
On the Complexity of Computing Gröbner Bases
for Quasi-Homogeneous Systems

Jean-Charles Faugère*

Jean-Charles.Faugere@inria.fr
Mohab Safey El Din*‡

Mohab.Safey@lip6.fr
Thibaut Verron†*

Thibaut.Verron@ens.fr
*INRIA, Paris-Rocquencourt Center, PolSys Project ‡Institut Universitaire de France

UPMC, Univ. Paris 06, LIP6
CNRS, UMR 7606, LIP6 †École Normale Supérieure,

Case 169, 4, Place Jussieu, F-75252 Paris 45, rue d’Ulm, F-75230, Paris

ABSTRACT
Let K be a field and ( f1, . . . , fn) ⊂ K[X1, . . . ,Xn] be a sequence of
quasi-homogeneous polynomials of respective weighted degrees
(d1, . . . ,dn) w.r.t a system of weights (w1, . . . ,wn). Such systems
are likely to arise from a lot of applications, including physics or
cryptography.

We design strategies for computing Gröbner bases for quasi-
homogeneous systems by adapting existing algorithms for homo-
geneous systems to the quasi-homogeneous case. Overall, under
genericity assumptions, we show that for a generic zero-dimensional
quasi-homogeneous system, the complexity of the full strategy is
polynomial in the weighted Bézout bound ∏

n
i=1 di/∏

n
i=1 wi.

We provide some experimental results based on generic systems
as well as systems arising from a cryptography problem. They show
that taking advantage of the quasi-homogeneous structure of the
systems allow us to solve systems that were out of reach otherwise.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algorithms; F.2.2
[Analysis of Algorithms and Problem Complexity]: Nonnumeri-
cal Algorithms and Problems

Keywords
Gröbner bases; Polynomial system solving; Quasi-homogeneous
polynomials

1. INTRODUCTION
Polynomial system solving is a very important problem in com-

puter algebra, with a wide range of applications in theory (algo-
rithmic geometry) or in real life (cryptography). For that purpose,
Gröbner bases of polynomial ideals are a valuable tool, and practica-
ble computation of the Gröbner bases of any given ideal is a major
challenge of modern computer algebra. Since their introduction
in 1965, many algorithms have been designed to compute Gröbner
bases ([6, 9, 10, 11]), improving the efficiency of the computations.
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Systems arising from “real life” problems often have some struc-
ture. It has been observed that most of these structures can make the
Gröbner basis computations easier. For example, it is known that
homogeneous systems, or systems with an important maximal homo-
geneous component, are better solved by using a degree-compatible
order, and then applying a change of ordering. In this paper, we
study a structure slightly more general than homogeneity, called
quasi-homogeneity. More precisely, we will say that a polyno-
mial P(X1, . . . ,Xn) is quasi-homogeneous for the system of weights
W = (w1, . . . ,wn), if the polynomial

Q(Y1, . . . ,Yn) := P(Y w1
1 , . . . ,Y wn

n )

is homogeneous. Systems with such a structure are likely to arise
for example from physics, where all measures are associated with a
dimension which, to some extent, can be seen as a weight.

Let F = ( f1, . . . , fm) be a system of polynomials, in a polynomial
algebra graded w.r.t the system of weights W = (w1, . . . ,wn). In the
following, we will assume that F is quasi-homogeneous and generic,
or more generally that its quasi-homogeneous components of maxi-
mal weighted degree are generic. It is possible to compute directly
a Gröbner basis of the ideal generated by F . This strategy consists
of running the classical algorithms F5 ([10]) and FGLM ([11]) on
F , while ignoring the quasi-homogeneous structure. However, to
the best of our knowledge, there is no general way of evaluating the
complexity of that strategy.

Another approach is to compute the homogenized system defined
by F̃ := ( fi(X

w1
1 , . . . ,Xwn

n )), and then compute a Gröbner basis of
that system, using the usual strategies for the homogeneous struc-
ture. Experimentally, the first step of the computation is much faster
than with the naive strategy. However, the number of solutions is in-
creased by a factor of ∏

n
i=1 wi, slowing down the change of ordering,

which thus becomes the main bottleneck of the computation.
Furthermore, to the best of our knowledge, the best complexity

bounds for this computation are those we obtain for a homoge-
neous system of the same degree. However, experimentally, the
first step of the computation proves faster for a homogenized quasi-
homogeneous system with weighted degree (d1, . . . ,dn) than for a
homogeneous system of total degree (d1, . . . ,dn).
Main results. We provide a complexity study of the above strat-
egy, allowing us to quantify this speed-up, as well as to propose
a workaround for the change of ordering. Overall, we prove that
the known bounds for this strategy can be divided by ∏

n
i=1 wi for

a generic zero-dimensional W -homogeneous system with weights
W = (w1, . . . ,wn).

More precisely, we assume the system ( f1, . . . , fm) to satisfy the
two following generic assumptions:

H1. The sequence f1, . . . , fm is regular;



H2. The sequence f1, . . . , fi is in Noether position w.r.t. X1, . . . ,Xi,
for any 1≤ i≤ m.

Under hypothesis H1, we adapt the classical results of the homo-
geneous case, using similar arguments based on Hilbert series, to
estimate the degree of the ideal and the degree of regularity of the
system:

deg(I) =
n

∏
i=1

di

wi
; dreg(F)≤

n

∑
i=1

(
di−wi

)
+max{wi}.

We study the complexity of the F5 algorithm through its matrix
variant matrix-F5. This is a usual approach, carried on for example
in [14]. With minor changes, the matrix-F5 algorithm for homoge-
neous systems can be adapted to quasi-homogeneous systems. A
combinatorial result found in [1] shows that the number of columns
of the matrices appearing in that variant of matrix-F5 is approxi-
mately smaller by a factor of ∏

n
i=1 wi, when compared to the regular

matrix-F5 algorithm. Overall, we can obtain complexity bounds
which are smaller by a factor of Pω than the bounds we would
obtain for a generic homogeneous system with same degrees, where
P = ∏

n
i=1 wi and ω is the exponent of the complexity of matrix mul-

tiplication. In the end, we show that for systems satisfying H1, our
strategy, running F5 on the homogenized system, dehomogenizing
the result, and then running FGLM, performs in time polynomial in
∏

n
i=1 di/∏

n
i=1 wi, that is polynomial in the number of solutions.

