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Let f be a polynomial in Q[X1, . . . , Xn] of degree D and, for t ∈ Q, let Ht ⊂ Cn be the
hypersurface defined by f − t = 0. The main result of this paper is an algorithm computing at
least one point in each connected component of H0 ∩ Rn, without smoothness assumptions on
H0, whose complexity is polynomial in n, the evaluation complexity L of f , D and an intrinsic
geometric degree δ which is always less than Dn when H0 has a positive dimensional singular
locus. As a by-product, we prove that given H1, . . . ,Hn−2 generic hyperplanes of Qn, the 0-th
Betti number of H0∩Rn is bounded by D(1+(D−1)+ · · ·+(D−1)n−1−(d0+ · · ·+dn−2)) where
for i = 1, . . . , n − 2, di (resp. d0) denotes the sum of the degree of the positive equidimensional
components of the singular locus of H0 ∩ (∩i

j=1Hi) (resp. H0). In singular situations, this is
always less than the Thom-Milnor bound, which is here equal to Dn.

Motivation and description of the problem. Computing at least one point in each con-
nected component of a real algebraic set H0∩Rn defined by a single equation f = 0 is a question
of first importance since it is a basic subroutine used in several algorithms dealing with semi-
algebraic sets (see [4]). To tackle this problem, we focus on the critical point method. This is
based on reducing the problem to compute the critical points of a polynomial mapping reaching
its extrema on each connected component of the studied hypersurface H0 ∩ Rn.
Critical points are algebraically characterized by the vanishing of some minors of a jacobian
matrix. Supposing H0 to be smooth forbids rank defects on Jac(f) and makes easier the problem
of computing sampling points in H0 ∩ Rn. The algorithms provided in [9, 3] have a worst-case
complexity within O(n3D3n) arithmetic operations in Q which improves the one of [4] whose
complexity is within O(n2(2D)5n) arithmetic operations in Q. A more accurate analysis shows
the one of [9] is better and an implementation of this algorithm shows its practical efficiency.
Dealing efficiently with singular situations is the main objective of the algorithms provided
in [4, 7, 1]. The contributions in [4, 7] deform infinitesimally H0 to retrieve a smooth situation,
compute sampling points on the deformed hypersurface, and compute the limits of these points
when the introduced infinitesimals tend to 0. This leads to asymptotically optimal algorithms.
Nevertheless, the computational cost induced by the use of infinitesimals, which is generically
exponential in the number of variables, has forbidden to obtain efficient implementations. The
strategy developed in [1] consists in studying recursively imbricated singular loci on the one
hand and computing critical points of mappings restricted to the regular locus of the considered
varieties on the other hand. The complexity of this latter approach is not well-controlled.
Thus, the algorithms dealing with singular situations have a worst-case complexity which is
greater than the ones developed for smooth cases. The aim of this work is to remedy to this
situation, providing an algorithm whose complexity is the one of [9], even when H0 is not smooth.

∗

Mohab.Safey@lip6.fr, Computer Algebra Team (CalFor) of LIP6, Université Pierre et Marie Curie, IN-
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An apparently surprising result is that the algorithm we provide never reaches its worst-case
complexity when H0 has a positive-dimensional singular locus. In the next paragraph, we detail
our results. The last paragraph is devoted to comparisons with related works.

Main contributions. Our approach goes back to [7], by trying to compute limits of critical
points of a mapping restricted to Ht (when t → 0). Our contribution is to avoid the computation
of a rational parametrization with coefficients in a Puiseux series field for this task. Given
φ ∈ Q[X1, . . . , Xn], consider, for t ∈ Q, the critical locus K(φ,Ht) of φ restricted to the regular
locus of Ht. Let L be a new variable and denote by C ⊂ Cn+1 be the zero-set of the polynomial
system

L
∂f

∂X1
−

∂φ

∂X1
= · · · = L

∂f

∂Xn
−

∂φ

∂Xn
= 0.

Consider the projection Π : Cn ×C → C sending (x, `) ∈ Cn ×C to x and C the Zariski-closure
of Π(C).

Theorem 1 Suppose that K(φ,H0) is zero-dimensional and that C has dimension 1. Then,
the bounded limits of K(φ,Ht) when t tends to 0 are contained in H0 ∩ C. Moreover, H0 ∩ C is
zero-dimensional.

