
A baby steps/giant steps probabilistic algorithm for
computing roadmaps in smooth bounded real

hypersurface

Mohab Safey el Din
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We consider the problem of constructing roadmaps of real algebraic sets. This problem
was introduced by Canny to answer connectivity questions and solve motion planning prob-
lems. Given s polynomial equations with rational coefficients, of degree D in n variables,
Canny’s algorithm has a Monte Carlo cost of sn log(s)DO(n2) operations in Q; a deterministic
version runs in time sn log(s)DO(n4). A subsequent improvement was due to Basu, Pollack
and Roy, with an algorithm of deterministic cost sd+1DO(n2) for the more general problem of
computing roadmaps of a semi-algebraic set (d ≤ n is the dimension of an associated object).

We give a probabilistic algorithm of complexity (nD)O(n1.5) for the problem of computing
a roadmap of a closed and bounded hypersurface V of degree D in n variables, with a
finite number of singular points. Even under these extra assumptions, no previous algorithm
featured a cost better than DO(n2).
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1 Introduction

Motivation. Deciding connectivity properties in a semi-algebraic set S is an important
problem that appears in many fields, such as motion planning [35]. This general problem
is reduced to computations in dimension 1, via the computation of a semi-algebraic curve
R, that we call a roadmap. This curve should have a non-empty and connected intersection
with each connected component of S: then, connecting two points in S is done by connecting
these points to R. Also, counting the connected components of S is reduced to counting
those of R. Hence, a roadmap is used as the skeleton of connectivity decision routines for
semi-algebraic sets. In addition to its direct interest, the computation of roadmaps is also
used in more general algorithms allowing us to obtain semi-algebraic descriptions of the
connected components of semi-algebraic sets [10, Ch. 15-16]. Thus, improvements on the
complexity of computing roadmaps impact the complexity of many fundamental procedures
of effective real algebraic geometry.

Prior results. Let Q be a real field and R be its real closure. The notion of a roadmap
was introduced by Canny in [14, 15]; the resulting algorithm constructs a roadmap of a
semi-algebraic set S ⊂ Rn, but does not construct a path linking points of S. If S is defined
by s equations and inequalities of degree bounded by D, the complexity is sn log(s)DO(n4)

arithmetic operations, and a Monte Carlo version of it runs in time sn log(s)DO(n2) (to
estimate running times, we always use arithmetic operations). Several subsequent works

[27, 26] gave algorithms of cost (sD)n
O(1)

; they culminate with the algorithm of Basu, Pollack
and Roy [8, 9] of cost sd+1DO(n2), where d is the dimension of the algebraic set defined by all
equations in the system. These algorithms reduce the general problem to the construction
of a roadmap in a bounded and smooth hypersurface defined by a polynomial f of degree
D; the coefficients of f lie in a field that contains several new infinitesimals.

Under the smoothness and compactness assumptions, and even in the simpler case of a
polynomial f with coefficients in Q, none of the previous algorithms features a cost lower
than DO(n2) and none of them returns a roadmap of degree lower than DO(n2). In this paper,
we give the first known estimates of the form (nD)O(n1.5) for this particular problem, in terms
of output degree and running time.

All these previous works, and ours also, make use of computations of critical loci of
projections and rely on geometric connectivity results for correctness. Before recalling the
basics we need about algebraic sets and critical loci, we give precise definitions of roadmaps
and state our main result.

Definitions and main result. The original definition (found in [10]) is as follows. Let S
be a semi-algebraic set. A roadmap for S (in the sense of [10]) is a semi-algebraic set R of
dimension at most 1 which satisfies the following conditions:

RM1 R is contained in S.

RM2 Each connected component of S has a non-empty and connected intersection with R.
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RM3 For x ∈ R, each connected component of Sx intersect R, where Sx is the set of points
of the form (x, x2, . . . , xn) in S.

We modify this definition (in particular by discarding RM3), for the following reasons. First,
it is coordinate-dependent: if R is a roadmap of S, it is not necessarily true that φ(R) is
a roadmap of φ(S), for a linear change of coordinates φ. Besides, one interest of RM3 is to
make it possible to connect two points in S by adding additional curves to R: condition
RM3 is well-adjusted to the procedure given in [10], which we do not use here.

Hence, we propose a modification in the definition of roadmaps. We do not deal with
semi-algebraic sets, but only with sets of the form V ∩ Rn, where V ⊂ Cn is an algebraic
set and C is the algebraic closure of R. Our definition, like the previous one, allows us to
count connected components and to construct paths between points in V ∩ Rn. Also, we
generalize the definition to higher-dimensional “roadmaps”, since our algorithm computes
such objects. Thus, we say that an algebraic set R ⊂ Cn is a roadmap of V if:

RM′1 Each semi-algebraically connected component of V ∩ Rn has a non-empty and semi-
algebraically connected intersection with R ∩Rn.

RM′2 The set R is contained in V .

Remark that if V is empty, R must be empty. If V ∩Rn is empty, then any algebraic set R
contained in V is a roadmap; if V ∩Rn is not empty, R is not empty. Next, we say that R
is an i-roadmap of V if in addition we have:

RM′3 The set R is either i-equidimensional or empty.

Finally, it will be useful to add a finite set of control points P to our input, e.g. to test
if the points of P are connected on V ∩Rn. Then, R is a roadmap (resp. i-roadmap) of
(V,P) if we also have:

RM′4 The set R contains P ∩ V ∩Rn.

Using this modified definition, our main result is the following theorem. Hereafter, given
a finite set P, we write its cardinality δP (but if P is empty, we take δP = 1).

Theorem 1. Given f squarefree in Q[X1, . . . , Xn] such that V (f) has a finite number of sin-
gular points and V (f)∩Rn is bounded, and given a set P of cardinality δP , one can compute
a 1-roadmap of (V (f),P) of degree δP(nD)O(n1.5) in probabilistic time δP

O(1)(nD)O(n1.5).

Computational model and probabilistic aspects. Our computational model is the
algebraic RAM over Q; we count at unit cost all operations (+,−,×), sign test, zero test
and inversion; thus, bit-complexity considerations are out of the scope of this paper. Note
also that our set of operations is not enough to enable us to factor polynomials over Q, which
will occasionally induce extra complications.

Our algorithms are probabilistic, in the sense that they use random elements in Q.
The probabilistic aspects of our algorithm are twofold: first, we choose random changes of
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variables to ensure nice geometric properties. Second, we need to solve systems of polynomial
equations; for our purpose, the algorithm with the best adapted cost (from [29], following [23,
22, 24]) is probabilistic as well (typically, it performs random combinations of the input
system, etc.).

We have to make several random choices; every time a random element γ is chosen in some
parameter space Qi, there exists a non-zero polynomial ∆ such that the choice is “lucky” as
soon as ∆(γ) 6= 0. If needed, one could estimate the degrees of the various polynomials ∆
arising this way, though this is by no means straightforward.

Remark then that we can also deterministically compute a roadmap of (V (f),P) of
degree δP(nD)O(n1.5): the luckiness of our random choices can always be verified (as they
essentially amount to check that some algebraic sets have an appropriate dimension); then,
deterministic polynomial system solving algorithms replace the use of [29]. However, we lose
the control on the complexity of the process.

Basic definitions. To describe our contribution, we need a few definitions; for standard
notions not recalled here, see [39, 31, 36, 19]. An algebraic set V ⊂ Cn is the set of
common zeros of some polynomial equations f1, . . . , fs in variables X1, . . . , Xn; we write
V = V (f1, . . . , fs). The degree of an irreducible algebraic set V ⊂ Cn is the maximum
number of intersection points between V and a linear space of dimension n − dim(V ); the
degree of an arbitrary algebraic set is the sum of the degrees of its irreducible components.

The Zariski-tangent space to V at x ∈ V is the vector space TxV defined by the equations
∂f
∂X1

(x)v1 + · · ·+ ∂f
∂Xn

(x)vn = 0, for all polynomials f that vanish on V .
We will only need to define regular and singular points for equidimensional algebraic

sets. In this case, the regular points on V are those points x where dim(TxV ) = dim(V ); the
singular points are all other points. The set of regular (resp. singular) points is denoted by
reg(V ) (resp. sing(V )). The set sing(V ) is an algebraic subset of V , of smaller dimension
than V .

Polar varieties. Canny’s algorithm is the best known approach to computing roadmaps.
Given an algebraic set V , it proceeds by computing some critical curves on V , and studying
some distinguished points on these curves. One of our contributions is the use of higher-
dimensional critical loci, called polar varieties, that were introduced by Todd [38] and used
from the algorithmic point of view to compute sampling points in real algebraic sets in a
series of papers by Bank, Giusti, Heintz, Pardo et al. [5, 6, 7]; our algorithms will rely on
some key properties of polar varieties found in those references and [33]. For positive integers
i ≤ n, we denote by Πi the projection

Πi : Cn → Ci

x = (x1, . . . , xn) 7→ (x1, . . . , xi).

Hereafter, we assume that V is equidimensional. Then, the polar variety wi = crit(Πi, reg(V ))
is the set of critical points of Πi on reg(V ), that is, the set of all points x ∈ reg(V ) such that
Πi(TxV ) 6= Ci. The set wi may not be an algebraic set if V has singular points; we will denote
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by Wi its Zariski closure. It will also be useful to consider the set crit(Πi, V ) = wi∪ sing(V );
as it turns out, crit(Πi, V ) is an algebraic set, so it contains Wi. Assuming (as we will do)
that sing(V ) is finite, crit(Πi, V ) −Wi consists of at most a finite number of points, all in
sing(V ), or equivalently, crit(Πi, V ) = Wi ∪ sing(V ).

If V is given as V (f1, . . . , fp), is equidimensional of dimension d = n − p, and if the
ideal 〈f1, . . . , fp〉 is radical, then crit(Πi, V ) is the zero-set of (f1, . . . , fp) and of the p-minors
taken from the Jacobian matrix of f = (f1, . . . , fp) with respect to (Xi+1, . . . , Xn). Later on,
the former matrix is written jac(f , [Xi+1, . . . , Xn]), and its evaluation at a point x ∈ Cn is
written jacx(f , [Xi+1, . . . , Xn]). The expected dimension of Wi, and of crit(Πi, V ) if sing(V )
is finite, is i− 1.

Using polar varieties. Given f of degree D and V = V (f), assuming that V (f) ∩Rn is
smooth and bounded, Canny’s algorithm computes the critical curve W2. Assuming V (f)∩
Rn bounded ensures that W2 intersects each connected component of V ∩ Rn, but not
that these intersections are connected. The solution consists in choosing a suitable family
C ′ = {x1, . . . , xN} ⊂ R so that the union of W2 and C ′′ = V ∩Π−1

1 (C ′) is an roadmap of V
of dimension n− 2.

To realize this, Canny’s algorithm uses the following connectivity result: defining the
(expectedly finitely many) points C = crit(Π1, V ) ∪ crit(Π1,W2), and taking C ′ = Π1(C )
gives an (n− 2)-roadmap of V of degree DO(n). Then, the algorithm recursively constructs
a roadmap in C ′′ = V ∩Π−1

1 (C ′) following the same process; this is geometrically equivalent
to a recursive call with input f(xi, X2, . . . , Xn) for all xi ∈ C ′. At each recursive call, the
number of control points we compute is multiplied by DO(n), but the dimension of the input
decreases by one only. Thus, the depth of the recursion is n and the roadmap we get has
degree DO(n2).

Our algorithm relies on a new connectivity result that generalizes the one described above.
We want to avoid the degree growth by performing recursive calls on inputs whose dimension
has decreased by i� 1. To this end, instead of considering the polar curve W2 associated to
a projection on a plane, we use polar varieties Wi of higher dimension. As above, we have to
consider suitable fibers V ∩Π−1

i−1(x) to repair the defaults of connectivity of Wi. To achieve
this, we use the following new result (Theorem 14): define C = crit(Π1, V ) ∪ crit(Π1,Wi),
C ′ = Πi−1(C ) and C ′′ = V ∩Π−1

i−1(C
′); under some crucial (but technical) assumptions, Wi∪

C ′′ is a roadmap of V of dimension max(i−1, n− i). This leads to a more complex recursive
algorithm; the optimal cut-off we could obtain that ensured all necessary assumptions has
i '
√
n.

Data representation. The output of our algorithms is a parametrization of an algebraic
curve. If V ⊂ Ce is an algebraic curve defined over Q, a one-dimensional parametrization
of V consists in polynomials Q = (q, q0, . . . , qe) in Q[U, T ] and two linear forms τ = τ1X1 +
· · ·+τeXe and η = η1X1 + · · ·+ηeXe with coefficients in Q, with q squarefree, gcd(q, q0) = 1,
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and such that V is the Zariski closure of the set defined by

q(η, τ) = 0, Xi =
qi(η, τ)

q0(η, τ)
(1 ≤ i ≤ e), q0(η, τ) 6= 0.

Given a parametrization Q, the corresponding curve V is denoted by Z(Q). The degree of

V is written δQ; then, all polynomials in Q can, and will, be taken of degree δ
O(1)
Q , see [34].

Similarly, finite sets of points can be represented by means of univariate polynomials;
then, a single linear form is needed, see e.g. [1, 21, 23, 22, 24, 32, 25]. Concretely, to
represent a finite subset V of Ce defined over Q, we use a linear form τ = τ1X1 + · · ·+ τeXe

and polynomials Q = (q, q1 . . . , qe) in Q[T ], with q squarefree, such that V is given by

q(τ) = 0, Xi = qi(τ) (1 ≤ i ≤ e).

In this case, τ will be called a primitive element; Q will be called a zero-dimensional
parametrization. Again, Z(Q) ⊂ Ce will denote the finite set V , and δQ = |V | will be
its cardinality (and all polynomials in Q will have degree at most δQ).

In both zero- and one-dimensional cases, if Q represents a set of points V in Ce, with
variables X1, . . . , Xe, it will be helpful to write Q(X1, . . . , Xe) to indicate what variables
are used; Q is defined over Q if all polynomials in it have coefficients in Q. Finally, a
parametrization of the empty set consists by convention of the unique polynomial Q = (−1).

Using the output. Let us briefly sketch how to use the output of our algorithm to answer
connectivity queries for points in a hypersurface V = V (f). Given a set of control points
P of cardinality 2, the one-dimensional parametrization Q = (q, q0, . . . , qn) we obtain from
Theorem 1 only describes an open dense subset of a roadmap containing P. It is possible
to recover the finitely many missing points, by means of a zero-dimensional parametrization
Q′ thereof, using Puiseux expansions at the points where both q and q0 vanish. Since all
polynomials in Q have degree (nD)O(n1.5), this can be done in time (nD)O(n1.5), using the
algorithm of [18].

Given this, one can compute a Cylindrical Algebraic Decomposition adapted to the con-
structible sets defined by Q and Q′. In view of the simple shape of the defining polynomials,
this takes time (nD)O(n1.5) again. To compute adjacencies between cells, we use the algorithm
of [35], which takes time (nD)O(n1.5) using again the Puiseux expansion algorithm of [18].