Further assuming hypothesis H2, we also carry on the precise
complexity analyses done in [2] for homogeneous systems, and
adapt them to the quasi-homogeneous case to deduce a precise
complexity bound for our quasi-homogeneous variant of Matrix-
F5. These new complexity bounds are also smaller by a factor of
Pω than similar bounds for a generic homogeneous system. Even
though these bounds still do not match exactly the experimental
complexity, they tend to confirm that overall, we are able to compute
a LEX Gröbner basis for a generic quasi-homogeneous system in
time reduced by a factor of Pω , when compared with a generic
homogeneous system with same degrees.

We have run benchmarks with the FGb library ([16]) and the
Magma computer algebra software ([5]), on both generic systems
and real-life systems arising in cryptography. Experimentally, in
both cases, our strategy seems always faster than ignoring the quasi-
homogeneous structure, and the speed-up increases with the consid-
ered weights.

Experiments have also shown that the order of the variables can
have an impact on the performances of both strategies. Predicting
this behavior seems to require more sophisticated tools and may be
material for future research.
Prior works. Making use of the structure of polynomial systems
to develop faster algorithms has been a general trend over the past
few years: see for example [12], [7] or [15]. Polynomial algebras
graded with respect to a system of weights have been studied by
researchers in commutative algebra. Most notably, the Hilbert series
of ideals defined by regular sequences, which we use several times
in this paper, is well known, and could be found for example in [21].
The paper [20] defines many structures of polynomial algebras, in-
cluding weighted gradings, in preparation for future algorithmic
developments. Combinatorial objects arising when we try to es-
timate the number of monomials of a given W -degree are called
Sylvester denumerants, and studied for example in [1].

When it comes to Gröbner bases, weighted gradings and related
orderings have been described in early works such as [4]. However,
as far as we know, the impact of a quasi-homogeneous structure
on the complexity of Gröbner bases computations had never been
studied.

Among the various computer algebra software able to compute
Gröbner bases, it seems that only Magma has algorithms dedicated

to quasi-homogeneous systems. Given a quasi-homogeneous system,
it will detect the appropriate system of weights, and use the W -
GREVLEX ordering to compute an intermediate basis before the
change of ordering. However, this strategy is only available for
quasi-homogeneous systems, while it can be useful in many other
cases, for example systems of polynomials defined as the sum of a
quasi-homogeneous component and a scalar.

Other computer algebra software (e.g. Singular) allow the user
to compute F̃ and to run the Gröbner basis algorithm on it. Since
all these algorithms (most often Buchberger, F4 or F5) use S-pairs,
they will show a similar speed-up. However, the user must notice
that the computations may benefit from using a quasi-homogeneous
structure of the system, and provide the system of weights.

We do not provide a way to know what is the “appropriate” system
of weights for a given system, or even to detect systems which would
benefit from taking into account the quasi-homogeneous structure.
However, some systems obviously belong to that category (e.g quasi-
homogeneous plus scalar), and the system of weights will then be
easy to compute.
Structure of the paper. In section 2 we define more precisely
quasi-homogeneous systems, and we compute their degree and
degree of regularity assuming the above hypotheses. We also take
this opportunity to show briefly that these hypotheses are generic.
In section 3 we prove that the strategy consisting of modifying
the system is correct, we explain how we can adapt matrix-F5 and
FGLM to quasi-homogeneous systems, and then we evaluate the
complexity of these algorithms. In section 4, we briefly explain
how these results for quasi-homogeneous systems still help in case
the system was obtained from a quasi-homogeneous system by
specializing one of the variables to 1. We also give an example of
such a structure, as well as the associated algorithm. Finally, in
section 5, we give some experimental results.

2. QUASI-HOMOGENEOUS SYSTEMS
2.1 Weighted degrees and polynomials
Let K be a field. We consider the algebra A :=K[X1, . . . ,Xn] =K[X].
Even though one usually uses the total degree to grade the algebra
A, there are other ways to define such a grading, as seen in [4], for
example.

Definition 1. Let W = (w1, . . . ,wn) be a vector of positive inte-
gers. Let α = (α1, . . . ,αn) be a tuple of nonnegative integers. Let
the integer degW (Xα ) = ∑

n
i=1 wiαi be the W-degree, or weighted

degree of the monomial Xα = Xα1
1 · · ·X

αn
n . Call the vector W a sys-

tem of weights. We denote by 1 the system of weights defined by
(1, . . . ,1), associated with the usual grading on A.

One can prove that any grading on K[X] comes from such a
system of weights ([4, sec. 10.2]). We denote by (K[X],W ) the
W -graded structure on A, and in that case, to clear ambiguities, we
use the adjective W-homogeneous for elements or ideals, or quasi-
homogeneous or weighted homogeneous if W is clear in the context.
The word homogeneous will be reserved for 1-homogeneous items.

PROPOSITION 1. Let (K[X1, . . . ,Xn],W ) be a graded polyno-
mial algebra. Then the application

homW : (K[X1, . . . ,Xn],W ) → (K[t1, . . . , tn],1)
f 7→ f (tw1

1 , . . . , twn
n )

is an injective graded morphism, and in particular the image of a
quasi-homogeneous polynomial is a homogeneous polynomial.

PROOF. It is an easy consequence of the definition of the grading
w.r.t a system of weights.

The above morphism also provides a quasi-homogeneous variant
of the GREVLEX ordering (as found for example in [4]), which we



call the W-GREVLEX ordering:
u <W -grevlex v ⇐⇒ homW (v)<grevlex homW (v)

Given a W -homogeneous system F , one can build the homogeneous
system homW (F), and then apply classical algorithms ([10, 11])
to that system to compute a GREVLEX (resp. LEX) Gröbner basis
of the ideal generated by homW (F). We will prove in section 3
(prop. 7) that this basis is contained in the image of homW , and that
its pullback is a W -GREVLEX (resp. LEX) Gröbner basis of the
ideal generated by F .

Let us end this paragraph with some notations and definitions.
The degree of regularity of the system F is the highest degree dreg(F)
reached in a run of F5 to compute a GREVLEX Gröbner basis of
homW (F). The index of regularity of an ideal I is the degree ireg of
the Hilbert series HSA/I , defined as the difference of the degree of
its numerator and the degree of its denominator.

Recall that given a homogeneous ideal I, we define its degree D as
the degree of the projective variety V (I), as introduced for example
in [18]. This definition still holds for the quasi-homogeneous case.
In case the projective variety is empty, that is if the affine variety is
equal to {0}, we extend that definition by letting D be the multiplic-
ity of the 0 point, that is the dimension of the K-vector space A/I.
Finally, from now on we will only consider affine varieties, even
when the ideal is quasi-homogeneous. In particular, the dimension
of V (0) is n, and that a zero-dimensional variety will be defined by
at least n polynomials.

