%);

[+, +, +, +, +, +, +, +, +, +, +, +, +, +, +, +]

> bs7:=factor(fgb_gbasis_elim(bs6,0,[y],[x,alpha,beta ])):map(uu->op(0,uu),%);

[∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ˆ]
> bs8:=factor(fgb_gbasis([op(bs6),op(1,bs7[nops(bs7)] )],0,[x,y,alpha,beta],[])):map(uu->op(0,uu),%);

[+, +, +, +, +, +, +, +, +, +, · · · , +, +, +, +, +, +, +, +, +, +]
> bs9:=factor(fgb_gbasis_elim(bs8,0,[alpha],[x,y,beta ])):map(uu->op(0,uu),%);

[∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, · · · , ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗]
> fgb_gbasis_elim([op(bs9),1-u*op(nops(bs9[1]),bs9[1] )],0,[u],[x,y,alpha,beta]);

[1]
> bs10:=factor(fgb_gbasis([op(bs8),op(nops(bs9[1]),bs 9[1])],0,[x,y,alpha,beta],[])):
> map(uu->op(0,uu),%),op(2,bs10[3]);

[+, +, ∗, +, +, +, +, +, +, ∗, +, +, +, +, +, · · · , +, +, +, +, +], y+2α
> [op(bs10),1-u*(1+alphaˆ2+betaˆ2),1-v*(y+2*alpha), 1- w*(2*x+beta)]:
> bs11:=factor(fgb_gbasis_elim(%,0,[u,v,w],[x,y,alpha ,beta])):map(uu->op(0,uu),%);

[+, +, +, ∗, +, +, +, +, +, +, +, +, +, +, +]

> fgb_gbasis_elim([op(bs11),1-u*op(2,bs11[4])],0,[u], [x,y,alpha,beta]);

[1]

> bs12:=factor(fgb_gbasis([op(bs11),op(2,bs11[4])],0, [x,y,alpha,beta],[])):map(uu->op(0,uu),%),map(degre e,%);

[+, +, +], [4, 4, 4]
> bs12[3];
> Gamma2:=(4*y*alpha-4*x*beta-3)ˆ2+3*(2*x+beta)ˆ2+12* (y+2*alpha)ˆ2+75;
> simplify(Gamma2-bs12[3]);

16α2 y2 +84−32βxαy+16β2 x2 +12x2 +12y2 +24yα+48α2 +36βx+3β2

Γ2 := (4yα−4βx−3)2 +3(2x+β)2 +12(y+2α)2 +75

0
> [op(sys),1-u*(1+alphaˆ2+betaˆ2),1-v*(y+2*alpha),1-w *(2*x+beta),1-t*Gamma2]
> fgb_gbasis(%,0,[u,v,w,t],[x,y,alpha,beta]);

[1]

Table 3: About the proof of the Main Lemma.
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> st := time():
> bs3:=factor(fgb_gbasis(bs2,0,[x],[y,alpha,beta])):
> map(degree,%,x);
> map(uu->op(0,uu),%%);
> nops(bs3);

[4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]

[+, +, +, . . . ,+, +, +, ˆ]

64
> fgb_gbasis_elim([op(1,bs3[64]),bs3[63],1-t*coeff(bs 3[63],x)],0,[t],
> [x,y,alpha,beta]):
> print(map(degree,%));
> bs12-%;

[4, 4, 4]

[0, 0, 0]

The elements of bs2 are in the ideal generated by bs12:
> base12:=gbasis(bs12,DRL([x,y,alpha,beta])):
> map(uu->Gb[normalf](uu,base12),bs2);

[0, 0, 0, 0]

The square of the elements of bs12 are in the ideal generated by bs2:
> base2:=gbasis(bs2,DRL([x,y,alpha,beta])):
> map(uu->Gb[normalf](uuˆ2,base2),bs12);

[0, 0, 0]

> print("Total CPU time:",time() - st);

“Total CPU time:”, 17.350

Table 4: About the proof of the Main Lemma.
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> factor(subs(y=-a*alpha,big_fact));

(α4a4 +2βxα2a3 +x2a2 +β2x2a2−2a2 α2 +1+β2)

(β2−4a2−4a2 α2−4a4−4a4 α2−2aβx−4βxa3 +x2a2)2

> f0:=collect(op(1,%),x); f1:=collect(op(1,op(2,%%)),x );

f0 := (a2 β2 +a2)x2 +2βxα2a3 +α4a4 +1+β2−2a2 α2

f1 := x2a2 +(−2aβ−4βa3)x+β2−4a2−4a2 α2−4a4−4a4 α2

> factor(subs(x=-beta/a,big_fact));

(β4−2a2 β2 +a4 +a4 α2 +2β2 αay+α2y2a2 +y2a2)

(4+4β2 +4a2 +4a2 β2−a4 α2 +4ayα+2ya3 α−y2a2)2

> g0:=collect(op(1,%),y);g1:=collect(op(1,op(2,%%)),y );

g0 := (a2 α2 +a2)y2 +2β2 αay+β4−2a2 β2 +a4 +a4 α2

g1 := −y2a2 +(4aα+2a3 α)y+4+4β2 +4a2 +4a2 β2−a4 α2

Solutions of f1=0 in x and of g1=0 in y:
> map(uu->factor(uu),[solve(f1,x)]);