Basic notation. The following conventions are used in the paper.

• Q is a real field, R is its real closure and C is the algebraic closure of R.

• If X is a subset of either Cn or Rn, and if A is a subset of R, we write XA =
X ∩ Π−1

1 (A) ∩Rn. For x in R, we use the particular cases X<x = X]−∞,x), Xx = X{x}
and X≤x = X]−∞,x].

• A property is called generic (in a suitable parameter space) if it holds in a Zariski-open
dense subset of this parameter space.
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• The closure notation B refers to the closure for the Euclidean topology.

• By convention, the empty set is considered finite.

• Finally, if X ⊂ Cn is the empty algebraic set, crit(Πi, X) is formally defined as the
empty set for all i.
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2 Global properties of roadmaps

Consider an algebraic set V ⊂ Cn and a finite set of points P in Cn. The following
proposition will allow us to compute roadmaps of (V,P) in a recursive manner.

Proposition 2. Let R1 and R2 be algebraic sets such that R1∪R2 is a roadmap of (V,P),
and such that R1 ∩R2 is finite.

Let R ′1 and R ′2 be 1-roadmaps of respectively (R1, (R1∩R2)∪P) and (R2, (R1∩R2)∪P).
Then R ′1 ∪R ′2 is a 1-roadmap of (V,P).

The proof of this proposition uses two lemmas.

7



Lemma 3. If R is a roadmap of V , then for each semi-algebraically connected component
C of V ∩Rn, C ∩R is a semi-algebraically connected component of R ∩Rn.

Proof. We know that C ∩ R is semi-algebraically connected by RM′1. Besides, C is both
open and closed in V ∩Rn, so that C ∩R is open and closed in R ∩Rn.

Lemma 4. If R is a roadmap of (V,P) and if R ′ is a 1-roadmap of R which contains
V ∩P ∩Rn, then R ′ is a 1-roadmap of (V,P).

Proof. The inclusions R ′ ⊂ R ⊂ V give RM′2, and RM′3 holds by assumption. Besides,
since R ′ contains V ∩P ∩Rn, we obtain RM′4. Thus, we only miss RM′1. We must prove
that for each semi-algebraically connected component C of V ∩ Rn, C ∩ R ′ is non empty
and semi-algebraically connected. Since R is a roadmap of V , C ∩R is a semi-algebraically
connected component of R ∩Rn (Lemma 3). For the same reason, since R ′ is a roadmap of
R, C ∩R ∩R ′ = C ∩R ′ is a semi-algebraically connected component of R ′ ∩Rn.

We can now prove the proposition. We first prove that R ′1∪R ′2 contains V ∩P∩Rn. By
assumption, R ′1 and R ′2 contain respectively R1∩P ∩Rn and R2∩P ∩Rn. Since R1∪R2

is a roadmap of (V,P), we have by definition that V ∩P ∩Rn ⊂ (R1 ∪R2)∩Rn, and thus
V ∩P ∩Rn ⊂ (R1 ∪R2) ∩P ∩Rn; this is contained in R ′1 ∪R ′2 by the former remark.

Besides, R ′1 ∪ R ′2 is either empty or 1-equidimensional. As a consequence, in view of
Lemma 4, it is sufficient to prove that R ′1 ∪R ′2 is a roadmap of R1 ∪R2.

If (R1 ∪R2) ∩Rn is empty, we are done. Else, let C be a semi-algebraically connected
component of (R1 ∪R2) ∩Rn. First, we prove that C ∩ (R ′1 ∪R ′2) is not empty. Indeed, C
contains a semi-algebraically connected component of either R1 ∩Rn or R2 ∩Rn (since it
contains a point of say R1, it contains its semi-algebraically connected component); and as
such, C intersects either R ′1 or R ′2.

We prove now that C ∩ (R ′1 ∪ R ′2) is semi-algebraically connected. Consider a pair
of points x,x′ in C ∩ (R ′1 ∪ R ′2). Since C is semi-algebraically connected, there exists a
continuous path γ : [0, 1]→ C such that γ(0) = x and γ(1) = x′. Since R1 ∩R2 is finite, we
can reparametrize γ, to ensure that γ−1(R1 ∩R2) is finite. Denote by t1 < · · · < tr the set
γ−1(R1∩R2) and let t0 = 0 and tr+1 = 1. Then, we replace γ by a semi-algebraic continuous
path γ′ defined on the segments [ti, ti+1] as follows:

• For 1 ≤ i < r, γ((ti, ti+1)) is semi-algebraically connected and contained in R1 ∪R2 −
R1 ∩ R2; because both R1 and R2 are closed, γ((ti, ti+1)) is contained in (say) R1.
By continuity, γ([ti, ti+1]) is contained in R1, and thus actually in a semi-algebraically
connected component C ′ of R1 ∩Rn.

Note first that both γ(ti) and γ(ti+1) are in R1∩R2, and thus in R ′1. Besides, since R ′1
is a roadmap of R1, C

′∩R ′1 is semi-algebraically connected, so there exists a continuous
semi-algebraic path γ′ : [ti, ti+1]→ C ′ ∩R ′1 with γ′(ti) = γ(ti) and γ′(ti+1) = γ(ti+1).

Now, because C ′ is a semi-algebraically connected component of R1 ∩Rn and C is a
semi-algebraically connected component of (R1 ∪R2)∩Rn, we deduce C ′ ⊂ C, so the
image of γ′ is in C ∩R ′1, and thus in C ∩ (R ′1 ∪R ′2).
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• The case i = 0 needs to be taken care of only if t0 < t1, so that x = γ(t0) is either in R1

or in R2, but not in both. As before, we start by remarking that γ([t0, t1]) is contained
in a semi-algebraically connected component C ′ of say R1 ∩ Rn, with C ′ ⊂ C. This
implies that x = γ(t0) is in R1; since x is in R ′1 ∪ R ′2, it is actually in R ′1 (because
it cannot be in R ′2, since then it would be in R2). As before, γ(t1) is in R ′1, and the
conclusion follows as in the previous case. The case i = r is dealt with similarly.

3 Two auxiliary results

This section proves two results that will be used toward the proof of our main connectivity
theorem. We consider an equidimensional algebraic set Z ⊂ Cn of dimension d > 0, and
study various connectivity properties of sets of the form Z<x or Z≤x.

3.1 First result

For x ∈ R, we are interested here in the properties of the semi-algebraically connected
components of Z<x in the neighborhood of the hyperplane Π−1

1 (x).

Proposition 5. Let x be in R and let γ : A→ Z≤x−Zx∩ crit(Π1, Z) be a continuous semi-
algebraic map, where A ⊂ Rk is a semi-algebraically connected semi-algebraic set. Then
there exists a unique semi-algebraically connected component B of Z<x such that γ(A) ⊂ B.

This subsection is devoted to prove this proposition using a series of lemmas; some of
them are elementary. The first lemma is a direct consequence of the semi-algebraic implicit
function theorem [10, Th. 3.25].

Lemma 6. Let x = (x1, . . . , xn) be in Z∩Rn−crit(Π1, Z). Then, there exists a permutation σ
of {1, . . . , n} that fixes 1, such that the following holds. Let x′ = (xσ(`), ` ≤ d) ∈ Rd. There
exist open Euclidean neighborhoods N ′ ⊂ Rd of x′ and N ⊂ Rn of σ(x), and continuous
semi-algebraic functions f = (f1, . . . , fn−d) defined on N ′ such that we have

σ(Z) ∩N = {(y′, f(y′)) | y′ ∈ N ′}.

As a consequence, we obtain the following result, similar to Proposition 7.3 in [10].

Lemma 7. Let x = (x1, . . . , xn) be in Z ∩ Rn − crit(Π1, Z). There exists an open semi-
algebraically connected neighborhood Xx of x such that (Z ∩Xx)<x1 is non-empty and semi-
algebraically connected, and such that (Z ∩Xx)x1 is contained in (Z ∩Xx)<x1.

Proof. Without loss of generality, let us assume that x = 0 and let σ, N ′, N and f be
obtained by applying Lemma 6; we let F be the mapping y′ ∈ N ′ 7→ (y′, f(y′)) ∈ N .

Let η0 > 0 be such that the closed ball B(0, η0) is contained in N ′ and let K ≥ 1 be such
that for all y′ in B(0, η0), we have the inequality

||F(y′)||Rn ≤ K||y′||Rd ,
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where all norms are 2-norms; for K, we can take the maximum of ||dF|| on B(0, η0), by
Proposition 2.9.6 in [12]. Let finally ε0 > 0 be such that the open ball B(0, ε0) ⊂ Rn is
contained in N . We define ε = min(η0, ε0/K) and

X ′ = B(0, ε) ⊂ Rd and X = B(0, Kε) ∩ (X ′ ×Rn−d) ⊂ Rn,

where both B(0, .) denote open balls. We proceed to prove that taking Xx = X satisfies
the claims of the proposition. First, X is open, semi-algebraic, semi-algebraically connected
(because it is the intersection of two convex sets).

Next, we prove that X ∩ σ(Z) = F(X ′). Note that X is contained in B(0, Kε), thus in
B(0, ε0) and thus in N . We deduce from Lemma 6

σ(Z) ∩X = σ(Z) ∩N ∩X = F(N ′) ∩X.

Hence, it suffices to prove that F(N ′) ∩ X = F(X ′). Let first y = F(y′) be a point in
F(N ′) ∩X. Since y is in X, it is in X ′ ×Rn−d; because F(y′) = (y′, f(y′)), this means that
y′ is in X ′. Conversely, let y′ be in X ′. Then y = F(y′) = (y′, f(y′)) is in X ′ ×Rn−d. Also,
because y′ is in B(0, ε), and thus in B(0, η0), we have ||y||Rn ≤ K||y′||Rd ≤ Kε. Hence, y
is in B(0, Kε), and thus in X. So our claim is established.

Since σ(Z) ∩X = F(X ′), we deduce that (σ(Z) ∩X)<x1 = F(X ′)<x1 = F(X ′<x1). Since
X ′<x1 is non-empty and semi-algebraically connected and F is semi-algebraic continuous, its
image (σ(Z)∩X)<x1 is non-empty and semi-algebraically connected. Since σ leaves the first
coordinate invariant, this is thus also the case for (Z ∩X)<x1 , as claimed.

For the last claim, remark that (σ(Z) ∩ X)x1 = F(X ′)x1 = F(X ′x1). Since X ′x1 is con-
tained inX ′<x1 , we deduce that (σ(Z)∩X)x1 is contained in F(X ′<x1). SinceX ′<x1

is bounded

and closed and F is continuous, F(X ′<x1) is bounded and closed too, by Theorem 3.20 in [10].
Because F is continuous, we also have

F(X ′<x1) ⊂ F(X ′<x1) ⊂ F(X ′<x1),

from which we deduce that
F(X ′<x1) = F(X ′<x1).

This shows that (σ(Z)∩X)x1 is contained in F(X ′<x1), which equals (σ(Z) ∩X)<x1 , by the
previous paragraph. Up to restoring the initial order on the variables, this establishes our
last claim.

Lemma 8. Let x = (x1, . . . , xn) be in Z ∩ Rn − crit(Π1, Z). There exists a unique semi-
algebraically connected component Bx of Z<x1 such that (Z ∩ Xx)<x1 ⊂ Bx, where Xx is
defined in Lemma 7. Besides, Bx is the unique semi-algebraically connected component of
Z<x1 such that x is in Bx.

Proof. Because (Z ∩Xx)<x1 is non-empty and semi-algebraically connected (Lemma 7), it is
contained in a semi-algebraically connected component Bx of Z<x1 . The semi-algebraically
connected components of Z<x1 are pairwise disjoint, so Bx is well-defined. By Lemma 7
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again, x is in (Z ∩Xx)<x1 , and thus in Bx. Suppose finally that x is in B′, for another
semi-algebraically connected component B′ of Z<x1 . Then, there exists a point of B′ in Xx,
because Xx is open. This point is in (Z ∩ Xx)<x1 , and thus in Bx as well, which yields a
contradiction.

Lemma 9. Let x = (x1, . . . , xn) be in Z∩Rn−crit(Π1, Z). For x′ in (Z∩Xx)x1−crit(Π1, Z),
we have Bx′ = Bx.

Proof. We know that x′ is in Bx′ . Since x′ is in Xx and Xx is open, there exists a point of
Bx′ in (Z ∩Xx)<x1 . This point is in Bx as well, so Bx′ = Bx.

Lemma 10. Let x be in R and let γ be a continuous semi-algebraic map A → Zx −
crit(Π1, Z), where A ⊂ Rk is a semi-algebraically connected set. Then, there exists a unique
semi-algebraically connected component B of Z<x such that for all a ∈ A, γ(a) ∈ B.

Proof. By Lemma 9, the map a 7→ Bγ(a) is locally constant, so it is constant, since A is
semi-algebraically connected. So, with B = Bγ(a0), for some a0 in A, we have Bγ(a) = B for
all a in A, and thus γ(a) ∈ B for all a ∈ A by Lemma 8. Uniqueness is a consequence of the
second part of Lemma 8.

We can now prove Proposition 5. Let γ be a continuous semi-algebraic map A→ Z≤x −
Zx ∩ crit(Π1, Z), where A ⊂ Rk is a connected semi-algebraic set; we prove that γ(A) is
contained in the closure B of a semi-algebraically connected component B of Z<x.

If γ(A) is contained in Z<x, then, since it is semi-algebraically connected, it is contained
in a uniquely defined semi-algebraically connected component B of Z<x, and we are done.

Else, let G = γ−1(Zx), which is closed in A. We decompose it into its semi-algebraically
connected components G1, . . . , GN . Because all Gi are closed in G, they are closed in A. Let
also H1, . . . , HM be the semi-algebraically connected components of A − G; hence, the Hj

are open in A (because they are open in A − G, which is open in A). The sets Gi and Hj

form a partition of A; we assign to each of them a semi-algebraically connected component
of Z<x.

• Since Gi is semi-algebraically connected and γ(Gi) is contained in Zx − crit(Π1, Z),
Lemma 10 shows that there exists a unique semi-algebraically connected component
BGi of Z<x such that γ(Gi) ⊂ BGi .

• Since Hj is semi-algebraically connected and γ(Hj) is contained in Z<x, there exists a
unique semi-algebraically connected component BHj of Z<x that contains γ(Hj). Since

γ is continuous, we still have γ(Hj) ⊂ BHj .

Since the sets Gi and Hj form a partition of A, we deduce from the previous construction
a function a 7→ Ba in the obvious manner: if a is in Gi, we let Ba = BGi ; if a is in Hj, we
let Ba = BHj . It remains to prove that this function is constant on A; then, if we let B be

the common value Ba, for all a in A, γ(a) is in B by construction (uniqueness is clear). To
do so, it is sufficient to prove that for any a in A, there exists a neighborhood Na of a such
that for all a′ in Na, Ba = Ba′ .
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• If a is in some Hj, we are done, since Hj is open, and a 7→ Ba is constant on Hj.