2.2 Degree and degree of regularity
Zero-dimensional regular sequences. As in the homoge-
neous case, regular sequences are an important case to study, be-
cause it is a generic property which allows us to compute several
key parameters and good complexity bounds. We first characterize
the degree and bound the degree of regularity of a zero-dimensional
ideal defined by a regular sequence.

THEOREM 2. Let W = (w1, . . . ,wn) be a system of weights, and
F = ( f1, . . . , fm) a regular sequence of W-homogeneous polyno-
mials, of respective W-degrees d1, . . . ,dm. Further assume that
the set of solutions is zero-dimensional, that is m = n. We denote
by I the quasi-homogeneous ideal generated by F. Then we have
deg(I) = ∏

n
i=1

di
wi

and dreg(F)≤ ∑
n
i=1
(
di−wi

)
+max{wi}.

PROOF. We will determine the degree and degree of regularity
of the system from the Hilbert series (or Poincaré series) of the
algebra A/I. A classical result which can be found for example
in [21, cor. 3.3] states that, for regular sequences, this series is

HSA/I(t) =
(1− td1) · · ·(1− tdm)

(1− tw1) · · ·(1− twn)
. (1)

We assumed n = m, so the Hilbert series can be rewritten as

HSA/I(t) =
(1+ · · ·+ td1−1) · · ·(1+ · · ·+ tdn−1)

(1+ · · ·+ tw1−1) . . .(1+ · · ·+ twn−1)
.

In the 0-dimensional case, recall that the Hilbert series is actually a
polynomial, and has degree ireg = ∑

n
i=1(di−wi). This means that

all monomials of W -degree greater than ireg are in the ideal, and as
such, that the leading terms of the W -GREVLEX Gröbner basis of F
need to divide all the monomials of W -degree greater than ireg.This
proves that all the polynomials in the Gröbner basis computed by F5
have W -degree at most ireg +max{wi}. And since the F5 criterion
([10]) ensures that there is no reduction to zero in a run of F5 on
a regular sequence, the algorithm indeed stops in degree at most
ireg +max{wi}.

Furthermore, the degree of the ideal I is equal to the dimension of
the vector space A/I, that is the value of the Hilbert series at t = 1,
that is ∏

n
i=1

di
wi

.

Note that except for this inequality, not much is known about the
degree of regularity of a quasi-homogeneous system. In particular,
the above bound is nothing more than a bound, even in the generic
case. Let us introduce some examples of the three cases one can
observe with a quasi-homogeneous generic system:

1. W = (3,2,1), generic system of W -degree D = (6,6,6): then
dreg = ireg +1 = 13;

2. W = (1,2,3), generic system of W -degree D = (6,6,6): then
dreg = 15 > ireg +1 = 13;

3. W = (2,3), generic system of W -degree D = (6,6): then
dreg = 6 < ireg = 7.

Only the case 1 is observed with generic homogeneous systems.
Furthermore, examples 1 and 2 show that the degree of regularity
depends upon the order of the variables (chosen in the description of
the system of weights). As the Hilbert series of a generic sequence
doesn’t depend on that order, it shows that we probably need to find a
better tool in order to evaluate more precisely the degree of regularity
in the quasi-homogeneous case. However, the above bound already
leads to good improvements on the complexity bounds, as we will
see in the following sections. Also note that these computations
only hold when the system is 0-dimensional, we will discuss that
restriction in section 2.3.

Genericity. We now prove that zero-dimensional W -homoge-
neous sequences of given W -degree are generically regular, under
some assumptions on the W -degree. Let us start with the first part
of this statement:

LEMMA 3. Let n be a positive integer, and consider the algebra
A := K[X1, . . . ,Xn], graded with respect to the system of weights
W = (w1, . . . ,wn). Regular sequences of length n form a Zariski-
open subset of all sequences of quasi-homogeneous polynomials of
given W-degree in A.

PROOF. Let (d1, . . . ,dm) be a family of W -degrees, we consider
the set V (K[a][X]) of all systems of quasi-homogeneous polynomi-
als of W -degree d1, . . . ,dm, where a is a set of variables representing
the coefficients of the polynomials. We denote by f1, . . . , fm the
polynomials of the generic system, and by I the ideal they generate,
in K[a][X].

Since the Hilbert series (1) characterizes regular sequences ([21,
cor. 3.2]), the sequence ( fi) is regular if and only if the ideal
I contains all monomials of W -degree between ireg(I) + 1 and
ireg(I)+max{wi}, where ireg(I) is given by ∑(di−wi). This ex-
presses that a given set of linear equations has solutions, and so it
can be coded as some determinants being non-zero.

There are some systems of W -degree for which there is no regular
sequence. The reason is that because of the weights, for some
systems of W -degrees, there exists no or very few monomials.
For example, take n = 2, W = (1,2) and D = (1,1). All quasi-
homogeneous polynomials of W -degree 1 are in KX , so there is
no regular sequence of quasi-homogeneous polynomials with these
W -degrees.

However, if we only consider “reasonable” systems of W -degrees,
that is systems of W -degrees for which there exists a regular se-
quence, regular sequences form a Zariski-dense subset from the
above.

Remark 1. A sufficient condition for example is to take weighted
degrees such that d1 is divisible by w1, . . . , dn is divisible by wn.
Thus we can define the sequence X

d1/w1

1 , . . . ,X
dn/wn

n , which is regular,
and so for such systems of weight, the regularity condition is generic.

We only proved the genericity for quasi-homogeneous sequences
of length n, the more general case of a sequence of length m ≤ n
will be proved in section 2.3 (remark 2).



2.3 Noether position
To compute the degree and degree of regularity of quasi-homoge-

neous systems of positive dimension, we will assume that the system
F = ( f1, . . . , fm) we consider is in Noether position (as seen in [8,
ch. 13, sec. 1] or [3, def. 2]), i.e. the ideal I = 〈F〉 satisfies the two
following conditions:
• for i≤m, the canonical image of Xi in K[X]/I is an algebraic

integer over K[Xm+1, . . . ,Xn];
• K[Xm+1, . . . ,Xn]∩ I = 0.

LEMMA 4. Let F = f1, . . . , fm be a regular quasi-homogeneous
sequence of polynomials in K[X1, . . . ,Xn]. The sequence F is in
Noether position if and only if Fext := f1, . . . , fm,Xm+1, . . . ,Xn is a
regular sequence.