Outline of proof: Consider a sequence of points (yk)k∈N such that yk ∈ K(φ,H1/k) which
converges to a point y ∈ Cn. Remark that f(yk) → 0 when k → ∞ and that, for any k,
yk ∈ Π(C). This implies f vanishes at y and y ∈ C which implies y ∈ H0 ∩ C.
It remains to prove H0∩C is zero-dimensional. Since by assumption K(φ,H0) is zero-dimensio-
nal, it is sufficient to prove H0 ∩ C \ K(φ,H0) is zero-dimensional. This is a consequence of
(H0 ∩ C \ K(φ,H0)) ⊂ C \ Π(C) which is zero-dimensional since C has dimension 1. �

Classical results allow us to design a procedure computing the limits of K(φ,Ht) (when t → 0)
based on Gröbner bases using monomial block-orderings. Designing a similar procedure using
geometric resolution (see [5] and references therein) is possible by computing a parametric
geometric resolution encoding the Zariski-closure C of the zero-set of the vanishing of all (2, 2)

minors of Jac(f, φ) and ∂f
∂X1

2
+ · · ·+ ∂f

∂Xn

2
6= 0 and then use the intersection step provided in [5]

to compute a geometric resolution of C ∩H0.
Theorem 1 is used below to compute sampling points in H0 ∩ Rn by computing the limits of
the critical locus of some mapping restricted to Ht, when t → 0. We study the use of quadratic
mappings (see also [7, 1, 3]) and projection functions (see [9] for a similar approach in the
smooth case).
The following result extends the ones of [7, 1, 3] to compute efficiently sampling points on
a singular hypersurface, by computing critical points of a quadratic mapping. Given a point
A = (a1, . . . , an) ∈ Qn, denote by WA the variety defined by

〈f〉 +

(

〈L
∂f

∂X1
− (X1 − a1), . . . , L

∂f

∂Xn
− (Xn − an)〉 ∩ Q[X1, . . . , Xn]

)

.

Theorem 2 There exists a Zariski-closed subset A ( Cn such that for any A = (a1, . . . , an) ∈
Qn \ A, WA ⊂ H0 is zero-dimensional. Moreover, it has a non-empty intersection with each
connected component of the real algebraic set H0 ∩ Rn.

Outline of proof: Given A = (a1, . . . , an) ∈ Qn, let φA : Cn → C denote the mapping sending
(x1, . . . , xn) ∈ Cn to (x1 − a1)

2 + · · · + (xn − an)2. From [7, Lemma 3.7], each connected
component of H0 contains a bounded limit of K(φA,Ht). It remains to prove there exists a
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Zariski-closed subset A ( Cn such that for A ∈ Qn \A, Theorem 1 applies (with φ = φA). This
is a consequence of Sard’s theorem (see [7, Lemma 3.2] or [3]) which shows that K(φA,H0) is
zero-dimensional and Jac(L ∂f

∂X1
− 2(X1 − a1), . . . , L

∂f
∂Xn

− 2(Xn − an)) has rank n at any point
(x, `) ∈ Cn × C. �

The following result extends the algorithm of [9] to non-smooth situations in the case of hy-
persurfaces. It allows us to use generic projections (instead of quadratic mappings). Given
A ∈ GLn(Q), fA denotes the polynomial f(A.X) (where X = (X1, . . . , Xn)). Given an alge-
braic variety V ⊂ Cn defined as the zero-set of (f1, . . . , fs), V

A denotes the variety defined by
(fA

1 , . . . , fA
s ).

Additionally consider an arbitrary point (p1, . . . , pn−1) ∈ Qn−1 and denote by WA
p the union of

the zero-sets of

〈fA〉 + 〈X1 − p1, . . . , Xi − pi, L. ∂fA

∂Xi+1
− 1, ∂fA

∂Xi+2
. . . , ∂fA

∂Xn
〉 ∩ Q[X1, . . . , Xn](for i = 1, . . . , n − 2),

〈fA〉 +
(

〈L.∂fA

∂X1
− 1, ∂fA

∂X2
. . . , ∂fA

∂Xn
〉 ∩ Q[X1, . . . , Xn]

)

and 〈f,X1 − p1, . . . , Xn−1 − pn−1〉.

Theorem 3 Given an arbitrary point (p1, . . . , pn−1) ∈ Qn−1, there exists a Zariski-closed subset
A ( GLn(C) such that for A ∈ GLn(Q) \ A, WA

p ⊂ HA
0 is zero-dimensional and has a non-

empty intersection with each connected component of H0 ∩ Rn.