• Else, a is in some Gi. Remark that a is in the closure of no other Gi′ , since the Gi are
closed; however, a can belong to the closure of some Hj. Let J be the set of indices
such that a is in Hj for j in J , and let e > 0 be such that the open ball B(a, e) centered
at a and of radius e intersects no Gi′ , for i′ 6= i, and no Hj, for j not in J . Since a is in
Gi, we know that γ(a) is in BGi ; for j in J , since a is in Hj, we also have that γ(a) is
in BHj . However, since γ(a) is in Zx − crit(Π1, Z), the second statement in Lemma 8
implies that BGi = BHj . Since every a′ in B(a, e) is either in Gi or in some Hj with j
in J , we are done.

This concludes the proof of Proposition 5. The following corollary will be of use.

Corollary 11. Let x be in R such that Zx∩crit(Π1, Z) = ∅ and let C be a semi-algebraically
connected component of Z≤x. Then if C<x is non-empty, it is semi-algebraically connected.

Proof. Consider the inclusion map C → Z≤x. Since Zx ∩ crit(Π1, Z) is empty, this map
satisfies the assumptions of Proposition 5; this implies that there exists a unique semi-
algebraically connected component B of Z<x such that C ⊂ B. This equality implies that
C<x is contained in B<x; one easily checks that B = B<x, so that C<x ⊂ B.

If C<x is not empty, let B′ be a semi-algebraically connected component of C<x, so that
B′ is actually a semi-algebraically connected component of Z<x. The inclusion B′ ⊂ C<x
implies B′ ⊂ C<x ⊂ B and thus B′ = C<x = B. Since B is semi-algebraically connected,
C<x is semi-algebraically connected too, as claimed.

3.2 Second result

The following statement is in the vein of Morse’s Lemma A [10, Th. 7.5]. Proofs of Morse’s
lemma (and of similar statements) use the Ehresmann fibration theorem [13, Th. 3.4], which
relies on the integration of vector fields and thus requires the base fields to be R or C.
Here, we keep on working with base fields R and C, by considering closed and bounded
semi-algebraic sets of Rn, which share a lot of properties with compact semi-algebraic sets
of Rn. As to the notion of differentiability, we will use C∞ semi-algebraic functions, also
known as Nash functions. With this in mind, we will be able to rely on a Nash version of
the Ehresmann fibration theorem [16, Th. 2.4 and 3.1].

Proposition 12. Let A ⊂ (−∞, w) × Rn−1 be a semi-algebraically connected, bounded,
semi-algebraic set, and let v be in R such that v < w, such that A(v,w) is a non-empty Nash
manifold, closed in (v, w)×Rn−1 and such that Π1 is a submersion on A(v,w). Then, for all
x in [v, w), A≤x is non-empty and semi-algebraically connected.

Proof. Let us first check that Π1 : A(v,w) → (v, w) is a semi-algebraically “proper” mapping
in the sense that the preimage of a closed and bounded set is closed and bounded.

Let K be a closed and bounded set in (v, w). Since A is bounded, its preimage is
bounded. To prove that A(v,w) ∩ Π−1

1 (K) = A(v,w) ∩ (K ×Rn−1) is closed in Rn, recall that
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by assumption, there exists a closed set X ⊂ Rn such that A(v,w) = X ∩ ((v, w) × Rn−1);
in the next paragraph, it will be convenient to take X bounded (this is allowed, since A is).
Then, A(v,w) ∩ (K ×Rn−1) = X ∩ (K ×Rn−1), which is closed in Rn.

Next, we prove that Π1(A(v,w)) = (v, w). Remark first that the image Π1(A(v,w)) is
open in (v, w), since Π1 is a submersion on A(v,w). Besides, with X as before, we have
Π1(A(v,w)) = Π1(X∩((v, w)×Rn−1)) = Π1(X)∩(v, w). SinceX is closed and bounded, Π1(X)
is closed. This implies that Π1(A(v,w)) is closed in (v, w), and finally that Π1(A(v,w)) = (v, w).

Let ζ be fixed in (v, w). The previous paragraph shows that we can apply the Nash
version of the Ehresmann fibration theorem [16, Th. 2.4.(iii)’ and 3.1] to the projection Π1.
This gives us a Nash diffeomorphism of the form

Ψ : A(v,w) → (v, w)× A′ζ
(α, a) 7→ (α, ψ(α, a)),

where A′ζ ⊂ Rn−1 is the set {(x2, . . . , xn) | (ζ, x2, . . . , xn) ∈ Aζ} (recall that Aζ lies in Rn).
For the whole length of this proof, vectors of the form (α, a) have α in R and a in Rn−1.

We use Ψ to show that for v < x < w, A≤x is non-empty and semi-algebraically connected.
Let thus x be fixed in (v, w), and let (ζ, z) be in Aζ . Remark that Ψ−1(x, z) is in Ax, proving
that A≤x is non-empty. To prove connectedness, we use a similar process. Let y and y′ be in
A≤x. Since A is semi-algebraically connected, there exists a continuous path γ : [0, 1]→ A,
with γ(t) = (α(t), a(t)), that connects them. Let us replace γ by the path g defined as
follows:

• g(t) = γ(t) if α(t) ≤ x;

• g(t) = Ψ−1(x, ψ(α(t), a(t))) if a(t) ≥ x.

The path g(t) is well-defined, lies in A≤x by construction, and connects y to y′. This
establishes our connectivity claim.

Now, we can deal with the situation above v. We cannot directly use the fibration above
v, since it is not defined above v; instead, we will use a limiting process, that will rely on
semi-algebraicity. To prove that A≤v is non-empty, we actually prove that Av is. We define
the function γ : [0, 1) → A≤x by γ(t) = Ψ−1(tv + (1 − t)ζ, z). This is a semi-algebraic,
continuous, bounded function, so it can be extended by continuity at t = 1 [10, Prop. 3.18];
one checks that γ(1) is in Av, as requested.

It remains to prove that A≤v is semi-algebraically connected. Let thus y and y′ be
two points in A≤v. Since A≤ζ is semi-algebraically connected (first part of the proof) and
semi-algebraic, y and y′ can be connected by a semi-algebraic path γ in A≤ζ , with γ(t) =
(α(t), a(t)). As we did previously, we replace γ by a better path g. Let ε be an infinitesimal,
let A′ be the extension of A over R〈ε〉 and let g be the path [0, 1] ⊂ R〈ε〉 → A′(v,w) be defined
as follows

• g(t) = γ(t) if α(t) ≤ v + ε;

• g(t) = Ψ−1(v + ε, ψ(α(t), a(t))) if α(t) ≥ v + ε.
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Obviously, g is well-defined, continuous, bounded over R and semi-algebraic. Its image G is
thus a connected semi-algebraic set, contained in A′≤v+ε. Let G0 = limεG. By construction,
y and y′ are in G0, G0 is contained in A≤v and by [10, Prop. 12.43], G0 is semi-algebraically
connected. Our claim follows.

Corollary 13. Let Z ⊂ Cn be an algebraic set, equidimensional of positive dimension, such
that Z ∩Rn is bounded. Let v < w be in R such that Z(v,w] ∩ crit(Π1, Z) = ∅, and let C be a
semi-algebraically connected component of Z≤w. Then, C≤v is a semi-algebraically connected
component of Z≤v.

Proof. It suffices to prove that C≤v is non-empty and semi-algebraically connected; then it
is easily seen to be a semi-algebraically connected component of Z≤v. If C(v,w] is empty,
C≤v = C, so we are done. Hence, we assume that C(v,w] is non empty.

We verify here that all assumptions of Proposition 12 are satisfied, with A = C<w. Since
C(v,w] is non empty and Zw ∩ crit(Π1, Z) is empty, C(v,w) is non-empty: either there is a
point in C(v,w), or there is a point in Cw; this point is not in crit(Π1, Z), so Lemma 7 shows
that C(v,w) is not empty in this case as well. Besides, since Zw ∩ crit(Π1, Z) is empty, by
Corollary 11, C<w is semi-algebraically connected.

Besides, we claim that Π1 is a submersion on C(v,w). First, remark that any point x of
C(v,w), TxC(v,w) = TxZ ∩Rn. Since dim(Z) > 0, and since there is no point of crit(Π1, Z) on
Z(v,w), we know that Π1(TxZ) = C, which implies that Π1(TxZ ∩Rn) = R. This establishes
that Π1 is a submersion on C(v,w).

To summarize, C<w is a connected and bounded semi-algebraic set; C(v,w) is a non-empty
Nash manifold, closed in (v, w) × Rn−1 (because C(v,w) = C ∩ ((v, w) × Rn−1) and C is
closed). We can thus apply Proposition 12, which implies that C≤v is non-empty and semi-
algebraically connected, as requested.

4 Main connectivity result

4.1 Initial form

In this section, we consider a system f = (f1, . . . , fp) in R[X1, . . . , Xn], with p < n. We say
that the system f satisfies assumption H if

(a) the ideal 〈f1, . . . , fp〉 is radical;

(b) V = V (f1, . . . , fp) is equidimensional of positive dimension d = n− p > 0;

(c) sing(V ) is finite;

(d) V ∩Rn is bounded.

These conditions are independent of the choice of coordinates. Next, assuming d ≥ 2, we
fix i in {2, . . . , d} and we introduce further conditions on f ; some are meant to ensure good
geometric properties, while some others (e.g., the last one) will help us write our algorithms.
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To state these further assumptions, we point out or recall a few facts. First, an equidi-
mensional algebraic set X of dimension r is in Noether position for the projection Πr if the ex-
tension C[X1, . . . , Xr]→ C[X1, . . . , Xn]/I(X) is injective and integral. If this is the case, for
any x in Cr, the fiber X ∩Π−1

r (x) has dimension zero. Next, under H, recall that crit(Πi, V )
is defined by the vanishing of f and the set ∆ of all p-minors of jac(f , [Xi+1, . . . , Xn]). Then,
we say that f satisfies condition H′i if the following holds:

(a) V is in Noether position for Πd;

(b) either Wi is empty, or Wi is (i− 1)-equidimensional and in Noether position for Πi−1;

(c) crit(Π1, V ) is finite;

(d) crit(Π1,Wi) is finite;

(e) for x in Wi − sing(V ), jacx([f ,∆], [X1, . . . , Xn]) has rank n− (i− 1).

We will see that these new assumptions can be ensured by a generic change of variables for
some values of p and i (but not all). Finally, we consider a finite subset of points P in V ;
with this convention, we define

• C = crit(Π1, V ) ∪ crit(Π1,Wi) ∪ P, which is finite under H and H′i;

• C ′ = Πi−1(C );

• C ′′ = V ∩ Π−1
i−1(C

′).

The following theorem is the key to our algorithms. Some properties just repeat the as-
sumptions above; this is in anticipation of an extended version of the theorem (in the next
section), where such repetitions will actually be useful.

Theorem 14. Under assumptions H and H′i, the following holds:

1. Wi is either empty or (i− 1)-equidimensional;

2. C is finite;

3. C ′′ is either empty or (d− i+ 1)-equidimensional;

4. C ′′ ∪Wi is a roadmap of (V,P);

5. C ′′ ∩Wi = Wi ∩ Π−1
i−1(C

′) is finite;

6. for all x ∈ Ci−1, the system (f1, . . . , fp, X1−x1, . . . , Xi−1−xi−1) satisfies assumption H.

This section is devoted to prove this theorem. Once this is done, the idea of our algorithm
will roughly be to compute the sets Wi and C ′′, and to recursively compute roadmaps of
them, if their dimension is too high.
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4.2 First elements of the proof

We start by proving the last two points in the theorem; the other properties will follow easily.
The proof uses the following lemma.

Lemma 15. Let (g1, . . . , gp) ⊂ C[X1, . . . , Xn], let I be the ideal 〈g1, . . . , gp〉 ⊂ C[X1, . . . , Xn],
let Z be its zero-set and let finally X the constructible set

X = {x ∈ Z | rank(jacx(g, [X1, . . . , Xn]) = p}.

Suppose that Z is not empty and that X is Zariski-dense in Z. Then, I is an equidimensional
radical ideal of dimension n− p.

Proof. Since I is generated by p elements of C[X1, . . . , Xn], all the primes associated to I
have dimension greater than or equal to n − p by Krull’s theorem. Since X is dense in Z,
dim(X) = dim(Z). Moreover, by the implicit function theorem dim(X) = n − p. Thus,
dim(I) = n− p and I is a complete intersection.

Let Q1 ∩ · · · ∩ Qs be an irredundant primary decomposition of I, so that all associated
primes of the Qi are pairwise distinct. Since dim(I) = n−p and I is generated by p elements,
all Qi are isolated by Macaulay’s unmixedness Theorem [39, Th. 26 p. 196 (vol. 2)]. Thus,
I is unmixed.

We prove below that each Qi is prime, which will imply that I is radical. Since Qi is
isolated, its associated algebraic variety is an irreducible component of Z of dimension n−p.
Besides, x ∈ V (Qi) ∩ V (Qj) ∩X implies that i = j.

For i ≤ s and let x be in V (Qi) ∩X; such an x exists since V (Qi) ∩X is actually dense
in all V (Qi). Let m be the maximal ideal at x. Suppose for the moment that Im = Qim

and Im is prime. Then, Qim is obviously prime which implies that Qi itself is prime by [4,
Proposition 3.11 (iv)] and we are done.

It remains to prove that Im = Qim and Im is prime. By [4, Proposition 4.9], Im =
Q1,m ∩ · · · ∩ Qsm . Since we previously proved that Qi is the unique primary ideal of the
considered minimal primary decomposition of I such that x ∈ V (Qi), Qi is the unique ideal
of that decomposition which is contained in m. Thus, Im = Qim .

Part b of [19, Theorem 16.19] shows that the local ring C[X1, . . . , Xn]m/Im is regular and
hence an integral ring, so that Im is prime.

Lemma 16. Under assumptions H and H′i, C ′′ ∩Wi is finite, and for all x ∈ Ci−1, the
system (f1, . . . , fp, X1 − x1, . . . , Xi−1 − xi−1) satisfies assumption H.

Proof. We start with the second point. Consider x = (x1, . . . , xi−1) in Ci−1 and let Vx be
the algebraic set defined by (f1, . . . , fp, X1 − x1, . . . , Xi−1 − xi−1). Let us show that it is not
empty: by H′i(a), V is in Noether position for Πd, so for any x′ = (x1, . . . , xd), V ∩ Π−1

d (x′)
is not empty; a fortiori, Vx = V ∩Π−1

i−1(x) is not empty. By Krull’s theorem, we deduce that
all irreducible components of Vx have dimension at least d− (i− 1).

Let y be in Vx. By construction, if the Jacobian of (f1, . . . , fp, X1 − x1, . . . , Xi−1 − xi−1)
has not full rank, then y is in crit(Πi, V ) ∩ Π−1

i−1(x). Recall now that crit(Πi, V ) = Wi ∪
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sing(V ). Since by H′i(b), Wi is either empty or in Noether position for Πi−1, we deduce that
Wi ∩ Π−1

i−1(x) is finite. Since sing(V ) is also finite, crit(Πi, V ) ∩ Π−1
i−1(x) is finite.