PROOF. Let I be the ideal generated by the fi’s. The geometric
characterization of Noether position (see e.g. [19]) shows that the
canonical projection onto the m first coordinates

π : V (I)→V (〈X1, . . . ,Xm〉)
is a surjective morphism with finite fibers. This implies that the
variety V (〈Fext〉), that is π−1(0), is zero-dimensional, and so the
sequence is regular.

Conversely, assume Fext is a regular sequence. Let i ≤ m, we
want to show that Xi is integral over the ring K[Xm+1, . . . ,Xn]. Since
Fext defines a zero-dimensional ideal, there exists ni ∈ N such
that Xni

i = LT( f ) with f ∈ 〈Fext〉 for the GREVLEX ordering with
X1 > · · ·> Xn. By definition of the GREVLEX ordering, we can as-
sume that f simply belongs to I. This shows that every Xi is integral
over K[Xi+1, . . . ,Xn]/I. We get the requested result by induction
on i : first, this is clear if i = m. Now assume that we know that
K[Xi, . . . ,Xn]/I is an integral extension of K[Xm+1, . . . ,Xn]. From
the above, we also know that Xi−1 is integral over K[Xi, . . . ,Xn], and
so, since the composition of integral homomorphisms is integral, we
get the requested result.

Finally, we want to check the second part of the definition of
Noether position. Assume that there is a non-zero polynomial
in K[Xm+1, . . . ,Xn]∩ I, since the ideal is quasi-homogeneous, we
can assume this polynomial to be quasi-homogeneous. Either this
polynomial is of degree 0, or it is a non-trivial syzygy between
Xm+1, . . . ,Xn. So in any case, it contradicts the regularity hypothe-
sis.

As we did for regular sequences, we first show how we can eval-
uate the degree and degree of regularity of a sequence in Noether
position, and then we show that the Noether position property is
generic under some assumptions on the W -degree of the polynomi-
als.

THEOREM 5. Let W = (w1, . . . ,wn) be a system of weights, and
f1, . . . , fm a regular sequence in Noether position, of quasi-homoge-
neous polynomials of W-degrees (d1, . . . ,dm). The same way we did
above, we denote by I the ideal generated by the fi’s. Then we have
deg(I) = ∏

m
i=1

di
wi

and dreg(I)≤ ∑
m
i=1
(
di−wi

)
+max{wi}.

PROOF. Let us denote by I′ the ideal generated by Fext. The
degree of the ideal I′ is the same as that of I, because the variety
it defines is the intersection of V (I) with some non-zero-divisor
hyperplanes. Furthermore, all critical pairs appearing in a run
of F5 on F will also appear in a run of F5 on Fext, ensuring that
dreg(F)≤ dreg(Fext).

But since by Noether position, the family Fext defines a zero-
dimensional variety, we can use the previous computations to deduce
its degree of regularity and the degree of I′.

LEMMA 6. Let n be a positive integer, and consider the algebra
A := K[X1, . . . ,Xn], graded with respect to the system of weights
W = (w1, . . . ,wn). Systems in Noether position form a Zariski-open
subset of all systems of quasi-homogeneous polynomials of given
W-degrees in A.

PROOF. Let F = ( f1, . . . , fm) be m generic quasi-homogeneous
polynomials, with coefficients in K[a]. We use the same characteri-
zation of a zero-dimensional regular sequence as we did in the proof
of Lemma 3. It allows us to express the regularity condition for
the sequence ( f1, . . . , fm,Xm+1, . . . ,Xn) as some determinants being
non-zero, which by definition, shows that the condition of being in
Noether position is an open condition.

Since a sequence in Noether position is in particular a regular
sequence, we are confronted with the same problem as for the gener-
icity of regular sequences, that is the possible emptiness of the
condition. However, it is still true that for “reasonable” systems of
W -degrees, i.e. systems of W -degrees for which there exists enough
monomials, sequences in Noether position do exist, and thus form
a Zariski-dense subset of all sequences. For example, since the
sequence X

d1/w1

1 , . . . ,X
dm/wm

m is in Noether position, the sufficient con-
dition given in Remark 1 is also sufficient to ensure that sequences
in Noether position are Zariski-dense.

Remark 2. Any sequence in Noether position is in particular a
regular sequence, so Lemma 6 proves that, under the same assump-
tion on the degree, regular sequences of length m ≤ n are generic
among quasi-homogeneous sequences of given W -degree.

3. COMPUTING GRÖBNER BASES
3.1 Using the standard algorithms on the ho-

mogenized system
As we said before, in order to apply the F5 algorithm to a quasi-

homogeneous system, we may run it through homW . This is shown
by the following proposition.

PROPOSITION 7. Let F = ( f1, . . . , fm) be a family of polynomi-
als in K[X1, . . . ,Xn], assumed to be quasi-homogeneous for a system
of weights W = (w1, . . . ,wn). Let <1 be a monomial order, G the
reduced Gröbner basis of homW (F) for this order, and <2 the
pullback of <1 through homW . Then

1. all elements of G are in the image of homW ;
2. the family G′ := hom−1

W (G) is a reduced Gröbner basis of the
system F for the order <2.

PROOF. The morphism homW preserves S-polynomials, in the
sense that S-Pol(homW ( f ), homW (g)) = homW (S-Pol( f ,g)). Re-
call that we can compute a reduced Gröbner basis by running the
Buchberger algorithm, which involves only multiplications, addi-
tions, tests of divisibility and computation of S-polynomials. Since
all these operations are compatible with homW , if we run the Buch-
berger algorithm on both F and homW (F) simultaneously, they will
follow exactly the same computations up to application of homW .
The consequences on the final reduced Gröbner basis follow.

In practice, if we want to compute a LEX Gröbner basis of F ,
we generate the system F̃ = homW (F), we compute a GREVLEX

basis G̃1 of F̃ with F5, and then we compute a LEX Gröbner basis
G̃2 of F̃ with FGLM. In the end, we get a LEX Gröbner basis of F̃ ,
which we turn into a LEX Gröbner basis of F via hom−1

W .

3.2 Direct algorithms
We can now explain why algorithm FGLM becomes a bottleneck

with the above strategy. Indeed, we have seen that going through
homW increases the Bézout bound of the system by a factor ∏

n
i=1 wi,

and recall that the complexity of the FGLM step is polynomial in
that bound.