Outline of proof: Denote by Πi : Cn → Ci the canonical projection sending (x1, . . . , xn) to
(x1, . . . , xi) and by πi : Cn → C the canonical projection sending (x1, . . . , xn) to xi.
A first part of the proof is dedicated to show that, given an algebraic variety, there exists a
Zariski-closed subset A ( GLn(C) such that for any A ∈ GLn(Q) \ A and for any connected
component CA of VA ∩ Rn, Πi(C

A) is closed for all i = 1, . . . , n − 1.
Now, given an arbitrary point (p1, . . . , pn−1) ∈ Qn−1, denote by H0 = Cn and by Hi is the
zero-set of X1 − p1 = · · · = Xi − pi (for i = 1, . . . , n − 1). Under the above statement,
one shows that either CA ∩ Hn−1 6= ∅ or, for some i = 0, . . . , n − 1, CA contains a limit of
K(πi+1,HA

t ∩ Hi) when t → 0. It remains to verify that for A chosen outside a Zariski-closed
subset of GLn(C) the assumptions of Theorem 1 are satisfied. This is done classically by using
Sard’s Theorem (see e.g. [2]) to prove that for A chosen outside a Zariski-closed subset and

for i = 1, . . . , n − 2 the matrices Jac(L ∂fA

∂Xi+1
− 1, ∂fA

∂Xi+2
, . . . , ∂fA

∂Xn
, X1 − p1, . . . , Xi − pi) and the

matrix Jac(L∂fA

∂X1
− 1, ∂fA

∂X2
, . . . , ∂fA

∂Xn
) have maximal rank. �

The above remark on the rank of the jacobian matrices is important since it allows us to use
the algorithm provided in [5] and computes a geometric resolution of the Zariski-closure of a
system of equations and inequations f1 = . . . = fs = 0, g 6= 0.
In this algorithm, the intermediate data are parametric geometric resolutions encoding lifted
curves and geometric resolutions of Zariski-closure of the zero-set of the intermediate polynomial
systems f1 = . . . = fi = 0, g 6= 0. At each step a Hensel-lifting is performed to recover a lifting
curve of the Zariski-closure of the zero-set of f1 = . . . = fi = 0, g 6= 0 and an intersection step
computes a geometric resolution for the intersection of this curve and the hypersurface defined
by fi+1 = 0. Then, a cleaning step produces a geometric resolution of a generic fiber of the
Zariski-closure of the zero-set of f1 = · · · = fi+1 = 0, g 6= 0.
Our algorithm which relies on Theorem 3 runs as follows:

• choose randomly A ∈ GLn(Q) and (p1, . . . , pn−1) ∈ Qn−1;
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• for i = 1 to n− 2 compute a parametric geometric resolution encoding the Zariski-closure
Ci of the zero-set of

∂fA

∂Xi+2
= · · · =

∂fA

∂Xn
= X1 − p1 = · · · = Xi − pi = 0,

∂fA

∂Xi+1
6= 0

and compute a geometric resolution of Ci ∩H0.

• Compute a parametric geometric resolution encoding the Zariski-closure C of the zero-set
of

∂fA

∂X2
= · · · =

∂fA

∂Xn
= 0,

∂fA

∂X1
6= 0

and compute a geometric resolution of Ci ∩H0.

• Return all the computed geometric resolutions and f = X1−p1 = · · · = Xn−1−pn−1 = 0.

Compared to the algorithm of [9], the algorithm we provide here only performs additional gcd
computations to take into account the non-vanishing of the aforementioned inequations. Thus,
its complexity is the same than the one of [9].

Theorem 4 Let f be a polynomial in Q[X1, . . . , Xn] of degree D, encoded by a straight-line
program of length L and H ⊂ Cn be the hypersurface defined by f = 0. There exists a prob-
abilistic algorithm which computes at least one point in each connected component of H0 ∩ Rn

within O
(

n2(nL + n4)U(D.δ)2
)

arithmetic operations in Q where δ is the maximal degree of
the intermediate algebraic varieties studied during the incremental process and is bounded by
D.(D − 1)n−1.

The procedure relying on Theorem 2 which computes sampling points in H0 ∩Rn has a similar
complexity but the degree δ can at best be bounded by Dn.

At last, we mention that, following the complexity result of [6], using Gröbner bases to perform
algebraic elimination inside our algorithms leads also to a complexity within DO(n) arithmetic
operations in Q.