Thus, since d − (i − 1) ≥ 1, each irreducible component of Vx contains a point y where
the former Jacobian matrix has full rank. Consequently, we deduce by Lemma 15 that the
system (f1, . . . , fp, X1 − x1, . . . , Xi−1 − xi−1) is radical and (d− i+ 1)-equidimensional. We
have thus established H(a) and H(b) for that system (for H(b), remark that d − i + 1 is
positive). The singular points of Vx are the points where the rank of the former Jacobian
drops; as we have seen, they are in finite number. This gives H(c). Point H(d) is obvious,
since Vx ∩Rn ⊂ V ∩Rn, and the latter is bounded.

The other assertion follows from the fact that C ′′∩Wi is the union of the sets Wi∩Π−1
i−1(x),

for x in C ′ = Πi−1(C ). Since these sets are all finite, and since C and thus C ′ are finite as
well (by H′i(c) and H′i(d)), we are done.

To prove Theorem 14, we note that the first two points are either part of H′i or direct
consequence thereof. We have seen in the previous lemma that all fibers Π−1

i−1(x) ∩ V are
(d − i + 1)-equidimensional, for x ∈ Ci−1. Since C ′′ is the union of such fibers for x in
C ′ = Πi−1(C ), then it is either (d − i + 1)-equidimensional, or empty if C is empty. This
gives the third point. The last two points are in the previous lemma.

All that is missing is thus point 4. The connectivity property RM′1 is established in
Subsection 4.3. Property RM′2 is clear from the construction; also, P is contained in C , and
thus in Π−1

i−1(C
′), so we obtain RM′4.

4.3 Proof of property RM′1

We reuse here the notation of Theorem 14 and we let R = C ′′∪Wi. For x in R, we say that
property P(x) holds if:

• for any semi-algebraically connected component C of V≤x, C ∩ R is non empty and
semi-algebraically connected.

We prove in this subsection that for all x in R, P(x) holds; taking x ≥ maxy∈V ∩Rn Π1(y)
proves property RM′1 of Theorem 14.

Let v1 < · · · < v` be the points in Π1(C ) ∩ R (recall that C is finite). The proof uses
two intermediate results:

• Step 1: if P(vj) holds, then for x in (vj, vj+1), then P(x) holds;

• Step 2: for x in R, if P(x′) holds for all x′ < x, then P(x) holds.

Since for x < miny∈V ∩Rn Π1(y), property P(x) vacuously holds, the combination of these
two results gives the claim above by an immediate induction.

Proposition 17 (Step 1). Let j be in {1, . . . , `−1}. If P(vj) holds, then for x in (vj, vj+1),
P(x) holds.
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Proof. Let x be in (vj, vj+1) and let C be a semi-algebraically connected component of V≤x.
We have to prove that C ∩ R is non-empty and semi-algebraically connected. We first
establish that C≤vj ∩ R is non-empty and semi-algebraically connected. Because there is
no point of crit(Π1, V ) in V(vj ,x], applying Corollary 13 to V above the interval (vj, x] shows
that C≤vj is a semi-algebraically connected component of V≤vj . So, using property P(vj), we
see that C≤vj ∩R is non-empty and semi-algebraically connected, as needed.

Next, we prove that, assuming that C ∩ Wi is not empty, for any semi-algebraically
connected component D of C ∩Wi, D≤vj is non-empty. Clearly, D is a semi-algebraically
connected component of Wi≤x. By assumption H′i, Wi is an algebraic set, equidimensional
of positive dimension i − 1, with Wi ∩ Rn bounded; besides, crit(Π1,Wi) is empty above
(vj, x]. Applying Corollary 13 to Wi, we see that D≤vj is non-empty (and semi-algebraically
connected).

To prove that C ∩R is semi-algebraically connected, we prove that any y in C ∩R can
be semi-algebraically connected to a point in C≤vj ∩R by a path in C ∩R. This is sufficient
to conclude, since we have seen that C≤vj ∩R is semi-algebraically connected. Let thus y be
in C ∩R. If y is in C≤vj ∩R, we are done. If y is in C(vj ,x] ∩R, we claim that it is actually
in C(vj ,x] ∩Wi. Indeed, R and Wi coincide above (vj, x]: for any point z in C ′′ ∩Rn, Π1(z)
is in Π1(C ) ∩R, so it is one of v1, . . . , v`.

Let thus D be the semi-algebraically connected component of C∩Wi containing y. By the
result of the previous paragraph, there exists a semi-algebraic continuous path connecting y
to a point y′ in D≤vj by a path in D. Since D is in C ∩R, we are done.

Proposition 18 (Step 2). Let x be in R such that for all x′ < x, P(x′) holds. Then P(x)
holds.

Proof. Let C be a semi-algebraically connected component of V≤x; we have to prove that
C ∩ R is semi-algebraically connected. If C is finite, we are done, since C is a point and
C ∩R is semi-algebraically connected as it is non-empty (one checks that in this case, C is
in crit(Π1, V )).

Hence, we assume that C is infinite; from this, one deduces that C<x is not empty: since
crit(Π1, V ) is finite by H′i(c), there is a point in C not in crit(Π1, V ), and applying Lemma 7
proves our claim. Let then B1, . . . , Br be the semi-algebraically connected components of
C<x; we will prove in the next subsection that for i ≤ r, Bi ∩ R is non-empty and semi-
algebraically connected.

Fix i ≤ r. Since Bi∩R is non-empty and contained in C∩R, the latter is non-empty. Let
thus y and y′ be in C∩R; we need to connect them by a path in C∩R. Let γ : [0, 1]→ C be
a continuous semi-algebraic path that connects y to y′, and let G = γ−1(Cx∩crit(Π1, V )) and
H = [0, 1]−G. The semi-algebraically connected components g1, . . . , gN of G are intervals,
closed in [0, 1] (which may be reduced to single points); the semi-algebraically connected
components h1, . . . , hM of H are intervals that are open in [0, 1]. For 1 ≤ i ≤ M , we write
`i = inf(hi) and ri = sup(hi); we also introduce r0 = 0 and `M+1 = 1. To conclude the proof,
it will be enough to establish that:

1. for 1 ≤ i ≤M , γ(`i) and γ(ri) can be connected by a semi-algebraic path in C ∩R;
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2. for 0 ≤ i ≤M , γ(ri) = γ(`i+1).

We prove the first point. For 1 ≤ i ≤ M , we first claim that there exists j ≤ r such that
γ(hi) is in Bj. Indeed, remark that since γ(hi) avoids Cx ∩ crit(Π1, V ), it actually avoids
the whole Vx ∩ crit(Π1, V ) (because γ(hi) is contained in C). It follows from Proposition 5
that there exists a semi-algebraically connected component B of V<x such that γ(hi) ⊂ B.
One checks that B is actually a semi-algebraically connected component of C<x (one first
deduces that C ∩ B is not empty, so that C ∩ B is not empty either, and the conclusion
follows). Thus, we will rewrite B = Bj, for some j ≤ r.

Since γ is continuous, both γ(`i) and γ(ri) are in Bj. On the other hand, both γ(`i) and
γ(ri) are in R. We justify it for `i: either `i = 0, and we are done (because γ(0) = y is in
R), or `i > 0, so that `i is in some interval g` (since then it does not belong to hi), and thus
γ(`i) is in crit(Π1, V ) ⊂ R. Because Bj ∩R is semi-algebraically connected, γ(`i) and γ(ri)
can be connected by a semi-algebraic path in Bj ∩R, which is contained in C ∩R.

The second point is easier to deal with. If ri = `i+1 (which can happen at r0 = 0 or
`M+1 = 1), the conclusion holds trivially. Else, we have ri < `i+1; then, both are in a same
interval g`, for some ` ≤ N . Since crit(Π1, V ) is finite, γ(g`) is a single point (since it is
semi-algebraically connected), so γ(ri) = γ(`i+1).

4.4 Conclusion

We deal here with the following statement from the previous subsection: as above, let C be
a semi-algebraically connected component of V ∩Rn. Let B be one of the semi-algebraically
connected components of C<x. We have to prove that B ∩ R is non empty and semi-
algebraically connected.

Since B is actually a semi-algebraically connected component of V<x and V ∩ Rn is
bounded, B contains a point of crit(Π1, V ) (the point at which Π1 reaches its minimum on
B). Hence, B ∩ R, and thus B ∩ R, are not empty. Next, we prove that any point y in
B∩R can be connected to a point z in B∩R by a semi-algebraic path in B∩R. Assuming
that this is the case, let us first justify that this is sufficient to establish the lemma.

Consider two points y,y′ in B ∩ R and suppose that they can be connected to some
points z, z′ in B ∩ R by semi-algebraic paths in B ∩ R. Since z and z′ are in B, they
can be connected by a semi-algebraic path γ : [0, 1] → B. Let x′ = max(Π1(γ(t))), for t
in [0, 1]; x′ is well defined by the continuity of γ, and satisfies x′ < x. Then, both z and
z′ are in B≤x′ , and they can be connected by a semi-algebraic path in B≤x′ ; hence, they
are in the same semi-algebraically connected component B′ of B≤x′ . Now, B′ is a semi-
algebraically connected component of V≤x′ , which implies by property P(x′) that B′ ∩R is
semi-algebraically connected. Hence, z and z′, which are in B′ ∩R, can be connected by a
semi-algebraic path in B′∩R, and thus within B ∩R. Summarizing, this proves that y and
y′ can be connected by a semi-algebraic path in B ∩R, as requested.

We are thus left to prove the claim made in the first paragraph. Recall that R is the
union of Wi and of C ′′ = V ∩Π−1

i−1(Πi−1(C )), where C = crit(Π1, V )∪ crit(Π1,Wi)∪P. We

first deal with points y in B ∩ C ′′, and in a second time with points y in B ∩ (Wi − C ′′).
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Case 1. Let y be in B ∩ C ′′. We can assume that y is not in B, since for y in B we can
take z = y; since y is not in B, Π1(y) = x.

Since B is semi-algebraic, by the curve selection lemma, there exists a continuous semi-
algebraic map f : [0, 1] → Rn, with f(0) = y and f(t) ∈ B for t in (0, 1]. Let ε be a new
infinitesimal and let R′ = R〈ε〉; we let ϕ = (ϕ1, . . . , ϕn) ∈ R′ n be the semi-algebraic germ
of f at 0, so that limε ϕ = y. We consider the semi-algebraic set H ⊂ R′ n defined by

H = {x ∈ R′
n | x ∈ ext(B,R′) and (x1, . . . , xi−1) = (ϕ1, . . . , ϕi−1)},

where ext denotes the extension to R′. Since for all t in (0, 1], f(t) is in B, ϕ is in ext(B,R′)
by [10, Prop. 3.16], so that ϕ is in H; in particular, this proves that y is in limεH. Re-
mark also that H is bounded by an element of R, and that any point in limεH is in
B ∩ Π−1

i−1(Πi−1(y)), which is contained in B ∩R by assumption on y.
Let H1, . . . , Hs ⊂ R′n be the semi-algebraically connected components of H (which are

well-defined because H is not empty); hence, the Hi are semi-algebraic sets. Because y is in
limε(H), we can assume that it is in limεH1. Next, since B is a semi-algebraically connected
component of V<x, by [10, Prop. 5.24], ext(B,R′) is a semi-algebraically connected compo-
nent of ext(V,R′)<x, which implies that H1 is a semi-algebraically connected component of
ext(V,R′) ∩ Π−1

i−1(ϕ1, . . . , ϕi−1).
Since H1 is bounded, by the semi-algebraic implicit function theorem [10, Th. 3.25], this

implies that there exists a point ψ in H1∩crit(Πi, ext(V,R′)). Since polar varieties are defined
by Jacobian minors with coefficients in R, this means that ψ is in H1 ∩ ext(crit(Πi, V ),R′).
Because ψ is in H1, it is in ext(B,R′), and thus in ext(B ∩ crit(Πi, V ),R′).

Let w = limε ψ and let g be a representative of ψ, so that g(0) = w. By [10, Prop. 3.16],
there exists t0 > 0 such that for all t in (0, t0), g(t) is in B ∩ crit(Πi, V ). Remark next that
crit(Πi, V ) is contained in R: any point in crit(Πi, V ) is either in sing(V ) (in which case it
is in crit(Π1, V ) ⊂ R), or in Wi ⊂ R. Thus, for all t in [0, t0], g(t) is in B ∩R. Defining
z = g(t0/2), we see that z and w are connected by a semi-algebraic path in B ∩R.

Let B1 = limεH1. Because H1 is semi-algebraic, bounded over R and semi-algebraically
connected, B1 is closed, semi-algebraic and semi-algebraically connected [10, Prop. 12.43].
Besides, we have seen above that it is contained in B ∩R. Finally, it contains both y and
w. Connecting y to w and w to z (previous paragraph), we conclude the proof of our claim.

Case 2. Let now y be in B ∩ (Wi − C ′′); as in case 1, we assume that y is not in B, so
that Π1(y) = x. Since y is not in C ′′, y is not in C , and so not in crit(Π1,Wi). Applying
Lemma 7 to the algebraic set Wi, we see that y is in Wi<x. By the curve selection lemma,
this means that there exists a semi-algebraic path γ : [0, 1] → Wi connecting a point z in
Wi<x to y, with γ(0) = z, γ(1) = y and γ(t) ∈ Wi<x for t < 1.

The image of γ is in R, so to conclude, it suffices to prove that γ(t) is in B for all
t. To do so, we will prove that γ(t) is in B for all t < 1. We know that the image
{γ(t) | t ∈ [0, 1)} is semi-algebraically connected and contained in V<x; hence, it is contained
in a semi-algebraically connected component B′ of V<x. We have to prove that B′ = B.
Because γ(1) = y, we deduce that y is in B′; on the other hand, we know that y is in B.
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Since y is not in C , it is not in crit(Π1, V ); as a consequence, we can apply Lemma 8, which
shows that B = B′, as requested.

5 Algorithms

5.1 Overview

Consider a polynomial system f = (f1, . . . , fp) ⊂ R[X1, . . . , Xn] defining an algebraic set V
of dimension d = n− p > 0 and satisfying H, and a finite set of control points P in Cn. We
will see hereafter that if d ≥ 2, for some values of p and 2 ≤ i ≤ d (but not all), H′i can be
ensured by a generic linear change of variables.

Supposing that H′i holds, one can apply Theorem 14 to obtain a roadmap of (V,P) of
dimension at most max(i− 1, d− i+ 1). Note that this roadmap is given as the union of two
algebraic sets R1 and R2:

• if it is not empty, R1 is the algebraic set Wi, which is (i− 1)-equidimensional;

• if it is not empty, R2 is defined by a pair [f , Q] where Q = Q(X1, . . . , Xi−1) is a
zero-dimensional parametrization: R2 = V ∩ Π−1

i−1(Z(Q)) is the union of the fibers
V ∩ Π−1

i−1(x) for x ∈ Z(Q); it is (d− i+ 1)-equidimensional.