Here is a workaround. In the above process, we can apply hom−1
W

to the basis G̃1 and thus obtain a W -GREVLEX basis G1 of F . We



can then run FGLM on that basis to obtain a LEX basis of F . Thus,
we can avoid the problem of a greater degree of the ideal on the
complexity of the FGLM step.

Algorithm F5 operates by computing S-pairs, and as such, the
argument of the proof of proposition 7 can be adapted, showing that
going through homW is equivalent to running a F5 algorithm follow-
ing weighted degree instead of total degree. However, to evaluate
the complexity of the F5 algorithm, we instead study a less-efficient
variant called Matrix-F5 (described for example in [14]), which
needs to be adapted to the quasi-homogeneous case. All we need to
do is change the algorithm a little, in order to consider directly the
variables with their weight. The modified algorithm is algorithm 1
opposite. The function F5CRITERION(µ, i,M ) implements the
F5-criterion described in [10]: it evaluates to false if and only if µ

is the leading term of a line of the matrix Md−di,i−1. The function
ECHELONFORM(M) reduces the matrix M to row-echelon form,
not allowing any row swap.

Algorithm 1: Matrix-F5 (W -homogeneous version)

Input:


f1, . . . , fm W -homogeneous polynomials

with W -degrees d1, . . . ,dm

dmax ∈ N
Output: G Gröbner basis of 〈 f1, . . . , fm〉 up to W -degree dmax

1 G←{ f1, . . . , fm} ;
2 for d = 1 to dmax do
3 Md,0← matrix with 0 lines;
4 for i = 1 to m do
5 if d = di then
6 Md,i← M̃d,i−1∪ line fi with label (1, fi);
7 else if d > di then
8 Md,i← M̃d,i−1;
9 for j = 1 to n do

10 forall the lines f of M̃d−w j ,i with label (e, fi)
s.t. the biggest variable dividing e is x j do

11 for k = n downto j do
12 if F5CRITERION(xke, i,M ) then
13 Md,i←Md,i ∪ xk f with label

(xke, fi);

14 M̃d,m← ECHELONFORM(Md,m) ;
15 For any line having been reduced to a non-zero polynomial,

append it to G ;
16 return G

3.3 First complexity bounds
Let F = ( f1, . . . , fn) be a system of W -homogeneous polynomials

in K[X1, . . . ,Xn], and let I be the ideal generated by F , D the degree
of I, dreg its degree of regularity and ireg its index of regularity. The
classical complexity bounds of Matrix-F5 (for a regular system) and
FGLM are

CF5 = O
(

dregMdreg,W (n)ω
)

; CFGLM = O
(

nD3
)
,

where Md,W (n) stands for the number of monomials of W -degree d
in n variables (see for example [2] for F5 and [11] for FGLM).

Assuming the system F is a regular sequence, we have already
seen the following estimates:

dreg ≤ ireg +max{wi} ; D =
∏

n
i=1 di

∏
n
i=1 wi

.

If we compare these values with their equivalent with the system
of weights 1, we notice a significant gain in theoretical complexity
bounds for both the FGLM and F5 algorithms.

But this gain in complexity for F5 does not take into account the
size of the computed matrices. That size is necessarily reduced, be-
cause the number of monomials of given W -degree is much smaller
than the number of monomials of given 1-degree. The point of the
following lemma is to evaluate this gain.

LEMMA 8. Let W = (w1, . . . ,wn) be a system of weights, and
for any i, let Wi = (w1, . . . ,wi). For any integer d, we denote by
Md,W (n) the number of monomials of W-degree d, that is the size
of the matrix of W-degree d. Let δ := gcd(W ), P := ∏

n
i=1 wi, Si the

integer defined recursively as following:

S1 = 0, Si = Si−1 +wi ·
gcd(Wi−1)

gcd(Wi)
for i≥ 2

and Ti the integer defined recursively as following:

T1 = 0, Ti = Ti−1 +wi ·
(

gcd(Wi−1)

gcd(Wi)
−1
)
−1 for i≥ 2.

Then the number of monomials of W-degree d is bounded above and
below by:

δ

P
Md−Tn−n+1,1(n)≤Md,W (n)≤ δ

P
Md+Sn−n+1,1(n).

PROOF. This is a consequence of theorems 3.3 and 3.4 in [1], if
we recall that Md,1(n) =

(d+n−1
d
)
=
(d+n−1

n−1
)
.

Note that if W = 1, the bounds we get are trivial, which means the
complexity bounds we will obtain with them will specialize without
any difficulty to the known bounds for the homogeneous case.

Using the notation S = Sn, we get this new complexity bound for
quasi-homogeneous Matrix-F5:

CF5 = O
(

dregMdreg,W (n)ω
)

= O
((

ireg +max{wi}
)

·
[

δ

P

(
ireg +max{wi}+S−1

n−1

)]ω)
.

(2)

On the other hand, the estimate on the degree of a quasi-homoge-
neous variety gives the following complexity bound for FGLM:

CFGLM = O
(

n
[

D̃
P

]3
)
,

where D̃ = ∏
n
i=1 di is the degree of the ideal 〈homW (F)〉. In the

end, for the whole process, we can see that the complexity bound
for our direct strategy is smaller by a factor of Pω , when compared
to the strategy of going through homW .

3.4 Precise analysis of matrix-F5
Let us now follow more closely the computations occurring in the

Matrix-F5 algorithm, and obtain more accurate complexity bounds.
For this purpose, we take on the computations made in [2, ch. 3],
without proving them whenever the proof is an exact transcription
of the homogeneous case.

Let W = (w1, . . . ,wn) be a system of weights, and f1, . . . , fm a
system of quasi-homogeneous polynomials in K[X1, . . . ,Xn], which
we assume satisfies the hypotheses H1 and H2. We denote by
(d1, . . . ,dm) the respective W -degrees of the polynomials f1, . . . , fm,
and we will assume them to allow the existence of such systems.

We also denote by:
• Ai =K[X1, . . . ,Xi], and A = An;
• Si the integer defined in Lemma 8, and S = Sn;
• Pi = ∏

i
j=1 w j, and P = Pn;

• Ii = 〈 f1, . . . , fi〉, and I = Im;
• f̃ j = homW ( f j);
• Ĩi = 〈 f̃1, . . . , f̃i〉, and Ĩ = Ĩm;
• Di = deg(Ii) = ∏

i
j=1
(
d j/w j

)
;



• D̃i = deg(Ĩi) = ∏
i
j=1 d j;

• d(i)
reg the degree of regularity of Ii (or of Ĩi) ;

• Gi the W -GREVLEX Gröbner basis of Ii as given by Matrix-
F5.