Remark. Let d be the sum of the degrees of the equidimensional components of the singular
locus of H0 having positive dimension. One can refine the above degree bound D(D − 1)n−1

dominating δ by remarking that the degree of the curve defined as the Zariski-closure of the
solution set of:

∂fA

∂X2
= · · · =

∂fA

∂Xn
= 0,

∂fA

∂X1
6= 0

is bounded by (D − 1)n−1 − d. Thus, while in the smooth case the degree bound D.(D − 1)n−1

can be reached, it cannot in the case where H0 has a positive dimensional singular locus.
Taking into account the above discussion and performing a careful analysis of degree bounds
for the algorithm relying on Theorem 3, this leads to the following result.

Theorem 5 Let H1, . . . ,Hn−2 be generic hyperplanes of Qn. The number of connected compo-
nents of the real counterpart of H0 is bounded by

D(1 + (D − 1) + · · · + (D − 1)n−1 − (d0 + · · · + dn−2)),

where di (resp. d0) denotes the sum of the degree of the positive-dimensional components of the
singular locus of H0 ∩ (∩i

j=1Hi) (resp. H0).

4



Comparison with previous complexity results. Previous contributions [4, 7] dealing
with singular hypersurfaces with an asymptotically optimal complexity. We compare here our
complexity result with previous ones and show it is exponentially better than the others.
We first focus on Basu, Pollack and Roy’s algorithm (see [4]) which was known to have
the best complexity to compute sampling points on hypersurfaces without any assumption.
This algorithm reduces the question to solving a zero-dimensional system with coefficients in
a Puiseux series field Q〈ε, ζ〉 (where ε and ζ are infinitesimals), which has always a degree
D =

∏n
i=1 max(4, 2 degi(f)) ≤ (max(4, 2D))n , where degi(f) is the partial degree of f in Xi.

This resolution is done by means of linear algebra operations in a quotient algebra, so that
the complexity is O(D3 + nD

2) arithmetic operations in Q(ε, ζ). In worst cases, the maximal
degree, in ε and ζ, of the coefficients appearing during the computations equals the degree D.
Thus, the cost of each arithmetic operation in Q(ε, ζ) can at best be bounded by M(D)2 (where
M(p) = p log2(p) log log(p)). Then, the complexity of this algorithm written in expanded form
is O(

(

D
3 + nD

2
)

M(D)2) arithmetic operations in Q. Here, we bring an algorithm computing
sampling points in H0∩Rn, without smoothness assumptions on H0, whose worst-case complex-
ity (which is reached on generic inputs) is within O(n2(Dn + n3)M(D2(D − 1)n−1)2) arithmetic
operations in Q. On generic inputs, the complexity gain is, up to log factors, equivalent to
(25nD2n)/n2 in terms of arithmetic operations in Q. Taking into account the bit-size of the
coefficients which grow linearly in the degree of the studied zero-dimensional ideal on generic
inputs, this leads to a complexity gain equivalent to (26nD2n)/n2.
We now focus on contributions introducing a single infinitesimal (see for example [7]). The
algorithm described in [7] makes use of an infinitesimal arithmetic and can be decomposed in
two steps:

• first, it computes sampling points in the perturbed hypersurface Hε∩R〈ε〉n (where ε is an
infinitesimal) which are here encoded by a parametric rational parametrization of degree
denoted by δ,

• then it computes the bounded limits of these sampling points when ε → 0.

Up to the author’s knowledge, the most efficient algorithm to compute parametric geometric
resolutions is the one of [10]. This algorithm starts from a geometric resolution computed for
a generic value of ε having rationals as coefficients of bit-size τ.Dn (where τ is the size of the
rationals appearing in the initial polynomial system to solve). Its worst-case bit complexity is
(up to log factors) O(nD4nτ). Like for our algorithm, this worst-case complexity is reached for
generic inputs. Thus, the complexity gain is equivalent to Dn. Remark that the bit-size of a
parametric geometric resolution computed for a generic input is O(nD4nτ) which implies this
complexity gain is independent of any algorithmic procedure.

Thus, our algorithm is exponentially better (in the number of variables) than any contribution
involving an explicit deformation of the studied hypersurface.

Full proofs of these results can be found in [8]. An implementation is available in the RAGLib

Maple package using Gb and RS softwares respectively implemented by J.-C. Faugère and F.
Rouillier. It can be downloaded from the author’s web page. An other one based on the
Kronecker Magma package implemented by G. Lecerf is planned. Generalizing this approach
to polynomial systems is an on-going work.
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