For the sake of discussion, let us assume that neither R1 nor R2 is empty. Using Proposi-
tion 2, it is natural to compute a 1-roadmap R ′1 of (R1, (R1∩R2)∪P) and a 1-roadmap R ′2
of (R2, (R1 ∩R2) ∪P) in order to construct a 1-roadmap of (V,P). Suppose that one can
construct systems defining R1 and R2 satisfying H. Once again we are led to use Theorem
14 to compute them; this is possible only if H′i can be ensured for some i′ in respectively
{2, . . . , dim(R1)} and {2, . . . , dim(R2)}.

Thus, algorithms based on Theorem 14 are naturally recursive. Due to this recursive
nature, we will have to handle pairs [f , Q], where Q = Q(X1, . . . , Xe) is a zero-dimensional
parametrization. We will be interested in the algebraic set V ([f , Q]) = V (f) ∩ Π−1

e (Z(Q)):
this means that we will restrict X1, . . . , Xe to a finite number of possible values, that are
described by Q. In order to apply Theorem 14, we need an extended form of this latter result,
by defining analogues of assumptions H and H′i in this context. This is done in Subsection
5.2.

We will see that the degrees of the output roadmaps and the running time necessary to
compute them depend on the depth of the recursion. Thus, we are led to reduce as much as
possible the depth of the recursion: the best we could hope for is ' log(n). However, one
has to ensure H′i each time we apply Theorem 14 in its extended form; this constraints our
possible choices. More precisely, we will prove in Section 6 that

(a) for a system of equations f = (f1, . . . , fp), if [f , Q] satisfies H, then H′2 can be ensured
by a generic linear change of variables leaving X1, . . . , Xe fixed;

(b) for a single equation f , if [f,Q] satisfies H, then H′i can ensured by a generic linear
change of variables leaving X1, . . . , Xe fixed, for any 2 ≤ i ≤ n− e− 1.
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The algorithmic by-products of (a) and (b) are twofold:

• A subroutine CannyRoadmap – described in Subsection 5.4 and which is close to Canny’s
algorithm – taking as input [f , Q] (which satisfies H) as above and a finite set of control
points P; it applies recursively Theorem 14 in its extended form with i = 2; this routine
performs baby steps by constructing roadmaps whose dimensions decrease one by one.

• A subroutine MainRoadmap – described in Subsection 5.5 – which takes as input [f,Q]
(which satisfies H) as above and a finite set of control points P; it applies recursively
Theorem 14 in its extended form with i '

√
n; this routine performs giant steps

by producing two algebraic sets R1 and R2 of respective dimensions '
√
n − e and

' n−
√
n− e; then CannyRoadmap is called recursively on R1 while MainRoadmap is

called recursively on R2.

These subroutines use procedures performing basic algebraic elimination operations for solv-
ing polynomial systems, or manipulating zero- or one-dimensional algebraic sets (to compute
unions, projections, . . . ). These procedures are described in Subsection 5.3, but the proofs
are postponed to the end of the section, in Subsection 5.6.

5.2 Connectivity result: extended form

As explained above, due to the recursive nature of the algorithm, we handle pairs [f , Q],
with f = (f1, . . . , fp), and where Q(X1, . . . , Xe) is a zero-dimensional parametrization. This
subsection is devoted to obtain an extension of Theorem 14 to such inputs. Recall that we
write V = V (f); we will write V ([f , Q]) to mean V ∩ Π−1

e (Z(Q)). As before, we are also
given a set of control points P.

In this new context, we define analogues of H and H′i. For x = (x1, . . . , xe) in Ce

and 1 ≤ j ≤ p, we let fj,x = fj(x1, . . . , xe, Xe+1, . . . , Xn), and we let fx be the system
fx = (f1,x, . . . , fp,x). Then, we say that [f , Q] satisfies H if for all x in Z(Q), the system
fx satisfies H in C[Xe+1, . . . , Xn]; in particular, V ([f , Q]) is equidimensional of dimension
d = n − e − p > 0. Assume further that d ≥ 2 holds, and fix an integer i in {2, . . . , d}.
Then, we say that [f , Q] satisfies H′i if for all x in Z(Q), the system fx satisfies H′i in
C[Xe+1, . . . , Xn].

These assumptions describe geometric conditions in Cn−e. In Cn, since we restrict the
first e coordinates to a finite set, it is now natural to define the projection

Πe,i : Cn → Ci

x = (x1, . . . , xn) 7→ (xe+1, . . . , xe+i),

so that Πi = Π0,i. Extending the previous notation, we define wi,Q ⊂ Cn as the set of all
critical points of Πe,i on reg(V ([f , Q])), and let Wi,Q be its Zariski-closure in Cn.

We will verify later on that, under H and H′i, the set Wi,Q is either empty or (i − 1)-
equidimensional, so that crit(Πe,1,Wi,Q) makes sense. Then, we define

• PQ = P ∩ Π−1
e (Z(Q));
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• CQ = crit(Πe,1, V ([f , Q])) ∪ crit(Πe,1,Wi,Q) ∪ PQ;

• C ′Q = Πe+i−1(CQ);

• C ′′Q = V (f) ∩ Π−1
e+i−1(C

′
Q).

If C ′Q is non-empty and finite, and if Q′ is a zero-dimensional parametrization of C ′Q, it will
be useful to remark that C ′′Q = V ([f , Q′]). Then, the following theorem summarizes all results
we need to ensure the validity of our algorithms.

Theorem 19. If [f , Q] satisfies H and H′i, then the following holds:

1. Wi,Q is either empty or (i− 1)-equidimensional;

2. CQ is finite;

3. C ′′Q is either empty or (d− i+ 1)-equidimensional;

4. C ′′Q ∪Wi,Q is a roadmap of (V ([f , Q]),PQ);

5. C ′′Q ∩Wi,Q = Wi,Q ∩ Π−1
e+i−1(C

′
Q) is finite;

6. if C ′Q is not empty and if Q′(X1, . . . , Xe+i−1) is a parametrization of C ′Q, then [f , Q′]
satisfies assumption H.

Proof. This is routine verification. For x in Z(Q), let Vx be the fiber V ∩ Π−1
e (x), so that

V ([f , Q]) is the finite union of the algebraic sets Vx. Next, we define wi,x as the set of critical
points of Πe,i on Vx, and similarly Wi,x, Px, Cx, C ′x, and C ′′x in the obvious manner. One
deduces that the disjoint union of the sets wi,x (resp. Wi,x, Px, Cx, C ′x, and C ′′x ), for x in
Z(Q), is wi,Q (resp. Wi,Q, PQ, CQ, C ′Q, and C ′′Q).

For x in Z(Q), let Ṽx ⊂ Cn−e be the projection of Vx on the space of coordinates
Xe+1, . . . , Xn (so that we forget the coordinates X1, . . . , Xe), and define similarly w̃i,x, etc.
By construction, the system fx defines Ṽx; by assumption, it satisfies H and H′i. This allows
us to apply Theorem 14; we deduce that in Cn−e, we have the following:

• W̃i,x is either empty or (i− 1)-equidimensional;

• C̃x is finite;

• C̃ ′′x is either empty or (d− i+ 1)-equidimensional;

• C̃ ′′x ∪ W̃i,x is a roadmap of (Ṽx, P̃x);

• C̃ ′′x ∩ W̃i,x is finite;

• for any (xe+1, . . . , xe+i−1) in Ci−1, the system (f1,x . . . , fp,x, Xe+1 − xe+1, . . . , Xe+i−1 −
xe+i−1) satisfies assumption H.
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Back in Cn, this translates as follows:

• Wi,x is either empty or (i− 1)-equidimensional;

• Cx is finite;

• C ′′x is either empty or (d− i+ 1)-equidimensional;

• C ′′x ∪Wi,x is a roadmap of (Vx,Px);

• C ′′x ∩Wi,x is finite;

• for all x′ = (x1, . . . , xe+i−1) in Ce+i−1, such that x = (x1, . . . , xe) is in Z(Q), the system
(f1,x . . . , fp,x, Xe+1 − xe+1, . . . , Xe+i−1 − xe+i−1) satisfies assumption H.

Taking the union over all x in Z(Q) proves the theorem.

Corollary 20. Suppose that [f , Q] satisfies H and H′i, and let R1 and R2 be as follows:

• R1 is a 1-roadmap of (Wi,Q, (C ′′Q ∩Wi,Q) ∪PQ);

• R2 is a 1-roadmap of (C ′′Q, (C
′′
Q ∩Wi,Q) ∪PQ).

Then, R1 ∪R2 is a 1-roadmap of (V ([f , Q]),PQ).

Proof. This is a consequence of the former theorem and of Proposition 2.

5.3 Subroutines

In this subsection, we give a quick overview of the subroutines we use; since most proofs are
standard, we postpone them to the end of this section, in Subsection 5.6. Recall that the
degree δQ associated to a parametrization Q was defined in the introduction.

First, we need a function Union(Q,Q′) that computes a parametrization of the union of
two zero-dimensional (resp. one-dimensional) sets, both given by parametrizations.

Lemma 21. Let Q and Q′ be parametrizations defined over Q. Then one can compute in
probabilistic time (n(δQ + δQ′))O(1) a parametrization R of Z(Q)∪Z(Q′), with δR ≤ δQ+δQ′.

Given a zero-dimensional parametrization Q, we need a function Projection(Q, [Xe1 , . . . , Xes ])
that computes a parametrization R(Xe1 , . . . , Xes) such that Z(R) = π(Z(Q)), where π is the
projection on the space of coordinates (Xe1 , . . . , Xes).

Lemma 22. Given a zero-dimensional parametrization Q defined over Q, one can compute
in probabilistic time (nδQ)O(1) a parametrization R of π(Z(Q)), with δR ≤ δQ.

We will perform linear change of variables on either polynomial systems or parametriza-
tions; the corresponding function will be denoted by ApplyChangeOfVariables in both cases.
First, we deal with changing variables in a family of polynomials. Given equations g and a
matrix A ∈ GLn(Q), we want g̃ such that V (g̃) = ϕ(V (g)), with ϕ : x 7→ Ax; this requires
us to compose g by A−1.
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Lemma 23. Given A ∈ GLn(Q) and g = (g1, . . . , gp) in Q[X1, . . . , Xn] of degree at most
D, one can compute (g̃1, . . . , g̃p), with g̃i = gi(A

−1[X1 · · ·Xn]t), in time pDO(n).

Next, we give the cost of changing variables in a parametrization.

Lemma 24. Given A ∈ GLn(Q) and a parametrization Q defined over Q, one can compute
a parametrization Q′ such that Z(Q′) = ϕ(Z(Q)) in time (nδQ)O(1), with δQ′ = δQ.

We use a function Solve to solve zero- and one-dimensional polynomial systems; more
precisely, Solve(g, Q, j) will return a parametrization of the j-dimensional component of
V ([g, Q]), with j ∈ {0, 1}.

Lemma 25. Consider polynomials g = (g1, . . . , gt) in Q[X1, . . . , Xn], of degree at most D
and a zero-dimensional parametrization Q(X1, . . . , Xe) defined over Q. Let Z = V ([g, Q]),
and let Zj be its j-dimensional component, for j ∈ {0, 1}. Then, one can compute in time
(tδQ)O(1)DO(n) a parametrization R of Zj, with δR ≤ δQD

n.

Our variant of Canny’s algorithm computes a critical curve (called “silhouette” in [14]).
To do so, the function CriticalCurve takes as input polynomials f ⊂ Q[X1, . . . , Xn] and a zero-
dimensional parametrization Q(X1, . . . , Xe), that satisfy H and H′2. Then, W2,Q is either
empty or 1-equidimensional (Theorem 19.1). The function CriticalCurve(f , Q) computes a
parametrization of this algebraic set.

Lemma 26. Consider polynomials f = (f1, . . . , fp) in Q[X1, . . . , Xn], of degree at most D,
and a zero-dimensional parametrization Q(X1, . . . , Xe) defined over Q. Suppose that that
n− e− p ≥ 2 and that [f , Q] satisfies H and H′2. Then, one can compute a parametrization

R of W2,Q in probabilistic time δ
O(1)
Q (nD)O(n), with δR ≤ δQ(nD)n.

We also need to compute critical points of a slightly different kind. Consider a system f
and a zero-dimensional parametrization Q(X1, . . . , Xe) such that [f , Q] satisfies H and H′i.
Then, the algebraic set crit(Πe,1, V ([f , Q])) ∪ crit(Πe,1,Wi,Q) is finite (Theorem 19.2). The
function RequiredCriticalPoints(f , Q, i) computes a parametrization of this algebraic set.

Lemma 27. Consider polynomials f = (f1, . . . , fp) in Q[X1, . . . , Xn] of degree at most D,
and a zero-dimensional parametrization Q(X1, . . . , Xe) defined over Q. Suppose that [f , Q]
satisfies H and H′i. Then, one can compute a parametrization R of crit(Πe,1, V ([f , Q])) ∪
crit(Πe,1,Wi,Q) in probabilistic time δ

O(1)
Q nO(nmin(p,n−e−p))DO(n), with δR = δQ(nD)O(n).

Finally, we need to compute fibers of projections. The first instance of this question is to
compute Z(P ) ∩Π−1

e (Z(Q)), where P (X1, . . . , Xn) and Q(X1, . . . , Xe) are zero-dimensional
parametrizations. This will be called Lift(P,Q).

Lemma 28. Let P (X1, . . . , Xn) and Q(X1, . . . , Xe) be zero-dimensional parametrizations
defined over Q. Then one can compute in probabilistic time (n(δP+δQ))O(1) a parametrization
R of Z(P ) ∩ Π−1

e (Z(Q)), with δR ≤ δP .
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The second form of this question is more complex. To apply Theorem 19, we need
to compute C ′′Q ∩ Wi,Q = Wi,Q ∩ Π−1

e+i−1(Z(Q′)), where f and Q satisfy H and H′i, and
Q′(X1, . . . , Xe+i−1) is a zero-dimensional parametrization of C ′Q. By Theorem 19.5, Wi,Q ∩
Π−1
e+i−1(Z(Q′)) is finite. The function LiftW(f , Q′) returns a zero-dimensional (or empty)

parametrization R such that Z(R) contains this algebraic set.

Lemma 29. Consider polynomials f = (f1, . . . , fp) in Q[X1, . . . , Xn], of degree at most D,
and a zero-dimensional parametrization Q(X1, . . . , Xe) defined over Q, that satisfy H and
H′i. Let further Q′(X1, . . . , Xe+i−1) be a zero-dimensional parametrization of C ′Q. Then one

can compute in probabilistic time δ
O(1)
Q′ (nD)O(n) a zero-dimensional (or empty) parametriza-

tion R such that Wi,Q ∩ Π−1
e+i−1(Z(Q′)) is contained in Z(R), and with δR = δQ′(nD)O(n).

5.4 Canny’s algorithm revisited

We give in this section an algorithm close to Canny’s. We take as input a system f =
(f1, . . . , fp) in Q[X1, . . . , Xn], of degree at most D ≥ 2. We also consider as input a zero-
dimensional parametrization Q(X1, . . . , Xe) defined over Q; writing d = n−p−e, we assume
that d > 0 and that [f , Q] that satisfies H. Our last input are control points P, given in
the form of a zero-dimensional parametrization P .