With these notations, we are going to prove the following theorem:

THEOREM 9. Let W = (w1, . . . ,wn) be a system of weights, and
f1, . . . , fm (m ≤ n) a system of W-homogeneous polynomials sat-
isfying H1 and H2. Then the complexity of quasi-homogeneous
Matrix-F5 algorithm (algorithm 1) is:

CF5 = O

(
m

∑
i=2

(Di−1−Di−2)Md(i)
reg,W

(i)M
d(i)

reg,W
(n)

)
We aim at computing precisely how many lines are reduced in

a run of the Matrix-F5 algorithm, that is, the number of polynomi-
als in the returned Gröbner basis. This is done by the following
proposition, which is a weak variant of [3, th. 10]:

PROPOSITION 10. Let ( f1, . . . , fm) be a W-homogeneous sys-
tem (w.r.t a system of weights W) satisfying the hypotheses H1 and
H2. Let Gi be a reduced Gröbner basis of ( f1, . . . , fi) for the W-
GREVLEX monomial ordering, for 1 ≤ i ≤ m. Then the number
of polynomials of W-degree d in Gi whose leading term does not
belong to LT(Gi−1) is bounded by bd,i, defined by the generating
series

Bi(z) =
∞

∑
d=0

bd,iz
d = zdi

i−1

∏
k=1

1− zdk

1− zwk
.

PROOF. The proof of [3, th. 10] still holds in the quasi-homoge-
neous case, using formula (1) for the Hilbert series of a quasi-
homogeneous regular sequence.

So we can obtain a better bound for the number of elementary
operations performed in a Matrix-F5 run. Indeed, Bi(1) represents
the number of reduced polynomials in the computation of a Gröbner
basis of ( f1, . . . , fi,Xi+1, . . . ,Xn), that is as many as in the compu-
tation of a Gröbner basis of ( f1, . . . , fi): since we only perform
reductions under the pivot line, [3, prop. 9] shows that the lines
coming from Xi+1, . . . ,Xn will not add any reduction. Note that
the above generating series is the same as the Hilbert series of
〈 f1, . . . , fi−1,Xi, . . . ,Xn〉, and so, that its value at z = 1 is the de-
gree of that ideal, or Di−1. Therefore, we know that the number of
reduced polynomials with label (m, fi) will be Di−1−Di−2 (with
convention that D0 = 0).

Now, let g be any polynomial of W -degree d being reduced in a
run of the Matrix-F5 algorithm on ( f1, . . . , fi). From [3, prop. 9], we
know that the leading term of g, after reduction, is in Ai. So overall,
in W -degree d, we reduce by at most as many lines as there are
monomials in Ai, that is Md,W (i). Furthermore, each reduction costs
at most O(Md,W (n)) elementary algebraic operations, since this is
the length of the matrix lines. And we perform these reductions up
to degree d(i)

reg. Note that, if i = 1, there clearly isn’t any reduction
in the computation, and we obtain the following formulas:

CF5 = O

(
m

∑
i=2

(Di−1−Di−2)Md(i)
reg,W

(i)M
d(i)

reg,W
(n)

)
(3)

= O

(
m

∑
i=2

1
PiPn

(
D̃i−1

Pi−1
− D̃i−2

Pi−2

)
·M

d(i)
reg+Si−i+1,1(i)·Md(i)

reg+Sn−n+1,1(n)

)
In comparison, the above reasoning for Matrix-F5 applied to F̃

would give

CF5 = O

(
m

∑
i=2

(
D̃i−1− D̃i−2

)
M

d̃(i)
reg,1

(i)M
d̃(i)

reg,1
(n)

)
(4)

so that here again, working with quasi-homogeneous polynomials
yields a gain or roughly P3. Note that the exponent 3 (instead
of the previous ω) is not really meaningful, because we assumed
here that we were using the naive pivot algorithm to perform the
Gauss reduction. However, if we assume ω = 3 in the previous
computations as well, we observe that our new bound is generally
much better than the previous one: figure 1 shows a plot of data
obtained both with algorithm 1 and with Matrix-F5 through homW ,
together with the different bounds we can compute.

Asymptotically, though, the gain does not look important, since
the complexity is still O(nD3) where D is the degree of the ideal
and n ≥ m the number of variables, or in O(nd3n) where d is the
greatest di.

Remark 3. One may also push the computations a bit further, and
obtain an even more accurate bound, expressed in terms of the bd,i
(these calculations are done in [2] for the homogeneous case, and
can easily be transposed to the quasi-homogeneous case):

CF5 = O

(
m−1

∑
i=1

∞

∑
d=0

bd+di+1,i+1

Pi+1Pn
·Md+di+1+Si+1−i,1(i+1)

·Md+di+1+Sn−n+1,1(n)

)
. (5)

As an example, we computed that bound as well for a particular
case, and included it in figure 1. As one can see, that bound is
indeed better than the intermediate evaluation (3), but the difference
is low enough to justify using the latter evaluation. Furthermore, the
bound (3) expressed in terms of the Di’s is more useful in practice,
since it has a closed formula using only the parameters of the system
(n, m, di and wi). That allows us to use it in complexity evaluations,
in both theory and practice.

Remark 4. As one can see on figure 1, the number of operations
needed by Matrix-F5 on the homogenized system is not signifi-
cantly higher than the number of operations needed by the quasi-
homogeneous variant of Matrix-F5. That is mostly true because the
unmodified algorithm can make use of some of the structure of the
quasi-homogeneous systems (for example, columns of zeroes in the
matrices).

4. THE AFFINE CASE
We will now consider the case of input that do not necessarily

consist of quasi-homogeneous polynomials. One of the methods
to find a GREVLEX Gröbner basis of such a system is to apply F5,
considering at W -degree d the set of monomials having W -degree
lower than or equal to d. This is equivalent to homogenizing the
system, i.e. to adding a variable X1 > · · ·> Xn > H, and applying
the classical F5 algorithm to this homogeneous system. The reverse
transformation is done by evaluating each polynomial at H = 1.

However, this process makes it harder to compute the complexity
of the F5 algorithm. The main reason is that dehomogenizing does
not necessarily preserve W -degree, and as a consequence, it is no
longer true that running the Matrix-F5 algorithm up to W -degree d
provides us with a basis, truncated at W -degree d. What remains
true though is that past some W -degree, we may obtain a Gröbner
basis for the entire ideal.