[
2a2 β+β+2

√

a2(a2 +1)(β2 +1+α2)

a
,

2a2 β+β−2
√

a2(a2 +1)(β2 +1+α2)

a
]

> map(uu->factor(uu),[solve(g1,y)]);

[
αa2 +2α+2

√

(a2 +1)(β2 +1+α2)

a
,

αa2 +2α−2
√

(a2 +1)(β2 +1+α2)

a
]

f0 is a sum of square:
> (aˆ2*alphaˆ2-1+a*beta*x)ˆ2+(a*x+beta)ˆ2;
> simplify(f0-%);

(a2 α2−1+aβx)2 +(xa+β)2

0

a*x+beta and g1 are in the ideal generated by y+a*alpha, x*a+beta, and aˆ2*alphaˆ2-1+a*beta*x:
> gbasis([y+a*alpha,x*a+beta,aˆ2*alphaˆ2-1+a*beta*x], DRL([a,x,y,alpha,beta])):
> normalf(a*x+beta,%), normalf(g1,%);

0, 0

g0 is a sum of square:
> (a*y*alpha+betaˆ2-aˆ2)ˆ2+aˆ2*(y+a*alpha)ˆ2;
> simplify(g0-%);

(ayα+β2−a2)2 +a2(y+aα)2

0

y+a*alpha and f1 are in the ideal generated by x*a+beta, y+a*alpha, and aˆ2*alphaˆ2-1+a*beta*x:
> gbasis([x*a+beta,y+a*alpha,a*y*alpha+betaˆ2-aˆ2],DR L([a,x,y,alpha,beta])):
> normalf(y+a*alpha,%), normalf(f1,%);

0, 0

Table 5: For the proof of Lemma 7.
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> comp1 := [y = -a*alpha, x =
> (2*beta*aˆ2+beta)/a+2*sqrt((betaˆ2+1+alphaˆ2)*(1+aˆ 2))];

comp1:= [y = −αa, x =
2βa2 +β

a
+2

√

(1+α2 +β2)(1+a2)]

We prove that the characteristic equation has no real root on this component.
> factor(subs(comp1,Char_eq));
> irrat:=op(2,%):

a2(4−4β2 λ3 +8a2−4λ3 +λ4−8λ−16α2 λa2−8β2 λa2 +8α2 +4β2 +12a2 α2 +12a2 β2 +4a4 +8a4 β2 +4a4 α2−8λa2−16α2 λ

−8β2 λ+8λ2 +4λ2 a2 +8a2 α2 λ2 +4β2 λ2 a2 +8β2 λ2−8βαa3 λ−8βαλa+8βαa3 +8aβα+8α
√

%1−8λa2 α
√

%1+λ4 β2

+λ4 α2 +4λ2 β
√

%1a−8λβ
√

%1a+12α2 λ2−4α2 λ3 +8β
√

%1a+8a2 α
√

%1+8βa3
√

%1−4λ3 α
√

%1+12λ2 α
√

%1−16λα
√

%1)

%1 := (β2 +1+α2)(1+a2)

Consider the product of the characteristic polynomial with its algebraic conjugate:
> T:=expand(irrat*subs(sqrt((1+aˆ2)*(alphaˆ2+betaˆ2+1 ))=-sqrt((1+aˆ2)*(alphaˆ2
> +betaˆ2+1)),irrat)):

The real semi-algebraic set defined by T-1/2<0 is empty:
> new_sa_component_hyp_neg(T-1/2,[a,alpha,beta,lambda ]);

Pre-process...............
Computing critical values of a polynomial mapping from Cˆ4 t o C
Computing asymptotic critical values of a polynomial mappi ng from Cˆ4 to C
"************************Enter in internal", [alpha,be ta, lambda], [], [], [a]
End of pre-process...............
Computing sampling points in a real hypersurface
Computing Critical Points using FGb (projection on a)
Computing Asymptotic Critical Values of a restricted to a hy persurface
Computing Critical Points using FGb (projection on alpha)
Computing Asymptotic Critical Values of alpha restricted t o a hypersurface
Computing Asymptotic Critical Values of alpha restricted t o a hypersurface
Computing Critical Points using FGb (projection on beta)
Computing Asymptotic Critical Values of beta restricted to a hypersurface
Computing Critical Points using FGb (projection on lambda)
Isolating real solutions of a zero-dimensional system usin g RS
Isolating real solutions of a zero-dimensional system usin g RS
Isolating real solutions of a zero-dimensional system usin g RS
Isolating real solutions of a zero-dimensional system usin g RS

[]

Consider all the 3x3 minors of the matrixP(λ) of the pencil:
> ldet:=NULL:
> for i to 4 do for j from i to 4 do
> ldet:=ldet,det(minor(P,i,j)):
> od od:

The rank ofP(λ) is always 3 or 4 since there is no common zeros of the minors:
> [ldet,1-t*(1+alphaˆ2+betaˆ2)*(1+aˆ2)*(-beta+y+a*x-a *alpha)*(-beta-y+a*x+a*alpha)]:
> fgb_gbasis_elim(%,0,[],[t,a,x,y,alpha,beta,lambda]) ;

[1]

Table 6: For the proof of Lemma 8.
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