If d = 1, we are done: it suffices to solve the system. Else, as Canny, we take i = 2 in the
recursion. Indeed, given such a system, we will see that it is possible to ensure assumption
H′2 through a generic change of variables; higher values of i may not allow us to ensure this
assumption. Our change of variables will leave X1, . . . , Xe fixed; we denote by GL(n, e) the
subset of GLn(Q) satisfying this constraint.

CannyRoadmap(f , Q, P ).

1. If n− p− e = 1, return Solve(f , Q, 1)

2. Let A be a random matrix in GL(n, e)

3. Let f = ApplyChangeOfVariables(A, f)

4. Let P = ApplyChangeOfVariables(A, P )

5. Let P = Lift(P,Q) Z(P ) = PQ

6. Let C = Union(RequiredCriticalPoints(f , Q, 2), P ) Z(C) = CQ

7. Let Q′ = Projection(C, [X1, . . . , Xe+1]) Z(Q′) = C ′Q

8. Let P ′ = Union(LiftW(f , Q′), P ) Z(P ′) contains (C ′′Q ∩W2,Q) ∪PQ

9. If C is different from (−1), then

let R = CannyRoadmap(f , Q′, P ′) V ([f , Q′]) = C ′′Q and e increases by 1
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else

let R = (−1) C is empty

10. Let R′ = CriticalCurve(f , Q) Z(R′) = W2,Q

11. Let R′′ = Union(R,R′)

12. return ApplyChangeOfVariables(A−1, R′′)

Proposition 30. Suppose that [f , Q] satisfies assumption H. Then, algorithm CannyRoad-
map outputs a 1-roadmap of (V ([f , Q]),P) of degree (δQ+δP )(nD)O(n(n−p−e)), in probabilistic
time (δQ + δP )O(1)(nD)O(n(n−p−e)).

The remainder of this subsection is devoted to prove this proposition. The first ingredient
of the proof is the following genericity argument; it is proved in Section 6.

Lemma 31. Suppose that n− p− e > 1 and that [f , Q] satisfies H. After a generic change
of variables in GL(n, e), the system [f , Q] satisfies H′2 as well.

The following lemma gives complexity estimates for most steps; we exclude the last steps,
since handling them will require unrolling the recurrence giving degree bounds along all levels
of the recursion.

Lemma 32. Suppose that n− p− e > 1, that [f , Q] satisfies H, and that after the change of
variables A, [f , Q] satisfies H′2. Then, steps 3—8 and 10 of algorithm CannyRoadmap take
probabilistic time (δQ + δP )O(1)nO(n(n−p−e))DO(n). Upon success, Q′, P ′ are zero-dimensional
(or empty) parametrizations and R′ is a one-dimensional (or empty) parametrization that
satisfy

δQ′ + δP ′ = (δQ + δP )(nD)O(n), δR′ = δQ(nD)O(n),

and if C is not empty, [f , Q′] satisfies H. If the inner call at step 9 computes a 1-roadmap
of (V ([f , Q′]), Z(P ′)), then the output at step 12 is a 1-roadmap of (V ([f , Q]),P).

Proof. We start by proving correctness. At step 5, P is such that Z(P ) = PQ. At step 6,
C is a parametrization of CQ, either empty or zero-dimensional (Theorem 19.2). At step 7,
Z(Q′) is the projection C ′Q, whence in particular V ([f , Q′]) = C ′′Q. At step 8, Z(P ′) is finite
(Theorem 19.5) and contains the new set of control points (C ′′Q ∩W2,Q) ∪PQ. At step 9, if
CQ is not empty, C ′Q is not empty, and [f , Q′] satisfies H (Theorem 19.6); in this case, this
justifies the recursive call. In both cases, the output Z(R) is a 1-roadmap of (C ′′Q, Z(P ′)),
and thus of (C ′′Q, (C

′′
Q ∩W2,Q) ∪PQ).

Theorem 19.1 implies that at step 10, Z(R′) equals W2,Q (it may be empty); remark that
W2,Q is tautologically a 1-roadmap of (W2,Q,C ′′Q ∩W2,Q) ∪PQ). Then, Corollary 20 shows
that Z(R′′) = Z(R)∪Z(R′) = C ′′Q∪W2,Q is a 1-roadmap of (V ([f , Q]),PQ). This establishes
correctness.

Next, we estimate the running time of the first steps and give degree bounds, assuming
correctness. Lemmas 23 and 24 show that applying A takes time (nδP )O(1) + nDO(n); in the
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new variables, the degrees D of f and δP of P are unchanged. By Lemma 28, the cost of
step 5 is (n(δQ + δP ))O(1), and δP can only decrease through this process.

By Lemmas 27 and 21, C can be computed in probabilistic time δ
O(1)
Q nO(n(n−p−e))DO(n) +

(nδP )O(1) and δC is bounded by δQ(nD)O(n) + δP . By Lemma 22, Q′ can be computed in

probabilistic time δ
O(1)
Q (nD)O(n) + (nδP )O(1), and we have δQ′ = δQ(nD)O(n) + δP . Thus, in

view of Lemmas 29 and 21, P ′ satisfies δP ′ = (δQ + δP )(nD)O(n), and can be computed in
time (δQ + δP )O(1)(nD)O(n). The degree and time bounds on R′ follow from Lemma 26.

We prove now Proposition 30. Correctness follows from the previous lemma, so we
focus on degree bounds and runtime, assuming that all changes of variables are lucky. Let
us rename the input (Q,P ) as (Q0, P0). The number of recursive calls is n − p − e, and
Lemma 32 shows that each recursive call multiplies δQ + δP by (nD)O(n), so that δQ + δP =
(δQ0 + δP0)(nD)O(n(n−p−e)) holds at all levels. The output of CannyRoadmap is the union of
the critical curves computed at steps 10 of the recursive levels, and all of them have degree
(δQ0 +δP0)(nD)O(n(n−p−e)) by Lemma 32. Since there are O(n) such curves, the degree bound
on the output follows.

The runtime estimate follows similarly from the previous lemma. The sum of the costs
involved in steps 3—8 and 10 (including all levels of the recursion) fits into the claimed
bound, in view on the former estimate on δQ + δP ; the same holds for the cost at step 1. All
that is missing is the cost of steps 11 and 12; using the previous degree estimate on Z(R),
it follows from Lemmas 21 and 24.

5.5 Main subroutine

We give now our roadmap algorithm for a hypersurface V (f), where f ∈ Q[X1, . . . , Xn]
satisfies assumption H and has degree D ≥ 2. Here, we can ensure assumption H′i in generic
coordinates for many more choices of i. Using our modified version of Canny’s algorithm
as a subroutine, our strategy takes i '

√
n: this will balance the cost of the main function

and that of Canny’s algorithm. As before, we also take a zero-dimensional parametrization
Q(X1, . . . , Xe) over Q as input, and the control points P by means of a zero-dimensional
parametrization P .

MainRoadmap(f,Q, P, i).

1. If n− e ≤ i, return CannyRoadmap(f,Q)

2. Let A be a random matrix in GL(n, e)

3. Let f = ApplyChangeOfVariables(A, f)

4. Let P = ApplyChangeOfVariables(A, P )

5. Let P = Lift(P,Q) Z(P ) = PQ

6. Let C = Union(RequiredCriticalPoints(f,Q, i), P ) Z(C) = CQ
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7. Let Q′ = Projection(C, [X1, . . . , Xe+i−1]) Z(Q′) = C ′Q

8. Let P ′ = Union(LiftW(f,Q′), P ) Z(P ′) contains (C ′′Q ∩Wi,Q) ∪PQ

9. If C is different from (−1), then

Let R = MainRoadmap(f,Q′, P ′, i) V ([f,Q′]) = C ′′Q and e increases by i

else

let R = (−1) C is empty

10. Let ∆ = [∂f/∂Xi | i ∈ [e+ i+ 1, . . . , n]] and let f = (f,∆)

11. Let R′ = CannyRoadmap(f , Q, P ′) V ([f , Q]) = Wi,Q

12. Let R′′ = Union(R,R′)

13. return ApplyChangeOfVariables(A−1, R′′)

Proposition 33. Let j = (n−e)/i and suppose that [f,Q] satisfies assumption H. Then al-
gorithm MainRoadmap outputs a 1-roadmap of (V ([f,Q]),P) of degree (δQ+δP )(nD)O(n(i+j))

in probabilistic time (δQ + δP )O(1)(nD)O(n(i+j)).

Remark that taking e = 0 and i = b
√
nc proves Theorem 1. The rest of this subsection

is devoted to prove this result; in all that follows, remember that the parameter i is fixed.
The proof is similar to that of our modified version of Canny’s algorithm. As before, a key
ingredient is a genericity argument whose proof is given in Section 6.

Lemma 34. Suppose that n − e > i and that [f,Q] satisfies H. After a generic change of
variables in GL(n, e),

(a) [f,Q] satisfies H and H′i;

(b) [f , Q] satisfies H.

Proposition 30 shows that the cost of the case n − e ≤ i is (δP + δQ)O(1)(nD)O(ni).
Assuming we are not in this base case, the following lemma gives complexity estimates for
the first steps of MainRoadmap. As for CannyRoadmap, we exclude the cost of the last steps
for the moment.

Lemma 35. Suppose that n − e > i, that [f,Q] satisfies H and that after the change
of variables A, [f,Q] satisfies H′i and [f , Q] satisfies H. Then, steps 3—8 and 10, 11 of
algorithm MainRoadmap take probabilistic time (δQ + δP )O(1)(nD)O(ni); upon success, Q′, P ′

are zero-dimensional (or empty) parametrizations and R is a one-dimensional (or empty)
parametrization that satisfy

δQ′ + δP ′ = (δQ + δP )(nD)O(n), δR = (δQ + δP )(nD)O(ni),

and if C is not empty, [f,Q′] satisfies assumption H. If the inner calls at steps 9 and 11 are
successful, then the output at step 13 is a roadmap of (V ([f,Q]),P).
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Proof. We start by proving correctness. The proof follows the same pattern as that of
Lemma 32.

At step 5, we have Z(P ) = PQ. At step 6, C is parametrization such that Z(C) = CQ,
either empty or zero-dimensional (Theorem 19.2). At step 7, Z(Q′) equals C ′Q, so V ([f,Q′]) =
C ′′Q. At step 8, Z(P ′) is finite (Theorem 19.5) and contains the new set of control points
(C ′′Q ∩Wi,Q)∪PQ. At step 9, if CQ is not empty, C ′Q and [f,Q′] satisfies H (Theorem 19.6);
this justifies the recursive call. In both cases, the output Z(R) is a 1-roadmap of (C ′′Q, Z(P ′)),
and thus of (C ′′Q, (C

′′
Q ∩Wi,Q) ∪PQ).

At step 11, let us justify that V ([f , Q]) = Wi,Q. By construction, this system defines
crit(Πe,i, V ([f,Q])), which equals Wi,Q ∪ sing(V ([f,Q])). By Krull’s theorem, there are no
isolated points in V ([f , Q]); since sing(V ([f,Q])) is finite, it is actually included in Wi,Q

and our claim follows. Consequently, Z(R′) is a 1-roadmap of (Wi,Q, Z(P ′)), and thus of
(Wi,Q, (C ′′Q ∩ Wi,Q) ∪ PQ). Then, Corollary 20 shows that Z(R′′) = Z(R) ∪ Z(R′) is a
1-roadmap of (V ([f,Q]),PQ). This establishes correctness.

Next, we estimate the running time and the degree of the output, assuming correctness.
Lemmas 23 and 24 shows that applying A takes time (nδP )O(1) + DO(n). By Lemma 28,
the cost of step 5 is (n(δQ + δP ))O(1), and δP can only decrease through this process. By

Lemmas 27 and 21, C can be computed in probabilistic time δ
O(1)
Q (nD)O(n) + (nδP )O(1)

and δC is bounded by δQ(nD)n + δP . By Lemma 22, Q′ can be computed in probabilistic

time δ
O(1)
Q (nD)O(n), and we have δQ′ ≤ δQ(nD)n + δP . Thus, by Lemma 29, P ′ satisfies

δP ′ = (δQ + δP )(nD)O(n), and can be computed in time (δQ + δP )O(1)(nD)O(n).
The call to CannyRoadmap has p = n − e − i + 1, and uses the same specialization

values Q of (X1, . . . , Xe). Thus, Proposition 30 shows that it takes probabilistic time (δQ +
δP )O(1)(nD)O(ni), and that upon success, R′ satisfies δR′ = (δQ + δP )(nD)O(ni).

We prove now Proposition 33. Correctness follows from Proposition 30 and from the
previous lemma. We now prove degree bounds and runtime, assuming correctness; as before,
we let Q0 and P0 denote our input.

The number of recursive calls is O((n− e)/i) = O(j), and Lemma 35 shows that each re-
cursive call multiplies δQ+δP by (nD)O(n), so that so that δQ+δP = (δQ0+δP0)(nD)O(nj) holds
at all levels. As a first consequence, the cost of the base case is (δQ0 + δP0)

O(1)(nD)O(n(i+j)),
and the output of the base case has degree (δQ0 + δP0)

O(1)(nD)O(n(i+j)).
Still using Lemma 35, we deduce that the total cost of steps 3—11 (counting all recursive

calls) is (δQ0 + δP0)
O(1)(nD)O(n(i+j)). Besides, the same lemma also shows that all degrees

δR are bounded by (δQ0 + δP0)(nD)O(n(i+j)) as well. The union operation at step 12 and the
final change of variables induce another cost in (δQ0 + δP0)

O(1)(nD)O(n(i+j)).

5.6 Proofs of the subroutines

Finally, we give more details on how to implement the subroutines described previously.
Many results are either well-known, or close to well-known ones; then, we shall be rather
sketchy.
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Union (proof of Lemma 21). Consider two parametrizations Q and Q′, either both zero-
or both one-dimensional; we want to compute R such that Z(R) = Z(Q) ∪ Z(Q′). We start
with degree estimates: by definition, the degree δR = Z(R) is at most δQ + δQ′ .

We first show how to compute R if we are in dimension zero. We will find a primitive
element of Z(Q)∪Z(Q′) by trying successive candidates τ : by [32, Lemma 2.1], it suffices to
try (n(δQ+δQ′))O(1) candidates. For each candidate τ , we use the algorithm of [25, Lemma 6]
to make τ the primitive element of Q and Q′: if this is not possible, we dismiss τ .

Next, writing Q = (q, q1, . . . , qn) and Q′ = (q′, q′1, . . . , q
′
n), we compute g = gcd(q, q′), q̃ =

q/g and q̃′ = q′/g. If qi mod g 6= q′i mod g for some i, then τ is not primitive for Z(Q)∪Z(Q′).
Else, the new minimal polynomial is q′′ = gq̃q̃′, and we deduce parametrizations using the
Chinese Remainder Theorem. The running time is polynomial in n(δQ + δQ′).