Generally, we want to avoid degree falls in the run of F5, that
is, reductions where the W -degree of the reductee is less than the
W -degrees of the polynomials forming the S-pair. This phenomenon
is similar to reductions to zero in the quasi-homogeneous case. It
can be ruled out by considering only systems which are regular in
the affine sense (as found in [2] for gradings in total degree).

Definition 2. Let W be a system of weights, and ( f1, . . . , fn) be a
system of not-necessarily W -homogeneous polynomials. We denote
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Figure 1: Bounds and values, on a log-log scale, for the number of arithmetic operations performed in Matrix-F5 for a generic system with
W = (1,2,3) and D = (d,d,d)

by hi the quasi-homogeneous component of highest W -degree in
fi, for any 1 ≤ i ≤ n. We say that the sequence ( fi) is regular in
the affine sense when the sequence (hi) is regular (in the quasi-
homogeneous sense). We define the degree of regularity of the ideal
〈 fi〉 as the degree of regularity of the ideal 〈hi〉.

Since a degree fall in a run of F5 is precisely a reduction to zero
in the highest W -degree quasi-homogeneous components of the
system, we know that the F5 criterion rules out all degree falls in a
run of F5 on such a regular system. In turns, it ensures that for such
a system, running Matrix-F5 up to degree d returns a d-Gröbner
basis of F .

Hence we can study the complexity of F5 by looking at a run of
Matrix-F5 on the homogenized system. As an example, we prove
the following theorem:

THEOREM 11. Let W = (w1, . . . ,wn) be a system of weights,
and let f1, . . . , fm be a generic system of polynomials of the form
fi = gi +λi, with gi W-homogeneous of W-degré di and λi ∈K. Let
D be the degree of the system, dreg its degree of regularity, and δ

the gcd of the di’s. We can compute a W-GREVLEX Gröbner basis
of this system in time

O
(

dreg

δ ω
Md,W (n)ω

)
,

or in other words, we can divide the known complexity of the F5
process on such a system by δ ω .

PROOF. The idea is that when we homogenize the system, we
can choose any suitable weight for H, not necessarily 1. More pre-
cisely, we can set the weight of H to be δ , so that the homogenized
polynomials become f h

i = gi +λiHdi/δ .
Thus, assuming the computations made at section 2.2 still hold,

we have the same improvements on the bound on dreg and on the
size of matrices as before, and thus we have the wanted result.

Note that even if the initial system is generic, the homogenized
system is not. However, one can check that if the initial system
was regular in the affine sense, the homogenized system is still
regular. Indeed, it’s enough to check that no reduction to zero occur
in a Matrix-F5 run, but it is clear, since such a reduction would in
particular be a degree fall. Also, the property of being in Noether
position for the m first variables is clearly kept upon homogenizing.

As such, generically, our homogenized system is regular and in
Noether position, so the previous computations indeed still hold.

5. EXPERIMENTAL RESULTS
We have run some benchmarks1, using the FGb library and the

Magma algebra software. We present these results in Tables 1a
1All the systems we used are available online on http://www-polsys.
lip6.fr/~jcf/Software/benchsqhomog.html.

and 1b. The examples are chosen with increasing n (number of
variables and polynomials), two different classes of systems of
weights W and systems of W -degrees D. With these conditions,
we built a generic system of polynomials fi in F65521[X], such that
all monomials appearing in fi have W -degree at most di. The last
examples are systems arising in the study of the Discrete Logarithm
Problem, when trying to compute the decompositions of points
on an elliptic curve (see [17]). In both cases, we use a shortened
notation for the systems of weights and the degrees, where for
example (23,12) means (2,2,2,1,1). The magma benchmarks were
run on a machine with 128 GB RAM and 3 GHz CPU, running
Magma v.2.17-1. The FGb benchmarks were run on a laptop with
16 GB RAM and 3 GHz CPU.

For each system, we compared our strategy (“qh”) with the default
strategy (“std”), for both steps. The algorithms used by the FGb
library are F5 and an implementation of FGLM taking advantage of
the sparsity of the matrices ([13]). The algorithms used by Magma
are F4 and the classical FGLM. The complexity of sparse-FGLM
depends on the number of solutions of the system and on the shape
of the input basis, while the complexity of classical FGLM depends
only on the number of solutions. This explains why we can see
a speed-up on the FGLM step in FGb, even though the degree is
unchanged.

Acknowledgments. This work was supported in part by the
HPAC grant (ANR ANR-11-BS02-013) and by the EXACTA grant
(ANR-09-BLAN-0371-01) of the French National Research Agency.

6. REFERENCES
[1] G. Agnarsson. On the Sylvester denumerants for general

restricted partitions. In Proceedings of the Thirty-third
Southeastern International Conference on Combinatorics,
Graph Theory and Computing (Boca Raton, FL, 2002),
volume 154, pages 49–60, 2002.

[2] M. Bardet. Étude des systèmes algébriques surdéterminés.
Applications aux codes correcteurs et à la cryptographie.
Thesis, Université Pierre et Marie Curie - Paris VI, Dec. 2004.

[3] M. Bardet, J.-C. Faugère, and B. Salvy. On the complexity of
the F5 Gröbner basis algorithm. Private communication, 2012.

[4] T. Becker and V. Weispfenning. Gröbner bases, volume 141
of Graduate Texts in Mathematics. Springer-Verlag, New
York, 1993. A computational approach to commutative
algebra, In cooperation with Heinz Kredel.

[5] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra
system. I. The user language. J. Symbolic Comput.,
24(3-4):235–265, 1997. Computational algebra and number
theory (London, 1993).

http://www-polsys.lip6.fr/~jcf/Software/benchsqhomog.html
http://www-polsys.lip6.fr/~jcf/Software/benchsqhomog.html