In positive dimension, the approach is similar. We first find a linear form η suitable for
both Q and Q′: the only condition is that η should take an infinite number of values on both
Z(Q) and Z(Q′). Then, we proceed to find τ as above, using evaluation and interpolation
to avoid handling rational functions in the variable η through the computations. Again, the
running time is polynomial in n(δQ + δQ′).

Projection (proof of Lemma 22). Given a zero-dimensional parametrization Q, let us
suppose (for simplicity) that we want to compute the projection of π(Z(Q)) on the space of
coordinates e1 = 1, . . . , es = s, by means of a parametrization R.

Degree estimates are straightforward. To compute R, as before, we examine candidate
primitive elements for it. For any of them, say µ = µ1X1 + · · ·+µsXs, we compute a Gröbner
basis of the ideal generated by

q(T ), X1 − q1(T ), . . . , Xn − qn(T ), S − µ1X1 − · · · − µsXs

for the order T > Xn > · · · > X1 > S. If µ is primitive for π(Z(Q)), one can read the
required parametrization on the last s + 1 polynomials of the basis. The conversion can be
done by e.g. the FGLM algorithm [20], so the total time is (nδQ)O(1).

Change of variables (proof of Lemmas 23 and 24). The easier question is to apply
a change of variables matrix A ∈ GLn(Q) to a polynomial f ∈ Q[X1, . . . , Xn] of degree D:
computing successively all powers of the linear forms A−1 ·X1, . . . ,A

−1 ·Xn and combining
them has cost polynomial in Dn.

Next, we explain how change of variables operate on a parametrization Q. Degree bounds
are obvious, since changes of variables do not affect the geometric degree of Z(Q). The input
parametrization Q consists in (q, q0, q1, . . . , qn) ⊂ Q[T ]. Then, computing a parametrization
of ϕ(Z(Q)), with ϕ : x 7→ Ax, is simply done by multiplying A by the vector [q1, . . . , qn], so
the running time is (nδQ)O(1).

Solving systems (proof of Lemma 25). Given a system g = (g1, . . . , gt) and a zero-
dimensional parametrization Q(X1, . . . , Xe), we describe how to solve the system {g1(x) =
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· · · = gt(x) = 0, Πe(x) ∈ Z(Q)}. We let W be the set of solutions, and explain how to
compute the zero- or one-dimensional component of W .

We start with degree estimates. Since W = Z(Q) ∩ V (g), we deduce from the Bézout
inequality given in [28, Prop. 2.3] that deg(W ) ≤ deg(Z(Q))Ddim(Z(Q)), which is bounded by
δQD

n. If R is a parametrization of W , we deduce by definition that δR ≤ δQD
n.

We now consider runtime. If we only had to take g into account, it would suffice to
apply the algorithm of [29] to obtain a cost tO(1)DO(n). However, we also need to take Q into
account, and this induces extra complications; we cannot directly append it to our system,
since the resulting cost would exceed our target.

We solve this issue using dynamic evaluation techniques [17]. Let Q be given by polyno-
mials q, q1, . . . , qe in Q[T ], and let τ be its primitive element. We apply the algorithm of [29]
in L[Xe+1, . . . , Xn], with L = Q[T ]/q, replacing X1, . . . , Xe by q1, . . . , qe. L is not a field,
but a product of fields; if a division by a zero-divisor occurs, we split q into two factors,
and we run the computation again. The maximal number of splittings is δQ, and the cost of

computing modulo a factor of q is in δ
O(1)
Q . Then, the overall cost is now (tδQ)O(1)DO(n).

At this stage, our output consists in a collection of zero-dimensional or one-dimensional
parametrizations Ri(Xe+1, . . . , Xn), for i = 1, . . . , s; they are defined over various products
of fields Li = Q[T ]/q(i), where q(i) are factors of q. To conclude, we must first define them
over Q. Suppose for definiteness that we are in dimension one (dimension zero is simpler);

then, Ri is given by polynomials r(i), r
(i)
0 , r

(i)
e+1, . . . , r

(i)
n , with r(i) and all r

(i)
j in Li[U

′, T ′];

the degrees in (U ′, T ′) of these polynomials are all DO(n). One convenient way to obtain a
parametrization defined over Q is to call once more the algorithm of [29], with input the
trivariate system q(i)(T ) and r(i)(U ′, T ′). Solving one such system takes time polynomial in
n deg(q(i))Dn, so that the total time is (nδQ)O(1)DO(n); from this, we obtain parametrizations
R′i(X1, . . . , Xn) defined over Q, whose union describes the one-dimensional component of W .
To conclude, it suffices to repeatedly call the union algorithm; the cost estimate is similar.

Computing critical curves (proof of Lemma 26). Next, we compute the polar variety
W2,Q associated to a system f = (f1, . . . , fp) and a parametrization Q(X1, . . . , Xe). Denote
by ∆ the set of p-minors of jac(f , [Xe+3, . . . , Xn]). It contains

(
n−e−2

p

)
≤ 2n polynomials of de-

gree bounded by nD. Observe that V ([(f ,∆), Q]) is the critical locus W2,Q∪ sing(V ([f , Q])).
By H and H′2, either W2,Q is empty, or purely one-dimensional; on the other sing(V ([f , Q]))
is finite. It follows that the one-dimensional component of V ([(f ,∆), Q]) is W2,Q. Thus,
Solve((f ,∆), Q, 1) returns a one-dimensional parametrization R that describes W2,Q in prob-

abilistic time δ
O(1)
Q (nD)O(n), with δR ≤ δQ(nD)n.

Computing required critical points (proof of Lemma 27). With the same notation
as above, we continue with the computation of the critical points crit(Πe,1, V ([f , Q])) and
crit(Πe,1,Wi,Q). To do so, we define several families of determinants:

• ∆ is the set of p-minors of jac(f , [Xe+2, . . . , Xn]);

• ∆′ is the set of p-minors of jac(f , [Xe+i+1, . . . , Xn]);
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• ∆′′ is the set of (n− e− i+ 1)-minors of jac((f ,∆′), [Xe+2, . . . , Xn]).

The degree of the polynomials in ∆ and ∆′ is at most nD; that of the polynomials in ∆′′ is
at most n2D. Besides, ∆ has cardinality at most

(
n−e−1

p

)
≤ 2n; and ∆′ has cardinality at

most
(
n−e−i
p

)
≤ nmin(p,n−e−p). Consequently, ∆′′ contains nO(nmin(p,n−e−p)) polynomials. The

following lemma shows which system to solve to answer our question.

Lemma 36. The equality

V ([(f ,∆), Q]) ∪ V ([(f ,∆′,∆′′), Q]) = crit(Πe,1, V ([f , Q])) ∪ crit(Πe,1,Wi,Q)

holds.

Proof. Since [f , Q] satisfies H and H′i, the following holds:

1. crit(Πe,1, V ([f , Q])) = V ([(f ,∆), Q]);

2. crit(Πe,i, V ([f , Q])) = V ([(f ,∆′), Q]);

3. crit(Πe,i, V ([f , Q])) = Wi,Q ∪ sing(V ([f , Q]));

4. Wi,Q is either empty or (i− 1)-equidimensional;

5. Let x′ = (x1, . . . , xe) be in Z(Q), let x = (x1, . . . , xn) be in Wi,Q− sing(V ([f , Q])), and
let x̃ = (xe+1, . . . , xn). Let also fx′ and ∆′x′ be the systems in C[Xe+1, . . . , Xn] obtained
by letting X1 = x1, . . . , Xe = xe in f and ∆′. Then jacx̃((fx′ ,∆′x′), [Xe+1, . . . , Xn]) has
rank n− e− (i− 1).

Let notation be as in the last point. Then, we see that the Jacobian jacx((f ,∆′, X1 −
x1, . . . , Xe − xe), [Xe+1, . . . , Xn]) has rank n − (i − 1). By point 4, this implies that the
kernel of this Jacobian matrix is the tangent space TxWi,Q. From this observation, we
deduce that x belongs to crit(Πe,1,Wi,Q) if and only if it cancels all (n− e− i+ 1)-minors of
jac((f ,∆′), [Xe+2, . . . , Xn]), or equivalently, if it cancels the set ∆′′. In other words, we have
established that

V ([(f ,∆′,∆′′), Q])− sing(V ([f , Q])) = crit(Πe,1,Wi,Q)− sing(V ([f , Q])).

Remember now that V ([(f ,∆), Q]) = crit(Πe,1, V ([f , Q])) and that it contains sing(V ([f , Q])).
Adjoining it to the previous equality concludes the proof.

Assumptions H and H′i imply that crit(Πe,1, V ([f , Q])) ∪ crit(Πe,1,Wi,Q) is finite. Thus,
calling Solve((f ,∆), Q, 0) and Solve((f ,∆′,∆′′), Q, 0) gives us two parametrizations R and
R′ whose union R′′ solves our problem. Using Lemmas 25 and 21, and the bounds on the
degrees and number of elements in ∆,∆′,∆′′, we see that R′′ is computed in probabilistic
time δ

O(1)
Q nO(nmin(p,n−p−e))(nD)O(n) and that δR′′ ≤ δQ(nD)O(n).
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Computing fibers (proof of Lemma 28). Given two zero-dimensional parametriza-
tions P (X1, . . . , Xn) and Q(X1, . . . , Xe), we are to compute a parametrization R of Z(P ) ∩
Π−1
e (Z(Q)). Write P = (p, p1, . . . , pn) and Q = (q, q1, . . . , qe), and let µ = µ1X1 + · · ·+µeXe

be the primitive element of Q. We compute m = µ1p1 + · · · + µepe ∈ Q[T ], and the poly-
nomials q(m), p1 − q1(m), . . . , pe − qe(m). Then, we replace p by p′ = p/ gcd(p, q(m), p1 −
q1(m), . . . , pe− qe(m)), and reduce all pi modulo p′. The cost is polynomial in n and δP + δQ.

Lifting points on critical loci (proof of Lemma 29). Let ∆ be the set of all p-minors
of jac(f , [Xe+i+1, . . . , Xn]). It contains

(
n−e−i
p

)
≤ 2n polynomials of degree bounded by nD.

Since H is satisfied, we have crit(Πe,i, V ([f , Q])) = V ([f ,∆], Q); thus, instead of computing
Wi,Q ∩ Π−1

e+i−1(Z(Q′)), we compute crit(Πe,i, V ([f , Q])) ∩ Π−1
e+i−1(Z(Q′)): the extra points

are all in sing(V ([f , Q])), and thus in finite number. As a consequence, by Theorem 19.5,
crit(Πe,i, V ([f , Q])) ∩ Π−1

e+i−1(Z(Q′)) is finite.
Now, we have crit(Πe,i, V ([f , Q])) = V ([f ,∆], Q) = V (f ,∆) ∩ Π−1

e (Z(Q)), so we are to
compute

V (f ,∆) ∩ Π−1
e (Z(Q)) ∩ Π−1

e+i−1(Z(Q′)).

This can be rewritten as
V (f ,∆) ∩ Π−1

e+i−1(X)),

where X = Z(Q′) ∩ π−1(Z(Q)) and π is the projection Ce+i−1 → Ce. So, we first compute
a parametrization R of X, using the function Lift of the previous paragraph, and we return
Solve((f ,∆), R, 0); the time and degree bounds follow easily from Lemmas 25 and 28.

6 Proof of the genericity properties

Given a system f = (f1, . . . , fp) and a zero-dimensional parametrization Q(X1, . . . , Xe) such
that [f , Q] satisfies H, the algorithms of Subsections 5.4 and 5.5 rely on the fact that as-
sumption H′i holds in generic coordinates for some i and p (Lemmas 31 and 34).

Suppose for the moment that Q is empty and fix i in {2, . . . , n−p}. Then, we recall that
f satisfies condition H if the following holds:

(a) the ideal 〈f1, . . . , fp〉 is radical;

(b) V = V (f1, . . . , fp) is equidimensional of positive dimension d = n− p > 0;

(c) sing(V ) is finite;

(d) V ∩Rn is bounded.

Similarly, f satisfies H′i if the following holds:

(a) V = V (f) is in Noether position for Πd;

(b) either Wi is empty, or Wi is (i− 1)-equidimensional and in Noether position for Πi−1;
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(c) crit(Π1, V ) is finite;

(d) crit(Π1,Wi) is finite;

(e) for x in Wi − sing(V ), jacx([f ,∆], [X1, . . . , Xn]) has rank n− (i− 1).

Recall also that we say that [f , Q] satisfies H if for all x in Z(Q), the system (f1,x, . . . , fp,x)
satisfies H in C[Xe+1, . . . , Xn]; similarly, we say that [f , Q] satisfies H′i if for all x in Z(Q), the
system (f1,x, . . . , fp,x) satisfies H′i in C[Xe+1, . . . , Xn]. Thus, in order to prove Lemmas 31
and 34, one can suppose that Q is empty. Lemma 31 discusses p arbitrary, and Lemma 34
has p = 1.

Proof of assertion (b) of Lemma 34. Suppose here that p = 1, and write f1 = f and
V = V (f). Assuming that f satisfies H, we must prove that f = [f, ∂f

∂Xi+1
, . . . , ∂f

∂Xn
] satisfies

H in generic coordinates. By [5, Th. 6], up to a generic linear change of coordinates,
jac(f , [X1, . . . , Xn]) has maximal rank at any point x ∈ V (f) − sing(V ). Since V (f) is
not empty, sing(V ) is finite, and all irreducible components of V have positive dimension,
Lemma 15 shows that this implies that 〈f〉 is radical, equidimensional of dimension i − 1.
Thus H(a) and H(b) are proved for that system. Since the set of points of V (f) at which
jac(f , [X1, . . . , Xn]) has not full rank is contained in sing(V ) which is finite by assumption,
H(c) is immediate. Point H(d) is straightforward since V (f) ∩ Rn ⊂ V (f) ∩ Rn which is
bounded.

Proof of H′i(a)(b)(c) and (e) with 1 ≤ p ≤ n − 1 and 2 ≤ i ≤ n − p in generic
coordinates. In generic coordinates, Corollary 7 in [7] shows that either Wi is empty, or it
is equidimensional of dimension i−1, for i = 1, . . . , n−p. Assume that it is not empty; then,
H′i(a) and H′i(b) are established in [33] when sing(V ) = ∅. The assumption sing(V ) = ∅ was
only used to ensure that Wi had dimension i− 1, so we obtain H′i(a) and H′i(b) in our case
as well. Point H′i(c) says that crit(Π1, V ) is finite; it follows from the first claim with i = 1,
since crit(Π1, V ) = W1 ∪ sing(V ). Point H′i(e) is in [7, Prop. 8].

Proof of H′2(d) with 1 ≤ p ≤ n − 1 in generic coordinates. By H′2(b), in generic
coordinates, W2 is a curve in Noether position for Π1. This easily implies point H′2(d), and
thus finishes the proof of Lemma 31.

Proof of H′i(d) with p = 1 in generic coordinates. This case turns out to be sub-
stantially harder than the other ones. Since we suppose that p = 1, we write f1 = f and
V = V (f). We will work with the parameter space Ci×Cni; to an element (g, e) of Ci×Cni,
with e = (e1, . . . , ei) and all ek in Cn, we associate the linear maps

Πe : Cn → Ci

x = (x1, . . . , xn) 7→ (e1 · x, . . . , ei · x)
and

ρg : Ci → C
y = (y1, . . . , yi) 7→ g · y.
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We also define We as the Zariski closure of the set of critical points crit(Πe, reg(V )). First,
we need to relate these critical points to the critical points of Πi in generic coordinates. If
A is in GLn(C), we let fA be the polynomial f(AX), and we let VA be the zero-set of fA;
it is the image of V through the map φ : x 7→ A−1x. We define the polar variety Wi,A as
the polar variety associated to the polynomial fA. Then, the following lemma follows from
a straightforward verification.

Lemma 37. Let A be in GLn(C), let e = (e1, . . . , ei), where etj is the jth row of A−1, and
let g0 = [1 0 · · · 0]t. Then the following equalities hold:

• Wi,A = φ(We);

• assuming that Wi,A is non-empty and equidimensional, crit(Π1,Wi,A) = φ(crit(ρg0 ◦
Πe,We)).

In view of this lemma, it is sufficient to prove that for a generic e, crit(ρg0 ◦ Πe,We) is
finite; along the way, we will also prove that φ(We) is generically (i− 1)-equidimensional (if
not empty), which re-establishes H′i(b) for hypersurfaces.

First, we give some useful, and well-known, properties of the sets We. For e in Cni and
i + 1 ≤ ` ≤ n, let Me,` be the (i + 1)-minor built on columns (1, . . . , i, `) of the (i + 1) × n
matrix

Me =


et1
...
eti

grad(f)

 .
We say that property a1(e) is satisfied if the following holds:

• We is the zero-set of (f,Me,i+1, . . . ,Me,n),

• the Jacobian matrix of (f,Me,i+1, . . . ,Me,n) has rank n − i + 1 at all points of We −
sing(V ),

• We is (i− 1)-equidimensional.

We also need to take into account an alternative property, denoted by a′1(e):

• We is empty.

Our first task is to prove that one of these conditions is generic. Let E = (E1, . . . ,Ei) be
ni indeterminates, that stand for the entries of the vectors e = (e1, . . . , ei). We define the
minors ME,i+1, . . . ,ME,n as before, but leaving E as indeterminates, and let K be the zero-
set of (f,ME,i+1, . . . ,ME,n) in Cni × Cn. Remark that for e in Cni, We is the fiber of the
projection K → Cni above e.

Lemma 38. Exactly one of the following holds:
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1. for a generic e in Cni, property a1(e) is satisfied;

2. for a generic e in Cni, property a′1(e) is satisfied.

Proof. The proof of [5, Prop. 3] establishes that for generic e, the following holds:

• crit(Πe, V ) is the zero-set of (f,Me,i+1, . . . ,Me,n),

• the Jacobian matrix of (f,Me,i+1, . . . ,Me,n) has rank n−i+1 at all points of crit(Πe, V )-
sing(V ),

• crit(Πe, V ) is either empty or (i− 1)-equidimensional.

Let us first justify that crit(Πe, V ) = We. As was the case for Wi and crit(Πi, V ), we have
now that crit(Πe, V ) = We∪sing(V ). If crit(Πe, V ) is empty, our conclusion obviously holds.
Else, using the first point and Krull’s theorem, we deduce that all irreducible components of
crit(Πe, V ) have positive dimension i− 1 ≥ 1, so there is no isolated point. Since sing(V ) is
finite, we deduce that it is included in We, so that crit(Πe, V ) = We.

To conclude, we discuss the dimension of We for a generic e. If K is empty, We is empty
for all e, so a′1(e) holds for all e. Else, let K1, . . . , Ks be the irreducible components of K
and let µ be the projection Cni ×Cn → Cni on the E-space. If for some j, µ(Kj) is dense
in Cni, then for a generic e, We is not empty; in view of the third point above, this implies
that a1(e) holds. Else, for all j, µ(Kj) is contained in a hypersurface of Cni; in this case, for
a generic e, We is empty, and a′1(e) holds.

Suppose that we are in the second case of the former lemma. Then, for a generic e,
crit(ρg0 ◦ Πe,We) is a fortiori empty (and thus finite), so we are actually done in this case.
Consequently, in all that follows, we assume that we are in the first case of the lemma.

For 0 ≤ j ≤ i, define Sj = {x ∈ reg(V ) | dim(Πe(TxV )) = j}. The sets Sj form a
partition of reg(V ); we say that property a2(e) is satisfied if the following holds:

• for j = 0, . . . , i, Sj is either empty or a non-singular constructible subset of reg(V ).

If a2(e) holds, let m(n, i, j) = max(0, dim(Sj)− n + 1 + j) and M(n, i, j) = dim(Sj). Then
for m(n, i, j) ≤ ` ≤M(n, i, j), define finally

Sj,` = {x ∈ Sj | dim(Πe(TxSj)) = `}.

Under a2(e), the sets Sj,` form a partition of Sj. Then, we say that property a3(e) holds if

• for j = 0, . . . , i and m(n, i, j) ≤ ` ≤ M(n, i, j), Sj,` is either empty or a non-singular
constructible subset of Sj.

Then, we can state the following extension of the former lemma.

Lemma 39. For a generic e in Cni, properties a2(e) and a3(e) are satisfied. If Sj,` is not
empty, the inequality dim(Sj,`) ≤ ` holds for ` ≤ i− 1 and m(n, i, j) ≤ ` ≤M(n, i, j).

37



Proof. Remark that the sets Sj and Sj,` can be rewritten in terms of the standard notation of
Thom-Boardman strata [37, 11]. Using our notation, Mather’s transversality result [30, 3, 2]
shows that for generic e, a2(e) and a3(e) are satisfied, and, if the set Sj (resp. Sj,`) is not
empty, their dimensions are given by

dim(Sj) = n− 1− νn,i(n− 1− j), dim(Sj,`) = n− 1− νn,i(n− 1− j, dim(Sj)− `),

where the function νn,i is defined as follows. Considering two indices r ≥ s ≥ 0, we define
µ(r, s) = r(s+ 1)− s(s− 1)/2. Then, we have

νn,i(r) = (i− n+ 1 + r)r

νn,i(r, s) = (i− n+ 1 + r)µ(r, s)− (r − s)s

= (i− n+ 1 + r)(r(s+ 1)− s(s− 1)

2
)− (r − s)s.

It remains to check that under these constraints, we always have dim(Sj,`) ≤ ` for ` ≤ i− 1;
this follows from a straightforward but tedious verification.

Let G = (G1, . . . , Gi) be indeterminates for g = (g1, . . . , gi) and let J be the (n−i+1)×n
Jacobian matrix of the polynomials (f,ME,i+1, . . . ,ME,n), where we take partial derivatives
in the variables X1, . . . , Xn only. Let further r be the row vector of length n given by

r =
[
G1 · · · Gi

] Et
1

...
Et
i

 ,
and let J ′ be the (n − i + 2) × n matrix obtained by adjoining the row r to J . We let
X ⊂ Ci ×Cni ×Cn be the algebraic set defined by f,ME,i+1, . . . ,ME,n and all (n− i+ 2)-
minors of J ′. Finally, we define the projections

α : Ci ×Cni ×Cn → Ci ×Cni

(g, e,x) 7→ (g, e)
and

γ : Ci ×Cni ×Cn → Cni

(g, e,x) 7→ e;

for e in Cni, we denote by Xe the fiber X ∩ γ−1(e), and we define

βe : Xe → Cn

(g, e,x) 7→ x.

Our goal is now to give an upper bound on the dimension of the fibers Xe (Lemma 42). In
the following lemma, we start by estimating in particular the dimension of β−1

e (x), for e and
x fixed; remark that this is an affine space.

Lemma 40. Suppose that a1(e) holds. For x in reg(We) and g in Ci, (g, e,x) is in Xe

if and only if x is in crit(ρg ◦ Πe,We), and the equality dim(Πe(TxWe)) + dim(β−1
e (x)) = i

holds.
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Proof. Since a1(e) holds, the polynomials f,Me,i+1, . . . ,Me,n define We and for x in reg(We),
the matrix J has rank n− i+ 1 at x. The first claim follows readily, since the last row of J ′

is precisely the vector representing the linear form ρg ◦Πe. Thus, (g, e,x) is in β−1
e (x) if and

only if for all v in TxWe, ρg(Πe(v)) = 0; equivalently, if for all w in Πe(TxWe), ρg(w) = 0.
Since ρg(w) = g ·w, we are done.

Next, we recall a consequence of the theorem on the dimension of fibers.

Lemma 41. If g is polynomial map A→ B (not necessarily dominant), with A an irreducible
algebraic set and B a constructible set, and if there exists a fiber of g of dimension r ≥ 0,
then dim(A) ≤ r + dim(B).

Proof. The Zariski closure C of g(A) is contained in a irreducible component of the Zariski
closure of B, with thus dim(C) ≤ dim(B). If there exists a fiber of dimension r, we get (by
the theorem on the dimension of fibers) r ≥ dim(A) − dim(C), so dim(A) ≤ r + dim(C) ≤
r + dim(B), as claimed.

The following lemma gives the key inequality on the dimension of Xe.

Lemma 42. Suppose that a1(e), a2(e) and a3(e) hold. Then Xe has dimension at most i.

Proof. We fix e that satisfies the assumptions of the lemma. For 0 ≤ ` ≤ i − 1, let
j`,1, . . . , j`,κ(`) be the indices j such that Sj,` is well-defined and not empty. Then, we define
the constructible sets

T` = Sj`,1,` ∪ · · · ∪ Sj`,κ(`),` and T ′` = T0 ∪ · · · ∪ T`.

By Lemma 39, both T` and T ′` are disjoint unions of non-singular locally closed sets of
dimension at most `. Besides, we claim that by Lemma 40, for 0 ≤ ` ≤ i, and for x in T`,
the inequality dim(β−1

e (x)) ≤ i− ` holds. Indeed, if x is in T`, there exists an index j such
that x is in Sj,`, and thus dim(Πe(TxSj)) = `. Since Sj is contained in We − sing(We), we
have dim(Πe(TxSj)) ≤ dim(Πe(TxWe)) and we deduce that dim(Πe(TxWe)) ≥ `. The bound
on β−1

e (x) follows from Lemma 40.
Remark that We = T ′i−1 ∪ sing(We). Since T ′i−1 = T ′i−2 ∪ Ti−1, we rewrite this as

We = T ′i−2 ∪ Ti−1 ∪ sing(We), (1)

where the union is disjoint. Going further, it will be convenient to write for any ` ≤ i− 1

T ′` ∪ sing(We) = T ′`−1 ∪ T` ∪ sing(We). (2)

Consider now an irreducible component X ′ of Xe. By construction, βe(X ′) is contained
in We. By (1), either βe(X ′) is contained in T ′i−2 ∪ sing(We), or βe(X ′) intersects Ti−1.
Suppose first that βe(X ′) intersects Ti−1, so that there exists (g, e,x) in X ′ such that x is in
Ti−1. By the remark in the first paragraph, dim(β−1

e (x)) ≤ 1, so that dim(β−1
e (x)∩X ′) ≤ 1.

In this case, by Lemma 41, dim(X ′) ≤ 1 + dim(T ′i−1), and thus dim(X ′) ≤ i.
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If βe(X ′) is contained in T ′i−2 ∪ sing(We), then by (2), either βe(X ′) is contained in
T ′i−3 ∪ sing(We), or βe(X ′) intersects Ti−2. If βe(X ′) intersects Ti−2, then there is a fiber of
dimension at most 2, so dim(X ′) ≤ 2 + dim(T ′i−2) ≤ i. Continuing this way, we prove that
dim(X ′) ≤ i in any case.

Let F be the Zariski-open subset of Cni underlying Lemmas 38 and 39: for e in F , a1(e),
a2(e) and a3(e) hold. Let then Z = Cni−F ; this is a strict algebraic subset of Cni. On the
other hand, let Y ⊂ Ci ×Cni be the Zariski closure of the set of all (g, e) ∈ Ci ×Cni such
that the fiber X ∩ α−1(g, e) is infinite.

Lemma 43. The set Y is a strict algebraic subset of Ci ×Cni.

Proof. First, Y is obviously Zariski-closed. We continue by proving that it does not cover
all of Ci ×Cni. Let X ′ be an irreducible component of X.

• If γ(X ′) does not intersect F , then it is contained in Z, which implies that α(X ′) as a
whole is contained in Ci × Z.

• If γ(X ′) intersects F , there exists (g, e,x) in X ′ such that e is in F . Then, Lemma 42
implies that dim(Xe) ≤ i and the theorem on the dimension of fibers implies that
dim(X ′) ≤ i+ ni. As a consequence, the set of infinite fibers of the restriction of α to
X ′ is contained in a hypersurface of Ci ×Cni.

This finishes the proof that Y is a strict Zariski-closed subset of Ci ×Cni.

Recall that g0 is the vector of length i given by [1 0 · · · 0]t, and let Y ′ ⊂ Cni be the set
{e ∈ Cni | (g0, e) ∈ Y }. Since Y is Zariski closed, Y ′ is a Zariski closed subset of Cni. The
next lemma refines this observation.

Lemma 44. Y ′ is a strict algebraic subset of Cni.

Proof. For any invertible i × i matrix M, the defining equations of X are multiplied by
a non-zero constant through the change of variables (G,E,X) 7→ (M−1G,ME,X), so X
is stabilized by this action. Thus, a point (g, e) in Ci × Cni belongs to Y if and only if
(M−1g,Me) does.

Because Y is contained in a hypersurface of Ci × Cni, there exists (g̃, ẽ) in Ci × Cni,
and an open Euclidean neighborhood B of it such that B ∩ Y is empty. Let M be such that
M−1g̃ = g0, and let ψ : Ci×Cni → Ci×Cni be the map (g, e) 7→ (M−1g,Me). The image
ψ(B) is an open neighborhood of (g0, e0), with e0 = Mẽ. By the remarks of the previous
paragraph, there is no point of Y in ψ(B). This is enough to conclude.

We can now define ∆ = Cni − (Z ∪ Y ′), where Z was defined prior to Lemma 43; ∆ is
thus a non-empty Zariski open subset of Cni. The following lemma finishes to establish our
main claim.

Lemma 45. For e in ∆, the set crit(ρg0 ◦ Πe,We) is finite.
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Proof. Remark that (g0, e) is in Ci×Cni−Y . By definition of Y , this implies that α−1(g0, e)
intersects X in a finite number of points. Besides, e is in F , so a1(e) holds, and we deduce
that sing(We) is finite. For x in reg(We), by Lemma 40, x is in crit(ρg0 ◦Πe,We) if and only
if (g0, e,x) is in Xe, if and only if (g0, e,x) is in X ∩ γ−1(g0, e). Since this set is finite, we
are done.
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