System deg(I) tF5 (qh) tF5 (std) Speed-up
for F5

tFGLM (qh) tFGLM (std) Speed-up
for FGLM

Generic n = 7, W = (14,23), D = (47) 2048 2.7 s 3.4 s 1.2 0.4 s 1.1 s 2.6
Generic n = 8, W = (14,24), D = (48) 4096 12.3 s 22.5 s 1.8 2.4 s 7.3 s 3.0
Generic n = 9, W = (15,24), D = (49) 16384 314.9 s 778.5 s 2.5 119.6 s 327.8 s 2.7
Generic n = 7, W = (25,12), D = (47) 512 0.1 s 0.3 s 3.2 0.1 s 0.1 s 1.7
Generic n = 8, W = (26,12), D = (48) 1024 0.4 s 1.6 s 4.2 0.2 s 0.3 s 1.9
Generic n = 9, W = (27,12), D = (49) 2048 1.6 s 8 s 4.9 0.6 s 1.2 s 2.0
Generic n = 10, W = (28,12), D = (410) 4096 7.5 s 40.4 s 5.4 2.4 s 6.2 s 2.6
Generic n = 11, W = (29,12), D = (411) 8192 33.3 s 213.5 s 6.4 17.5 s 41.2 s 2.4
Generic n = 12, W = (210,12), D = (412) 16384 167.9 s 1135.6 s 6.8 115.8 s 246.7 s 2.1
Generic n = 13, W = (211,12), D = (413) 32768 796.7 s 6700 s 8.4 782.7 s 1645.1 s 2.1
Generic n = 14, W = (212,12), D = (414) 65536 5040.1 s ∞ ∞ 5602.3 s
DLP Edwards n = 4, W = (23,1), D = (84) 512 0.1 s 0.1 s 1 0.1 s 0.1 s 1
DLP Edwards n = 5, W = (24,1), D = (165) 65536 935.4 s 6461.2 s 6.9 2164.4 s 6935.6 s 3.2

(a) Benchmarks with FGb

System deg(I) tF4 (qh) tF4 (std) Speed-up
for F4

tFGLM (qh) tFGLM (std) Speed-up
for FGLM

Generic n = 7, W = (14,23), D = (47) 2048 7.9 s 14 s 1.7 214.2 s 222.7 s 1
Generic n = 8, W = (14,24), D = (48) 4096 62.6 s 138.3 s 2.2 1774.7 s 1797.1 s 1
Generic n = 9, W = (15,24), D = (49) 16384 3775.5 s 8830.5 s 2.3 ∞ ∞

Generic n = 7, W = (25,12), D = (47) 512 0.2 s 0.7 s 3.5 45.5 s 45.6 s 1
Generic n = 8, W = (26,12), D = (48) 1024 1 s 6.2 s 6.2 512.3 s 515.6 s 1
Generic n = 9, W = (27,12), D = (49) 2048 6 s 88.1 s 14.7 7965 s 8069.4 s 1
Generic n = 10, W = (28,12), D = (410) 4096 42.4 s 911.8 s 21.5 ∞ ∞

Generic n = 11, W = (29,12), D = (411) 8192 292.5 s 12126.4 s 41.5 ∞ ∞

Generic n = 12, W = (210,12), D = (412) 16384 2463.2 s 146774.7 s 59.6 ∞ ∞

Generic n = 13, W = (211,12), D = (413) 32768 ∞ ∞ ∞ ∞

DLP Edwards n = 4, W = (23,1), D = (84) 512 1 s 1 s 1 1 s 27 s 27
DLP Edwards n = 5, W = (24,1), D = (165) 65536 6044 s 56105 s 9.3 ∞ ∞

(b) Benchmarks with Magma

Table 1: Benchmarks with FGb and Magma for some affine systems

[6] B. Buchberger. A theoretical basis for the reduction of
polynomials to canonical forms. ACM SIGSAM Bull.,
10(3):19–29, 1976.

[7] A. Dickenstein and I. Z. Emiris. Multihomogeneous resultant
matrices. In Proceedings of the 2002 International Symposium
on Symbolic and Algebraic Computation, pages 46–54, New
York, 2002. ACM.

[8] D. Eisenbud. Commutative algebra, volume 150 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1995. With
a view toward algebraic geometry.

[9] J.-C. Faugére. A new efficient algorithm for computing
Gröbner bases (F4). J. Pure Appl. Algebra, 139(1-3):61–88,
1999. Effective methods in algebraic geometry (Saint-Malo,
1998).

[10] J.-C. Faugère. A new efficient algorithm for computing
Gröbner bases without reduction to zero (F5). In Proceedings
of the 2002 International Symposium on Symbolic and
Algebraic Computation, pages 75–83 (electronic), New York,
2002. ACM.

[11] J. C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient
computation of zero-dimensional Gröbner bases by change of
ordering. J. Symbolic Comput., 16(4):329–344, 1993.

[12] J.-C. Faugère and A. Joux. Algebraic cryptanalysis of hidden
field equation (HFE) cryptosystems using Gröbner bases. In
Advances in cryptology—CRYPTO 2003, volume 2729 of
Lecture Notes in Comput. Sci., pages 44–60. Springer, Berlin,
2003.

[13] J.-C. Faugère and C. Mou. Sparse FGLM algorithms. Preprint
available at http://hal.inria.fr/hal-00807540.

[14] J.-C. Faugère and S. Rahmany. Solving systems of polynomial
equations with symmetries using SAGBI-Gröbner bases. In
ISSAC 2009—Proceedings of the 2009 International
Symposium on Symbolic and Algebraic Computation, pages
151–158. ACM, New York, 2009.

[15] J.-C. Faugère, M. Safey El Din, and P.-J. Spaenlehauer.
Gröbner bases of bihomogeneous ideals generated by
polynomials of bidegree (1,1): algorithms and complexity. J.
Symbolic Comput., 46(4):406–437, 2011.

[16] J.-C. Faugère. FGb: A Library for Computing Gröbner Bases.
In K. Fukuda, J. Hoeven, M. Joswig, and N. Takayama,
editors, Mathematical Software - ICMS 2010, volume 6327 of
Lecture Notes in Computer Science, pages 84–87, Berlin,
Heidelberg, September 2010. Springer Berlin / Heidelberg.

[17] J.-C. Faugère, P. Gaudry, L. Huot, and G. Renault. Using
symmetries in the index calculus for elliptic curves discrete
logarithm. Cryptology ePrint Archive, Report 2012/199, 2012.

[18] R. Hartshorne. Algebraic geometry. Springer-Verlag, New
York, 1977. Graduate Texts in Mathematics, No. 52.

[19] J. S. Milne. Algebraic geometry (v5.22), 2012. Available at
www.jmilne.org/math/.

[20] L. Robbiano. On the theory of graded structures. J. Symbolic
Comput., 2(2):139–170, 1986.

[21] R. P. Stanley. Hilbert functions of graded algebras. Advances
in Math., 28(1):57–83, 1978.

http://hal.inria.fr/hal-00807540
www.jmilne.org/math/

	Introduction
	Quasi-homogeneous systems
	Weighted degrees and polynomials
	Degree and degree of regularity
	Noether position

	Computing Gröbner bases
	Using the standard algorithms on the homogenized system
	Direct algorithms
	First complexity bounds
	Precise analysis of matrix-F5

	The affine case
	Experimental results
	References

